EP1248889B1 - Slab reinforcement and its method of manufacturing - Google Patents

Slab reinforcement and its method of manufacturing Download PDF

Info

Publication number
EP1248889B1
EP1248889B1 EP01923551A EP01923551A EP1248889B1 EP 1248889 B1 EP1248889 B1 EP 1248889B1 EP 01923551 A EP01923551 A EP 01923551A EP 01923551 A EP01923551 A EP 01923551A EP 1248889 B1 EP1248889 B1 EP 1248889B1
Authority
EP
European Patent Office
Prior art keywords
reinforcement
slab
reinforcing part
laminar
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01923551A
Other languages
German (de)
French (fr)
Other versions
EP1248889A2 (en
Inventor
Oliver Matthaei
Hans-Peter ANDRÄ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matthaei Oliver Dipl-Ing
Original Assignee
MATTHAEI OLIVER DIPL ING
Matthaei Oliver Dipl-Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATTHAEI OLIVER DIPL ING, Matthaei Oliver Dipl-Ing filed Critical MATTHAEI OLIVER DIPL ING
Publication of EP1248889A2 publication Critical patent/EP1248889A2/en
Application granted granted Critical
Publication of EP1248889B1 publication Critical patent/EP1248889B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0645Shear reinforcements, e.g. shearheads for floor slabs

Definitions

  • the invention relates to a ceiling reinforcement with a reinforced concrete support and a ceiling part, which is designed as a reinforced concrete or prestressed concrete part. It further relates to a method for producing such a ceiling reinforcement.
  • shear reinforcement made of rebar in the form of S-hooks or temples, dowel strips, double-headed dowels, underwires, lattice girders, Tobler Walm, Geilinger collar, underwire mats, crack star.
  • a shear reinforcement made of rebar in the form of S-hooks or brackets must enclose a mostly existing longitudinal bending reinforcement for reasons of poor anchoring, to prevent tearing of the shear reinforcement. This is very expensive and expensive. At high degrees of reinforcement of the bending tensile reinforcement and high shear reinforcement proportion conventional ironing are considered no longer installable.
  • Dowel strips are usually placed on the lower formwork, so that the lower reinforcement layer is covered by the strip cross-section. Here, the exact location and fixation of the bar for the bearing behavior is crucial. The dowel strips are welded one-offs and therefore expensive.
  • Double-headed dowels are usually threaded from above between the top and bottom layers of the existing longitudinal bending reinforcement. At high degrees of reinforcement of the bending tensile reinforcement and different mesh sizes of the upper and lower layer, this is very difficult, sometimes not installable. The double-headed dowels are custom-made and therefore costly.
  • Tobler Walm and Geilinger collars are steel components that consist of welded-together steel profiles and are manufactured individually.
  • the support structures have to be installed according to steel construction and are therefore laborious and labor intensive.
  • the displacement of the built-in parts must be due to the large weight with hoist, e.g. with a crane, done.
  • this object is achieved by the subject matter of claim 1.
  • transverse forces or moments can be better absorbed and distributed. If the first cracks occur when the tensile strength of the concrete is reached, the load can be distributed in a fan-like manner over the retaining part. A participation of the concrete for the tension struts is not required.
  • the loads are removed via the reinforcement part directly on the principle of the minimum of deformation work. Thus, lateral force cracks remain small and the load capacity of the reinforced concrete part is maximized.
  • the reinforcement part thus assumes the function of the concrete after reaching the tensile strength of the concrete.
  • the reinforcement part hereby comprises the continuous bending reinforcement of the reinforced concrete support. Thus, a fall protection of the flat ceiling is structurally fulfilled by the punching reinforcement.
  • An over the reinforced concrete support extending bending reinforcement in the pressure zone, as they from the DE-A1-19741509 is known, can thus be omitted.
  • the invention is developed with great advantage according to the features of claim 2, since one can increase the load of a reinforced concrete part in a very simple manner. - Under reinforced concrete part is always understood a Spannbotonteil.
  • the stated object is achieved by the subject matter of patent claim 7.
  • Such a shaping makes it possible to easily install the reinforcement part between the upper and lower layers of the bending tensile reinforcement. No additional location backups are needed.
  • the reinforcement part is placed after installation of the lower reinforcement layer on this and can thus serve the upper reinforcement layer in addition as a spacer.
  • Fig. 1 shows in section a part of a structure with a vertical element (column or wall) 10 made of reinforced concrete.
  • this vertical element 10 are reinforcing elements 12, 14 in the form of reinforcing bars.
  • the support region of the support 10 is secured by steel bracket 16.
  • a reinforced concrete ceiling 20 is connected. (Alternatively, this may also be a beam system 20).
  • the ceiling 20 has an upper reinforcement 22 and a lower reinforcement 24, above which there is a concrete cover 26 and 28, respectively.
  • the blanket 20 is shown only in the cutout.
  • planar reinforcing elements which in Fig. 1 for the left part of the ceiling 20 are denoted by 30 and 32 for the right part.
  • a reinforcing element 30, 32 in plan has the shape of a V, see. Fig. 2 , where two other reinforcements 34, 36 are shown.
  • the reinforcements 30, 32 each protrude with their tips into the edge region of the vertical element 10 and surround there an associated reinforcing element 12, 14, cf. Fig. 1 and Fig. 3 , As a result, the planar reinforcement element 30, 32 is anchored horizontally to the vertical element 10, engages in this, and can initiate its vertical force component in the support area, which is secured by the bracket 16.
  • the reinforcing elements 30, 32, 34, 36 are made of bent sheet steel, usually with a thickness in the range of 2 to 6 mm. This thickness depends on the static requirements. Possibly.
  • the sheet-like reinforcing elements can also be made of carbon fibers or a suitable plastic, or of composite material.
  • the reinforcing elements 30, 32, 34, 36 are formed flat.
  • the reinforcement element 32 rests on the lower reinforcement 24, which is disposed within the concrete ceiling 20.
  • the upper reinforcement 22 rests on the reinforcing element 32 and is in turn arranged in the upper concrete cover 26.
  • the reinforcing element 32 has recesses (holes) 40 whose diameter is adapted to the grain of the concrete used and is usually greater than 32 mm.
  • it has at its lower edge portion recesses 42, whose diameter is usually greater than 32 mm.
  • the recesses 40, 42 which may also be referred to as openings, are preferably of circular design and are arranged vertically above one another in this embodiment.
  • concrete dowels ie anchors that serve shear forces from the concrete 29 in the relevant sheet-metal reinforcing element 30, 32, 34, or 36 initiate.
  • the reinforcing elements 30, 32, 34, 36 are preferably in their middle region with beads 44 (FIG. Fig. 8 ) to provide a better anchoring in the concrete 29.
  • the reinforcing elements are preferably provided at the upper edge with recesses 46 and at the lower edge with recesses 48. These edges look toothed. These lateral recesses 46, 48 improve the absorption of horizontal forces by the respective reinforcing element.
  • Fig. 1 also shows how on the ceiling 20 on the left and on the right a lateral force Q attacks. From below, these forces Q counteract a counterforce F. In addition, a right-handed torque M acts on the right and on the left a magnitude-equal left-turning moment M '. These forces and moments cause in the ceiling 20 corresponding tensile and shear stresses.
  • Fig. 4 shows in radial section the load paths in a conventional way of Presentation.
  • the reference numerals are the same as in Fig. 1 to 3 .
  • a crack zone is indicated in which one or more cracks in the concrete 29 occur at high load and where the blanket 20 would normally break under excessive load.
  • the fracture surface then has approximately the shape of a funnel or cone, and one speaks therefore of a "punching cone”. It can be seen that many load paths 52 are present, which run transversely and partially approximately perpendicular to this crack zone 50 and therefore counteract a break at this point.
  • struts The outgoing from the support 10 struts are struts. They anchor themselves in the inner region of the "punching cone" to the upper concrete dowels, ie the concrete dowels in the recesses 40. This is the load transfer into the planar reinforcement part 32. From this anchorage the struts extend, as shown, only in the planar reinforcement part 32, and it forms a shear field. This causes a surface load transfer in the reinforcement part 32 to the shear-critical region, which lies outside the crack zone 50.
  • Fig. 5 shows, also in a conventional representation, the tension or compression struts in section.
  • the tie rods are transverse and approximately perpendicular to the crack zone 50, ie transversely and partially perpendicular to the "punching cone", and that they therefore counteract a breakage at this point.
  • the load is distributed in the manner of a fan over the entire planar reinforcement member 32 to the "concrete dowels" as the Fig. 4 and 5 show clearly.
  • a participation of the concrete 29 for the tension struts is not required.
  • the loads are removed via the planar reinforcement element 30, 32 directly on the principle of the minimum of deformation work.
  • the lateral force cracks 50 remain small, and a maximum load capacity of the ceiling 20 is obtained.
  • the ductility of the sheet-like reinforcing element 30, 32 is important. In such an arrangement, namely, the transverse forces on the planar reinforcement element 30, 32 are transmitted.
  • the sheet-like reinforcing element 30, 32 which is preferably made of steel, fails, and the failure is a ductile steel failure and not a brittle concrete failure in the form of a shear pressure crack, i. the failure announces itself and does not happen suddenly. This is also important in earthquakes.
  • the "concrete dowels" in the recesses 40, 42 have a sufficiently elastic behavior, and in case of failure of one of these concrete dowels, the adjacent concrete dowels will take over the load, i. there is only a rearrangement of the load.
  • the recesses 40, 42 and the beads 44 support the concrete dowels when anchoring the oblique pressure struts.
  • reinforcing bars can be made through the recesses 40, 42, and these can also be fastened to these recesses with tubular wires. This gives a further improvement.
  • FIG. 6 shows an isometric view of the reinforcement part 32 of FIG Fig. 1 to 3 , The same reference numerals are used.
  • FIGS. 7, 8, 9 and 10 show details of the embodiment according to the Fig. 1 to 3 in different cutting planes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

The invention concerns a reinforced concrete or prestressed concrete part stressed by shearing forces with layers of reinforcement (22, 24) provided at its upper and lower sides. For shear protection at least one sheet metal reinforcing part (30, 32, 34, 36) is provided between these layers of reinforcement which mainly extends at right angles to a surface of the reinforced concrete part and mainly over the entire distance between the layers of reinforcement (22, 24) and crosswise to at least one crack (50) occurring in the reinforced or prestressed concrete part under transverse load.

Description

Die Erfindung betrifft eine Deckenverstärkung mit einer Stahlbetonstütze und einem Deckenteil, welches als Stahlbeton- oder Spannbetonteil ausgebildet ist. Sie betrifft ferner ein Verfahren zur Herstellung einer solchen Deckenverstärkung.The invention relates to a ceiling reinforcement with a reinforced concrete support and a ceiling part, which is designed as a reinforced concrete or prestressed concrete part. It further relates to a method for producing such a ceiling reinforcement.

Bei derartigen Stahlbeton- oder Spannbetonteilen, z.B. einer gestützten Stahlbetondecke, ist unter anderem im Bereich der Stützen eine Schubbewehrung zur Schubsicherung notwendig.In such reinforced concrete or prestressed concrete parts, e.g. a supported reinforced concrete floor, inter alia, in the area of the columns a shear reinforcement for shear protection is necessary.

Als Schubbewehrung sind u.a. bekannt: Schubbewehrung aus Betonstahl in Form von S-Haken oder Bügeln, Dübelleisten, Doppelkopfdübel, Bügelmatten, Gitterträger, Tobler Walm, Geilinger Kragen, Bügelmatten, Riss Stern.As shear reinforcement u.a. known: shear reinforcement made of rebar in the form of S-hooks or temples, dowel strips, double-headed dowels, underwires, lattice girders, Tobler Walm, Geilinger collar, underwire mats, crack star.

Eine Schubbewehrung aus Betonstahl in Form von S-Haken oder Bügeln muss aus Gründen der schlechten Verankerung eine meist vorhandene Biege-Längsbewehrung umschließen, um ein Ausreißen der Schubbewehrung zu verhindern. Dies ist sehr aufwendig und kostenintensiv. Bei hohen Bewehrungsgraden der Biegezugbewehrung und hohem Schubbewehrungsanteil gelten herkömmliche Bügel als nicht mehr einbaubar.A shear reinforcement made of rebar in the form of S-hooks or brackets must enclose a mostly existing longitudinal bending reinforcement for reasons of poor anchoring, to prevent tearing of the shear reinforcement. This is very expensive and expensive. At high degrees of reinforcement of the bending tensile reinforcement and high shear reinforcement proportion conventional ironing are considered no longer installable.

Dübelleisten werden meistens auf die untere Schalung gestellt, so dass die untere Bewehrungslage vom Leistenquerschnitt umfasst wird. Hierbei ist die genaue Lage und Fixierung der Leiste für das Tragverhalten ausschlaggebend. Die Dübelleisten sind geschweißte Einzelanfertigungen und somit teuer.Dowel strips are usually placed on the lower formwork, so that the lower reinforcement layer is covered by the strip cross-section. Here, the exact location and fixation of the bar for the bearing behavior is crucial. The dowel strips are welded one-offs and therefore expensive.

Doppelkopfdübel werden gewöhnlich von oben zwischen die obere und untere Lage der vorhandenen Biege-Längsbewehrung eingefädelt. Bei hohen Bewehrungsgraden der Biegezugbewehrung und unterschiedlichen Maschenweiten der oberen und unteren Lage ist dies sehr schwierig, mitunter nicht einbaubar. Die Doppelkopfdübel sind Einzelanfertigungen und somit kostenintensiv.Double-headed dowels are usually threaded from above between the top and bottom layers of the existing longitudinal bending reinforcement. At high degrees of reinforcement of the bending tensile reinforcement and different mesh sizes of the upper and lower layer, this is very difficult, sometimes not installable. The double-headed dowels are custom-made and therefore costly.

Dübelleisten und Doppelkopfdübel sind sehr gebräuchlich, jedoch ist eine Serienfertigung wegen der hohen Lagerhaltungskosten nicht wirtschaftlich. Ein Problem ist auch die Verwechselbarkeit und Lagerung verschiedener Dübelleisten und Döppelkopfdübel auf der Baustelle.Dowel bars and double-headed dowels are very common, but a series production is not economical because of the high storage costs. A problem is also the confusion and storage of various dowel strips and Döppelkopfdübel on site.

Tobler Walm und Geilinger Kragen sind Stahleinbauteile, die aus zusammengeschweißten Stahlprofilen bestehen und einzeln angefertigt werden. Die Auflagerkonstruktionen sind stahlbaumäßig einzubauen und somit aufwändig und lohnintensiv. Das Versetzen der Einbauteile muss wegen des großen Eigengewichts mit Hebezeug, z.B. mit einem Kran, erfolgen.Tobler Walm and Geilinger collars are steel components that consist of welded-together steel profiles and are manufactured individually. The support structures have to be installed according to steel construction and are therefore laborious and labor intensive. The displacement of the built-in parts must be due to the large weight with hoist, e.g. with a crane, done.

Sämtliche gebräuchlichen Lösungen sind in ihrer Wirkungsweise abhängig vom Werkstoff Beton. Verfolgt man die Lastabtragung (Verlauf der Querkräfte), so wird mehrmals die Last in die Bewehrungselemente ein- und ausgeleitet, bis sie in den schubunkritischen Bereich gelangt. Hierbei kann ein Versagen infolge Schub- oder Druckbruchs, oder ein Ausreißen der Bewehrungselemente, auftreten.All common solutions are dependent on the material concrete in their mode of action. If the load transfer (course of the transverse forces) is followed, the load is fed into and out of the reinforcement elements several times until it reaches the low-rebound area. In this case, a failure due to shear or pressure fracture, or a tearing of the reinforcing elements occur.

Es ist daher eine Aufgabe der Erfindung, eine neue Deckenverstärkung, und ein Verfahren zu ihrer Herstellung, bereitzustellen..It is therefore an object of the invention to provide a new ceiling reinforcement, and a method for its manufacture.

Nach einem ersten Aspekt der Erfindung wird diese Aufgabe gelöst durch den Gegenstand des Patentanspruchs 1. Durch das flächige Bewehrungsteil können Querkräfte oder Momente besser aufgenommen und verteilt werden. Treten bei Erreichen der Zugfestigkeit des Betons die ersten Risse in diesem auf, so kann die Last fächerartig über das Bewahrungsteil verteilt werden. Eine Mitwirkung des Betons für die Zugstreben ist nicht erforderlich. Die Lasten werden über das Bewehrungsteil direkt nach dem Prinzip des Minimums der Formänderungsarbeit abgetragen. Somit bleiben querkraftbedingte Risse klein, und die Traglast des Stahlbetonteils wird maximiert. Das Bewehrungsteil übernimmt somit nach Erreichen der Zugfestigkeit des Betons die Funktion des Betons. Das Bewehrungsteil umfasst hierbei die durchlaufende Biegebewehrung der Stahlbetonstütze. Somit wird eine Absturzsicherung der Flachdecke konstruktiv durch die Durchstanz-Bewehrung erfüllt. Eine über die Stahlbetonstütze verlaufende Biegebewehrung in der Druckzone, wie sie aus der DE-A1-19741509 bekannt ist, kann somit entfallen.According to a first aspect of the invention, this object is achieved by the subject matter of claim 1. By the planar reinforcement part transverse forces or moments can be better absorbed and distributed. If the first cracks occur when the tensile strength of the concrete is reached, the load can be distributed in a fan-like manner over the retaining part. A participation of the concrete for the tension struts is not required. The loads are removed via the reinforcement part directly on the principle of the minimum of deformation work. Thus, lateral force cracks remain small and the load capacity of the reinforced concrete part is maximized. The reinforcement part thus assumes the function of the concrete after reaching the tensile strength of the concrete. The reinforcement part hereby comprises the continuous bending reinforcement of the reinforced concrete support. Thus, a fall protection of the flat ceiling is structurally fulfilled by the punching reinforcement. An over the reinforced concrete support extending bending reinforcement in the pressure zone, as they from the DE-A1-19741509 is known, can thus be omitted.

Dabei wird die Erfindung mit großem Vorteil gemäß den Merkmalen des Anspruchs 2 weitergebildet, da man so die Traglast eines Stahlbetonteils in sehr einfacher Weise erhöhen kann. - Unter Stahlbetonteil wird immer auch ein Spannbotonteil verstanden.The invention is developed with great advantage according to the features of claim 2, since one can increase the load of a reinforced concrete part in a very simple manner. - Under reinforced concrete part is always understood a Spannbotonteil.

Nach einem weiteren Aspekt der Erfindung wird die gestellte Aufgabe gelöst durch den Gegenstand des Patentanspruchs 7. Durch eine derartige Formung ist ein leichter Einbau des Bewehrungsteil zwischen der oberen und unteren Lage der Biegezugbewehrung möglich. Es werden keine zusätzlichen Lagesicherungen benötigt. Hierbei wird das Bewehrungsteil nach Einbau der unteren Bewehrungslage auf diese abgestellt und kann somit der oberen Bewehrungslage zusätzlich als Abstandshalter dienen.According to a further aspect of the invention, the stated object is achieved by the subject matter of patent claim 7. Such a shaping makes it possible to easily install the reinforcement part between the upper and lower layers of the bending tensile reinforcement. No additional location backups are needed. In this case, the reinforcement part is placed after installation of the lower reinforcement layer on this and can thus serve the upper reinforcement layer in addition as a spacer.

Weitere Einzelheiten und vorteilhafte Weiterbildungen der Erfindung ergeben sich aus dem im folgenden beschriebenen und in der Zeichnung dargestellten Ausführungsbeispiel, sowie aus den Unteransprüchen. Es zeigt

Fig. 1
einen Vertikalschnitt durch eine Ausführungsform einer erfindungsgemäße Anordnung, gesehen längs der Linie I-I der Fig. 2,
Fig. 2
einen Grundriss, gesehen in Richtung des Pfeiles II der Fig. 1,
Fig. 3
eine vergrößerte Darstellung einer Einzelheit der Fig. 2,
Fig. 4
eine Darstellung der Lastpfade, in einer Schnittdarstellung analog Fig. 1,
Fig. 5
eine Darstellung der Zug- und Druckstreben, ebenfalls in einer Schnittdarstellung analog Fig. 1,
Fig. 6
eine isometrische Darstellung:eines bei den Figuren 1 bis 3 verwendeten Bewehrungsteils,
Fig. 7
eine Seitenansicht eines Bewehrungsteils,
Fig. 8
einen Schnitt, gesehen längs der Linie VIII-VIII der Fig. 7,
Fig. 9
einen Schnitt, gesehen längs der Linie IX-IX der Fig. 7, und
Fig. 10
einen Schnitt, gesehen längs der Linie X-X der Fig. 7.
Further details and advantageous developments of the invention will become apparent from the embodiment described below and shown in the drawing, as well as from the dependent claims. It shows
Fig. 1
a vertical section through an embodiment of an inventive arrangement, seen along the line II of Fig. 2 .
Fig. 2
a floor plan, seen in the direction of the arrow II of the Fig. 1 .
Fig. 3
an enlarged view of a detail of Fig. 2 .
Fig. 4
a representation of the load paths, in a sectional view analog Fig. 1 .
Fig. 5
a representation of the tension and compression struts, also in a sectional view analog Fig. 1 .
Fig. 6
an isometric representation: one in the FIGS. 1 to 3 used reinforcement part,
Fig. 7
a side view of a reinforcement part,
Fig. 8
a section seen along the line VIII-VIII of Fig. 7 .
Fig. 9
a section, seen along the line IX-IX of Fig. 7 , and
Fig. 10
a section, seen along the line XX the Fig. 7 ,

Fig. 1 zeigt im Ausschnitt einen Teil eines Bauwerks mit einem vertikalen Element (Stütze oder Wand) 10 aus Stahlbeton. In diesem vertikalen Element 10 befinden sich Bewehrungselemente 12, 14 in Form von Bewehrungsstäben. Der Auflagerbereich der Stütze 10 ist durch Stahlbügel 16 gesichert. Fig. 1 shows in section a part of a structure with a vertical element (column or wall) 10 made of reinforced concrete. In this vertical element 10 are reinforcing elements 12, 14 in the form of reinforcing bars. The support region of the support 10 is secured by steel bracket 16.

Mit dem vertikalen Element 10 ist eine Stahlbetondecke 20 verbunden. (Alternativ kann dies auch ein Balkensystem 20 sein). Die Decke 20 hat eine obere Bewehrung 22 und eine untere Bewehrung 24, über denen sich jeweils eine Betonüberdeckung 26 bzw. 28 befindet. Die Decke 20 ist nur im Auschnitt dargestellt.With the vertical element 10 a reinforced concrete ceiling 20 is connected. (Alternatively, this may also be a beam system 20). The ceiling 20 has an upper reinforcement 22 and a lower reinforcement 24, above which there is a concrete cover 26 and 28, respectively. The blanket 20 is shown only in the cutout.

Zwischen den Bewehrungen 22, 24, und bevorzugt als Abstandshalter für diese, befinden sich flächige Bewehrungselemente, die in Fig. 1 für den linken Teil der Decke 20 mit 30 und für den rechten Teil mit 32 bezeichnet sind. Beim bevorzugten Ausführungsbeispiel hat ein solches Bewehrungselement 30, 32 im Grundriss die Form eines V, vgl. Fig. 2 , wo noch zwei andere Bewehrungen 34, 36 dargestellt sind. Alternativ wäre z.B. im Grundriss die Form eines U, oder die Form einer Haarnadel, möglich.Between the reinforcements 22, 24, and preferably as spacers for these, there are planar reinforcing elements, which in Fig. 1 for the left part of the ceiling 20 are denoted by 30 and 32 for the right part. In the preferred embodiment, such a reinforcing element 30, 32 in plan has the shape of a V, see. Fig. 2 , where two other reinforcements 34, 36 are shown. Alternatively, for example, in plan view the shape of a U, or the shape of a hairpin, possible.

Die Bewehrungen 30, 32 ragen jeweils mit ihren Spitzen bis in den Randbereich des vertikalen Elements 10 und umgreifen dort ein zugeordnetes Bewehrungselement 12, 14, vgl. Fig. 1 und Fig. 3. Dadurch ist das flächige Bewehrungselement 30, 32 am vertikalen Element 10 horizontal verankert, greift in dieses ein, und kann seine Vertikalkraft-Komponente in den Auflagerbereich einleiten, der durch die Bügel 16 gesichert ist.The reinforcements 30, 32 each protrude with their tips into the edge region of the vertical element 10 and surround there an associated reinforcing element 12, 14, cf. Fig. 1 and Fig. 3 , As a result, the planar reinforcement element 30, 32 is anchored horizontally to the vertical element 10, engages in this, and can initiate its vertical force component in the support area, which is secured by the bracket 16.

Bevorzugt bestehen die Bewehrungselemente 30, 32, 34, 36 aus gebogenem Stahlblech, gewöhnlich mit einer Dicke im Bereich von 2 bis 6 mm. Diese Dicke richtet sich nach den statischen Erfordernissen. Ggf. können die flächigen Bewehrungselemente auch aus Kohlefasern oder einem geeigneten Kunststoff hergestellt werden, oder aus Kompositmaterial.Preferably, the reinforcing elements 30, 32, 34, 36 are made of bent sheet steel, usually with a thickness in the range of 2 to 6 mm. This thickness depends on the static requirements. Possibly. The sheet-like reinforcing elements can also be made of carbon fibers or a suitable plastic, or of composite material.

Die Bewehrungselemente 30, 32, 34, 36 sind flächig ausgebildet. Zum Beispiel steht das Bewehrungselement 32 auf der unteren Bewehrung 24 auf, die innerhalb der Betondecke 20 angeordnet ist. Die obere Bewehrung 22 liegt auf dem Bewehrungselement 32 auf und ist ihrerseits in der oberen Betonabdeckung 26 angeordnet. An seinem oberen Randbereich hat das Bewehrungselement 32 Ausnehmungen (Löcher) 40, deren Durchmesser an die Körnung des verwendeten Betons angepasst und gewöhnlich größer als 32 mm ist. Ebenso hat es an seinem unteren Randbereich Ausnehmungen 42, deren Durchmesser gewöhnlich größer als 32 mm ist. Die Ausnehmungen 40, 42, die man auch als Durchbrechungen bezeichnen kann, sind bevorzugt kreisrund ausgeführt und sind bei diesem Ausführungsbeispiel senkrecht übereinander angeordnet. Nach dem Einbringen des Betons 29 erstreckt sich durch jede dieser Ausnehmungen 40, 42 der Beton 29 und bildet dort "Betondübel", also Verankerungen, die dazu dienen, Schubkräfte aus dem Beton 29 in das betreffende flächige Bewehrungselement 30, 32, 34, oder 36 einzuleiten.The reinforcing elements 30, 32, 34, 36 are formed flat. For example, the reinforcement element 32 rests on the lower reinforcement 24, which is disposed within the concrete ceiling 20. The upper reinforcement 22 rests on the reinforcing element 32 and is in turn arranged in the upper concrete cover 26. At its upper edge region, the reinforcing element 32 has recesses (holes) 40 whose diameter is adapted to the grain of the concrete used and is usually greater than 32 mm. Likewise, it has at its lower edge portion recesses 42, whose diameter is usually greater than 32 mm. The recesses 40, 42, which may also be referred to as openings, are preferably of circular design and are arranged vertically above one another in this embodiment. After the introduction of the concrete 29 extends through each of these recesses 40, 42 of the concrete 29 and forms there "concrete dowels", ie anchors that serve shear forces from the concrete 29 in the relevant sheet-metal reinforcing element 30, 32, 34, or 36 initiate.

Ferner sind die Bewehrungselemente 30, 32, 34, 36 bevorzugt in ihrem Mittelbereich mit Sicken 44 (Fig. 8) versehen, um eine bessere Verankerung im Beton 29 zu bewirken. Auch sind die Bewehrungselemente bevorzugt am oberen Rand mit Ausnehmungen 46 und am unteren Rand mit Ausnehmungen 48 versehen. Diese Ränder sehen dadurch gezahnt aus. Diese seitlichen Ausnehmungen 46, 48 verbessern die Aufnahme von horizontalen Kräften durch das betreffende Bewehrungselement.Furthermore, the reinforcing elements 30, 32, 34, 36 are preferably in their middle region with beads 44 (FIG. Fig. 8 ) to provide a better anchoring in the concrete 29. The reinforcing elements are preferably provided at the upper edge with recesses 46 and at the lower edge with recesses 48. These edges look toothed. These lateral recesses 46, 48 improve the absorption of horizontal forces by the respective reinforcing element.

Fig. 1 zeigt auch, wie an der Decke 20 links und rechts eine Querkraft Q angreift. Von unten wirkt diesen Kräften Q eine Gegenkraft F entgegen. Ferner greift rechts ein rechtsdrehendes Moment M und links ein dem Betrag nach gleich großes linksdrehendes Moment M' an. Diese Kräfte und Momente bewirken in der Decke 20 entsprechende Zug- und Schubspannungen. Fig. 1 also shows how on the ceiling 20 on the left and on the right a lateral force Q attacks. From below, these forces Q counteract a counterforce F. In addition, a right-handed torque M acts on the right and on the left a magnitude-equal left-turning moment M '. These forces and moments cause in the ceiling 20 corresponding tensile and shear stresses.

Fig. 4 zeigt im radialen Schnitt die Lastpfade in einer üblichen Art der Darstellung. Die Bezugszeichen sind dieselben wie bei Fig. 1 bis 3. Bei 50 ist eine Risszone angedeutet, in der bei hoher Belastung ein oder mehrere Risse im Beton 29 auftreten und wo die Decke 20 bei zu hoher Belastung gewöhnlich brechen würde. Die Bruchfläche hat dann etwa die Form eines Trichters oder Kegels, und man spricht deshalb auch von einem "Durchstanzkegel". Man erkennt, dass viele Lastpfade 52 vorhanden sind, welche quer und teilweise etwa senkrecht zu dieser Risszone 50 verlaufen und deshalb einem Bruch an dieser Stelle entgegenwirken. Fig. 4 shows in radial section the load paths in a conventional way of Presentation. The reference numerals are the same as in Fig. 1 to 3 , At 50, a crack zone is indicated in which one or more cracks in the concrete 29 occur at high load and where the blanket 20 would normally break under excessive load. The fracture surface then has approximately the shape of a funnel or cone, and one speaks therefore of a "punching cone". It can be seen that many load paths 52 are present, which run transversely and partially approximately perpendicular to this crack zone 50 and therefore counteract a break at this point.

Die von der Stütze 10 ausgehenden Streben sind Druckstreben. Sie verankern sich im inneren Bereich des "Durchstanzkegels" an den oberen Betondübeln, also den Betondübeln in den Ausnehmungen 40. Dies ist die Lasteinleitung in das flächige Bewehrungsteil 32. Ab dieser Verankerung verlaufen die Streben, wie dargestellt, nur im flächigen Bewehrungsteil 32, und es bildet sich ein Schubfeld. Dieses bewirkt eine flächige Lastabtragung im Bewehrungsteil 32 bis in den schubunkritischen Bereich, welcher außerhalb der Risszone 50 liegt.The outgoing from the support 10 struts are struts. They anchor themselves in the inner region of the "punching cone" to the upper concrete dowels, ie the concrete dowels in the recesses 40. This is the load transfer into the planar reinforcement part 32. From this anchorage the struts extend, as shown, only in the planar reinforcement part 32, and it forms a shear field. This causes a surface load transfer in the reinforcement part 32 to the shear-critical region, which lies outside the crack zone 50.

Fig. 5 zeigt, ebenfalls in einer üblichen Darstellung, die Zug- bzw. Druckstreben im Schnitt. Auch hier erkennt man, dass die Zugstreben quer und etwa senkrecht zur Risszone 50 verlaufen, also quer und teilweise senkrecht zum "Durchstanzkegel", und dass sie deshalb einem Bruch an dieser Stelle entgegenwirken. Im Bereich der erwähnten "Betondübel" (an den Ausnehmungen 40, 42) finden sich nämlich viele Verankerungsmöglichkeiten. Treten bei Erreichen der Zugfestigkeit die ersten Risse im Beton 29 auf, so wird die Last nach Art eines Fächers über das gesamte flächige Bewehrungsteil 32 zu den "Betondübeln" verteilt, wie das die Fig. 4 und 5 anschaulich zeigen. Eine Mitwirkung des Betons 29 für die Zugstreben ist nicht erforderlich. Die Lasten werden über das flächige Bewehrungselement 30, 32 direkt nach dem Prinzip des Minimums der Formänderungsarbeit abgetragen. Somit bleiben die querkraftbedingten Risse 50 klein, und man erhält eine maximale Tragkraft der Decke 20. Fig. 5 shows, also in a conventional representation, the tension or compression struts in section. Again, it can be seen that the tie rods are transverse and approximately perpendicular to the crack zone 50, ie transversely and partially perpendicular to the "punching cone", and that they therefore counteract a breakage at this point. In the area of the mentioned "concrete dowels" (at the recesses 40, 42) there are many anchoring possibilities. Occur on reaching the tensile strength of the first cracks in the concrete 29, the load is distributed in the manner of a fan over the entire planar reinforcement member 32 to the "concrete dowels" as the Fig. 4 and 5 show clearly. A participation of the concrete 29 for the tension struts is not required. The loads are removed via the planar reinforcement element 30, 32 directly on the principle of the minimum of deformation work. Thus, the lateral force cracks 50 remain small, and a maximum load capacity of the ceiling 20 is obtained.

Wenn also die Zugfestigkeit des Betons 29 in den Zug-Fachwerkstäben erreicht ist, übernimmt das flächige Bewehrungselement 32 die Funktion des Betons.Thus, when the tensile strength of the concrete 29 in the tension truss bars is reached, the planar reinforcement element 32 takes over the function of the concrete.

Unterstellt man im Traglastzustand einen Starrkörpermechanismus, also eine Abtrennung der restlichen Decke 20 vom Durchstanzkegel 50, so erfolgt die Querkraftübertragung ausschließlich über das flächige Bewehrungselement 32. Es findet eine Entkopplung der Biege- und Schubbewehrung statt.Assuming in the load condition a rigid body mechanism, so a separation of the remaining ceiling 20 from the punching cone 50, the transverse force is transmitted exclusively via the planar reinforcement element 32. There is a decoupling of the bending and shear reinforcement instead.

Wenn der Grenzzustand der Tragfähigkeit erreicht ist, sollte das Versagen einer dargestellten Anordnung mit ausreichender Vorankündigung erfolgen. Hierfür ist die Duktilität des flächigen Bewehrungselements 30, 32 von Bedeutung. Bei einer solchen Anordnung werden nämlich die Querkräfte über das flächige Bewehrungselement 30, 32 übertragen. Wenn also die Tragkraft erreicht ist, versagt das flächige Bewehrungselement 30, 32, das bevorzugt aus Stahl hergestellt ist, und das Versagen ist ein duktiles Stahlversagen und nicht ein sprödes Betonversagen in Form eines Schub-Druckbruchs, d.h. das Versagen kündigt sich an und erfolgt nicht plötzlich. Dies ist auch wichtig bei Erdbeben.When the ultimate limit state is reached, failure of an illustrated arrangement should be made with sufficient advance notice. For this purpose, the ductility of the sheet-like reinforcing element 30, 32 is important. In such an arrangement, namely, the transverse forces on the planar reinforcement element 30, 32 are transmitted. Thus, when the carrying capacity is reached, the sheet-like reinforcing element 30, 32, which is preferably made of steel, fails, and the failure is a ductile steel failure and not a brittle concrete failure in the form of a shear pressure crack, i. the failure announces itself and does not happen suddenly. This is also important in earthquakes.

Die "Betondübel" in den Ausnehmungen 40, 42 haben ein ausreichend elastisches Verhalten, und bei Ausfall eines dieser Betondübel werden die benachbarten Betondübel die Last übernehmen, d.h. es findet lediglich eine Umlagerung der Last statt. Die Ausnehmungen 40, 42 und die Sicken 44 unterstützen die Betondübel bei Verankerung der schrägen Druckstreben.The "concrete dowels" in the recesses 40, 42 have a sufficiently elastic behavior, and in case of failure of one of these concrete dowels, the adjacent concrete dowels will take over the load, i. there is only a rearrangement of the load. The recesses 40, 42 and the beads 44 support the concrete dowels when anchoring the oblique pressure struts.

Bei Bedarf können durch die Ausnehmungen 40, 42 Bewehrungsstäbe durchgeführt werden, und diese können auch mit Rödeldrähten an diesen Ausnehmungen befestigt werden. Dadurch erhält man eine weitere Verbesserung.If necessary, reinforcing bars can be made through the recesses 40, 42, and these can also be fastened to these recesses with tubular wires. This gives a further improvement.

Fig. 6 zeigt eine isometrische Darstellung des Bewehrungsteils 32 der Fig. 1 bis 3. Es werden die gleichen Bezugszeichen verwendet.FIG. 6 shows an isometric view of the reinforcement part 32 of FIG Fig. 1 to 3 , The same reference numerals are used.

Die Fig. 7, 8, 9 und 10 zeigen Einzelheiten des Ausführungsbeispiels gemäß den Fig. 1 bis 3 in verschiedenen Schnittebenen.The FIGS. 7, 8, 9 and 10 show details of the embodiment according to the Fig. 1 to 3 in different cutting planes.

Naturgemäß sind im Rahmen der vorliegenden Erfindung vielfache weitere Abwandlungen und Modifikationen möglich.Naturally, many further modifications and modifications are possible within the scope of the present invention.

Claims (19)

  1. A slab reinforcement, comprising:
    a reinforced concrete column (10),
    a slab portion (20), implemented as a reinforced concrete or prestressed concrete portion comprising an upper layer of reinforcement (22) and a lower layer of reinforcement (24), and which is configured to transfer loads into the reinforced concrete column (10),
    reinforcing elements (12, 14) provided in the reinforced concrete column (10), which extend through the slab portion (20),
    and at least one laminar reinforcing part (30, 32, 34, 36),
    - which encompasses a reinforcing element (12, 14) of the reinforced concrete column (10) and, starting from this reinforcing element (12, 14),
    - extends between the upper layer of reinforcement (22) and the lower layer of reinforcement (24) of the slab portion (20) essentially over the complete distance between these layers of reinforcement (22, 24),
    - is substantially perpendicular to a surface of the slab portion (20),
    - and comprises anchor means (40, 42) to anchor the concrete.
  2. Slab reinforcement of claim 1, wherein the laminar reinforcing part (30, 32, 34, 36) extends to both sides of a fracture zone (50) occurring in the slab portion (20) when the tensile strength of the concrete (29) of the slab portion (20) is exceeded due to a load (Q; M).
  3. Slab reinforcement of claim 1 or 2, wherein the anchor means (40, 42) of the laminar reinforcing part (30, 32, 34, 36) is provided at both sides of a fracture zone (50) occurring in the slab portion (20) when the tensile strength of the concrete (29) of the slab portion (20) is exceeded due to a load (Q; M).
  4. Slab reinforcement of one of the preceding claims, wherein the anchor means is provided as a plurality of holes (40, 42) sized to allow the formation of concrete dowels therethrough.
  5. Slab reinforcement of one of the preceding claims, wherein the laminar reinforcing part (30, 32, 34, 36) comprises beads (44).
  6. Slab reinforcement of one of the preceding claims, wherein at least one border of the laminar reinforcing part (30, 32) comprises recesses (46, 48) opening towards that border.
  7. Slab reinforcement of one of the preceding claims, wherein the laminar reinforcing part (30, 32, 34, 36) in horizontal projection has the shape of a U, V, a hairpin or similar (FIG. 2, 3).
  8. Slab reinforcement of one of the preceding claims, wherein the reinforcing element (12, 14) of the reinforced concrete column (10) is arranged substantially inside a vertex of the laminar reinforcing part (30, 32) that encompasses this reinforcing element (12, 14).
  9. Slab reinforcement of one of the preceding claims, wherein the laminar reinforcing part (30, 32, 34, 36) is undulated.
  10. Slab reinforcement of one of the preceding claims, wherein the laminar reinforcing part (30, 32, 34, 36) is bent in the shape of a hat.
  11. Slab reinforcement of one of claims 1 to 9, wherein the laminar reinforcing part is bent in the shape of a trapezoid.
  12. Slab reinforcement of one of the preceding claims, wherein the laminar reinforcing part comprises holes (40, 42) through which reinforcement bars are disposed.
  13. Slab reinforcement of claim 12, wherein the reinforcement bars are attached to the holes (40, 42).
  14. Slab reinforcement of one of the preceding claims, wherein the laminar reinforcing part (30, 32, 34, 36) is designed as a spacer between the upper layer of reinforcement (22) and the lower layer of reinforcement (24).
  15. Slab reinforcement of one of the preceding claims, wherein the laminar reinforcing part (30, 32, 34, 36) is made of sheet steel.
  16. Slab reinforcement of one of claims 1 to 14, wherein the laminar reinforcing part is made of a carbon fiber material.
  17. Slab reinforcement of one of claims 1 to 14, wherein the laminar reinforcing part is made of a plastic or a composite material.
  18. Slab reinforcement of one of the preceding claims, wherein the anchor means (40, 42) is disposed at an upper and a lower border of the laminar reinforcing part (30, 32).
  19. A method of manufacturing a slab reinforcement comprising a reinforced concrete column (10) having reinforcing elements (12, 14) and a slab portion (20), implemented as a reinforced concrete or prestressed concrete portion, the method comprising the following steps:
    a) placing a lower layer of reinforcement;
    b) placing at least one laminar reinforcing part for shear reinforcement onto the lower layer of reinforcement in such a way that it is substantially perpendicular to it and encompasses a reinforcing element of the reinforced concrete column (10);
    c) placing an upper layer of reinforcement onto this at least one laminar reinforcing part in such a way that the latter serves as a spacer between the lower and the upper layers of reinforcement;
    d) pouring concrete over the portion formed of the lower layer of reinforcement, the at least one laminar reinforcing part and the upper layer of reinforcement.
EP01923551A 2000-01-20 2001-01-20 Slab reinforcement and its method of manufacturing Expired - Lifetime EP1248889B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10002383A DE10002383A1 (en) 2000-01-20 2000-01-20 Transverse stressed steel or stressed concrete part has reinforcement layers on surfaces and a flat surface component placed at right angles to surface and over entire structural thickness between reinforcement layers
DE10002383 2000-01-20
PCT/EP2001/000634 WO2001053623A2 (en) 2000-01-20 2001-01-20 Reinforced or pre-stressed concrete part which is subjected to a transverse force

Publications (2)

Publication Number Publication Date
EP1248889A2 EP1248889A2 (en) 2002-10-16
EP1248889B1 true EP1248889B1 (en) 2012-01-18

Family

ID=7628185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01923551A Expired - Lifetime EP1248889B1 (en) 2000-01-20 2001-01-20 Slab reinforcement and its method of manufacturing

Country Status (6)

Country Link
US (1) US7874110B2 (en)
EP (1) EP1248889B1 (en)
AT (1) ATE542000T1 (en)
AU (1) AU2001250302A1 (en)
DE (1) DE10002383A1 (en)
WO (1) WO2001053623A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899866B2 (en) * 2001-08-07 2007-03-28 鹿島建設株式会社 Joint structure of steel plate concrete structure
US20050108980A1 (en) * 2002-10-22 2005-05-26 Andrew Barmakian Rod-reinforced cushion beam
DE10251779B4 (en) * 2002-11-05 2007-02-22 Fachhochschule Gießen-Friedberg Reinforced concrete or prestressed concrete component
DE202008012547U1 (en) * 2008-09-23 2010-02-11 Ancotech Ag Arrangement for reinforcing a concrete structure against punching in the area of the support of a ceiling element on a support and punching shear reinforcement element for this purpose
EP2236686A1 (en) * 2009-04-03 2010-10-06 F.J. Aschwanden AG Reinforcing element for absorbing forces in concrete slabs in the area of supporting elements
US8549813B2 (en) 2010-12-03 2013-10-08 Richard P. Martter Reinforcing assembly and reinforced structure using a reinforcing assembly
US8220219B2 (en) 2010-12-03 2012-07-17 Martter Richard P Reinforcing assembly, and reinforced concrete structures using such assembly
CN104718332B (en) * 2012-09-05 2017-03-08 韩国建设技术研究院 Punching Shear is with strengthening component and construction method
JP2015178756A (en) * 2014-03-20 2015-10-08 株式会社熊谷組 Reinforcement structure for reinforced concrete beam with through-hole
CN104805945A (en) * 2015-04-10 2015-07-29 安徽新华学院 Anti-floating composite light mandrel for cast-in-place open-web floor and manufacturing method thereof
US10119276B2 (en) 2016-07-15 2018-11-06 Richard P. Martter Reinforcing assemblies having downwardly-extending working members on structurally reinforcing bars for concrete slabs or other structures
US11220822B2 (en) 2016-07-15 2022-01-11 Conbar Systems Llc Reinforcing assemblies having downwardly-extending working members on structurally reinforcing bars for concrete slabs or other structures
CN111560851B (en) * 2020-04-29 2021-12-14 中交路桥建设有限公司 Fabricated steel-concrete composite beam open-guaranteed bridge and construction method

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1303741A (en) * 1919-05-13 Beintorced-cohcrete bridge construction
US667871A (en) * 1900-10-17 1901-02-12 Julian O Ellinger Fireproof building structure.
US692309A (en) * 1901-06-06 1902-02-04 Gottfried Knoche Fireproof floor.
FR332797A (en) 1902-06-13 1903-11-06 Fritz Pohlmann Reinforced cement beam system
US729299A (en) * 1903-01-05 1903-05-26 Clarence M Ellinger Fireproof building structure.
US742943A (en) * 1903-01-30 1903-11-03 William N Wight Fireproof girder or beam.
US865336A (en) * 1906-06-18 1907-09-03 Howard S Gardner Building structure.
US883768A (en) * 1906-09-27 1908-04-07 Gen Fire Proofing Company Reinforcing-frame and cementitious construction.
US976183A (en) * 1908-06-25 1910-11-22 John A Jones Reinforced-concrete floor-slab.
US980480A (en) * 1908-12-17 1911-01-03 Calvin Tomkins Method for the construction of buildings.
US1056463A (en) * 1909-03-20 1913-03-18 Oneida Community Ltd Fireproof sheating for structural steel.
US947769A (en) * 1909-04-29 1910-01-25 John E Conzelman Concrete construction.
US1053646A (en) * 1909-11-22 1913-02-18 Charles Wesley Roberts Building construction.
US1060853A (en) * 1910-03-12 1913-05-06 Robert T Peirce Reinforced concrete construction.
US1009712A (en) * 1911-01-18 1911-11-28 Robert Anderson Concrete structure.
US1088956A (en) * 1911-01-18 1914-03-03 Robert Anderson Reinforced-concrete floor construction.
US1050477A (en) * 1911-04-14 1913-01-14 Corrugated Bar Company Reinforced-concrete floor construction.
US1262449A (en) * 1916-12-12 1918-04-09 Richard S Chew Floor construction.
US1461891A (en) * 1922-02-11 1923-07-17 Franklin H Coney Concrete building
US1625899A (en) * 1923-05-17 1927-04-26 Lally John Fireproof building construction
US1648387A (en) * 1926-07-22 1927-11-08 Gustaveson Palmer Ground-strip nailing block
US1720193A (en) * 1928-02-02 1929-07-09 Kalman Steel Co Slab reenforcement
US2033595A (en) 1931-07-21 1936-03-10 George E Strehan Rigid frame building construction
US1982343A (en) * 1931-08-13 1934-11-27 Charles S Kane Building construction
US1955498A (en) * 1932-07-30 1934-04-17 New Jersey Clay Products Inc Hollow tile block and floor construction
US2064910A (en) * 1933-09-20 1936-12-22 Clarence S Harper Reenforced monolith building construction
US2053873A (en) * 1934-06-19 1936-09-08 Eugene L Niederhofer Building structure
US2143887A (en) * 1935-04-05 1939-01-17 Fer O Con Corp Floor system and connections therefor
US2108065A (en) * 1935-04-05 1938-02-15 Fer O Con Corp Building construction and structural element therefor
US2241169A (en) * 1937-12-08 1941-05-06 Yokes Otto Building construction
US2697930A (en) 1950-03-21 1954-12-28 David B Cheskin Slab supporting frame for reinforced concrete building construction
US2836529A (en) * 1954-05-03 1958-05-27 Hugh Adam Kirk Reinforced plastic
US3347007A (en) * 1964-12-18 1967-10-17 Jesse R Hale Embedded spaced truss structures
BE697557A (en) * 1966-05-03 1967-10-02
US3562979A (en) * 1967-10-23 1971-02-16 Componoform Inc Building construction
US3721058A (en) * 1969-05-26 1973-03-20 Gen Dynamics Corp Reinforced wall structure
US3594971A (en) * 1969-06-26 1971-07-27 John K Hughes Building construction and components thereof
US4050213A (en) * 1970-01-12 1977-09-27 Thomas J. Dillon & Co., Inc. Method of erecting a multi-story building
US3990200A (en) * 1970-07-02 1976-11-09 Takenaka Komuten Company, Ltd. Apparatus for forming reinforced concrete wall
US3736709A (en) * 1971-07-13 1973-06-05 Techcrete Inc Building system
US3744196A (en) * 1971-09-20 1973-07-10 H Weese Hinged slab system of building
US3990193A (en) * 1972-04-18 1976-11-09 Ray Orlando F Prefabricated building module and modular construction method for the module
US4078345A (en) * 1972-12-29 1978-03-14 Pietro Piazzalunga Prefabricated building and method of making same
DE2514300C2 (en) * 1975-04-02 1982-12-30 Ernst Dr.-Ing. 4300 Essen Haeussler Rectangular reinforced concrete slab
FI53338C (en) * 1976-06-14 1978-04-10 Paraisten Kalkki Oy SKARVFOERBINDNING FOER BETONGSTYCKEN
US4185423A (en) * 1978-03-27 1980-01-29 Systems Concept, Inc. Lightweight building module
JPS581037B2 (en) * 1978-03-29 1983-01-08 株式会社東芝 Construction method of lining tank
AT382188B (en) * 1984-07-24 1987-01-26 Avi Alpenlaendische Vered SHOE REINFORCEMENT SYSTEM FOR SURFACE STRUCTURES
GB8709877D0 (en) * 1987-04-27 1987-06-03 Clifton R A Concrete screed rails
DE3880900T2 (en) * 1987-07-01 1993-12-23 Baena Juan Antonio Martinez Component with prefabricated walls.
GB2235221B (en) 1989-08-21 1993-08-25 Square Grip Ltd Shearhead reinforcement
CH683545A5 (en) * 1991-01-18 1994-03-31 Thomas Moesch Shear reinforcement for flat slabs.
US5507124A (en) * 1991-09-17 1996-04-16 The Board Of Regents Of The University Concrete framing system
JP2712955B2 (en) * 1991-10-25 1998-02-16 株式会社大林組 Reinforced concrete beam rebar assembly method
AT406064B (en) * 1993-06-02 2000-02-25 Evg Entwicklung Verwert Ges COMPONENT
US5414972A (en) * 1993-11-09 1995-05-16 Composite Building Systems Incorporated Reinforced structural member for building constructions
CH689231A5 (en) * 1995-01-18 1998-12-31 Eth Sia Reto Bonomo Dipl Ing Heat insulating collar plate connecting component
GB2300654A (en) * 1995-05-04 1996-11-13 Univ Sheffield Shear reinforcement for reinforced concrete
DE19543768A1 (en) * 1995-11-20 1997-05-22 Frank Gmbh & Co Kg Max Attachment for balcony on building
US6112489A (en) * 1995-12-12 2000-09-05 Monotech International, Inc. Monocoque concrete structures
US5867964A (en) * 1995-12-20 1999-02-09 Perrin; Arthur Prefabricated construction panels and modules for multistory buildings and method for their use
JPH1096263A (en) * 1996-06-06 1998-04-14 R Johann Hashihoran Simanjuntakk I Precast concrete support and assembling method of slab
JPH1025854A (en) * 1996-07-12 1998-01-27 Jiyoisuto:Kk Lightweight concrete plate
ATE228599T1 (en) * 1996-07-30 2002-12-15 Basys Ag CONNECTING ELEMENT
US5896714A (en) * 1997-03-11 1999-04-27 Cymbala; Patrick M. Insulating concrete form system
DE19712283C1 (en) * 1997-03-24 1998-05-28 Max Boegl Stahl Und Anlagenbau Steel reinforcing cap for flat roof at support
DE19741509B4 (en) 1997-09-20 2004-03-11 Stahl + Verbundbau Gesellschaft für industrielles Bauen m.b.H. Column head extension as punching shear reinforcement in reinforced concrete slabs
US6041562A (en) * 1998-02-17 2000-03-28 Mar-Mex Canada Inc. Composite wall construction and dwelling therefrom
US6820384B1 (en) * 2000-10-19 2004-11-23 Reward Wall Systems, Inc. Prefabricated foam block concrete forms and ties molded therein
US20030014935A1 (en) * 2001-07-18 2003-01-23 Bodnar Ernest R. Sheet metal stud and composite construction panel and method

Also Published As

Publication number Publication date
WO2001053623A2 (en) 2001-07-26
AU2001250302A1 (en) 2001-07-31
WO2001053623A3 (en) 2002-02-28
DE10002383A1 (en) 2001-07-26
EP1248889A2 (en) 2002-10-16
US20030154674A1 (en) 2003-08-21
US7874110B2 (en) 2011-01-25
ATE542000T1 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
EP1786990B1 (en) Steel-concrete hollow bodied slab or ceiling
DE69812399T2 (en) CIRCULAR BRACKETS AND TIES FOR THE REINFORCEMENT OF COMPONENTS, COMPONENTS STRENGTHENED BY CIRCULAR BRACKETS OR TIES AND METHOD FOR THE CONSTRUCTION OF SUCH COMPONENTS
EP1248889B1 (en) Slab reinforcement and its method of manufacturing
DE69622036T2 (en) REINFORCING ELEMENTS
EP0755473B1 (en) Dowel strip for bent-up bars
EP1252403B9 (en) Honeycomb-structured hollow-block concrete floor
EP1669505B1 (en) Steel-concrete composite joist with fire-resistant support for ceiling elements
EP1795667A2 (en) Reinforcing member for structures made of reinforced or prestressed concrete or the same
EP0621381A1 (en) Prestressed reinforcement element
EP1630315A1 (en) Construction element for shear and punching reinforcement
EP2189586B1 (en) Panel element with reinforcement
EP2459812B1 (en) Reinforced concrete component reinforced with z-shaped sheet metal pieces
EP2236686A1 (en) Reinforcing element for absorbing forces in concrete slabs in the area of supporting elements
AT407411B (en) REINFORCEMENT BODY FOR A ROCK Ceiling made of cast concrete
DE69123517T2 (en) Process for the production of a sheet steel concrete ceiling
DE102012110184A1 (en) Centrifugal concrete column for use with ceiling connector for structure of building, is made of ultra high performance concrete, where cylinder compressive strength of ultra high performance concrete is thundered mega Pascal
AT158230B (en) Beams made of pressure-resistant material for absorbing tensile forces, in particular for supporting ceilings.
EP0796961B1 (en) Foam concrete elements with reinforcing system
EP0947640A2 (en) Reinforcement with high adherence
DE10217460C1 (en) Prestressed concrete support pipe manufactured in centrifugal concrete, especially for guideways of magnetic levitation trains
CH358574A (en) Component
AT503475B1 (en) FLAT CEILING OF REINFORCED LAYER BEETON AND / OR CONCRETE REPAIR ELEMENTS
DE202005004622U1 (en) Reinforced concrete hollow filler block floor has at least one web of extension resistant fibers and/or at least one steel brace which is preferably double headed anchor installed in inclined position
EP3030722A1 (en) Machine table foundation
AT270962B (en) Prefabricated, large-format, thin-walled reinforced concrete panel element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020522

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MATTHAEI, OLIVER, DIPL.-ING.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: SLAB REINFORCEMENT AND ITS METHOD OF MANUFACTURING

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 542000

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50116041

Country of ref document: DE

Effective date: 20120315

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50116041

Country of ref document: DE

Effective date: 20120317

BERE Be: lapsed

Owner name: MATTHAEI, OLIVER, DIPL.-ING.

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

26N No opposition filed

Effective date: 20121019

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50116041

Country of ref document: DE

Effective date: 20121019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120314

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 542000

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120429

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: C/O MSING GMBH MATTHAEI SCHOTTE FRIES ROTEBUEHLSTRASSE 89/2, 70178 STUTTGART (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: MEYER AND KOLLEGEN, CH

Ref country code: CH

Ref legal event code: AECN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 05.12.2013 REAKTIVIERT WORDEN.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R085

Ref document number: 50116041

Country of ref document: DE

Effective date: 20140213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: CH

Effective date: 20140122

Ref country code: LI

Effective date: 20140122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50116041

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200127

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50116041

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL