EP1233083A1 - Fond en carbone d'une cellule d'électrolyse pour la production d'aluminium - Google Patents

Fond en carbone d'une cellule d'électrolyse pour la production d'aluminium Download PDF

Info

Publication number
EP1233083A1
EP1233083A1 EP01810150A EP01810150A EP1233083A1 EP 1233083 A1 EP1233083 A1 EP 1233083A1 EP 01810150 A EP01810150 A EP 01810150A EP 01810150 A EP01810150 A EP 01810150A EP 1233083 A1 EP1233083 A1 EP 1233083A1
Authority
EP
European Patent Office
Prior art keywords
cell
carbon
coal
electrical resistance
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01810150A
Other languages
German (de)
English (en)
Inventor
Jacques Antille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alcan Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to EP01810150A priority Critical patent/EP1233083A1/fr
Priority to PCT/EP2002/001092 priority patent/WO2002064860A1/fr
Publication of EP1233083A1 publication Critical patent/EP1233083A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the invention relates to a coal bottom of an electrolysis cell for extraction of aluminum by melt flow electrolysis of aluminum oxide, the Carbon floor can be divided into individual cathode elements and the carbon floor or the cathode elements are electrically conductive with the side of the electrolytic cell led out current bar are connected.
  • the invention has for its object a coal floor of the aforementioned Way to create the flow of electricity through the cell without elaborate routing of conductor rails approximates the ideal current profile can be.
  • the coal floor of the middle of the cell to the edge of the cell in the direction of the current bar in vertical Has increasing electrical resistance direction.
  • the different electrolytic resistance of the coal floor in the z direction depending on the distance to the center of the cell causes the current due to the fact that the cathode bottom rests during operation of the electrolytic cell liquid aluminum can be approximated to the ideal vertical direction, whereby the horizontal current component decreases greatly and ideally even disappears.
  • the coal floor according to the invention therefore enables one Increase in the electrical current flow in the cell, which is an increase in the Production equals.
  • the carbon floor or the individual cathode elements can be in layers divided and the layers strung together in the direction of the current bar be, the individual layers from the center of the cell to the edge of the cell have increasing electrical resistance in the vertical direction.
  • the coal floor according to the invention or the individual cathode elements point from the center of the cell to the Cell wall continuously in the direction of the current bar in the vertical direction and steadily increasing electrical resistance.
  • An electrolytic cell 10 shown in FIG. 1 for the production of aluminum by melt flow electrolysis of alumina exhibits one with a refractory and heat-insulating masonry 14 lined steel tub 12.
  • On the masonry 14 at the bottom of the steel tub 12 are cathode elements 16 arranged in the form of coal blocks. The at the side joints The resulting gaps of the individual cathode elements are used for production good thermal and electrical conductivity of the connection point adjacent cathode elements 16 in a known manner with a Sealed contact mass, so that all sides thermally and electrically well conductive cathode or carbon base 18 is formed.
  • the side walls 20 exist from individual blocks of a coal mass and lie on the masonry 14 of the steel tub 12.
  • the electrolytic cell 10 essentially has one rectangular plan with a horizontal longitudinal direction x, one rectangular to this horizontal horizontal direction y and one on the by the Directions x, y defined plane vertical vertical direction z.
  • the Coal base 18 is supported by current conducting or cathode bars running in the y direction 22 contacted.
  • the bars 22 are in the middle of the coal floor 18 separated.
  • the cathode bars 22 can, however, also from Side wall to side wall of the steel tub 12 be continuous.
  • the coal floor 18 can be designed in different ways.
  • the cathode elements 16 can, for example, with regard to their shape and extent in the x and y directions vary, or the coal floor 18 can also consist of a single one Block exist.
  • the individual cathode elements 16 have a groove 24 on.
  • the cathode bar 22 is in the grooves 24 via a cast iron jacket 26 poured from strung cathode elements 16.
  • the connection between cathode bars 22 and cathode elements 16 can of course can also be carried out in other ways, for example by gluing with an electrically and thermally conductive contact mass.
  • the electrolysis cell 10 is on during operation the coal floor 18 a layer 28 of liquid aluminum.
  • a cryolite melt 30 with dissolved therein Alumina.
  • Carbon anodes 32 dip into the cryolite melt 30 from above on.
  • the carbon anodes 32 are anchored in these anode rods 34 on a not shown, extending in the longitudinal direction x of the electrolytic cell 10 Traverse attached.
  • it forms on the cryolite melt 30 a crust 36 of solidified cryolite.
  • the crust 36 is from Broken up from time to time to supply alumina to the cryolite melt.
  • the liquid that collects as a layer 28 on the coal floor 18 Aluminum is also used from time to time, for example via a siphon removed from the electrolytic cell 10 by means of vacuum.
  • the cathode bar 22 has a height h K
  • the carbon floor 18 arranged above it has a height h B
  • U 0 means the electrical potential at the aluminum / carbon floor contact surface
  • U (y) the electrical potential at the carbon floor / cathode bar interface which is dependent on the electrical conductivity of the carbon floor in the z direction from the cell center to the cell edge in the direction y of the cathode bars 18.
  • L designates half the width of the coal floor 18 in the y direction.
  • the cathode elements 16 or the carbon base 18 made therefrom is characterized by its electrical conductivity.
  • the manufacturers of the cathode elements define the conductivity in the extrusion direction accordingly the y-direction and in the directions x and z perpendicular to it.
  • the conductivity values are shown in all directions for all cathode elements 16 the same. This condition leads to a in the y-direction against the side wall 20 of the electrolytic cell 10 increased current flow. 5, the current distribution is in a two-dimensional Model calculation assuming a constant conductivity on all sides of the coal floor 18 represented by arrows 38. Are clearly recognizable here the horizontal power components.
  • the model calculation shows that in order to achieve a vertical current flow through the layer 28 of liquid aluminum and through the carbon base 18 or the cathode elements 16 in the vertical z direction, the electrical resistance, which is equivalent to the inverse value of the electrical conductivity, has a quadratic course depending on the distance from the center of the electrolytic cell 10 in the direction y against the side wall 20 must show an essentially square profile.
  • the constants ⁇ 0 and ⁇ 1 which are included in the formula for ⁇ B depend on the geometric parameters of the carbon floor 18 or the cathode elements 16 and the cathode bar 22 and on the electrical conductivity of the cathode bar 22.
  • FIG. 6 shows the values for the electrical resistance ⁇ B in the z direction determined by the model calculation for the carbon floor 18 as a function of the distance from the center of the cell M to the side edge in the y direction.
  • the model calculation gives the current distribution, illustrated in FIG. 7 by arrows 38, through a cathode base 18 with variable conductivity in the y direction. It can be clearly seen that the current runs much more vertically than in the case of a conventional cathode base shown in FIG. 5. In fact, the horizontal current flow is about ten times weaker than when using carbon floors according to the prior art with constant conductivity in the y direction.
  • FIG. 8 shows a possible embodiment of a carbon base 18 with the electrical resistance increasing in the z direction from the cell center M towards the cell edge in the direction y of the cathode bars 22 in accordance with the values shown in FIG. 6.
  • the coal floor 18 is made up of individual layers S 1 to S 10 which run in the longitudinal direction x and abut one another laterally in the y direction.
  • Each of these layers or blocks has an electrical resistance ⁇ B in the z direction, corresponding to its distance from the cell center M, which has been calculated for this position and is shown in FIG.
  • the electrical resistance ⁇ B of the individual layers or blocks S 1 to S 10 is thus constant for each layer or for each block, but varies from layer to layer or from block to block.
  • the individual layers or blocks can, for example, be glued to one another in a known manner.
  • the individual layers S 1 to S 10 in the longitudinal direction x of the carbon base 18 can also be divided into cathode elements 16 of shorter dimensions.
  • ten layers S 1 to S 10 are shown in FIG. 8 from the cell center M to the cell edge, a model calculation has shown that the desired current distribution according to FIG. 7 already has five layers or blocks with different electrical Resistance ⁇ B is sufficient to achieve practically the same positive results as with a division into ten layers.
  • the use of just five layers allows the individual blocks to be manufactured more easily and also leads to less expensive production.
  • the individual Cathode elements 16 also one in the extrusion or y direction of the cell center M to the cell edge continuously increasing electrical resistance exhibit.
  • the coal floor 18 can thus be inexpensive also in one piece with a continuous from the cell center M to the cell edge and steadily increasing electrical resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
EP01810150A 2001-02-14 2001-02-14 Fond en carbone d'une cellule d'électrolyse pour la production d'aluminium Withdrawn EP1233083A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01810150A EP1233083A1 (fr) 2001-02-14 2001-02-14 Fond en carbone d'une cellule d'électrolyse pour la production d'aluminium
PCT/EP2002/001092 WO2002064860A1 (fr) 2001-02-14 2002-02-02 Fond en carbone d'une cellule d'electrolyse pour la production d'aluminium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01810150A EP1233083A1 (fr) 2001-02-14 2001-02-14 Fond en carbone d'une cellule d'électrolyse pour la production d'aluminium

Publications (1)

Publication Number Publication Date
EP1233083A1 true EP1233083A1 (fr) 2002-08-21

Family

ID=8183730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01810150A Withdrawn EP1233083A1 (fr) 2001-02-14 2001-02-14 Fond en carbone d'une cellule d'électrolyse pour la production d'aluminium

Country Status (2)

Country Link
EP (1) EP1233083A1 (fr)
WO (1) WO2002064860A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056068A2 (fr) * 2001-12-28 2003-07-10 Sgl Carbon Ag Blocs cathodiques graphites
WO2003056069A1 (fr) * 2001-12-28 2003-07-10 Sgl Carbon Ag Procede de graphitisation de blocs cathodiques
WO2013068485A1 (fr) * 2011-11-09 2013-05-16 Sgl Carbon Se Cellule électrolytique, en particulier pour produire de l'aluminium, à cathode en forme de cuvette
EP2650404A1 (fr) * 2012-04-12 2013-10-16 SGL Carbon SE Cellule d'électrolyse, en particulier pour la production d'aluminium
WO2014088944A1 (fr) * 2012-12-03 2014-06-12 The Regents Of The University Of California Dispositifs, systèmes et procédés pour le revêtement de surfaces

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6457397B2 (ja) * 2012-12-13 2019-01-23 エスジーエル・シーエフエル・シーイー・ゲーエムベーハーSGL CFL CE GmbH アルミニウムを還元するための電解槽の壁用側壁レンガ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2786024A (en) * 1953-04-16 1957-03-19 Elektrokemisk As Arrangement of cathode bars in electrolytic pots
US3787311A (en) * 1970-12-12 1974-01-22 Giulini Gmbh Geb Cathode for the winning of aluminum
FR2789092A1 (fr) * 1999-02-02 2000-08-04 Carbone Savoie Cathode graphique pour l'electrolyse de l'aluminium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2786024A (en) * 1953-04-16 1957-03-19 Elektrokemisk As Arrangement of cathode bars in electrolytic pots
US3787311A (en) * 1970-12-12 1974-01-22 Giulini Gmbh Geb Cathode for the winning of aluminum
FR2789092A1 (fr) * 1999-02-02 2000-08-04 Carbone Savoie Cathode graphique pour l'electrolyse de l'aluminium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056068A2 (fr) * 2001-12-28 2003-07-10 Sgl Carbon Ag Blocs cathodiques graphites
WO2003056069A1 (fr) * 2001-12-28 2003-07-10 Sgl Carbon Ag Procede de graphitisation de blocs cathodiques
WO2003056068A3 (fr) * 2001-12-28 2004-09-30 Sgl Carbon Ag Blocs cathodiques graphites
WO2013068485A1 (fr) * 2011-11-09 2013-05-16 Sgl Carbon Se Cellule électrolytique, en particulier pour produire de l'aluminium, à cathode en forme de cuvette
EP2650404A1 (fr) * 2012-04-12 2013-10-16 SGL Carbon SE Cellule d'électrolyse, en particulier pour la production d'aluminium
WO2013153053A1 (fr) * 2012-04-12 2013-10-17 Sgl Carbon Se Cellule d'électrolyse, en particulier pour la production d'aluminium
RU2630114C2 (ru) * 2012-04-12 2017-09-05 Сгл Карбон Се Электролизер, в частности, для получения алюминия
US10801118B2 (en) 2012-04-12 2020-10-13 Tokai Cobex Gmbh Electrolysis cell, in particular for the production of aluminum
WO2014088944A1 (fr) * 2012-12-03 2014-06-12 The Regents Of The University Of California Dispositifs, systèmes et procédés pour le revêtement de surfaces
US9903035B2 (en) 2012-12-03 2018-02-27 The Regents Of The University Of California Devices, systems and methods for coating surfaces

Also Published As

Publication number Publication date
WO2002064860A1 (fr) 2002-08-22

Similar Documents

Publication Publication Date Title
CH643885A5 (de) Elektrodenanordnung einer schmelzflusselektrolysezelle zur herstellung von aluminium.
DE2613867B2 (de) Vorrichtung zur Stromversorgung von quer hintereinander angeordneten, etwa rechteckigen Schmelzflußelektrolysezellen
EP1233083A1 (fr) Fond en carbone d'une cellule d'électrolyse pour la production d'aluminium
DE3041680C2 (de) Kathodenanordnung für einen Schmelzflußelektrolyseofen
CH644406A5 (de) Schmelzflusselektrolysezelle zur herstellung von aluminium.
DE3436442A1 (de) Wanne zur elektrolyse mit einer stromstaerke ueber 250.000 a fuer die erzeugung von aluminium nach dem hall-heroult-verfahren
DE2841205A1 (de) Elektrolysezelle mit kompensierten magnetfeldkomponenten
DE3133049C1 (de) Schienenanordnung für Elektrolysezellen
CH641209A5 (de) Elektrolysezelle.
DE2143602C3 (de) Zelle für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid im Schmelzfluß
DE2143603C3 (de) Zelle für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid im Schmelzfluß
DE3012697A1 (de) Verfahren zur stabilisierung einer aluminiummetallschicht in einer aluminium- elektrolytzelle
EP0033714B1 (fr) Disposition de barres d'amenée de courant pour cellules d'électrolyse
DE3009096A1 (de) Asymmetrische schienenanordnung fuer elektrolysezellen
DE102010039638A1 (de) Kathode, Vorrichtung zur Aluminiumgewinnung und Verwendung der Kathode bei der Aluminiumgewinnung
DE2107675A1 (de) Verfahren und Vorrichtung zum Regulie ren der Al tief 2 0 tief 3 Konzentration im Fluoridelektrolyten bei der Aluminium elektrolyse
WO2012107403A1 (fr) Ensemble cathodique comprenant un bloc cathodique à surface profilée à profondeur de gorge variable
DE3004071A1 (de) Schienenanordnung
EP0073735B1 (fr) Cuve d'électrolyse pour la production électrolytique d'aluminium et procédé de mise en place des barres de fer
DE1558766C (de) Kollektorschiene
DE1558766B2 (de) Kollektorschiene
EP2776609A1 (fr) Cellule électrolytique, en particulier pour produire de l'aluminium, à cathode en forme de cuvette
DE401917C (de) Vorrichtung zur elektrolytischen Behandlung geschmolzener Metallsalze
EP2776608A2 (fr) Bloc cathodique à face supérieure bombée et/ou arrondie
DE2110340A1 (de) Verfahren zum Betreiben einer elektrolytischen Zelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030221

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AXX Extension fees paid

Extension state: SI

Payment date: 20030221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030717