EP1283326B1 - Kühlung einer Turbinenschaufel - Google Patents

Kühlung einer Turbinenschaufel Download PDF

Info

Publication number
EP1283326B1
EP1283326B1 EP01119263A EP01119263A EP1283326B1 EP 1283326 B1 EP1283326 B1 EP 1283326B1 EP 01119263 A EP01119263 A EP 01119263A EP 01119263 A EP01119263 A EP 01119263A EP 1283326 B1 EP1283326 B1 EP 1283326B1
Authority
EP
European Patent Office
Prior art keywords
blade
vane
cooling medium
cooling
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01119263A
Other languages
English (en)
French (fr)
Other versions
EP1283326A1 (de
Inventor
Peter Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES01119263T priority Critical patent/ES2254296T3/es
Priority to EP01119263A priority patent/EP1283326B1/de
Priority to DE50108466T priority patent/DE50108466D1/de
Priority to JP2002226904A priority patent/JP4249959B2/ja
Priority to CNB02128539XA priority patent/CN1318733C/zh
Priority to US10/214,760 priority patent/US6905301B2/en
Publication of EP1283326A1 publication Critical patent/EP1283326A1/de
Application granted granted Critical
Publication of EP1283326B1 publication Critical patent/EP1283326B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes

Definitions

  • the invention relates to a turbine blade with a extending along a blade axis, mainly in its longitudinal direction by a cooling medium can be flowed through Airfoil.
  • Gas turbines are used in many areas to drive generators or used by work machines. It is the Energy content of a fuel for generating a rotational movement used a turbine shaft.
  • the fuel will burned in a combustion chamber, being used by an air compressor compressed air is supplied. That in the combustion chamber produced by the combustion of the fuel, under high Pressure and high temperature working medium is doing via a turbine downstream of the combustion unit led, where it relaxes work.
  • For guiding the flow medium in the turbine unit are also usually between adjacent blade rows with the turbine housing connected Leitschaufelschschsch arranged.
  • the turbine blades, in particular the guide vanes usually have for suitable guidance of the working medium along a blade axis extended on, on the end for attachment of the turbine blade at the respective Carrier body a transverse to the blade axis horrrekkende Platform can be formed.
  • the components and components exposed to this high exposed to thermal loads are usually one Cooling of the affected components, in particular of Runners and / or vanes of the turbine unit, provided.
  • the turbine blades are therefore usually designed coolable, in particular, an effective and reliable Cooling seen in the direction of flow of the working medium first rows of blades should be ensured.
  • For cooling usually has the respective turbine blade one integrated into the airfoil or the blade profile Cooling medium channel, from which a cooling medium targeted in particular the thermally loaded zones of the turbine blade can be supplied.
  • cooling air As a cooling medium usually cooling air is used. This usually becomes the respective turbine blade in the way of an open cooling over an integrated one Cooling medium channel supplied. After exiting the turbine blade the cooling air is in the process with that in the turbine unit mixed working medium.
  • the design performance However, such a cooled gas turbine is limited, especially because of the limited mechanical Resilience of individual components of the gas turbine one further increase in performance usually only can be reached by an increased fuel supply. These in turn requires a comparatively increased need for Cooling medium for cooling the turbine blades, in turn Losses in the available compressor mass flow means. These Losses can only be tolerated to a limited extent become. Moreover, it can also be used in gas turbines with regard to a required safety will be necessary, a mixing from flowing out of the turbine blade cooling medium and prevent the turbine unit flowing through the working medium.
  • the invention is therefore based on the object, a turbine blade of the type mentioned above for which Relatively simple means a reliable and effective closed cooling, especially using of cooling air as the cooling medium is enabled.
  • the invention is based on the consideration that a effective cooling for a turbine blade in particular with a flat action on the wall to be cooled of the blade with cooling medium can be achieved. It was recognized that such a surface admission of a targeted Supply of the cooling medium to the wall and a Guide the cooling medium along this required. This is achievable by a separate inflow and outflow channel is provided for cooling medium. Starting from this Division of the cooling medium channel is the admission the wall of the airfoil to be cooled in the way that the cooling medium in the course of his crossing of the Flowed in the outflow channel in a transverse direction becomes.
  • the guidance of the cooling medium mainly in the longitudinal direction of the blade allows compliance particularly short and thus loss-reduced flow paths for the Coolant flow.
  • This main flow direction is changed only in the area in a transverse direction in which a such change of targeted and effective cooling is used. Inevitable flow losses are thus at a low level held.
  • the inflow channel can be selected, especially thermally highly loaded areas of the turbine blade assigned Make outlet openings for cooling medium to transfer into have the discharge channel.
  • the inflow passage in about evenly distributed over its length to be cooled Inner wall of the airfoil facing outlet openings for the cooling medium. This way is special simply a flat cooling of the blade can be achieved.
  • the cooling can be done by means of a so-called impingement cooling take place, one having the outlet openings Wall of the inflow channel serves as an impact cooling wall, with the on she encounters impinging cooling medium in intensive contact and then via the outlet openings for passage into the Outflow channel can be derived.
  • the passage of the cooling medium to the inner wall to be cooled of the airfoil takes place in the transverse direction purposeful and enhancing the cooling effect by the or - with several internal walls to be cooled - each to be cooled Inner wall of the airfoil each with the cooling medium conductive, provided transversely to the blade axis ribs is. These ribs also have an additional cooling rib effect result and thus further improve the cooling.
  • the inflow channel takes the free cross-section the inflow channel in the blade in the longitudinal direction preferably from.
  • the fact is taken into account, that in the course of the inflow channel an increasing part of Cooling medium has already left the inflow and in the Outflow channel has passed.
  • the turbine blade particularly advantageous if the free cross-section of the inflow channel in the airfoil in its Linear decreases linearly.
  • the inflow channel For example, very simple from flat metal plates be formed.
  • free Volume flow of cooling medium through the turbine blade through takes the free cross section of the discharge channel in the blade in the longitudinal direction corresponding to the decrease of free cross section of the inflow channel to.
  • the cooling medium leaves the inflow is the free cross-section the Anströmkanals reduced and at the same time in corresponding dimension of the free cross section of the outflow channel increased for outflowing cooling medium. This can be done in the Course of the outflow additionally in these trespassing Cooling medium without hindrance be removed quickly.
  • a very simple construction of inflow and / or outflow channel for example, from flat plates results when the inflow and / or the outflow channel parallel to the longitudinal direction of the airfoil and perpendicular to the to be cooled Inner wall of the airfoil according to an advantageous Training has a triangular cross-section.
  • the first and the second inflow channel open preferably in a common outflow channel for Cooling medium.
  • the outflow channel for example, low in a central region of the airfoil.
  • the inflow channel is at its one entrance surface for cooling medium remote from the end and / or the discharge channel facing away from its one exit surface for cooling medium Start closed, creating a simple construction and a trouble-free supply and discharge of the cooling medium to the and is enabled by the turbine blade.
  • An advantage is a turbine blade, in which at the Airfoil at thedemediumabströmseite a transversely formed to the blade axis platform is formed when the platform one connected to the inflow, with Has cooling medium acted upon cooling chamber. To this Way is the inflow, the cooling medium to be cooled Inner wall of the airfoil feeds, the design of the Turbine blade considerably simpler at the same time as a feed channel used by cooling medium to the cooling chamber of the platform.
  • each cooling chamber advantageously poured into the respective platform and outwards completed by a cover plate.
  • the cooling chamber be produced directly during the casting of the turbine blade, so that a post-processing of the casting is not required is.
  • For reliable completion of the respective cooling chamber To the outside is only the attachment of the respective Cover plate required.
  • a particularly reliable cooling of the respective structural parts with cooling medium can be reached by means of an impingement cooling.
  • the or each cooling chamber is advantageous in one Floor area arranged at a distance from the chamber floor Impact cooling plate provided.
  • the impingement cooling plate is in the essentially formed as a perforated plate, wherein on the Impact cooling plate impacting cooling medium with this in particular intensive contact occurs and then on the perforation can be derived.
  • a reliable cooling medium discharge is in a further advantageous embodiment a more limited by the chamber bottom and the baffle plate Outflow space of the cooling chamber connected to the outflow channel. Accordingly, for a reliable supply of cooling medium to the cooling chamber according to another advantageous embodiment through the cover plate and the baffle cooling plate limited inflow space of the cooling chamber connected to the inflow channel.
  • the turbine blade is preferably as a guide vane for a gas turbine, in particular for a stationary gas turbine, educated.
  • the advantages achieved by the invention are in particular in that by providing an inflow and an outflow channel in the turbine blade, the cooling medium when crossing from the inflow into the outflow channel in a transverse direction is guided along the inside of the airfoil, whereby allows a two-dimensional loading of the airfoil is and results in a particularly effective cooling.
  • the Turbine blade is doing with relatively little effort producible, in particular, it is important that Inlet and outlet channel as simple inserts in the airfoil can be mounted, can be formed.
  • inclusion of concepts a closed cooling with air as the cooling medium allows.
  • the turbine blade 1 according to FIG. 1 has an airfoil 2, which extends along a blade axis 4.
  • the Airfoil 2 is for the appropriate influence of a in a dedicated turbine unit flowing working medium arched and / or curved.
  • the turbine blade 1 is used as a guide vane for one here not shown gas turbine and in the manner of a closed Cooling as coolable with cooling air as the cooling medium Turbine blade formed.
  • the blade 2 mainly in its longitudinal direction L of cooling medium K. permeable, wherein the cooling medium K from ademediumanströmseite AS forth in the blade 2 and enters ademediumabströmseite BS from this again emerges.
  • a inflow channel 6 in the cooling medium K of thedemediumanströmseite AS ago can come forth, and a discharge channel 8 for cooling medium K out.
  • the inflow channel 6 is on the one hand by a flat, closed wall 10, the diagonal in the airfoil 2, and on the other hand a flat, outlet openings 12 for cooling medium K having Wall 14 limited; the closed wall 10 and the outlet openings 12 having wall 14 can of sheet metal plates be formed.
  • the outlet openings 12, the in distributed approximately uniformly over the length 1 of the inflow channel 6 are, having wall 14 is parallel to a to be cooled Inner wall 16 of the airfoil 2 arranged so that between this inner wall 16 and the aforementioned wall 14th the inflow channel 6, an overflow channel 18 is formed.
  • In the overflow 18 is from the inflow duct 6 in the Outflow channel 8 passing cooling medium K in a transverse direction Q of the airfoil 2 on the inner wall to be cooled 16 of the airfoil 2 along.
  • At this inner wall 16 are in the transverse direction Q of the airfoil 2 extending Ridges 20 are arranged, which are the flow direction of the override cooling medium K and also in addition serve as cooling fins for the airfoil 2.
  • the outflow channel 8 is limited on the one hand from the plane, closed wall 10, diagonally in the blade 2 extends and the inflow channel 6 of the Outflow channel 8 separates, and on the other hand by an inner wall 22 of the airfoil 2, which is the inner wall to be cooled 16 opposite.
  • the arrangement is chosen such that the free cross section 40 of the inflow channel 6 in the blade 2 in the longitudinal direction thereof L decreases linearly. At the same time increases with the measure this decrease in the free cross section 52 of the outflow channel. 8 in the blade 2 in the longitudinal direction L to. Furthermore Both the inflow 6 and the outflow channel 8 are parallel to the longitudinal direction L of the airfoil 2 and perpendicular to the inner wall 16 to be cooled a triangular cross-section on.
  • the overflow of the cooling medium K from the inflow channel 6 in the discharge channel 8 illustrates Figure 2
  • the a cross section along line II - II through the turbine blade 1 represents FIG.
  • the outlet openings 12 having wall 14 and the opposite of this, closed wall 10 has the inflow channel. 6 two connecting the latter walls 10, 14, further Walls 24, 26, so that the inflow duct 6 except one Entry surface and the outlet openings 12 are closed is.
  • the other walls 24, 26 each of a sheet metal plate are formed.
  • inflowing cooling medium K leaves this channel on the Outlet openings 12 and then encounters the inner wall 16 of the airfoil 2.
  • This results in an impact cooling effect which is further enhanced by the fact that the cooling medium K - additionally guided by ribs 20 - on the inner wall 16 of the airfoil 2 in the transverse direction Q is guided along and thereby by overflow channels 18, 28, 30 enters the discharge channel 8; while the cooling medium flows K around at least part of the inflow channel 6 around and passes then into the discharge channel 8, through which it turns in Flows longitudinally of the airfoil 2.
  • Due to the the inner wall 16 of the airfoil 2 arranged ribs 20 results in a cooling effect enhancing cooling fin effect.
  • FIG. 3 Another turbine blade 1 with an airfoil 2 shows in a partially cut, perspective view Figure 3.
  • the airfoil 2 here has a first and a second Anströmkanal 6, 32 for cooling medium K, wherein the inflow channels 6, 32 relative to the blade axis 4 symmetrical to each other are arranged and the airfoil 2 in his Pull longitudinal direction L through a length 1.
  • Cooling medium K occurs at thedemediumanströmseite AS of the airfoil. 2 in the inflow channels 6, 32, flows through the airfoil 2 in its longitudinal direction L in both inflow channels 6, 32nd and leaves it via outlet openings 12, which are shown in FIG. 3 for the sake of clarity, only in the first inflow channel 6 are shown.
  • the cooling medium K flows in one perpendicular to the longitudinal direction L of the airfoil 2 extending Transverse Q each on an inner wall to be cooled 16, 36 of the airfoil 2 along.
  • These inner walls 16, 36 are the outlet openings 12 of the inflow channels 6, 32 arranged opposite and with - in Figure 3 of For clarity, only on the first to be cooled inner wall 16 - ribs 20 for guiding the cooling medium K provided.
  • the flow along the to be cooled inner walls 16, 36 takes place during a transition of the cooling medium K from the inflow channels 6, 32 in a common outflow channel 8 for cooling medium K, the center between the Anströmkanälen 6, 32 is arranged. Via the outflow channel 8 becomes the cooling medium K in the longitudinal direction L of the airfoil 2 whosedemediumabströmseite BS supplied.
  • Point to theRiemediumanströmseite AS of the airfoil the inflow channels 6, 32 each have an entry surface 34, 38 forming free cross section of equal size.
  • This free cross-section of the inflow channels 6, 32 increases in the airfoil 2 in the longitudinal direction L from linear, so that at half length 1/2 of the free cross section 40, 42 also respectively is halved when the inflow channels 6, 32 at their the Inlet surface 34, 38 for cooling medium K opposite end 44, 46 have no free cross-section. That means at the same time that the inflow channels at each of this end 44, 46th are closed.
  • the discharge channel 8 is at its one of a formed free cross section exit surface 48 for cooling medium K facing away beginning 50 closed and has no there free cross section on.
  • the free cross section of the outflow channel 8 in the blade 2 takes in the longitudinal direction L corresponding to the decrease of the free cross section of the Anströmkanäle 6, 32 to. Therefore, the free cross section 52 the outflow channel 8 at half the length 1/2 of the airfoil 2 an area which is the sum of the free cross sections 40, 42 of the inflow channels 6, 32 corresponds at this point. In order to is a free outflow of the cooling medium K ensured.
  • FIG. 1 Another turbine blade 1, in particular a vane for a gas turbine, with a two re a blade axis 4 symmetrically arranged inflow channels 6, 32 for cooling medium K having blade 2 shows Figure 4 in a longitudinal section.
  • ademediumanströmseite AS a transverse to the Blade axis 4 extending first platform 62 integrally formed, which forms a head plate.
  • ademediumabströmseite BS is a transverse to the blade axis 4 extending, a foot plate forming second platform 64 is formed.
  • cooling medium K enters thedemediumanströmseite AS in the first Platform 62 and in one of a cover 66 shielded central, with the inflow channels 6, 32 connected Area of the airfoil 2 a.
  • a cooling chamber 68 of the first Platform 62 is connected to the outflow channel 8, so that already used for cooling the first platform 62 Coolant K through the discharge channel 8 immediately can be led out of the blade 2.
  • the the inflow channels 6, 32 supplied cooling medium K leaves These inflow channels 6, 32 either through outlet openings 12, 70 in to be cooled inner walls 16, 36 of the airfoil 2 facing walls 14, 72 or through at the respective Entry surface for cooling medium K opposite ends of the Anströmkanäle 6, 32 provided transitions 74, 76 to a Cooling chamber 78 of the second platform 64.
  • the cooling medium K the passes through the outlet openings 12, 70, is in a transverse direction Q at the to be cooled, ribs 20, 80 having Inner walls 16, 36 of the airfoil 2 along out, then enters the discharge channel 8 and leaves over this the blade 2 at thedemediumabströmseite BS.
  • the cooling chambers 68, 78 of the platforms 62, 64 are in this cast in and outwards in each case via a cover plate 82, 84 completed.
  • the cooling chambers 68, 78 each in its bottom region with a distance to the chamber bottom 86, 88 arranged impingement cooling plate 90, 92 provided.
  • a discharge space 94 present through the chamber floor 86 and the Impact cooling plate 90 is limited and connected to the discharge channel 8 is.
  • the cooling chamber 78 of the second Platform 64 on a Anströmraum 96 through the cover plate 84 and the impingement cooling plate 92 is limited and to the Anströmkanäle 6, 32 is connected. This way you can the Anströmraum 96 are fed by the inflow channels 6, 32, through walls 10, 98 separated from the discharge channel 8 are.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung bezieht sich auf eine Turbinenschaufel mit einem sich entlang einer Schaufelachse erstreckenden, hauptsächlich in seiner Längsrichtung von einem Kühlmedium durchströmbaren Schaufelblatt.
Gasturbinen werden in vielen Bereichen zum Antrieb von Generatoren oder von Arbeitsmaschinen eingesetzt. Dabei wird der Energieinhalt eines Brennstoffs zur Erzeugung einer Rotationsbewegung einer Turbinenwelle benutzt. Der Brennstoff wird dazu in einer Brennkammer verbrannt, wobei von einem Luftverdichter verdichtete Luft zugeführt wird. Das in der Brennkammer durch die Verbrennung des Brennstoffs erzeugte, unter hohem Druck und unter hoher Temperatur stehende Arbeitsmedium wird dabei über eine der Brennkammer nachgeschaltete Turbineneinheit geführt, wo es sich arbeitsleistend entspannt.
Zur Erzeugung der Rotationsbewegung der Turbinenwelle sind dabei an dieser eine Anzahl von üblicherweise in Schaufelgruppen oder Schaufelreihen zusammengefaßten Laufschaufeln angeordnet, die über einen Impulsübertrag aus dem Strömungsmedium die Turbinenwelle antreiben. Zur Führung des Strömungsmediums in der Turbineneinheit sind zudem üblicherweise zwischen benachbarten Laufschaufelreihen mit dem Turbinengehäuse verbundene Leitschaufelreihen angeordnet. Die Turbinenschaufeln, insbesondere die Leitschaufeln, weisen dabei üblicherweise zur geeigneten Führung des Arbeitsmediums ein entlang einer Schaufelachse erstrecktes Schaufelblatt auf, an das endseitig zur Befestigung der Turbinenschaufel am jeweiligen Trägerkörper eine sich quer zur Schaufelachse erstrekkende Plattform angeformt sein kann.
Bei der Auslegung derartiger Gasturbinen ist zusätzlich zur erreichbaren Leistung üblicherweise ein besonders hoher Wirkungsgrad ein Auslegungsziel. Eine Erhöhung des Wirkungsgrades läßt sich dabei aus thermodynamischen Gründen grundsätzlich durch eine Erhöhung der Austrittstemperatur erreichen, mit dem das Arbeitsmedium aus der Brennkammer ab- und in die Turbineneinheit einströmt. Daher werden Temperaturen von etwa 1200 °C bis 1300 °C für derartige Gasturbinen angestrebt und auch erreicht.
Bei derartig hohen Temperaturen des Arbeitsmediums sind jedoch die diesem ausgesetzten Komponenten und Bauteile hohen thermischen Belastungen ausgesetzt. Um dennoch bei hoher Zuverlässigkeit eine vergleichsweise lange Lebensdauer der betroffenen Komponenten zu gewährleisten, ist üblicherweise eine Kühlung der betroffenen Komponenten, insbesondere von Lauf- und/oder Leitschaufeln der Turbineneinheit, vorgesehen. Die Turbinenschaufeln sind daher üblicherweise kühlbar ausgebildet, wobei insbesondere eine wirksame und zuverlässige Kühlung der in Strömungsrichtung des Arbeitsmediums gesehen ersten Schaufelreihen sichergestellt sein soll. Zur Kühlung weist die jeweilige Turbinenschaufel dabei üblicherweise einen in das Schaufelblatt oder das Schaufelprofil integrierten Kühlmediumkanal auf, von dem aus ein Kühlmedium gezielt insbesondere den thermisch belasteten Zonen der Turbinenschaufel zuleitbar ist.
Als Kühlmedium kommt dabei üblicherweise Kühlluft zum Einsatz. Diese wird der jeweiligen Turbinenschaufel üblicherweise in der Art einer offenen Kühlung über einen integrierten Kühlmediumkanal zugeführt. Nach dem Austritt aus der Turbinenschaufel wird die Kühlluft dabei mit dem in der Turbineneinheit geführten Arbeitsmedium vermischt. Die Auslegungsleistung einer derartig gekühlten Gasturbine ist jedoch begrenzt, insbesondere da im Hinblick auf die begrenzte mechanische Belastbarkeit einzelner Komponenten der Gasturbine eine weitere Leistungssteigerung üblicherweise nur durch eine vermehrte Brennstoffzufuhr erreichbar ist. Diese bedingt ihrerseits einen vergleichsweise erhöhten Bedarf an Kühlmedium zur Kühlung der Turbinenschaufeln, der seinerseits Verluste im verfügbaren Verdichtermassenstrom bedeutet. Diese Verluste können wiederum nur in begrenztem Ausmaß hingenommen werden. Außerdem kann es in Gasturbinen auch im Hinblick auf eine erforderliche Sicherheit notwendig sein, eine Vermischung von aus der Turbinenschaufel abströmendem Kühlmedium und die Turbineneinheit durchströmendem Arbeitsmedium zu verhindern.
Aus der Offenlegungsschrift DE 1601553 ist eine hohle tragflächenförmige Leitschaufel mit einem Einsatz für ein Gasturbinentriebwerk bekannt. Der Einsatz ist so gestaltet, dass eine minimale Strömung eines fluiden Mediums für eine ausreichende Kühlung eingestellt werden kann. Dazu ist der Einsatz von der Innenwandung des Schaufelblatts beabstandet und verläuft entlang der Längserstreckung der Leitschaufel keilförmig. Im Einsatz sind Kühlluftaustrittsöffnungen vorgesehen, welche der Innenseite der stromaufwärts gelegenen Anströmkante gegenüberliegen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Turbinenschaufel der oben genannten Art anzugeben, für die mit vergleichsweise einfachen Mitteln eine zuverlässige und wirkungsvolle geschlossene Kühlung, insbesondere unter Verwendung von Kühlluft als Kühlmedium, ermöglicht ist.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des unabhängigen Anspruchs 1 gelöst.
Die Erfindung geht dabei von der Überlegung aus, daß eine wirkungsvolle Kühlung für eine Turbinenschaufel insbesondere mit einer flächigen Beaufschlagung der zu kühlenden Wandung des Schaufelblattes mit Kühlmedium zu erzielen ist. Es wurde erkannt, daß eine solche flächige Beaufschlagung einer gezielten Zuführung des Kühlmediums zu der Wandung und einer Führung des Kühlmediums an dieser entlang bedarf. Dieses ist erreichbar, indem jeweils ein separater Anström- und Abströmkanal für Kühlmedium vorgesehen ist. Ausgehend von dieser Zweiteilung des Kühlmediumkanals erfolgt die Beaufschlagung der zu kühlenden Wandung des Schaufelblattes in der Weise, daß das Kühlmedium im Verlauf seines Übertritts von dem Anström- in den Abströmkanal in einer Querrichtung geführt wird.
Die Führung des Kühlmediums hauptsächlich in der Längsrichtung des Schaufelblattes ermöglicht die Einhaltung besonders kurzer und somit verlustverminderter Strömungswege für den Kühlmediumstrom. Diese hauptsächliche Strömungsrichtung wird nur in dem Bereich in eine Querrichtung geändert, in dem eine solche Änderung der gezielten und effektiven Kühlung dient. Unvermeidliche Strömungsverluste werden so auf niedrigem Niveau gehalten. Auch eine Beaufschlagung des Schaufelblattes mit einer vergleichsweise großen Menge an Kühlmedium ist nicht durch Einschränkungen im Strömungsweg behindert. Von besonderem Vorteil ist, daß eine große Kühlleistung in einem vergleichsweise geringen Abschnitt des Strömungsweges des Kühlmediums, nämlich im Verlauf seines in der Querrichtung zum Schaufelblatt angeordneten Wegabschnitts, beim Übertritt von dem Anström- in den Abströmkanal gezielt erbracht wird.
Der Anströmkanal kann an ausgewählten, thermisch besonders hoch belasteten Bereichen der Turbinenschaufel zugeordneten Stellen Austrittsöffnungen für Kühlmedium zum Übertritt in den Abströmkanal aufweisen. Hierzu weist der Anströmkanal in etwa gleichmäßig über seine Länge verteilt der zu kühlenden Innenwandung des Schaufelblattes zugewandte Austrittsöffnungen für das Kühlmedium auf. Auf diese Weise ist besonders einfach eine flächige Kühlung des Schaufelblattes erzielbar. Die Kühlung kann dabei mittels einer so genannten Prallkühlung erfolgen, wobei eine die Austrittsöffnungen aufweisende Wand des Anströmkanals als Prallkühlwand dient, mit der auf sie auftreffendes Kühlmedium in intensiven Kontakt tritt und anschließend über die Austrittsöffnungen zum Übertritt in den Abströmkanal abgeleitet werden kann.
Das Entlangführen des Kühlmediums an der zu kühlenden Innewandung des Schaufelblattes in dessen Querrichtung erfolgt zielgerichtet und die Kühlwirkung verstärkend, indem die oder - bei mehreren zu kühlenden Innenwandungen - jede zu kühlende Innenwandung des Schaufelblattes jeweils mit das Kühlmedium leitenden, quer zur Schaufelachse angeordneten Rippen versehen ist. Diese Rippen haben außerdem einen zusätzlichen Kühlrippeneffekt zur Folge und verbessern somit die Kühlung weiter.
Um ein gleichmäßiges Strömen des Kühlmediums zu gewährleisten und den in der Turbinenschaufel zur Verfügung stehenden Raum möglichst gezielt auszunutzen, nimmt der freie Querschnitt des Anströmkanals im Schaufelblatt in dessen Längsrichtung vorzugsweise ab. Somit wird dem Umstand Rechnung getragen, daß im Verlauf des Anströmkanals ein zunehmender Teil des Kühlmediums den Anströmkanal bereits verlassen hat und in den Abströmkanal übergetreten ist. Insbesondere bei einer über die Länge des Schaufelblattes gleichmäßigen, flächigen Beaufschlagung mit Kühlmedium ist es für eine einfache Bauausführung der Turbinenschaufel besonders vorteilhaft, wenn der freie Querschnitt des Anströmkanals im Schaufelblatt in dessen Längsrichtung linear abnimmt. In diesem Fall kann der Anströmkanal beispielsweise sehr einfach aus ebenen Blechplatten gebildet sein. Im Interesse eines gleichmäßigen, freien Volumenstroms von Kühlmedium durch die Turbinenschaufel hindurch nimmt der freie Querschnitt des Abströmkanals im Schaufelblatt in dessen Längsrichtung entsprechend der Abnahme des freien Querschnitts des Anströmkanals zu. In dem Umfang, in dem Kühlmedium den Anströmkanal verläßt, wird der freie Querschnitt des Anströmkanals verkleinert und gleichzeitig in entsprechendem Maß der freie Querschnitt des Abströmkanals für abfließendes Kühlmedium vergrößert. Dadurch kann das im Verlauf des Abströmkanals zusätzlich in diesen übertretende Kühlmedium ohne Hindernis zügig abgeführt werden.
Ein sehr einfacher Aufbau von Anström- und/oder Abströmkanal beispielsweise aus ebenen Platten ergibt sich, wenn der Anströmkanal und/oder der Abströmkanal parallel zur Längsrichtung des Schaufelblattes und senkrecht zu der zu kühlenden Innenwandung des Schaufelblattes gemäß einer vorteilhaften Weiterbildung einen dreieckigen Querschnitt aufweist.
Da üblicherweise nicht alle Wandungen des Schaufelblattes der Turbinenschaufel gleichen thermischen Belastungen ausgesetzt sind, kann es hinreichend sein, nur einen Anströmkanal zur Kühlung einer thermisch besonders stark beanspruchten Wandung in der Turbinenschaufel vorzusehen. Insbesondere jedoch wenn sowohl die Druck- als auch die Saugseite der Turbinenschaufel gekühlt werden muß, ist es von Vorteil, einen zweiten Anströmkanal für Kühlmedium zur Kühlung einer weiteren Innenwandung des Schaufelblattes vorzusehen, der bezogen auf die Schaufelachse symmetrisch zu dem ersten Anströmkanal angeordnet ist. Da dabei die zu kühlenden Innenwandungen gegenüberliegend angeordnet sind, münden der erste und der zweite Anströmkanal vorzugsweise in einen gemeinsamen Abströmkanal für Kühlmedium. Der Abströmkanal kann beispielsweise günstig in einem zentralen Bereich des Schaufelblattes verlaufen.
Vorzugsweise ist der Anströmkanal an seinem einer Eintrittsfläche für Kühlmedium abgewandten Ende und/oder der Abströmkanal an seinem einer Austrittsfläche für Kühlmedium abgewandten Anfang verschlossen, wodurch ein einfacher Aufbau und eine störungsfreie An- und Abführung des Kühlmediums zu der und von der Turbinenschaufel ermöglicht wird.
Beispielsweise bei eine sich quer zu der Schaufelachse erstreckende Plattform - insbesondere zum Anschluß der Turbinenschaufeln an ein Turbinengehäuse - aufweisenden Turbinenschaufeln, bei denen aufgrund hoher thermischer Beanspruchung auch eine Kühlung der Plattform gewünscht ist, kann es jedoch günstig sein, von dem vorbeschriebenen Bauprinzip abzuweichen: Von Vorteil ist eine Turbinenschaufel, bei der an das Schaufelblatt an dessen Kühlmediumabströmseite eine sich quer zur Schaufelachse erstreckende Plattform angeformt ist, wenn die Plattform eine an den Anströmkanal angeschlossene, mit Kühlmedium beaufschlagbare Kühlkammer aufweist. Auf diese Weise wird der Anströmkanal, der Kühlmedium der zu kühlenden Innenwandung des Schaufelblattes zuführt, die Bauform der Turbinenschaufel erheblich vereinfachend gleichzeitig als Zuführkanal von Kühlmedium zu der Kühlkammer der Plattform verwendet. - Von ebensolchem Vorteil ist eine Turbinenschaufel, bei der an das Schaufelblatt an dessen Kühlmediumanströmseite eine sich quer zur Schaufelachse erstreckende Plattform angeformt ist, die eine an den Abströmkanal angeschlossene, mit Kühlmedium beaufschlagbare Kühlkammer aufweist. Dabei kann das zur Kühlung der Plattform herangezogene Kühlmedium unmittelbar aus dem Schaufelblatt abgeführt werden, ohne daß aufwendige Rückströmkanäle vorgesehen werden müßten oder daß die Gefahr der Vermischung mit Kühlmedium bestehen könnte, das zur Kühlung der Innenwandung des Schaufelblattes vorgesehen ist. Die wirkungsvolle Kühlung des Schaufelblattes ist somit nicht gefährdet.
Für einen besonders geringen Aufwand bei der Herstellung der Turbinenschaufel ist die oder jede Kühlkammer vorteilhafterweise in die jeweilige Plattform eingegossen und nach außen über ein Abdeckblech abgeschlossen. Somit kann die Kühlkammer direkt beim Gießen der Turbinenschaufel mithergestellt werden, so daß eine Nachbearbeitung des Gußkörpers nicht erforderlich ist. Zum zuverlässigen Abschluß der jeweiligen Kühlkammer nach außen ist dabei lediglich die Anbringung des jeweiligen Abdeckblechs erforderlich.
Eine besonders zuverlässige Kühlung der jeweiligen Strukturteile mit Kühlmedium ist mittels einer Prallkühlung erreichbar. Dazu ist die oder jede Kühlkammer vorteilhaft in einem Bodenbereich mit einem beabstandet zum Kammerboden angeordneten Prallkühlblech versehen. Das Prallkühlblech ist dabei im wesentlichen als gelochtes Blech ausgebildet, wobei auf das Prallkühlblech auftreffendes Kühlmedium mit diesem in besonders intensiven Kontakt tritt und anschließend über die Lochung abgeleitet werden kann. Für eine zuverlässige Kühlmediumableitung ist dabei in weiterer vorteilhafter Ausgestaltung ein durch den Kammerboden und das Prallkühlblech begrenzter Abströmraum der Kühlkammer an den Abströmkanal angeschlossen. Entsprechend ist für eine zuverlässige Zuleitung von Kühlmedium zu der Kühlkammer gemäß einer anderen vorteilhaften Weiterbildung ein durch das Abdeckblech und das Prallkühlblech begrenzter Anströmraum der Kühlkammer an den Anströmkanal angeschlossen.
Die Turbinenschaufel ist vorzugsweise als Leitschaufel für eine Gasturbine, insbesondere für eine stationäre Gasturbine, ausgebildet.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch das Vorsehen eines Anström- und eines Abströmkanals in der Turbinenschaufel das Kühlmedium beim Übertritt von dem Anström- in den Abströmkanal in einer Querrichtung innen an dem Schaufelblatt entlang geführt wird, wodurch eine flächige Beaufschlagung des Schaufelblattes ermöglicht ist und sich eine besonders effektive Kühlung ergibt. Die Turbinenschaufel ist dabei mit vergleichsweise geringem Aufwand herstellbar, wobei insbesondere von Bedeutung ist, daß An- und Abströmkanal als einfache Einsätze, die in dem Schaufelblatt montierbar sind, ausgebildet sein können. Zudem ist auf vergleichsweise einfache Weise eine Einbeziehung von Konzepten einer geschlossenen Kühlung mit Luft als Kühlmedium ermöglicht.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
Figur 1
eine Turbinenschaufel in einem Teil-Längsschnitt,
Figur 2
einen Querschnitt durch die Turbinenschaufel nach Figur 1,
Figur 3
eine andere Turbinenschaufel in teilgeschnittener perspektivischer Ansicht und
Figur 4
eine weitere Turbinenschaufel in einem Längsschnitt.
Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
Die Turbinenschaufel 1 gemäß Figur 1 weist ein Schaufelblatt 2 auf, das sich entlang einer Schaufelachse 4 erstreckt. Das Schaufelblatt 2 ist dabei zur geeigneten Beeinflussung eines in einer zugeordneten Turbineneinheit strömenden Arbeitsmediums gewölbt und/oder gekrümmt.
Die Turbinenschaufel 1 ist als Leitschaufel für eine hier nicht weiter dargestellte Gasturbine und in der Art einer geschlossenen Kühlung als mit Kühlluft als Kühlmedium kühlbare Turbinenschaufel ausgebildet. Dazu ist das Schaufelblatt 2 hauptsächlich in seiner Längsrichtung L von Kühlmedium K durchströmbar, wobei das Kühlmedium K von einer Kühlmediumanströmseite AS her in das Schaufelblatt 2 eintritt und an einer Kühlmediumabströmseite BS aus diesem wieder hinaustritt.
In dem Schaufelblatt 2 sind im wesentlichen über dessen gesamte Länge 1 ein Anströmkanal 6, in den Kühlmedium K von der Kühlmediumanströmseite AS her eintreten kann, und ein Abströmkanal 8 für Kühlmedium K geführt. Über den Abströmkanal 8 kann das Kühlmedium das Schaufelblatt 2 an der Kühlmediumabströmseite BS wieder verlassen. Der Anströmkanal 6 wird einerseits durch eine ebene, geschlossene Wand 10, die diagonal in dem Schaufelblatt 2 verläuft, und andererseits durch eine ebene, Austrittsöffnungen 12 für Kühlmedium K aufweisende Wand 14 begrenzt; die geschlossene Wand 10 und die Austrittsöffnungen 12 aufweisende Wand 14 können von Blechplatten gebildet werden. Die die Austrittsöffnungen 12, die in etwa gleichmäßig über die Länge 1 des Anströmkanals 6 verteilt sind, aufweisende Wand 14 ist parallel zu einer zu kühlenden Innenwandung 16 des Schaufelblattes 2 angeordnet, so daß zwischen dieser Innenwandung 16 und vorgenannter Wand 14 des Anströmkanals 6 ein Überströmkanal 18 ausgebildet ist.
In dem Überströmkanal 18 wird von dem Anströmkanal 6 in den Abströmkanal 8 übertretendes Kühlmedium K in einer Querrichtung Q des Schaufelblattes 2 an der zu kühlenden Innenwandung 16 des Schaufelblattes 2 entlang geführt. An dieser Innenwandung 16 sind in Querrichtung Q des Schaufelblattes 2 verlaufende Rippen 20 angeordnet, die die Strömungsrichtung des übertretenden Kühlmediums K mitbestimmen und außerdem zusätzlich als Kühlrippen für das Schaufelblatt 2 dienen.
Nachdem das Kühlmedium an der Innenwandung 16 des Schaufelblattes 2 diese kühlend entlang geströmt ist, tritt es in den Abströmkanal 8 ein. Der Abströmkanal 8 wird einerseits begrenzt von der ebenen, geschlossenen Wand 10, die diagonal in dem Schaufelblatt 2 verläuft und den Anströmkanal 6 von dem Abströmkanal 8 trennt, und andererseits von einer Innenwandung 22 des Schaufelblattes 2, die der zu kühlenden Innenwandung 16 gegenüberliegt.
Die Anordnung ist derart gewählt, daß der freie Querschnitt 40 des Anströmkanals 6 im Schaufelblatt 2 in dessen Längsrichtung L linear abnimmt. Gleichzeitig nimmt mit dem Maß dieser Abnahme der freie Querschnitt 52 des Abströmkanals 8 im Schaufelblatt 2 in dessen Längsrichtung L zu. Außerdem weisen sowohl der Anström- 6 als auch der Abströmkanal 8 parallel zur Längsrichtung L des Schaufelblattes 2 und senkrecht zu der zu kühlenden Innenwandung 16 einen dreieckigen Querschnitt auf.
Insbesondere das Überströmen des Kühlmediums K von dem Anströmkanal 6 in den Abströmkanal 8 verdeutlicht Figur 2, die einen Querschnitt entlang Linie II - II durch die Turbinenschaufel 1 nach Figur 1 darstellt. Neben der der zu kühlenden Innenwandung 16 des Schaufelblattes 2 zugewandten, die Austrittsöffnungen 12 aufweisenden Wand 14 und der dieser gegenüberliegenden, geschlossenen Wand 10 weist der Anströmkanal 6 zwei die letztgenannten Wände 10, 14 verbindende, weitere Wände 24, 26 auf, so daß der Anströmkanal 6 mit Ausnahme einer Eintrittsfläche und der Austrittsöffnungen 12 geschlossen ist. Dabei können auch die weiteren Wände 24, 26 jeweils von einer Blechplatte gebildet werden.
In Längsrichtung L des Schaufelblattes 2 in dem Anströmkanal 6 anströmendes Kühlmedium K verläßt diesen Kanal über die Austrittsöffnungen 12 und stößt daraufhin auf die Innenwandung 16 des Schaufelblattes 2. Damit ergibt sich ein Prallkühleffekt, der dadurch weiter verstärkt wird, daß das Kühlmedium K - zusätzlich geleitet durch Rippen 20 - an der Innenwandung 16 des Schaufelblattes 2 in dessen Querrichtung Q entlang geführt wird und dabei durch Überströmkanäle 18, 28, 30 in den Abströmkanal 8 gelangt; dabei fließt das Kühlmedium K um zumindest einen Teil des Anströmkanals 6 herum und gelangt dann in den Abströmkanal 8, durch den es wiederum in Längsrichtung des Schaufelblattes 2 abfließt. Aufgrund der an der Innenwandung 16 des Schaufelblattes 2 angeordneten Rippen 20 ergibt sich ein die Kühlwirkung verstärkender Kühlrippeneffekt.
Eine andere Turbinenschaufel 1 mit einem Schaufelblatt 2 zeigt in teilgeschnittener, perspektivischer Ansicht Figur 3. Das Schaufelblatt 2 weist hier einen ersten und einen zweiten Anströmkanal 6, 32 für Kühlmedium K auf, wobei die Anströmkanäle 6, 32 bezogen auf die Schaufelachse 4 symmetrisch zueinander angeordnet sind und das Schaufelblatt 2 in seiner Längsrichtung L über eine Länge 1 durchziehen. Kühlmedium K tritt an der Kühlmediumanströmseite AS des Schaufelblattes 2 in die Anströmkanäle 6, 32 ein, durchströmt das Schaufelblatt 2 in seiner Längsrichtung L in beiden Anströmkanälen 6, 32 und verläßt diese über Austrittsöffnungen 12, die in Figur 3 der Übersichtlichkeit halber nur in dem ersten Anströmkanal 6 dargestellt sind. Daraufhin fließt das Kühlmedium K in einer senkrecht zu der Längsrichtung L des Schaufelblattes 2 verlaufenden Querrichtung Q jeweils an einer zu kühlenden Innenwandung 16, 36 des Schaufelblattes 2 entlang. Diese Innenwandungen 16, 36 sind den Austrittsöffnungen 12 der Anströmkanäle 6, 32 gegenüberliegend angeordnet und mit - in Figur 3 der Übersichtlichkeit halber nur an der ersten zu kühlenden Innenwandung 16 gezeigten - Rippen 20 zur Führung des Kühlmediums K versehen. Das Entlangströmen an den zu kühlenden Innenwandungen 16, 36 erfolgt während eines Übertritts des Kühlmediums K von den Anströmkanälen 6, 32 in einen gemeinsamen Abströmkanal 8 für Kühlmedium K, der mittig zwischen den Anströmkanälen 6, 32 angeordnet ist. Über den Abströmkanal 8 wird das Kühlmedium K in Längsrichtung L des Schaufelblattes 2 dessen Kühlmediumabströmseite BS zugeführt.
An der Kühlmediumanströmseite AS des Schaufelblattes weisen die Anströmkanäle 6, 32 jeweils einen eine Eintrittsfläche 34, 38 bildenden freien Querschnitt gleicher Größe auf. Dieser freie Querschnitt der Anströmkanäle 6, 32 nimmt im Schaufelblatt 2 in dessen Längsrichtung L linear ab, so daß bei halber Länge 1/2 der freie Querschnitt 40, 42 jeweils ebenfalls halbiert ist, wenn die Anströmkanäle 6, 32 an ihrem der Eintrittsfläche 34, 38 für Kühlmedium K abgewandten Ende 44, 46 keinen freien Querschnitt aufweisen. Das bedeutet gleichzeitig, daß die Anströmkanäle an jeweils diesem Ende 44, 46 verschlossen sind.
Hingegen ist der Abströmkanal 8 an seinem einer von einem freien Querschnitt gebildeten Austrittsfläche 48 für Kühlmedium K abgewandten Anfang 50 verschlossen und weist dort keinen freien Querschnitt auf. Der freie Querschnitt des Abströmkanals 8 im Schaufelblatt 2 nimmt in dessen Längsrichtung L entsprechend der Abnahme des freien Querschnitts des Anströmkanäle 6, 32 zu. Daher weist der freie Querschnitt 52 des Abströmkanals 8 bei halber Länge 1/2 des Schaufelblattes 2 eine Fläche auf, die der Summe der freien Querschnitte 40, 42 der Anströmkanäle 6, 32 an dieser Stelle entspricht. Damit ist ein freies Abströmen des Kühlmediums K gewährleistet.
Neben einer in Längsrichtung L verlaufenden Ausnehmung 54, in der die Anströmkanäle 6, 32 und der Abströmkanal 8 angeordnet sind, weist das Schaufelblatt 2 weitere in Längsrichtung L verlaufende Ausnehmungen 56, 58, 60 auf. Die letztgenannten Ausnehmungen 56, 58, 60, die in Figur 3 als Hohlräume gezeigt sind, können ebenfalls mit entsprechenden An- und Abströmkanälen für Kühlmedium versehen sein und zur Kühlung der Turbinenschaufel 1 herangezogen werden.
Eine weitere Turbinenschaufel 1, die insbesondere eine Leitschaufel für eine Gasturbine sein kann, mit einem zwei bezüglich einer Schaufelachse 4 symmetrisch angeordnete Anströmkanäle 6, 32 für Kühlmedium K aufweisenden Schaufelblatt 2 zeigt Figur 4 in einem Längsschnitt. An das Schaufelblatt 2 ist an einer Kühlmediumanströmseite AS eine sich quer zu der Schaufelachse 4 erstreckende erste Plattform 62 angeformt, die eine Kopfplatte bildet. An einer Kühlmediumabströmseite BS ist eine sich quer zu der Schaufelachse 4 erstreckende, eine Fußplatte bildende zweite Plattform 64 angeformt. Kühlmedium K tritt an der Kühlmediumanströmseite AS in die erste Plattform 62 und in einen von einem Abdeckblech 66 abgeschirmten zentralen, mit den Anströmkanälen 6, 32 verbundenen Bereich des Schaufelblattes 2 ein. Eine Kühlkammer 68 der ersten Plattform 62 ist dabei an den Abströmkanal 8 angeschlossen, so daß bereits zur Kühlung der ersten Plattform 62 herangezogenes Kühlmedium K durch den Abströmkanal 8 unmittelbar aus dem Schaufelblatt 2 herausgeführt werden kann.
Das den Anströmkanälen 6, 32 zugeführte Kühlmedium K verläßt diese Anströmkanäle 6, 32 entweder durch Austrittsöffnungen 12, 70 in zu kühlenden Innenwandungen 16, 36 des Schaufelblattes 2 zugewandten Wänden 14, 72 oder durch an der jeweiligen Eintrittsfläche für Kühlmedium K abgewandten Enden der Anströmkanäle 6, 32 vorgesehene Übergänge 74, 76 zu einer Kühlkammer 78 der zweiten Plattform 64. Das Kühlmedium K, das durch die Austrittsöffnungen 12, 70 hindurchtritt, wird in einer Querrichtung Q an den zu kühlenden, Rippen 20, 80 aufweisenden Innenwandungen 16, 36 des Schaufelblattes 2 entlang geführt, tritt dann in den Abströmkanal 8 ein und verläßt über diesen das Schaufelblatt 2 an dessen Kühlmediumabströmseite BS.
Die Kühlkammern 68, 78 der Plattformen 62, 64 sind in diese eingegossen und nach außen hin jeweils über ein Abdeckblech 82, 84 abgeschlossen. Außerdem sind die Kühlkammern 68, 78 jeweils in ihrem Bodenbereich mit einem beabstandet zum Kammerboden 86, 88 angeordneten Prallkühlblech 90, 92 versehen. In der Kühlkammer 68 der ersten Plattform 62 ist ein Abströmraum 94 vorhanden, der durch den Kammerboden 86 und das Prallkühlblech 90 begrenzt wird und an den Abströmkanal 8 angeschlossen ist. Hingegen weist die Kühlkammer 78 der zweiten Plattform 64 einen Anströmraum 96 auf, der durch das Abdeckblech 84 und das Prallkühlblech 92 begrenzt wird und an die Anströmkanäle 6, 32 angeschlossen ist. Auf diese Weise kann der Anströmraum 96 von den Anströmkanälen 6, 32 bespeist werden, die durch Wände 10, 98 von dem Abströmkanal 8 getrennt sind.

Claims (15)

  1. Turbinenschaufel (1) mit einem sich entlang einer Schaufelachse (4) erstreckenden, hauptsächlich in seiner Längsrichtung (L) von einem Kühlmedium (K) durchströmbaren Schaufelblatt (2), wobei im Schaufelblatt (2) im wesentlichen über seine gesamte Länge (1) ein Anström- (6) und ein Abströmkanal (8) für Kühlmedium (K) geführt sind und der Anström- (6) und der Abströmkanal (8) kühlmediumseitig derart miteinander verbunden sind, daß von dem Anström- (6) in den Abströmkanal (8) übertretendes Kühlmedium (K) in einer Querrichtung (Q) an einer zu kühlenden Innenwandung (16) des Schaufelblattes (2) entlang geführt ist,
    wobei der Anströmkanal (6) in etwa gleichmäßig über seine Länge verteilt der zu kühlenden Innenwandung (16) des Schaufelblattes (2) zugewandte Austrittsöffnungen (12) für das Kühlmedium (K) aufweist,
    dadurch gekennzeichnet, dass
    dass durch mehrere, in Querrichtung (Q) verteilte Austrittsöffnungen (12) eine flächigen Beaufschlagung der Innenwandung (16) mit Kühlmedium erzielbar und
    die oder jede zu kühlenden Innenwandung (16) des Schaufelblattes (2) jeweils mit das Kühlmedium (K) leitenden, quer zur Schaufelachse (4) angeordneten Rippen (20, 80) versehen ist.
  2. Turbinenschaufel nach Anspruch 1, bei der der freie Querschnitt (40) des Anströmkanals (6) im Schaufelblatt (2) in dessen Längsrichtung (L) abnimmt.
  3. Turbinenschaufel nach Anspruch 2, bei der der freie Querschnitt (40) des Anströmkanals (6) im Schaufelblatt (2) in dessen Längsrichtung (L) linear abnimmt.
  4. Turbinenschaufel nach Anspruch 2 oder 3, bei der der freie Querschnitt (52) des Abströmkanals (8) im Schaufelblatt (2) in dessen Längsrichtung (L) entsprechend der Abnahme des freien Querschnitts (40) des Anströmkanals (6) zunimmt.
  5. Turbinenschaufel nach einem der vorhergehenden Ansprüche, bei der der Anströmkanal (6) und/oder der Abströmkanal (8) parallel zur Längsrichtung (L) des Schaufelblattes (2) und senkrecht zu der zu kühlenden Innenwandung (16) des Schaufelblattes (2) einen dreieckigen Querschnitt aufweist.
  6. Turbinenschaufel nach einem der vorhergehenden Ansprüche, bei der bezogen auf die Schaufelachse (4) symmetrisch zu dem ersten Anströmkanal (6) ein zweiter Anströmkanal (32) für Kühlmedium (K) zur Kühlung einer weiteren Innenwandung (36) des Schaufelblattes (2) angeordnet ist.
  7. Turbinenschaufel nach Anspruch 6, bei der der erste und der zweite Anströmkanal (6, 32) in einen gemeinsamen Abströmkanal (8) für Kühlmedium (K) münden.
  8. Turbinenschaufel nach einem der vorhergehenden Ansprüche, bei der der Anströmkanal (6, 32) an seinem einer Eintrittsfläche (34, 38) für Kühlmedium (K) abgewandten Ende (44, 46) und/oder der Abströmkanal (8) an seinem einer Austrittsfläche (48) für Kühlmedium (K) abgewandten Anfang (50) verschlossen ist.
  9. Turbinenschaufel nach einem der vorhergehenden Ansprüche, bei der an das Schaufelblatt (2) an dessen Kühlmediumabströmseite (BS) eine sich quer zur Schaufelachse (4) erstreckende Plattform (64) angeformt ist, die eine an den Anströmkanal (6, 32) angeschlossene, mit Kühlmedium (K) beaufschlagbare Kühlkammer (78) aufweist.
  10. Turbinenschaufel nach einem der vorhergehenden Ansprüche, bei der an das Schaufelblatt (2) an dessen Kühlmediumanströmseite (AS) eine sich quer zur Schaufelachse (4) erstreckende Plattform (62) angeformt ist, die eine an den Abströmkanal (8) angeschlossene, mit Kühlmedium (K) beaufschlagbare Kühlkammer (68) aufweist.
  11. Turbinenschaufel nach Anspruch 9 oder 10, bei der die oder jede Kühlkammer (68, 78) in die jeweilige Plattform (62, 64) eingegossen und nach außen über ein Abdeckblech (82, 84) abgeschlossen ist.
  12. Turbinenschaufel nach einem der Ansprüche 9 bis 11, bei der die oder jede Kühlkammer (68, 78) in einem Bodenbereich mit einem beabstandet zum Kammerboden (86, 88) angeordneten Prallkühlblech (90, 92) versehen ist.
  13. Turbinenschaufel nach Anspruch 12, bei der ein durch den Kammerboden (86) und das Prallkühlblech (90) begrenzter Abströmraum (94) der Kühlkammer (68) an den Abströmkanal (8) angeschlossen ist.
  14. Turbinenschaufel nach Anspruch 12, bei der ein durch das Abdeckblech (84) und das Prallkühlblech (92) begrenzter Anströmraum (96) der Kühlkammer (78) an den Anströmkanal (6, 32) angeschlossen ist.
  15. Turbinenschaufel nach einem der vorhergehenden Ansprüche, die als Leitschaufel für eine Gasturbine ausgebildet ist.
EP01119263A 2001-08-09 2001-08-09 Kühlung einer Turbinenschaufel Expired - Lifetime EP1283326B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES01119263T ES2254296T3 (es) 2001-08-09 2001-08-09 Enfriamiento de un alabe de turbina.
EP01119263A EP1283326B1 (de) 2001-08-09 2001-08-09 Kühlung einer Turbinenschaufel
DE50108466T DE50108466D1 (de) 2001-08-09 2001-08-09 Kühlung einer Turbinenschaufel
JP2002226904A JP4249959B2 (ja) 2001-08-09 2002-08-05 タービン翼
CNB02128539XA CN1318733C (zh) 2001-08-09 2002-08-09 燃气轮机叶片/导向叶片
US10/214,760 US6905301B2 (en) 2001-08-09 2002-08-09 Turbine blade/vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01119263A EP1283326B1 (de) 2001-08-09 2001-08-09 Kühlung einer Turbinenschaufel

Publications (2)

Publication Number Publication Date
EP1283326A1 EP1283326A1 (de) 2003-02-12
EP1283326B1 true EP1283326B1 (de) 2005-12-21

Family

ID=8178287

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01119263A Expired - Lifetime EP1283326B1 (de) 2001-08-09 2001-08-09 Kühlung einer Turbinenschaufel

Country Status (6)

Country Link
US (1) US6905301B2 (de)
EP (1) EP1283326B1 (de)
JP (1) JP4249959B2 (de)
CN (1) CN1318733C (de)
DE (1) DE50108466D1 (de)
ES (1) ES2254296T3 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7121796B2 (en) * 2004-04-30 2006-10-17 General Electric Company Nozzle-cooling insert assembly with cast-in rib sections
ES2312890T3 (es) * 2004-07-26 2009-03-01 Siemens Aktiengesellschaft Elemento enfriado de una turbomaquina y procedimiento de moldeo de este elemento enfriado.
FR2893080B1 (fr) * 2005-11-07 2012-12-28 Snecma Agencement de refroidissement d'une aube d'une turbine, aube de turbine le comportant, turbine et moteur d'aeronef en etant equipes
CN1318735C (zh) * 2005-12-26 2007-05-30 北京航空航天大学 一种适用于燃气涡轮发动机的脉动冲击冷却叶片
GB0719786D0 (en) * 2007-10-11 2007-11-21 Rolls Royce Plc A vane and a vane assembly for a gas turbine engine
US20120000072A9 (en) * 2008-09-26 2012-01-05 Morrison Jay A Method of Making a Combustion Turbine Component Having a Plurality of Surface Cooling Features and Associated Components
US8845289B2 (en) 2011-11-04 2014-09-30 General Electric Company Bucket assembly for turbine system
US8870525B2 (en) 2011-11-04 2014-10-28 General Electric Company Bucket assembly for turbine system
CN104204411B (zh) * 2012-03-22 2016-09-28 通用电器技术有限公司 冷却的壁
US9200534B2 (en) * 2012-11-13 2015-12-01 General Electric Company Turbine nozzle having non-linear cooling conduit
JP6245740B2 (ja) * 2013-11-20 2017-12-13 三菱日立パワーシステムズ株式会社 ガスタービン翼
EP2921650B1 (de) * 2014-03-20 2017-10-04 Ansaldo Energia Switzerland AG Turbinenschaufel mit gekühlte Hohlkehle
US10690055B2 (en) 2014-05-29 2020-06-23 General Electric Company Engine components with impingement cooling features
US9957816B2 (en) 2014-05-29 2018-05-01 General Electric Company Angled impingement insert
US10422235B2 (en) 2014-05-29 2019-09-24 General Electric Company Angled impingement inserts with cooling features
US10494929B2 (en) * 2014-07-24 2019-12-03 United Technologies Corporation Cooled airfoil structure
US10119404B2 (en) 2014-10-15 2018-11-06 Honeywell International Inc. Gas turbine engines with improved leading edge airfoil cooling
US10253636B2 (en) * 2016-01-18 2019-04-09 United Technologies Corporation Flow exchange baffle insert for a gas turbine engine component
US10260356B2 (en) * 2016-06-02 2019-04-16 General Electric Company Nozzle cooling system for a gas turbine engine
US10392944B2 (en) * 2016-07-12 2019-08-27 General Electric Company Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium
US10830056B2 (en) * 2017-02-03 2020-11-10 General Electric Company Fluid cooling systems for a gas turbine engine
US10724380B2 (en) * 2017-08-07 2020-07-28 General Electric Company CMC blade with internal support
US10822973B2 (en) * 2017-11-28 2020-11-03 General Electric Company Shroud for a gas turbine engine
CN111764967B (zh) * 2020-07-06 2022-10-14 中国航发湖南动力机械研究所 涡轮叶片尾缘冷却结构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3540810A (en) * 1966-03-17 1970-11-17 Gen Electric Slanted partition for hollow airfoil vane insert
US3475107A (en) 1966-12-01 1969-10-28 Gen Electric Cooled turbine nozzle for high temperature turbine
GB1467483A (en) * 1974-02-19 1977-03-16 Rolls Royce Cooled vane for a gas turbine engine
JPS5896103A (ja) * 1981-12-01 1983-06-08 Agency Of Ind Science & Technol タ−ビン冷却翼
DE3211139C1 (de) * 1982-03-26 1983-08-11 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Axialturbinenschaufel,insbesondere Axialturbinenlaufschaufel fuer Gasturbinentriebwerke
JPS58191827A (ja) 1982-05-06 1983-11-09 天田 竹子 洋式水洗便所の自動臭気排出機構
JPS6047545A (ja) 1983-08-26 1985-03-14 Hitachi Ltd 宅内電話機による銀行口座の振替サ−ビス
JPH0742842B2 (ja) * 1984-03-13 1995-05-15 株式会社東芝 ガスタービン翼
JP3142850B2 (ja) * 1989-03-13 2001-03-07 株式会社東芝 タービンの冷却翼および複合発電プラント
GB2262322B (en) 1991-12-14 1995-04-12 W E Rawson Limited Flexible tubular structures
JPH08135402A (ja) * 1994-11-11 1996-05-28 Mitsubishi Heavy Ind Ltd ガスタービン静翼構造
FR2743391B1 (fr) * 1996-01-04 1998-02-06 Snecma Aube refrigeree de distributeur de turbine
JP3495579B2 (ja) * 1997-10-28 2004-02-09 三菱重工業株式会社 ガスタービン静翼
DE50010300D1 (de) * 2000-11-16 2005-06-16 Siemens Ag Gasturbinenschaufel

Also Published As

Publication number Publication date
JP4249959B2 (ja) 2009-04-08
US6905301B2 (en) 2005-06-14
DE50108466D1 (de) 2006-01-26
JP2003056305A (ja) 2003-02-26
ES2254296T3 (es) 2006-06-16
US20030035726A1 (en) 2003-02-20
CN1318733C (zh) 2007-05-30
CN1405431A (zh) 2003-03-26
EP1283326A1 (de) 2003-02-12

Similar Documents

Publication Publication Date Title
EP1283326B1 (de) Kühlung einer Turbinenschaufel
EP1789654B1 (de) Strömungsmaschinenschaufel mit fluidisch gekühltem deckband
DE69923746T2 (de) Gasturbinenschaufel mit serpentinenförmigen Kühlkanälen
DE602004000633T2 (de) Turbinenschaufel
DE60211066T2 (de) Gekühltes Schaufelblatt
DE69833538T2 (de) Kühlungskonfiguration für eine Strömungsmaschinenschaufel
DE60018817T2 (de) Gekühlte Gasturbinenschaufel
DE69908603T2 (de) Dampfgekühlte statorschaufel einer gasturbine
DE69213663T2 (de) Integriertes Luft-/Dampfkühlungssystem für Gasturbinen
EP1614859B1 (de) Filmgekühlte Turbinenschaufel
DE69936243T2 (de) Gasturbinenschaufel
DE102009044585B4 (de) Verfahren zum Betreiben eines Turbinentriebwerks und Anordnung in einem Turbinentriebwerk
DE69302614T2 (de) Gekühlte Schaufel für eine Turbomaschine
DE602005000449T2 (de) Kühlung mit Mikrokanälen für eine Turbinenschaufel
DE60202212T2 (de) Kühlbares segment für turbomaschinen und turbinen mit brennkammer
DE60015233T2 (de) Turbinenschaufel mit interner Kühlung
DE19814680C2 (de) Gekühlte Gasturbinen-Laufschaufel
EP2828484B1 (de) Turbinenschaufel
EP1709298B1 (de) Gekühlte schaufel für eine gasturbine
EP2255072B1 (de) Leitschaufel für eine gasturbine sowie gasturbine mit einer solchen leitschaufel
DE60122050T2 (de) Turbinenleitschaufel mit Einsatz mit Bereichen zur Prallkühlung und Konvektionskühlung
DE10001109A1 (de) Gekühlte Schaufel für eine Gasturbine
DE2031917A1 (de) Stromungsmittelgekuhlter Flügel
EP1505254B1 (de) Gasturbine und zugehöriges Kühlverfahren
EP1245806B1 (de) Gekühlte Gasturbinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030804

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20041025

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051221

REF Corresponds to:

Ref document number: 50108466

Country of ref document: DE

Date of ref document: 20060126

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2254296

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060922

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180829

Year of fee payment: 18

Ref country code: FR

Payment date: 20180822

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180809

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181123

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108466

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190809

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190809

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190810