EP1268709A1 - Method for producing hydrocarbons from syngas in a three-phase reactor - Google Patents

Method for producing hydrocarbons from syngas in a three-phase reactor

Info

Publication number
EP1268709A1
EP1268709A1 EP01909933A EP01909933A EP1268709A1 EP 1268709 A1 EP1268709 A1 EP 1268709A1 EP 01909933 A EP01909933 A EP 01909933A EP 01909933 A EP01909933 A EP 01909933A EP 1268709 A1 EP1268709 A1 EP 1268709A1
Authority
EP
European Patent Office
Prior art keywords
reaction
hydrocarbons
catalyst
approximately
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01909933A
Other languages
German (de)
French (fr)
Other versions
EP1268709B1 (en
Inventor
Jean-Marc Schweitzer
Pierre Galtier
François Hugues
Cristina Maretto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Eni SpA
Original Assignee
IFP Energies Nouvelles IFPEN
Agip Petroli SpA
Eni SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8848584&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1268709(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by IFP Energies Nouvelles IFPEN, Agip Petroli SpA, Eni SpA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1268709A1 publication Critical patent/EP1268709A1/en
Application granted granted Critical
Publication of EP1268709B1 publication Critical patent/EP1268709B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts

Definitions

  • the present invention relates to the synthesis of heavy hydrocarbons by the so-called Fischer-Tropsch reaction, that is to say the production of hydrocarbons by reaction of 'a mixture containing essentially carbon monoxide and hydrogen, possibly carbon dioxide. Said mixture is also called: synthesis gas.
  • the present invention relates more particularly to a process for the synthesis of hydrocarbons by reaction of a mixture comprising at least carbon monoxide and hydrogen in the presence of a catalyst used in a three-phase reactor and in which the number of Liquid peclet (Pej) is between 0 (excluded) and around 10.
  • hydrocarbons essentially paraffinic, such as fractions of the naphtha type, gas oil or heavier compounds such as waxes ( long paraffins).
  • hydrocarbons essentially paraffinic, such as fractions of the naphtha type, gas oil or heavier compounds such as waxes ( long paraffins).
  • these hydrocarbons can be converted into fuels (gas oil, kerosene), and / or lubricants.
  • Hydrocarbons can be produced catalytically by chemical conversion of synthesis gas rich in hydrogen and carbon monoxide, generally obtained from natural gas or coal.
  • the synthesis gas can also contain carbon dioxide.
  • the catalysts used in this process, as well as the methods of making these catalysts are well known to those skilled in the art.
  • These catalysts can be of various natures, and most often contain at least group VIII metal of the periodic table of elements (groups 8, 9 and 10 of the new periodic table), preferably dispersed on a mostly mineral support. Often this catalyst contains at least one metal chosen from the group formed by iron, cobalt and ruthenium and most often from the group formed by iron and cobalt.
  • the support is generally a porous material and often a porous inorganic refractory oxide.
  • this support can be chosen from the group formed by alumina, silica, titanium oxide, zirconia, rare earths or mixtures of at least two of these porous mineral oxides.
  • the amount of metal present in the catalyst is from about 1 to about 100 parts by weight per 100 parts by weight of the support and often from about 5 to about 50 parts by weight per 100 parts by weight of the support.
  • the catalyst can also contain promoters such as those cited for example in the following patent documents: GB 2 291 819, EP-B-0 581 619, EP-B-0 764 465, US 5 783 607, FR 2 782 319, cited in reference and the description of which must be considered to be included in the present description because of this quotation.
  • the reactors used for the Fischer-Tropsch synthesis can be of several types, the catalyst being used either in a entrained bed, or in a bubble column reactor, or slurry bubble column, according to English terminology. , in which the gas is brought into contact with a very finely divided liquid / solid mixture, (or slurry according to the Anglo-Saxon name).
  • the term slurry will be used in the remainder of this description to designate a suspension of solid particles in a liquid.
  • the very high reaction heat is usually removed by a cooling exchanger, generally internal to the reactor.
  • the Fischer-Tropsch synthesis installations also include separation means, for the production on the one hand of liquid hydrocarbons, on the other hand of gaseous products which are residual or formed as secondary products during the synthesis, comprising in particular inert, light gaseous hydrocarbons, and the unreacted fraction of the synthesis gas.
  • the desired products are separated substantially completely from the catalyst (for example up to residual catalyst levels of the order of 1 to a few parts per million (ppm), so that they can be used or treated in subsequent steps.
  • a Fischer-Tropsch slurry typically has in a Fischer-Tropsch slurry an amount of solid particles of catalyst representing from 10 to 65% by weight of the slurry. These particles most often have an average diameter of between approximately 10 and approximately
  • Finer particles may possibly be produced by attrition, that is to say by fragmentation of the initial catalyst particles.
  • the Fischer-Tropsch synthesis is a synthesis reaction in which the formation of essentially paraffinic hydrocarbons having essentially more than 5 carbon atoms per molecule (C 5 + hydrocarbons) is sought.
  • This reaction is exothermic.
  • the catalyst and the operating conditions are most often chosen in order to minimize the reaction for the formation of methane which is not the desired product. Indeed, this reaction is particularly exothermic and has a higher activation energy than the main reaction for the formation of C 5 + paraffins.
  • patent application EP-A-0 450 861 in a bubble column type reactor.
  • patent EP-B-0 450 860 describes a method making it possible to operate this same type of reactor in an optimized manner.
  • the performance of the catalyst depends essentially on the concentration of gaseous reactant (synthesis gas) in the reactor, that is to say of the partial pressure of carbon monoxide and hydrogen in the zone reaction.
  • Peclet numbers for the gas phase greater than 10 also called hereinafter “Peclet gas or Pe g numbers
  • Peclet gas numbers (Pe g ) lead to an operating mode of the type piston (plug flow) for the gas phase
  • Peclet gas numbers (Pe g ) less than 1 correspond to systems in which the gas phase is perfectly agitated.
  • agitated systems correspond to Peclet gas numbers tending to zero.
  • the method for optimally conducting a bubble column which is described in patent EP-B-0 450 860 comprises the injection of gas at an average surface speed such that the formation of gas plug (slug flow) is avoided, the surface speed of the gas being greater than or equal to 0.2 (H / D ax ).
  • Another condition relates to the surface speed of the liquid and the rate of sedimentation of the solid (generally the catalyst) so that the solid is suitably fluidized in the liquid phase.
  • the invention relates to a process for the synthesis of hydrocarbons by reaction of a mixture comprising at least carbon monoxide and hydrogen in the presence of a catalyst, most often based on a group VIII metal, implemented in a three-phase reactor and in which the number of liquid Peclet (Pel) is between 0 (excluded) and approximately 10, preferably between approximately 0.005 and approximately 8, even more preferably between approximately 0.01 and approximately 5 and very preferably between approximately 0.02 and approximately 3 or even between approximately 0.03 and approximately 1.
  • a catalyst most often based on a group VIII metal
  • This process makes it possible to control the reaction thermally, to promote the formation of hydrocarbons having at least 2 carbon atoms per molecule, and to reduce the undesirable formation of methane.
  • the invention relates to a process for the synthesis of hydrocarbons preferably having at least 2 carbon atoms in their molecule and more preferably at least 5 carbon atoms in their molecule by contacting a gas containing essentially monoxide of carbon and hydrogen and in a reaction zone containing a suspension of solid particles in a liquid, which comprises solid particles of reaction catalyst. Said suspension is also called slurry.
  • the process according to the invention is therefore implemented in a three-phase reactor.
  • the method according to the invention will be implemented in a three-phase reactor of the bubble column type.
  • the reagent dissolved in the liquid phase which comes into contact with the catalyst in suspension in said phase and which reacts.
  • the piston flow generates a significant temperature profile which makes thermal control difficult.
  • the mixture of reagents (hydrogen and gas monoxide) entering the reactor is subjected to the Fischer-Tropsch reaction and this continues as the fluid progresses in the column.
  • the concentration and the partial pressure of the reactants decrease along the reactor while that of the products (gaseous or liquid) and of the water produced by the reaction increases.
  • the piston flow is therefore at the origin of a concentration gradient associated, in the case of a strongly exothermic reaction, with a large temperature gradient along the reactor.
  • reaction 2 has a higher activation energy ( ⁇ 2) than that ( ⁇ 1) of the main hydrocarbon formation reaction.
  • the rate of methane formation therefore increases faster with temperature than that of other hydrocarbons.
  • the two reactions being exothermic (enthalpies ⁇ H1 and ⁇ H2 of negative reactions 1 and 2), the progress of the reaction causes an increase in the calories released by the reaction, which promotes the increase in temperature and therefore in the methanation.
  • the present invention describes a process which, by controlling the parameters associated with the reaction, promotes the formation of C 2 + hydrocarbons, preferably C 5 + and preferably predominantly paraffinic C n H2n + 2, via reaction 1.
  • Figure 1 shows the evolution of the temperature differential ( ⁇ T), that is to say of the temperature increase due to reactions 1 and 2, as a function of the liquid Peclet number (Pe / ).
  • This temperature differential increases markedly for liquid Peclet numbers greater than a few units.
  • FIG. 2 shows the evolution of the selectivity (S n ) in the desired product (Cn hydrocarbons, with n greater than 1, that is to say C 2 + hydrocarbons) as a function of the number of liquid Peclet (Pe; ). As can be seen in this figure, the selectivity decreases more and more significantly when the number of liquid Peclet exceeds several units.
  • the lower limit of the Peclet number depends on the activity of the catalyst in a perfectly stirred reactor, therefore inter alia on its composition and / or on its method of preparation. As the Peclet number increases, the conversion also increases. However, it is preferable that the Peclet number is not too large so as not to have a temperature profile which makes thermal control difficult and which leads to too low a selectivity for the desired product, as shown in Figures 1 and 2.
  • a high selectivity for C 2 + hydrocarbons i.e. for example a selectivity greater than 60%, preferably greater than 70% by weight, more preferably greater than 80% by weight and very preferably greater than 90% by weight
  • a sufficient conversion i.e. for example a conversion of carbon monoxide greater than 60%, preferably greater than 70%, more preferably greater than 80%
  • the number of Peclet Pe / is therefore between 0 (excluded) and approximately 10, preferably between approximately 0.005 and approximately 8, even more preferably between approximately 0.01 and approximately 5 and very preferably between approximately 0.02 and approximately 3 or even between approximately 0.03 and approximately 1.
  • liquid Peclet number When the liquid Peclet number is included in these ranges of values, a process of synthesis of Fischer-Tropsch type hydrocarbon is obtained, which has optimized performance in terms of conversion and selectivity to C 2 + or even C hydrocarbons. 5 +, as well as better control of the heat emitted by the reaction, which also makes it possible to avoid any possible too rapid deactivation of the catalyst.
  • the method according to the invention will preferably be operated with a surface speed of the gas U g of less than 35 cm. s "1 , more preferably less than 30 cm. s " 1 , in order to promote the transfer of the gas into the liquid phase and therefore the reaction, but also in order to avoid too strong attrition of the catalyst grains.
  • Figures 3 and 4 show the size distribution of the particles of a Fischer-Tropsch catalyst before reaction (curves 1) and after 10 days of test in three-phase reactor (curves 2). This distribution is displayed in terms of% volume of particles for different values of the ratio dp / d p avg (ratio between the diameter of the catalyst particles and the average diameter of all the particles).
  • Figure 3 was obtained for a surface velocity of the gas U g equal to 40 cm / s
  • Figure 4 for U g 30 cm / s.
  • a significant formation of fine particles having a dp / d p avg ratio less than 0.5 is obtained when U g is equal to 40 cm / s (FIG.
  • the Fischer-Tropsch synthetic hydrocarbon production process according to the invention can be implemented in any type of three-phase reactor, preferably in a bubble column or a bubble column type reactor. It seems advantageous to operate in reactors of sufficient size, in particular in order to obtain sufficiently high hourly productivity (weight of C 2 + hydrocarbons produced in one hour). Thus, it seems preferable to preferably use one or more reactors having a diameter greater than approximately 2 meters, more preferably greater than 6 meters, or even greater than 7 meters, in the process according to the invention.
  • the catalytic powders used in the process according to the invention are based on at least one metal from group VIII, that is to say at least one metal chosen from groups 8, 9 and 10 of the new periodic table.
  • group VIII metal is iron or cobalt, more preferably cobalt.
  • the catalyst may contain one or more activating agents (also called promoters) chosen from at least one of groups I to VII of the periodic table (groups 1, 2,3,4,5,6 and 7 of the new classification) . These promoters can be used alone or in combination.
  • the catalyst can optionally be dispersed on a support, the support then preferably comprises an inorganic refractory oxide chosen from the group consisting of aluminas, silica, titanium oxide, zirconia, rare earths.
  • an inorganic refractory oxide chosen from the group consisting of aluminas, silica, titanium oxide, zirconia, rare earths.
  • the cobalt catalysts described in the following patent documents will preferably be used: GB 2 291 819, EP-B-0 581 619, EP-B-0 764 465, US 5 783 607, FR 2 782 319 .
  • the operating conditions of the Fischer-Tropsch reaction for the synthesis of hydrocarbons are generally well known.
  • the optimal mode of operation of the reactor according to the invention is generally situated at a temperature between 160 and 350 ° C, preferably between 200 and 300 ° C, for a pressure between 0.1 and 10 MPa, preferably between 0.5 and 6 MPa, very preferably between 1 and 5 MPa, the H 2 / CO molar ratio of between 0.5 and 3, preferably between 1 and 2.5, even more preferably between 1, 7 and 2.3.

Abstract

The invention concerns a method for the synthesis of hydrocarbons by reacting a mixture comprising at least carbon monoxide and hydrogen in the presence of a catalyst carried out in a three-phase reactor, wherein the liquid Peclet number ranges between 0 (excluded) and about 10, at a gas surface speed Ug preferably less than 35 cm.s-1, so as to promote the transfer of the gas into the liquid phase and avoid too much attrition of catalyst grains.

Description

PROCÉDÉ DE PRODUCTION D'HYDROCARBURES A PARTIR DE GAZ DE SYNTHESE DANS UN RÉACTEUR TRIPHASIQUE La présente invention concerne la synthèse d'hydrocarbures lourds par la réaction dite de Fischer-Tropsch, c'est-à-dire la production d'hydrocarbures par réaction d'un mélange contenant essentiellement du monoxyde de carbone et de l'hydrogène, éventuellement du dioxyde de carbone. Ledit mélange est également appelé : gaz de synthèse. The present invention relates to the synthesis of heavy hydrocarbons by the so-called Fischer-Tropsch reaction, that is to say the production of hydrocarbons by reaction of 'a mixture containing essentially carbon monoxide and hydrogen, possibly carbon dioxide. Said mixture is also called: synthesis gas.
La présente invention concerne plus particulièrement un procédé de synthèse d'hydrocarbures par réaction d'un mélange comprenant au moins du monoxyde de carbone et de l'hydrogène en présence d'un catalyseur mis en œuvre dans un réacteur triphasique et dans lequel le nombre de Peclet liquide (Pej) est compris entre 0 (exclu) et environ 10.The present invention relates more particularly to a process for the synthesis of hydrocarbons by reaction of a mixture comprising at least carbon monoxide and hydrogen in the presence of a catalyst used in a three-phase reactor and in which the number of Liquid peclet (Pej) is between 0 (excluded) and around 10.
ART ANTERIEUR :PRIOR ART:
Le procédé de synthèse d'hydrocarbures par la réaction dite de Fischer-Tropsch est un procédé industriel bien connu pour la production d'hydrocarbures, essentiellement paraffiniques, tels que des fractions de type naphta, gasoil ou de composés plus lourds tels que des cires (paraffines longues). Dans une étape consécutive, telle que par exemple un hydrocraquage isomérisant, ces hydrocarbures peuvent être convertis en carburants (gasoil, kérosène), et/ou lubrifiants.The process for the synthesis of hydrocarbons by the so-called Fischer-Tropsch reaction is a well-known industrial process for the production of hydrocarbons, essentially paraffinic, such as fractions of the naphtha type, gas oil or heavier compounds such as waxes ( long paraffins). In a consecutive step, such as for example an isomerizing hydrocracking, these hydrocarbons can be converted into fuels (gas oil, kerosene), and / or lubricants.
Les hydrocarbures peuvent être produits catalytiquement par conversion chimique de gaz de synthèse riche en hydrogène et monoxyde de carbone, généralement obtenu à partir de gaz naturel ou de charbon. Le gaz de synthèse peut également contenir du dioxyde de carbone. Les pressions utilisées sont généralement d'environ 5 à environ 200 bar absolus, souvent d'environ 5 à environ 80 bars absolus et le plus souvent d'environ 10 à environ 60 bars absolus (10 bars = 1 MPa), et les températures de réaction sont habituellement d'environ 130 à environ 400 °C, souvent d'environ 150 à environ 350 °C et le plus souvent d'environ 200 à environ 300 °C.Hydrocarbons can be produced catalytically by chemical conversion of synthesis gas rich in hydrogen and carbon monoxide, generally obtained from natural gas or coal. The synthesis gas can also contain carbon dioxide. The pressures used are generally from approximately 5 to approximately 200 bar absolute, often from approximately 5 to approximately 80 bar absolute and most often from approximately 10 to approximately 60 bar absolute (10 bars = 1 MPa), and the temperatures of reactions are usually from about 130 to about 400 ° C, often from about 150 to about 350 ° C and most often from about 200 to about 300 ° C.
Les catalyseurs utilisés dans ce procédé, ainsi que les méthodes de fabrication de ces catalyseurs sont bien connus des hommes du métier. Ces catalyseurs peuvent être de diverses natures, et contiennent le plus souvent au moins métal du groupe VIII de la classification périodique des éléments (groupes 8, 9 et 10 de la nouvelle classification périodique), de préférence dispersé sur un support le plus souvent minéral. Souvent ce catalyseur contient au moins un métal choisi dans le groupe formé par le fer, le cobalt et le ruthénium et le plus souvent dans le groupe formé par le fer et le cobalt.The catalysts used in this process, as well as the methods of making these catalysts are well known to those skilled in the art. These catalysts can be of various natures, and most often contain at least group VIII metal of the periodic table of elements (groups 8, 9 and 10 of the new periodic table), preferably dispersed on a mostly mineral support. Often this catalyst contains at least one metal chosen from the group formed by iron, cobalt and ruthenium and most often from the group formed by iron and cobalt.
Le support est généralement une matière poreuse et souvent un oxyde réfractaire inorganique poreux. A titre d'exemple ce support peut être choisi dans le groupe formé par l'alumine, la silice, l'oxyde de titane, la zircone, les terres rares ou des mélanges d'au moins deux de ces oxydes minéraux poreux. Typiquement la quantité de métal présente dans le catalyseur est d'environ 1 à environ 100 parties en poids pour 100 parties en poids du support et souvent d'environ 5 à environ 50 parties en poids pour 100 parties en poids du support.The support is generally a porous material and often a porous inorganic refractory oxide. By way of example, this support can be chosen from the group formed by alumina, silica, titanium oxide, zirconia, rare earths or mixtures of at least two of these porous mineral oxides. Typically the amount of metal present in the catalyst is from about 1 to about 100 parts by weight per 100 parts by weight of the support and often from about 5 to about 50 parts by weight per 100 parts by weight of the support.
Le catalyseur peut en outre contenir des promoteurs tels que ceux cités par exemple dans les documents de brevets suivants : GB 2 291 819, EP-B-0 581 619, EP-B-0 764 465, US 5 783 607, FR 2 782 319, cités en référence et dont la description doit être considérée comme incluse dans la présente description du fait de cette citation.The catalyst can also contain promoters such as those cited for example in the following patent documents: GB 2 291 819, EP-B-0 581 619, EP-B-0 764 465, US 5 783 607, FR 2 782 319, cited in reference and the description of which must be considered to be included in the present description because of this quotation.
Les réacteurs utilisés pour la synthèse Fischer-Tropsch peuvent être de plusieurs types, le catalyseur étant mis en œuvre soit en lit entraîné, soit dans un réacteur du type colonne à bulle (bubble column reactor, ou slurry bubble column, selon la terminologie anglosaxone), dans lequel il y a mise en contact du gaz avec un mélange liquide/solide très finement divisé, (ou slurry selon la dénomination anglosaxonne). Le terme slurry sera employé dans la suite de la présente description pour désigner une suspension de particules solides dans un liquide. La chaleur de réaction, très élevée, est habituellement éliminée par un échangeur de refroidissement, généralement interne au réacteur.The reactors used for the Fischer-Tropsch synthesis can be of several types, the catalyst being used either in a entrained bed, or in a bubble column reactor, or slurry bubble column, according to English terminology. , in which the gas is brought into contact with a very finely divided liquid / solid mixture, (or slurry according to the Anglo-Saxon name). The term slurry will be used in the remainder of this description to designate a suspension of solid particles in a liquid. The very high reaction heat is usually removed by a cooling exchanger, generally internal to the reactor.
Les installations de synthèse Fischer-Tropsch comportent par ailleurs des moyens de séparation, pour la production d'une part d'hydrocarbures liquides, d'autre part de produits gazeux résiduels ou formés en tant que produits secondaires au cours de la synthèse comprenant notamment des inertes, des hydrocarbures légers gazeux, et la fraction non réagie du gaz de synthèse. Les produits recherchés sont séparés de façon sensiblement totale du catalyseur (par exemple jusqu'à des taux de catalyseur résiduel de l'ordre de 1 à quelques parties par million (ppm), afin de pouvoir être utilisés ou traités lors d'étapes ultérieures.The Fischer-Tropsch synthesis installations also include separation means, for the production on the one hand of liquid hydrocarbons, on the other hand of gaseous products which are residual or formed as secondary products during the synthesis, comprising in particular inert, light gaseous hydrocarbons, and the unreacted fraction of the synthesis gas. The desired products are separated substantially completely from the catalyst (for example up to residual catalyst levels of the order of 1 to a few parts per million (ppm), so that they can be used or treated in subsequent steps.
Typiquement, on peut avoir dans un slurry Fischer-Tropsch une quantité de particules solides de catalyseur représentant de 10 à 65 % poids du slurry. Ces particules ont le plus souvent un diamètre moyen compris entre environ 10 et environTypically, one can have in a Fischer-Tropsch slurry an amount of solid particles of catalyst representing from 10 to 65% by weight of the slurry. These particles most often have an average diameter of between approximately 10 and approximately
800 microns. Des particules plus fines peuvent éventuellement être produites par attrition, c'est-à-dire par fragmentation des particules initiales de catalyseur.800 microns. Finer particles may possibly be produced by attrition, that is to say by fragmentation of the initial catalyst particles.
La synthèse Fischer-Tropsch est une réaction de synthèse dans laquelle on recherche la formation d'hydrocarbures essentiellement paraffiniques ayant essentiellement plus de 5 atomes de carbone par molécule (hydrocarbures C5+). Cette réaction est exothermique. Par ailleurs, le catalyseur et les conditions opératoires sont le plus souvent choisis afin de minimiser la réaction de formation du méthane qui n'est pas le produit recherché. En effet, cette réaction est particulièrement exothermique et présente une énergie d'activation plus importante que la réaction principale de formation des paraffines C5+The Fischer-Tropsch synthesis is a synthesis reaction in which the formation of essentially paraffinic hydrocarbons having essentially more than 5 carbon atoms per molecule (C 5 + hydrocarbons) is sought. This reaction is exothermic. Furthermore, the catalyst and the operating conditions are most often chosen in order to minimize the reaction for the formation of methane which is not the desired product. Indeed, this reaction is particularly exothermic and has a higher activation energy than the main reaction for the formation of C 5 + paraffins.
Il a été décrit dans la demande de brevet EP-A- 0 450 861 la mise en œuvre d'un catalyseur Fischer-Tropsch à base de cobalt dispersé sur oxyde de titane dans un réacteur de type colonne à bulle. Par ailleurs, le brevet EP-B-0 450 860, décrit une méthode permettant d'opérer de manière optimisée ce même type de réacteurThe use of a Fischer-Tropsch catalyst based on cobalt dispersed on titanium oxide has been described in patent application EP-A-0 450 861 in a bubble column type reactor. Furthermore, patent EP-B-0 450 860 describes a method making it possible to operate this same type of reactor in an optimized manner.
Dans ces deux documents, il est indiqué que les performances du catalyseur dépendent essentiellement de la concentration en réactif gazeux (gaz de synthèse) dans le réacteur, c'est-à-dire de la pression partielle en monoxyde de carbone et hydrogène dans la zone réactionnelle.In these two documents, it is indicated that the performance of the catalyst depends essentially on the concentration of gaseous reactant (synthesis gas) in the reactor, that is to say of the partial pressure of carbon monoxide and hydrogen in the zone reaction.
En terme d'hydrodynamique, il est ainsi indiqué dans ces documents que dans un réacteur parfaitement mélangé, tel que par exemple un autoclave agité (fully back mixed reactor ou CSTR reactor selon la terminologie anglosaxone), la composition en réactifs gazeux et en produits liquides et gazeux, ainsi que la concentration en catalyseur sont les mêmes en tout point du réacteur. Ainsi, ces réacteurs parfaitement mélangés conduisent aux niveaux de sélectivité en hydrocarbures C5+ les plus élevés, mais aux dépens de la productivité.In terms of hydrodynamics, it is thus indicated in these documents that in a perfectly mixed reactor, such as for example a stirred autoclave (fully back mixed reactor or CSTR reactor according to English terminology), the composition in gaseous reagents and in liquid products and gaseous, as well as the catalyst concentration are the same everywhere in the reactor. So these reactors perfectly mixed lead to the highest levels of selectivity for C 5 + hydrocarbons, but at the expense of productivity.
A l'opposé, dans un réacteur fonctionnant selon un mode « piston » (plug flow reactor, selon la terminologie anglosaxone), la concentration partielle en réactif décroit tout au long de la zone réactionnelle, et ce type de réacteur conduit aux productivités les plus élevées, aux dépens de la sélectivité.In contrast, in a reactor operating according to a “piston” mode (plug flow reactor, according to English terminology), the partial concentration of reactant decreases throughout the reaction zone, and this type of reactor leads to the most productivity. high, at the expense of selectivity.
Ainsi il est indiqué dans le brevet EP-B-0 450 860, que des nombres de Peclet pour la phase gaz supérieurs à 10, également appelés ci-après « nombres de Peclet gaz ou Peg, conduisent à un mode de fonctionnement du type piston (plug flow) pour ce qui concerne la phase gaz, alors que des nombres de Peclet gaz (Peg), inférieurs à 1 correspondent à des systèmes dans lesquels la phase gazeuse est parfaitement agitée. Les systèmes parfaitement agités idéaux correspondent à des nombres de Peclet gaz tendant vers zéro. Ce nombre de Peclet est égal à Peg = H ug/ Dax, où H est la hauteur d'expansion du lit catalytique dans le réacteur, ug est la vitesse spatiale du gaz et Dax est le coefficient de dispersion axiale de la phase gazeuse.Thus, it is indicated in patent EP-B-0 450 860, that Peclet numbers for the gas phase greater than 10, also called hereinafter “Peclet gas or Pe g numbers, lead to an operating mode of the type piston (plug flow) for the gas phase, while Peclet gas numbers (Pe g ), less than 1 correspond to systems in which the gas phase is perfectly agitated. Ideally agitated systems correspond to Peclet gas numbers tending to zero. This Peclet number is equal to Pe g = H u g / D ax , where H is the expansion height of the catalytic bed in the reactor, u g is the space velocity of the gas and D ax is the axial dispersion coefficient of the gas phase.
La méthode permettant de conduire une colonne à bulle de manière optimale qui est décrite dans le brevet EP-B-0 450 860 comprend l'injection de gaz à une vitesse superficielle moyenne telle que la formation de bouchon gazeux (slug flow) est évitée, la vitesse superficielle du gaz étant supérieure ou égal à 0,2(H/Dax). Une autre condition porte sur la vitesse superficielle du liquide et la vitesse de sédimentation du solide (en général le catalyseur) afin que le solide soit convenablement fiuidisé dans la phase liquide.The method for optimally conducting a bubble column which is described in patent EP-B-0 450 860 comprises the injection of gas at an average surface speed such that the formation of gas plug (slug flow) is avoided, the surface speed of the gas being greater than or equal to 0.2 (H / D ax ). Another condition relates to the surface speed of the liquid and the rate of sedimentation of the solid (generally the catalyst) so that the solid is suitably fluidized in the liquid phase.
Ces documents ne prennent pas en compte les effets thermiques et la présence d'une réaction indésirable de méthanation qui a une influence négative importante sur sur l'exothermicité et la sélectivité de la réaction. Or, une exothermicité trop importante au niveau du catalyseur conduit généralement à une augmentation de la formation de méthane, produit favorisé à haute température, ainsi qu'à une chute de l'activité, par exemple par frittage de la phase active ( M.E. DRY, Catalysis Science and Tecxhnology, Volume 1 , éditeurs Anderson et Boudart, pages 175 et 198).These documents do not take into account the thermal effects and the presence of an undesirable methanation reaction which has a significant negative influence on the exothermicity and the selectivity of the reaction. However, an excessively high exothermicity at the level of the catalyst generally leads to an increase in the formation of methane, a product favored at high temperature, as well as to a drop in activity, for example by sintering of the active phase (ME DRY, Catalysis Science and Tecxhnology, Volume 1, editors Anderson and Boudart, pages 175 and 198).
Ces phénomènes conduisent donc à une diminution importante de la production d'hydrocarbures C5+, le plus souvent de manière irréversible. RESUME DE L'INVENTION :These phenomena therefore lead to a significant reduction in the production of C 5 + hydrocarbons, most often irreversibly. SUMMARY OF THE INVENTION:
L'invention concerne un procédé de synthèse d'hydrocarbures par réaction d'un mélange comprenant au moins du monoxyde de carbone et de l'hydrogène en présence d'un catalyseur, le plus souvent à base d'un métal du groupe VIII, mis en œuvre dans un réacteur triphasique et dans lequel le nombre de Peclet liquide (Pel) est compris entre 0 (exclu) et environ 10, de manière préférée entre environ 0,005 et environ 8, de manière encore plus préférée entre environ 0,01 et environ 5 et de manière très préférée entre environ 0,02 et environ 3 voire entre environ 0,03 et environ 1.The invention relates to a process for the synthesis of hydrocarbons by reaction of a mixture comprising at least carbon monoxide and hydrogen in the presence of a catalyst, most often based on a group VIII metal, implemented in a three-phase reactor and in which the number of liquid Peclet (Pel) is between 0 (excluded) and approximately 10, preferably between approximately 0.005 and approximately 8, even more preferably between approximately 0.01 and approximately 5 and very preferably between approximately 0.02 and approximately 3 or even between approximately 0.03 and approximately 1.
Ce procédé permet de contrôler la réaction au plan thermique, de favoriser la formation d'hydrocarbures ayant au moins 2 atomes de carbone par molécule, et de diminuer la formation indésirable de méthane.This process makes it possible to control the reaction thermally, to promote the formation of hydrocarbons having at least 2 carbon atoms per molecule, and to reduce the undesirable formation of methane.
DESCRIPTION DETAILLEE DE L'INVENTION :DETAILED DESCRIPTION OF THE INVENTION:
L'invention concerne un procédé de synthèse d'hydrocarbures ayant de préférence au moins 2 atomes de carbone dans leur molécule et de manière plus préférée au moins 5 atomes de carbone dans leur molécule par la mise en contact d'un gaz contenant essentiellement du monoxyde de carbone et de l'hydrogène et dans une zone de réaction contenant une suspension de particules solides dans un liquide, qui comprend des particules solides de catalyseur de la réaction. Ladite suspension est également appelée slurry. Le procédé selon l'invention est donc mis en œuvre dans un réacteur triphasique. De préférence, le procédé selon l'invention sera mis en œuvre dans un réacteur triphasique du type colonne à bulle.The invention relates to a process for the synthesis of hydrocarbons preferably having at least 2 carbon atoms in their molecule and more preferably at least 5 carbon atoms in their molecule by contacting a gas containing essentially monoxide of carbon and hydrogen and in a reaction zone containing a suspension of solid particles in a liquid, which comprises solid particles of reaction catalyst. Said suspension is also called slurry. The process according to the invention is therefore implemented in a three-phase reactor. Preferably, the method according to the invention will be implemented in a three-phase reactor of the bubble column type.
Il a été découvert par la demanderesse, qu'il est important de pouvoir contrôler l'hydrodynamique du liquide si l'on souhaite contrôler les transferts thermiques dans la zone réactionnelle, ainsi que la réaction elle même.It has been discovered by the Applicant, that it is important to be able to control the hydrodynamics of the liquid if one wishes to control the heat transfers in the reaction zone, as well as the reaction itself.
Dans le procédé selon l'invention, c'est le réactif dissous dans la phase liquide qui rentre en contact avec le catalyseur en suspension dans ladite phase et qui réagit. Pour ce qui concerne le transfert de matière, il est préférable d'établir un régime d'écoulement de la phase réactive, donc de la phase liquide qui contient le gaz dissous, le plus proche possible de l'écoulement piston afin d'obtenir le maximum de conversion. Cependant dans le cas de réactions très exothermiques, l'écoulement piston génère un profil de température important qui rend difficile le contrôle thermique.In the process according to the invention, it is the reagent dissolved in the liquid phase which comes into contact with the catalyst in suspension in said phase and which reacts. Regarding the transfer of material, it is preferable to establish a flow regime for the reactive phase, therefore for the liquid phase which contains the gas. dissolved, as close as possible to the piston flow in order to obtain the maximum conversion. However in the case of very exothermic reactions, the piston flow generates a significant temperature profile which makes thermal control difficult.
En effet, le mélange de réactifs (hydrogène et monoxyde de gaz) entrant dans le réacteur est soumis à la réaction Fischer-Tropsch et celle-ci continue au fur et à mesure que le fluide progresse dans la colonne. Dans ce type de fonctionnement du réacteur, la concentration et la pression partielle des réactifs diminue le long du réacteur tandis que celle des produits (gazeux ou liquides) et de l'eau produite par la réaction augmente. L'écoulement piston est de ce fait à l'origine d'un gradient de concentration associé, dans le cas d'une réaction fortement exothermique, à un gradient de température important le long du réacteur.In fact, the mixture of reagents (hydrogen and gas monoxide) entering the reactor is subjected to the Fischer-Tropsch reaction and this continues as the fluid progresses in the column. In this type of reactor operation, the concentration and the partial pressure of the reactants decrease along the reactor while that of the products (gaseous or liquid) and of the water produced by the reaction increases. The piston flow is therefore at the origin of a concentration gradient associated, in the case of a strongly exothermic reaction, with a large temperature gradient along the reactor.
Si on considère le schéma réactionnel suivant, bien connu de l'homme du métier , pour une réaction exothermique de type Fischer-Tropsch :If we consider the following reaction scheme, well known to those skilled in the art, for an exothermic reaction of the Fischer-Tropsch type:
Hydrocarbures en Cn (n supérieur à 1)Hydrocarbons in C n (n greater than 1)
Méthane (Cri*) Methane (Shout *)
La réaction parallèle indésirable de formation du méthane (réaction 2) présente une énergie d'activation (Ε2) plus importante que celle (Ε1 ) de la réaction principale de formation des hydrocarbures. La vitesse de formation du méthane augmente donc plus vite avec la température que celle des autres hydrocarbures. Par ailleurs, les deux réactions étant exothermiques (enthalpies ΔH1 et ΔH2 des réactions 1 et 2 négatives), l'avancement de la réaction provoque une augmentation des calories dégagées par la réaction, ce qui favorise l'augmentation de la température et donc de la méthanation.The undesirable parallel methane formation reaction (reaction 2) has a higher activation energy (Ε2) than that (Ε1) of the main hydrocarbon formation reaction. The rate of methane formation therefore increases faster with temperature than that of other hydrocarbons. Furthermore, the two reactions being exothermic (enthalpies ΔH1 and ΔH2 of negative reactions 1 and 2), the progress of the reaction causes an increase in the calories released by the reaction, which promotes the increase in temperature and therefore in the methanation.
Une augmentation du gradient thermique le long du réacteur conduit donc à une diminution de la sélectivité en produits désirés. La présente invention décrit un procédé permettant, par le contrôle des paramètres associés à la réaction, de favoriser la formation d'hydrocarbures C2+, de préférence C5+ et de préférence majoritairement paraffinique CnH2n+2 , via la réaction 1.An increase in the thermal gradient along the reactor therefore leads to a decrease in the selectivity for the desired products. The present invention describes a process which, by controlling the parameters associated with the reaction, promotes the formation of C 2 + hydrocarbons, preferably C 5 + and preferably predominantly paraffinic C n H2n + 2, via reaction 1.
Dans le cas du schéma réactionnel décrit précédemment (réactions 1 et 2), les équations de bilan matière en régime transitoire s'écrivent :In the case of the reaction scheme described above (reactions 1 and 2), the material balance equations in transient regime are written:
Espèce A : Species A:
Espèce B Species B
r- • -N r - • -N
Espèce C : Species C:
De même, le bilan énergétique en régime transitoire s'écrit :Similarly, the energy balance in transient regime is written:
avecwith
a = surface volumique d'échange thermique ΔH, = enthalpie de la réaction 1 a = thermal exchange volume area ΔH, = enthalpy of reaction 1
C, = concentration de l'espèce 1 ΔH2 = enthalpie de la réaction 2C, = concentration of species 1 ΔH 2 = enthalpy of reaction 2
Cp = capacité calorifique du liquide A = conductivité thermique effectiveC p = heat capacity of the liquid A = effective thermal conductivity
Dax = coefficient de dispersion axiale p - masse volumique du liquideD ax = axial dispersion coefficient p - density of the liquid
E, = énergie d'activation de la réaction 1 T = temps de passage du liquideE, = activation energy of the reaction 1 T = liquid passage time
E2 = énergie d'activation de la réaction 2E 2 = activation energy of reaction 2
H = hauteur d'expansion du ht catalytique.H = expansion height of the catalytic converter.
Pe, = nombre de Peclet liquidePe, = number of liquid Peclet
Peτ = nombre de Peclet thermique r, = vitesse d'appaπtion de B r2 = vitesse d'appantion de C t = temps t* = temps normePe τ = thermal Peclet number r, = apperance speed of B r 2 = apperance speed of C t = time t * = standard time
T = température u, = vitesse du liquideT = temperature u, = speed of the liquid
U = coefficient de transfert thermique z = position axialeU = heat transfer coefficient z = axial position
Z = position axiale norméeZ = normalized axial position
Etant donné que la dispersion thermique suit de très près la dispersion de matière, l'égalité du nombre de Peclet thermique et du nombre de Peclet matière pour la phase liquide Pe/,constitue une hypothèse raisonnable et admise par l'homme de métier (PL. MILLS et coll., « Three-Phase Sparged Reactors, » dans Topics in Chemical Enginneenng, volume 8,chapιtre 5, p.364, K.D.P. NIGAM et A. SCHUMPE rédacteurs, Editions GORDON and BREACH). La sélectivité en produit B et le profil de température le long de la colonne peuvent alors être déterminés en résolvant les équations précédentes. La résolution conduit aux résultats présentés dans les figures 1 et 2.Since the thermal dispersion follows very closely the material dispersion, the equality of the thermal Peclet number and the material Peclet number for the liquid phase Pe / , constitutes a reasonable assumption and accepted by the skilled person (PL MILLS et al., "Three-Phase Sparged Reactors," in Topics in Chemical Enginneenng, volume 8, chapter 5, p.364, KDP NIGAM and A. SCHUMPE editors, Editions GORDON and BREACH). The selectivity in product B and the temperature profile along the column can then be determined by solving the previous equations. The resolution leads to the results presented in Figures 1 and 2.
La figure 1 montre l'évolution du différentiel de température (ΔT), c'est-à-dire de l'augmentation de température due aux réactions 1 et 2, en fonction du nombre de Peclet liquide (Pe/). Ce différentiel de température augmente notablement pour des nombres de Peclet liquide supérieurs à quelques unités. Pour un contrôle thermique convenable de la réaction de synthèse Fischer-tropsch, il est préférable de maintenir le différentiel de température à moins de 15°C, de préférence à moins de 10°C. Il est donc préférable d'opérer avec un nombre de Peclet liquide inférieur à environ 10, de préférence environ 8. Au delà de ces valeurs, le contrôle de l'exothermicité de la réaction peut devenir difficile, voire impossible.Figure 1 shows the evolution of the temperature differential (ΔT), that is to say of the temperature increase due to reactions 1 and 2, as a function of the liquid Peclet number (Pe / ). This temperature differential increases markedly for liquid Peclet numbers greater than a few units. For proper thermal control of the Fischer-tropsch synthesis reaction, it is preferable to keep the temperature differential below 15 ° C, preferably below 10 ° C. It is therefore preferable to operate with a liquid Peclet number less than about 10, of preferably around 8. Beyond these values, controlling the exothermicity of the reaction can become difficult, if not impossible.
La figure 2 montre l'évolution de la sélectivité (Sn) en produit désirés (hydrocarbures en Cn, avec n supérieur à 1 , c'est-à-dire hydrocarbures C2+) en fonction du nombre de Peclet liquide (Pe;). Ainsi qu'il apparaît sur cette figure, la sélectivité décroît de manière de plus en plus significative lorsque le nombre de Peclet liquide dépasse plusieurs unités.FIG. 2 shows the evolution of the selectivity (S n ) in the desired product (Cn hydrocarbons, with n greater than 1, that is to say C 2 + hydrocarbons) as a function of the number of liquid Peclet (Pe; ). As can be seen in this figure, the selectivity decreases more and more significantly when the number of liquid Peclet exceeds several units.
Ainsi, lors d'une synthèse Fischer-Tropsch, la sélectivité en produits B désirésThus, during a Fischer-Tropsch synthesis, the selectivity in desired B products
(hydrocarbures C2+), diminue lorsque le différentiel de température dans le réacteur augmente, et le nombre de Peclet liquide Pe/ apparaît comme un paramètre de contrôle de la réaction.(C 2 + hydrocarbons), decreases when the temperature differential in the reactor increases, and the number of liquid Peclet Pe / appears as a parameter for controlling the reaction.
II est par ailleurs utile que le nombre de Peclet de la phase liquide soit non nul, afin de s'écarter d'un réacteur parfaitement agité dans lequel la conversion est minimale.It is also useful for the Peclet number of the liquid phase to be non-zero, in order to depart from a perfectly stirred reactor in which the conversion is minimal.
La limite inférieure du nombre de Peclet dépend de l'activité du catalyseur en réacteur parfaitement agité, donc entre autres de sa composition et/ou de son mode de préparation. Lorsque le nombre de Peclet augmente, la conversion augmente également. Il est toutefois préférable que le nombre de Peclet ne soit pas trop grand pour ne pas avoir un profil de température qui rende difficile le contrôle thermique et qui conduise à une sélectivité trop faible en produit désiré, comme le montrent les figures 1 et 2.The lower limit of the Peclet number depends on the activity of the catalyst in a perfectly stirred reactor, therefore inter alia on its composition and / or on its method of preparation. As the Peclet number increases, the conversion also increases. However, it is preferable that the Peclet number is not too large so as not to have a temperature profile which makes thermal control difficult and which leads to too low a selectivity for the desired product, as shown in Figures 1 and 2.
En conséquence, une sélectivité élevée en hydrocarbures C2+ (c'est-à-dire par exemple une sélectivité supérieure à 60%, de préférence supérieure à 70% poids, de manière plus préférée supérieure à 80% poids et de manière très préférée supérieure à 90% poids) et une conversion suffisante ( c'est-à-dire par exemple une conversion du monoxyde de carbone supérieure à 60%, de préférence supérieure à 70%, de manière plus préférée supérieure à 80%) correspondent à une productivité élevée en hydrocarbures C2+ et seront obtenues lorsque que le nombre de Peclet liquide Pe/ est non nul et le plus élevé possible, tout en restant en deçà d'une limite supérieure au delà de laquelle le contrôle thermique de la réaction devient difficile et/ou la sélectivité en hydrocarbures C2+ trop faible.Consequently, a high selectivity for C 2 + hydrocarbons (i.e. for example a selectivity greater than 60%, preferably greater than 70% by weight, more preferably greater than 80% by weight and very preferably greater than 90% by weight) and a sufficient conversion (i.e. for example a conversion of carbon monoxide greater than 60%, preferably greater than 70%, more preferably greater than 80%) correspond to a high productivity of C 2 + hydrocarbons and will be obtained when the number of liquid Peclet Pe / is not zero and as high as possible, while remaining below an upper limit of beyond which the thermal control of the reaction becomes difficult and / or the selectivity for C 2 + hydrocarbons too low.
Dans le procédé selon l'invention, le nombre de Peclet Pe/ est donc compris entre 0 (exclu) et environ 10, de manière préférée entre environ 0,005 et environ 8, de manière encore plus préférée entre environ 0,01 et environ 5 et de manière très préférée entre environ 0,02 et environ 3 voire entre environ 0,03 et environ 1.In the method according to the invention, the number of Peclet Pe / is therefore between 0 (excluded) and approximately 10, preferably between approximately 0.005 and approximately 8, even more preferably between approximately 0.01 and approximately 5 and very preferably between approximately 0.02 and approximately 3 or even between approximately 0.03 and approximately 1.
On obtient, lorsque le nombre de Peclet liquide est compris dans ces intervalles de valeurs, un procédé de synthèse d'hydrocarbure de type Fischer-Tropsch, qui présente des performances optimisées en terme de conversion et de sélectivité en hydrocarbures C2+, voire C5+, ainsi qu'un meilleur contrôle de la chaleur émise par la réaction, ce qui permet également d'éviter une éventuelle désactivation trop rapide du catalyseur.When the liquid Peclet number is included in these ranges of values, a process of synthesis of Fischer-Tropsch type hydrocarbon is obtained, which has optimized performance in terms of conversion and selectivity to C 2 + or even C hydrocarbons. 5 +, as well as better control of the heat emitted by the reaction, which also makes it possible to avoid any possible too rapid deactivation of the catalyst.
Il peut par ailleurs être avantageux, d'opérer de préférence avec une vitesse superficielle du gaz permettant d'éviter la formation de poches de gaz (slugs selon la terminologie anglosaxone). Toutefois, ce phénomène n'est vraiment important que dans des réacteurs de faible diamètre, c'est-à-dire présentant un diamètre inférieur à 6 mètres (6 m) , voire inférieur à 2 mètres (2 m).It may also be advantageous to operate preferably with a superficial speed of the gas making it possible to avoid the formation of gas pockets (slugs according to English terminology). However, this phenomenon is really only significant in reactors of small diameter, that is to say having a diameter less than 6 meters (6 m), or even less than 2 meters (2 m).
De plus le procédé selon l'invention sera de préférence opéré avec une vitesse superficielle du gaz Ug inférieure à 35 cm. s"1, de manière plus préférée inférieure à 30 cm. s"1, afin de favoriser le transfert du gaz dans la phase liquide et donc la réaction, mais aussi afin d'éviter une trop forte attrition des grains de catalyseur.In addition, the method according to the invention will preferably be operated with a surface speed of the gas U g of less than 35 cm. s "1 , more preferably less than 30 cm. s " 1 , in order to promote the transfer of the gas into the liquid phase and therefore the reaction, but also in order to avoid too strong attrition of the catalyst grains.
Les figures 3 et 4 représentent la distribution en taille des particules d'un catalyseur Fischer-Tropsch avant réaction (courbes 1 ) et après 10 jours de test en réacteur triphasique (courbes 2). Cette distribution est visualisée en terme de % volume de particules pour différentes valeurs du rapport dp/dpmoy (rapport entre le diamètre des particules de catalyseur et le diamètre moyen de l'ensemble des particules). La figure 3 a été obtenue pour une vitesse superficielle du gaz Ug égale à 40 cm/s, et la figure 4 pour Ug = 30 cm/s. Une formation importante de fines particules présentant un rapport dp/dpmoy inférieur à 0,5 est obtenue lorsque Ug est égal à 40 cm/s (figure 3), ce qui n'est pas le cas lorsque Ug = 30 cm/s (figure 4). Le procédé de production d'hydrocarbures par synthèse Fischer-Tropsch selon l'invention peut être mis en œuvre dans tout type de réacteur triphasique, de préférence dans une colonne à bulle ou un réacteur de type colonne à bulle. Il paraît avantageux d'opérer dans des réacteurs présentant une taille suffisante, notamment afin d'obtenir des productivité horaires (poids d'hydrocarbures C2+ produits en une heure) suffisamment élevées. Ainsi il paraît préférable d'utiliser de préférence un ou des réacteurs présentant un diamètre supérieur à environ 2 mètres, de manière plus préférée supérieur à 6 mètres, voire supérieur à 7 mètres, dans le procédé selon l'invention.Figures 3 and 4 show the size distribution of the particles of a Fischer-Tropsch catalyst before reaction (curves 1) and after 10 days of test in three-phase reactor (curves 2). This distribution is displayed in terms of% volume of particles for different values of the ratio dp / d p avg (ratio between the diameter of the catalyst particles and the average diameter of all the particles). Figure 3 was obtained for a surface velocity of the gas U g equal to 40 cm / s, and Figure 4 for U g = 30 cm / s. A significant formation of fine particles having a dp / d p avg ratio less than 0.5 is obtained when U g is equal to 40 cm / s (FIG. 3), which is not the case when U g = 30 cm / s (Figure 4). The Fischer-Tropsch synthetic hydrocarbon production process according to the invention can be implemented in any type of three-phase reactor, preferably in a bubble column or a bubble column type reactor. It seems advantageous to operate in reactors of sufficient size, in particular in order to obtain sufficiently high hourly productivity (weight of C 2 + hydrocarbons produced in one hour). Thus, it seems preferable to preferably use one or more reactors having a diameter greater than approximately 2 meters, more preferably greater than 6 meters, or even greater than 7 meters, in the process according to the invention.
Afin de vérifier les conditions de fonctionnement du procédé selon l'invention, notamment les conditions hydrodynamiques et la valeur des nombres de Peclet, il est avantageux d'effectuer des mesures expérimentales en cours de fonctionnement, mais aussi éventuellement des tests au moyen de traceurs. De telles techniques sont connus de l'homme du métier et décrites par exemple dans le brevet EP-B-0 450 860.In order to verify the operating conditions of the process according to the invention, in particular the hydrodynamic conditions and the value of the Peclet numbers, it is advantageous to carry out experimental measurements during operation, but also possibly tests using tracers. Such techniques are known to those skilled in the art and described for example in patent EP-B-0 450 860.
Tout type de catalyseur connu de l'homme du métier peut être utilisé dans le procédé selon l'invention. De manière générale, les poudres catalytiques employées dans le procédé selon l'invention sont à base d'au moins un métal du groupe VIII, c'est- à-dire d'au moins un métal choisi dans les groupes 8, 9 et 10 de la nouvelle classification périodique. De préférence, le métal du groupe VIII est du fer ou du cobalt, de manière plus préféré du cobalt.Any type of catalyst known to a person skilled in the art can be used in the process according to the invention. In general, the catalytic powders used in the process according to the invention are based on at least one metal from group VIII, that is to say at least one metal chosen from groups 8, 9 and 10 of the new periodic table. Preferably, the group VIII metal is iron or cobalt, more preferably cobalt.
Le catalyseur peut contenir un ou plusieurs agents d'activation (également appelles promoteurs) choisi dans au moins un des groupes I à VII de la classification périodique (groupes 1 ,2,3,4,5,6 et 7 de la nouvelle classification). Ces promoteurs peuvent être utilisés seuls ou en combinaison.The catalyst may contain one or more activating agents (also called promoters) chosen from at least one of groups I to VII of the periodic table (groups 1, 2,3,4,5,6 and 7 of the new classification) . These promoters can be used alone or in combination.
Le catalyseur peut éventuellement être dispersé sur un support, le support comprend alors de manière préférée un oxyde refractaire inorganique choisi dans le groupe constitué par les alumines, la silice, l'oxyde de titane, la zircone, les terres rares. On utilisera de manière préférée, les catalyseurs à base de cobalt décrits dans les documents de brevets suivants : GB 2 291 819, EP-B-0 581 619, EP-B-0 764 465, US 5 783 607, FR 2 782 319.The catalyst can optionally be dispersed on a support, the support then preferably comprises an inorganic refractory oxide chosen from the group consisting of aluminas, silica, titanium oxide, zirconia, rare earths. The cobalt catalysts described in the following patent documents will preferably be used: GB 2 291 819, EP-B-0 581 619, EP-B-0 764 465, US 5 783 607, FR 2 782 319 .
Les conditions opératoires de la réaction Fischer-Tropsch de synthèse des hydrocarbures sont généralement bien connues. Le mode optimal de fonctionnement du réacteur selon l'invention se situe généralement à une température comprise entre 160 et 350°C, de manière préférée entre 200 et 300° C, pour une pression comprise entre 0,1 et 10MPa, de manière préférée entre 0,5 et 6 MPa, de manière très préférée entre 1 et 5 MPa, le rapport molaire H2/CO compris entre 0,5 et 3, de manière préférée entre 1 et 2,5, de manière encore plus préférée entre 1 ,7 et 2,3. The operating conditions of the Fischer-Tropsch reaction for the synthesis of hydrocarbons are generally well known. The optimal mode of operation of the reactor according to the invention is generally situated at a temperature between 160 and 350 ° C, preferably between 200 and 300 ° C, for a pressure between 0.1 and 10 MPa, preferably between 0.5 and 6 MPa, very preferably between 1 and 5 MPa, the H 2 / CO molar ratio of between 0.5 and 3, preferably between 1 and 2.5, even more preferably between 1, 7 and 2.3.

Claims

REVENDICATIONS
1. Procédé de synthèse d'hydrocarbures par réaction d'un mélange comprenant au moins du monoxyde de carbone et de l'hydrogène en présence d'un catalyseur mis en œuvre dans un réacteur triphasique et dans lequel le nombre de Peclet liquide1. Process for the synthesis of hydrocarbons by reaction of a mixture comprising at least carbon monoxide and hydrogen in the presence of a catalyst used in a three-phase reactor and in which the number of liquid Peclet
(Pe/) est compris entre 0 (exclu) et environ 10.(Pe / ) is between 0 (excluded) and around 10.
2. Procédé selon la revendication 1 dans lequel la vitesse superficielle du gaz, Ug, est inférieure à environ 35 cm. s"1.2. The method of claim 1 wherein the surface velocity of the gas, U g , is less than about 35 cm. s "1 .
3. Procédé selon l'une quelconque des revendications 1 ou 2 dans lequel Pe/ est compris entre environ 0,005 et environ 8.3. Method according to any one of claims 1 or 2 in which Pe / is between approximately 0.005 and approximately 8.
4. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel le catalyseur est à base d'un métal du groupe VIII.4. Method according to any one of claims 1 to 3 wherein the catalyst is based on a group VIII metal.
5. Procédé selon la revendication 4 dans lequel le métal du groupe VIII est le cobalt.5. The method of claim 4 wherein the group VIII metal is cobalt.
6. Procédé selon l'une des revendications 4 ou 5 dans lequel le métal est dispersé sur un support.6. Method according to one of claims 4 or 5 wherein the metal is dispersed on a support.
7. Procédé selon la revendication 6 dans lequel le support comprend au moins un oxyde choisi dans le groupe constitué par : les alumines, la silice, l'oxyde de titane, la zircone, les terres rares.7. The method of claim 6 wherein the support comprises at least one oxide selected from the group consisting of: aluminas, silica, titanium oxide, zirconia, rare earths.
8. Procédé selon l'une quelconque des revendications 1 à 7 dans lequel la température est comprise entre 160°C et 350°C, la pression est comprise entre 0,1 et 10 MPa , le rapport molaire H2/CO est compris entre 0,5 et 3.8. Method according to any one of claims 1 to 7 wherein the temperature is between 160 ° C and 350 ° C, the pressure is between 0.1 and 10 MPa, the H2 / CO molar ratio is between 0 , 5 and 3.
9. Procédé selon l'une quelconque des revendications 1 à 8 dans lequel le réacteur triphasique est une colonne à bulle9. Method according to any one of claims 1 to 8 wherein the three-phase reactor is a bubble column
10. Procédé selon l'une quelconque des revendications 1 à 9 dans lequel le réacteur triphasique présente un diamètre supérieur à 2 mètres. 10. Method according to any one of claims 1 to 9 wherein the three-phase reactor has a diameter greater than 2 meters.
EP01909933A 2000-03-27 2001-02-28 Method for producing hydrocarbons from syngas in a three-phase reactor Revoked EP1268709B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0003925 2000-03-27
FR0003925A FR2806736B1 (en) 2000-03-27 2000-03-27 PROCESS FOR PRODUCING HYDROCARBONS FROM SYNTHESIS GAS IN A THREE-PHASE REACTOR
PCT/FR2001/000595 WO2001072928A1 (en) 2000-03-27 2001-02-28 Method for producing hydrocarbons from syngas in a three-phase reactor

Publications (2)

Publication Number Publication Date
EP1268709A1 true EP1268709A1 (en) 2003-01-02
EP1268709B1 EP1268709B1 (en) 2006-11-29

Family

ID=8848584

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01909933A Revoked EP1268709B1 (en) 2000-03-27 2001-02-28 Method for producing hydrocarbons from syngas in a three-phase reactor

Country Status (9)

Country Link
US (1) US6825237B2 (en)
EP (1) EP1268709B1 (en)
AU (1) AU3752101A (en)
CA (1) CA2400742C (en)
DE (1) DE60124879T2 (en)
FR (1) FR2806736B1 (en)
NO (1) NO20024608D0 (en)
WO (1) WO2001072928A1 (en)
ZA (1) ZA200207679B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832416B1 (en) 2001-11-20 2004-09-03 Inst Francais Du Petrole PROCESS FOR THE CONVERSION OF SYNTHESIS GAS IN SERIES REACTORS
FR2832415B1 (en) * 2001-11-20 2005-09-23 Inst Francais Du Petrole PROCESS FOR CONVERTING SYNTHESIS GAS IN SERIES REACTORS
US6914082B2 (en) * 2001-12-14 2005-07-05 Conocophillips Company Slurry bubble reactor operated in well-mixed gas flow regime
US7022741B2 (en) * 2003-03-28 2006-04-04 Conocophillips Company Gas agitated multiphase catalytic reactor with reduced backmixing
US20040235968A1 (en) * 2003-03-28 2004-11-25 Conocophillips Company Process and apparatus for controlling flow in a multiphase reactor
GB2410449B (en) * 2004-01-28 2008-05-21 Statoil Asa Fischer-Tropsch catalysts
BRPI0510932B1 (en) * 2004-05-10 2015-05-05 Sasol Tech Pty Ltd Process for producing liquid and optionally gaseous hydrocarbons from gaseous reagents in an expanded mudbed
GB2473071B (en) 2009-09-01 2013-09-11 Gtl F1 Ag Fischer-tropsch catalysts
GB2475492B (en) 2009-11-18 2014-12-31 Gtl F1 Ag Fischer-Tropsch synthesis
WO2012020210A2 (en) 2010-08-09 2012-02-16 Gtl.F1 Ag Fischer-tropsch catalysts
DE102011009163A1 (en) 2011-01-22 2012-07-26 Karlsruher Institut für Technologie Methane synthesis in a bubble column reactor
RU2603136C2 (en) * 2011-02-07 2016-11-20 Вилосис Текнолоджиз Лимитед Catalysts
AP2013007261A0 (en) 2011-06-07 2013-11-30 Sasol Tech Pty Ltd Process for producing at least one product from atleast one gaseous reactant in a slurry bed
CN103596674B (en) 2011-06-07 2015-12-02 沙索技术有限公司 For being produced the method for at least one product in slurry bed system by least one gaseous reactant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348982A (en) * 1990-04-04 1994-09-20 Exxon Research & Engineering Co. Slurry bubble column (C-2391)
CA2038773C (en) * 1990-04-04 1999-06-08 Kym B. Arcuri Slurry fischer-tropsch process with co/ti02 catalyst
ZA985992B (en) * 1997-07-15 2000-01-10 Sasol Tech Pty Ltd A process for producing liquid and, optionally, gaseous products from gaseous reactants.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0172928A1 *

Also Published As

Publication number Publication date
EP1268709B1 (en) 2006-11-29
CA2400742C (en) 2010-05-25
AU3752101A (en) 2001-10-08
DE60124879D1 (en) 2007-01-11
NO20024608L (en) 2002-09-26
WO2001072928A1 (en) 2001-10-04
ZA200207679B (en) 2003-11-11
US20030109590A1 (en) 2003-06-12
FR2806736B1 (en) 2002-05-10
FR2806736A1 (en) 2001-09-28
DE60124879T2 (en) 2007-03-08
NO20024608D0 (en) 2002-09-26
CA2400742A1 (en) 2001-10-04
US6825237B2 (en) 2004-11-30

Similar Documents

Publication Publication Date Title
EP0820806B1 (en) Process with a slurry bubble column and use for Fischer-Tropsch synthesis
EP1268709B1 (en) Method for producing hydrocarbons from syngas in a three-phase reactor
US8394861B2 (en) Gasification of carbonaceous materials and gas to liquid processes
JP2002530472A (en) Addition of small catalyst particles to slurry reactor
EP0773274A1 (en) Process for the conversion of synthesis gas into hydrocarbons
FR2736650A1 (en) PROCESS FOR CONVERTING SYNTHESIS GAS TO LIQUID PHASE
CA2359428C (en) Process for converting synthesis gas in the presence of a catalyst including one element from group viii dispersed on a support based on alumina modified by aqueous impregnation of quaternary ammonium silicate
EP2519605A1 (en) Stacked catalyst bed for fischer-tropsch
US20090134062A1 (en) Catalyst support
US8487011B2 (en) Sulfided fischer-tropsch catalyst
CA2400800C (en) Method for converting hydrocarbons in a three-phase reactor
Krylova Fischer-Tropsch synthesis catalysts as the core of the strategy for obtaining synthetic liquid fuels
EP3386623B1 (en) Loading a catalyst into a bubble column for fischer-tropsch synthesis
AU2002312504B2 (en) Temperature controlled in situ wax purification
FR2745820A1 (en) CONVERSION OF SYNTHESIS GAS TO HYDROCARBONS IN THE PRESENCE OF A LIQUID PHASE
CA2323986C (en) Hydrocarbon synthesis from synthetic gas in the presence of a raney alloy dispersed in a liquid phase
EP2231820A1 (en) Acetylene enhanced conversion of syngas to fischer-tropsch hydrocarbon products
CA2328385C (en) Installation and procedure producing hydrocarbons by fischer-tropsch synthesis in a jet engine with a recirculating loop that includes a device for limiting solid attrition
FR2926084A1 (en) IMPROVED METHOD OF FISCHER-TROPSCH SYNTHESIS BY CONTROLLING THE PARTIAL PRESSURE OF WATER IN THE REACTION ZONE
FR2832415A1 (en) Converting synthesis gas into liquid hydrocarbons involves using perfectly mixed reactors in series containing catalyst liquid suspension, and obtaining liquid product free from catalytic suspension

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HUGUES, FRANEOIS

Inventor name: GALTIER, PIERRE

Inventor name: MARETTO, CRISTINA

Inventor name: SCHWEITZER, JEAN-MARC

17Q First examination report despatched

Effective date: 20030616

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60124879

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070124

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SASOL TECHNOLOGY (PTY) LTD.

Effective date: 20070829

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SASOL TECHNOLOGY (PTY) LTD.

Effective date: 20070829

Opponent name: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY

Effective date: 20070829

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: INSTITUT FRANCAIS DU PETROLE

Owner name: ENI S.P.A.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ENI S.P.A.

Owner name: IFP ENERGIES NOUVELLES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60124879

Country of ref document: DE

Owner name: ENI S.P.A., IT

Free format text: FORMER OWNER: AGIP PETROLI S.P.A., ENI S.P.A., INSTITUT FRANCAIS DU PETROLE, , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 60124879

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: AGIP PETROLI S.P.A., ENI S.P.A., INSTITUT FRANCAIS DU PETROLE, , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 60124879

Country of ref document: DE

Owner name: AGIP PETROLI S.P.A., IT

Free format text: FORMER OWNER: AGIP PETROLI S.P.A., ENI S.P.A., INSTITUT FRANCAIS DU PETROLE, , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 60124879

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNERS: AGIP PETROLI S.P.A., ROM/ROMA, IT; ENI S.P.A., ROM/ROMA, IT; INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 60124879

Country of ref document: DE

Owner name: AGIP PETROLI S.P.A., IT

Free format text: FORMER OWNERS: AGIP PETROLI S.P.A., ROM/ROMA, IT; ENI S.P.A., ROM/ROMA, IT; INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 60124879

Country of ref document: DE

Owner name: ENI S.P.A., IT

Free format text: FORMER OWNERS: AGIP PETROLI S.P.A., ROM/ROMA, IT; ENI S.P.A., ROM/ROMA, IT; INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110329

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY

Effective date: 20070829

Opponent name: SASOL TECHNOLOGY (PTY) LTD.

Effective date: 20070829

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY

Effective date: 20070829

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

APBC Information on closure of appeal procedure deleted

Free format text: ORIGINAL CODE: EPIDOSDNOA9O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IFP ENERGIES NOUVELLES

Owner name: ENI S.P.A.

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200224

Year of fee payment: 20

Ref country code: GB

Payment date: 20200226

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200429

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60124879

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 60124879

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 60124879

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAD Information modified related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSCREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

27W Patent revoked

Effective date: 20220314