EP1230433B1 - Verfahren zur elektrolytischen umwandlung von furan oder furanderivaten - Google Patents

Verfahren zur elektrolytischen umwandlung von furan oder furanderivaten Download PDF

Info

Publication number
EP1230433B1
EP1230433B1 EP00966039A EP00966039A EP1230433B1 EP 1230433 B1 EP1230433 B1 EP 1230433B1 EP 00966039 A EP00966039 A EP 00966039A EP 00966039 A EP00966039 A EP 00966039A EP 1230433 B1 EP1230433 B1 EP 1230433B1
Authority
EP
European Patent Office
Prior art keywords
furan
electrode
electrodes
hydrogenation
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00966039A
Other languages
English (en)
French (fr)
Other versions
EP1230433A1 (de
Inventor
Hermann Pütter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1230433A1 publication Critical patent/EP1230433A1/de
Application granted granted Critical
Publication of EP1230433B1 publication Critical patent/EP1230433B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds

Definitions

  • the present invention relates to a method for the electrolytic conversion of Furan or one or more furan derivatives.
  • One goal of preparative organic electrochemistry is that of one Processes occurring on both electrodes parallel to electrochemical processes use.
  • Of particular interest are those procedures in which the two Electrode processes that take place in an undivided cell for the implementation of chemical compounds can be used.
  • Another example is the coupled synthesis of phthalide and t-butylbenzaldehyde (DE 196 18 854).
  • cathode and anode processes it is also possible to use the cathode and anode processes to produce a single product or to destroy an educt.
  • electrochemical processes are, for example, the production of butyric acid (Y. Chen, T. Chou, J. Chin. Inst. Chem. Eng. 27 (1996) pages 337-345), the anodic dissolution of iron, that with the cathodic Formation of ferrocene is coupled (T. Iwasaki et al., J. Org. Chem. 47 (1982) pages 3799 ff.) Or the degradation of phenol (AP Tomilov et al., Elektrokhimiya 10 (1982) page 239).
  • An object of the present invention is therefore an electrochemical method To provide, which preferably takes place in an undivided electrolytic cell and in which Furan or a substituted furan in an electrode process while maintaining the heterocyclic ring structure is oxidized and this oxidation product with hydrogen is hydrogenated, the hydrogen being the product in the other electrode process arises or as hydrogen equivalent in the sense of an electrocatalysis on the Furan derivative is transferred.
  • the process preferably takes place in an undivided electrolysis cell.
  • furan in addition to furan, the following compounds, for example, are preferred as substituted furans: Furfural (furan-2-aldehyde), alkyl-substituted furans, furans with -CHO, -COOH, -COOR, in which R represents an alkyl, benzyl or aryl group, in particular a C 1 - to C 4 -alkyl group, -CH (OR 1 ) (OR 2 ), where R 1 and R 2 can be the same or different and R 1 and R 2 each represent an alkyl, benzyl, aryl group, in particular a C 1 to C 4 alkyl group, and -CN groups in 2-, 3-, 4- or 5-position.
  • Furfural furan-2-aldehyde
  • alkyl-substituted furans furans with -CHO, -COOH, -COOR
  • R represents an alkyl, benzyl or aryl group, in particular a C 1 - to C 4
  • electrolyte salts can be used, as described in H. Lund, MM Baizer, (ed.) "Organic Electrochemistry", 3 rd Edition, Marcel Dekker, New York 1991.
  • the oxidation is preferably carried out in the presence of methanol or in Presence of ethanol or a mixture thereof, but preferably in the presence of Methanol.
  • substrates can be reactant and solvent at the same time.
  • the following can be used as conductive salts in the process of the invention, for example also alkali and / or alkaline earth metal halides, with bromides, chlorides as halides and iodides are conceivable. Ammonium halides are also suitable used.
  • Pressure and temperature can depend on the conditions used in catalytic hydrogenations are customary to be adjusted.
  • the starting materials are introduced into the undivided electrolysis cell intermediate products are supplied.
  • the intermediate product is at least one product which is obtained in step (i) of the process described above by electrolytic oxidation of furan or a substituted furan or a mixture of two or more thereof as a furan derivative (B) and is therefore in the electrolysis cycle.
  • concentration of the additional intermediates is adjusted by conventional electrochemical and electrocatalytic parameters, such as, for example, current density, type and amount of catalyst, or the intermediate is added to the circuit.
  • Graphite anodes are preferably used in the undivided cell.
  • At least one electrode is in Contact with at least one hydrogenation catalyst.
  • the at least one hydrogenation catalyst is part of an embodiment Gas diffusion electrode.
  • at least one electrode is a graphite electrode coated with noble metal from sheets, nets or felt.
  • the hydrogenation catalyst in the form of a suspension in the electrolyte constantly brought into contact with at least one electrode.
  • Precoat electrode is described for example in DE 196 20 861.
  • a gas diffusion electrode is used for at least one of the electrodes, then basically processed the material from which the gas diffusion electrode is made be that the gas diffusion electrode can be used as an electrode without support material can.
  • at least one of the used electrodes are a composite body, which is at least one conventional Includes electrode material and at least one material for a gas diffusion electrode.
  • the composite body, the conventional Electrode material and the material of the gas diffusion electrode comprises, as one electrode in the process according to the invention together with one or more suitable Counter electrodes are used.
  • further electrode materials uses that include carbon.
  • a C-C double bond is used in the process according to the invention using the hydrogen obtained in step (i) electrocatalytically or with the corresponding hydrogen equivalents in the sense of a Hydrolysis of electrolysis.
  • This hydrogenation preferably takes place so that the hydrogenation Connection is brought into contact with one or more hydrogenation catalysts.
  • the method according to the invention has no restrictions. All from the Catalysts known in the art can be used. Among other things are included to name the metals of subgroups I, II and VIII of the periodic table, in particular Co, Ni, Fe, Ru, Rh, Re, Pd, Pt, Os, Ir, Ag, Cu, Zn and Cd.
  • the metals in finely divided form, among other things use.
  • Examples include Raney-Ni, Raney-Co, Raney-Ag or Raney-Fe, each of which also contains other elements such as Mo, Cr, Au, Mn, Hg, Sn or S, Se, Te, Ge, Ga, P, Pb, As, Bi or Sb can contain.
  • the described hydrogenation-active materials can of course also be a mixture of comprise two or more of the hydrogenation metals mentioned, optionally with For example, one or more of the above elements can be mixed.
  • the hydrogenation material on an inert Carrier is applied.
  • Activated carbon for example, Graphite, carbon black, silicon carbide, aluminum oxide, silicon dioxide, titanium dioxide, Zirconium dioxide, magnesium oxide, zinc oxide or mixtures of two or more of which, e.g. B. as a suspension or as finely divided granules.
  • the hydrogenation Material applied to gas diffusion electrode base material is not limited to the hydrogenation Material.
  • the present invention also relates to a method as described above, which is characterized in that the gas diffusion electrode base material with a hydrogenated active material is loaded.
  • the Gas diffusion electrode material is loaded with hydrogenation material and in addition hydrogenated material is used, which is the same or different to that with which is loaded with the gas diffusion electrode material.
  • the method according to the invention is particularly noteworthy characterized in that it essentially leaves the choice whether the electrocatalytic effective electrode, d. H. the electrode that is in contact with a hydrogenation catalyst, is used as a cathode or as an anode or as a cathode and anode.
  • the present invention also relates to a method as described above, which is characterized in that the electrocatalytically active electrode, such as for example a gas diffusion electrode, used as a cathode and / or as an anode becomes.
  • the electrocatalytically active electrode such as for example a gas diffusion electrode
  • the present invention relates to a method as described above, wherein the prepared furan derivative (B) converted to at least one ring-open butane derivative becomes.
  • the at least one ring-open butane derivative is preferably 1,1,4,4-tetramethoxybutane or a substituted 1,1,4,4-tetramethoxybutane.
  • An undivided cell with 6 ring-shaped electrodes with a surface per side of 15.7 cm 2 was used.
  • the electrodes were separated from each other by 5 spacer networks 0.7 mm thick.
  • the top and bottom electrodes were in contact with a power connector.
  • the top one Electrode was connected anodically, the bottom one was cathodic, the middle electrodes bipolar.
  • the electrodes consisted of graphite disks, each 5 mm thick, which were covered on one side with gas diffusion electrode material. This material in turn was coated with 10 g platinum / m 2 .
  • the gas diffusion electrode was switched as the cathode.
  • the electrolysis batch consisted of 30 g furan, 57.63 g 2,5-dimethoxydihydrofuran, 2 g NaBr and 112 g methanol.
  • the electrolysis was carried out at 0.47 A and a temperature of 15 ° C. During the Implementation increased the cell voltage from 13.0 V to 17.4 V. The electrolysis was followed by gas chromatography.
  • Example 2 The cell arrangement corresponded to that of Example 1. Instead of a Pt-loaded gas diffusion cathode, a gas diffusion electrode loaded with 5.2 g / m 2 Pd was used.
  • the electrolysis batch consisted of 60 g furan, 126.2 g 2,5-dimethoxydihydrofuran, 2 g NaBr and 234.4 g of methanol.
  • the electrolysis was carried out at 0.47 A and a temperature of approx. 18 ° C.
  • the cell tension rose from 19.1 V to 26.4 V.
  • the electrolysis was monitored by gas chromatography.
  • the cell arrangement corresponded to that of Example 1. Instead of a gas diffusion cathode, a gas diffusion electrode loaded with 5.2 g Pd / m 2 was used as the anode.
  • the electrolysis batch consisted of 30 g furan, 57.4 g 2,5-dimethoxydihydrofuran, 2 g NaBr and 110.6 g of methanol.
  • the electrolysis was carried out at 0.48 A and a temperature of 17 ° C.
  • the cell tension rose from 16.3 V to 19.5 V.
  • the electrolysis was followed by gas chromatography.
  • a cell with 5 ring-shaped electrodes with a surface area of 44 cm 2 was used.
  • the electrodes were separated from each other by 2 spacer networks of 1 mm thickness.
  • the electrodes consisted of graphite disks, each 5 mm thick, which were coated on the sides facing the electrolyte both anodically and cathodically with gas diffusion electrode material. This material was loaded with 0.5 mg Pd / cm 2 .
  • the electrolysis batch consisted of 120 g furan, 229.9 g 2,5-dimethoxydihydrofuran, 8 g NaBr and 542.5 g MeOH.
  • the electrolysis was carried out at 1.32 A up to a current of 2 F / mol furan Electrolysis temperature was 17 ° C. The electrolysis was followed by gas chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Hybrid Cells (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur elektrolytischen Umwandlung von Furan oder eines oder mehrerer Furanderivate.
Ein Ziel der präparativen organischen Elektrochemie ist es, die bei einem elektrochemischen Verfahren auftretenden Prozesse an beiden Elektroden parallel zu nutzen. Insbesondere sind solche Verfahren von Interesse, in denen die beiden Elektrodenprozesse, die in einer ungeteilten Zelle ablaufen, zur Umsetzung von chemischen Verbindungen genutzt werden können.
Ein Beispiel für ein solches Verfahren ist etwa die oxidative Dimerisierung von 2,6-Dimethylphenol, die mit der Dimerisierung von Maleinsäureestern gekoppelt wird (M. M. Baizer, in: H. Lund, M. M. Baizer (Hrsg.), Organic Electrochemistry, Marcel Dekker, New York, 1991, Seiten 1442 ff.).
Ein weiteres Beispiel ist die gekoppelte Synthese von Phthalid und t-Butylbenzaldehyd (DE 196 18 854).
Es ist aber auch möglich, den Kathoden- und den Anodenprozeß zu nutzen, um ein einziges Produkt herzustellen oder ein Edukt zu zerstören. Beispiele für solche elektrochemischen Verfahren sind etwa die Erzeugung von Buttersäure (Y. Chen, T. Chou, J. Chin. Inst. Chem. Eng. 27 (1996) Seiten 337 - 345), die anodische Auflösung von Eisen, die mit der kathodischen Bildung von Ferrocen gekoppelt wird (T. Iwasaki et al., J. Org. Chem. 47 (1982) Seiten 3799 ff.) oder der Abbau von Phenol (A. P. Tomilov et al., Elektrokhimiya 10 (1982) Seite 239).
Hinsichtlich der Verfahren, in denen ein Furanderivat in einer ungeteilten Elektrolysezelle umgesetzt wird und die beiden Elektrodenprozesse genutzt werden, ist die Oxidation von Furancarbonsäure mit anschließender Ringöffnung zu 1-Carboxymethyl-4,4-dimethoxypropen, das in einer weiteren Stufe zum gesättigten Propanderivat hydriert wird, beschrieben (T. Iwasaki et al., J. Org. Chem. 47 (1982) Seiten 3799 ff.). Es handelt sich hierbei allerdings nicht um eine katalytische Hydrierung, sondern um eine direkte Elektroreduktion. In diesem Fall setzt sich jedoch nicht das Furan um, sondern der α,β-ungesättigte Ester, d. h. eine Substanzklasse, deren elektrochemische Reduktion bekannt ist. Außerdem erfolgt die Ringöffnung und die anschließende Hydrierung nicht direkt aus dem anodisch erzeugten Produkt sondern aus einer um ein C-Atom ärmeren, fragmentierten Stufe, die eine weitere Oxidation erlitten hat.
Eine elektrochemische Oxidation von Furan oder eines Furanderivates unter Beibehaltung der heterocyclischen Ringstruktur und anschließende Hydrierung, wobei eine Doppelbindung, die nach der Oxidation in der Ringstruktur vorliegt, hydriert wird, ist jedoch in Verfahren, in denen beide Elektrodenprozesse genutzt werden, nicht bekannt.
Eine Aufgabe der vorliegenden Erfindung ist es daher, ein elektrochemisches Verfahren bereitzustellen, das vorzugsweise in einer ungeteilten Elektrolysezelle abläuft und in dem Furan oder ein substituiertes Furan in einem Elektrodenprozeß unter Beibehaltung der heterocyclischen Ringstruktur oxidiert wird und dieses Oxidationsprodukt mit Wasserstoff hydriert wird, wobei der Wasserstoff als Produkt in dem anderen Elektrodenprozeß entsteht oder als Wasserstoffäquivalent im Sinne einer Elektrokatalyse auf das Furanderivat übertragen wird.
Diese Aufgabe wird gelöst durch ein erfindungsgemäßes Verfahren zur elektrolytischen Umwandlung mindestens eines Furanderivates (A) in einem Elektrolysekreis, das die beiden Schritte (i) und (ii) umfaßt:
  • (i) Elektrolytische Oxidation von Furan oder eines substituierten Furans oder eines Gemisches aus zwei oder mehreren davon unter Erhalt
  • (a) mindestens eines, im heterocyclischen Fünfring eine C-C-Doppelbindung aufweisenden Furanderivates (B), und
  • (b) Wasserstoff;
  • (ii) Hydrierung dieser C-C-Doppelbindung unter Verwendung des in Schritt (i) parallel an der Kathode erhaltenen Wasserstoffs oder von dem Elektrolysekreis von außen zugeführten Wasserstoff oder elektrokatalytische Hydrierung,
  • wobei das Verfahren in einer Elektrolysezelle durchgeführt wird, die mindestens einen Hydrierkatalysator umfaßt.
    Vorzugsweise läuft das Verfahren in einer ungeteilten Elektrolysezelle ab.
    Neben Furan lassen sich hier als substituierte Furane beispielsweise die folgenden Verbindungen bevorzugt nennen:
    Furfural(Furan-2-aldehyd), alkylsubstituierte Furane, Furane mit -CHO, -COOH, -COOR, worin R für eine Alkyl-, Benzyl- oder Arylgruppe, insbesondere für eine C1- bis C4-Alkylgruppe steht, -CH(OR1)(OR2), wobei R1 und R2 gleich oder unterschiedlich sein können und R1 und R2 jeweils für eine Alkyl-, Benzyl-, Arylgruppe, insbesondere für eine C1- bis C4-Alkylgruppe stehen und -CN-Gruppen in 2-, 3-, 4- oder 5-Stellung.
    Bei der erfindungsgemäßen Umsetzung organischer Verbindungen können Lösungsmittel und Leitsalze eingesetzt werden, wie sie in H. Lund, M. M. Baizer, (Hrsg.) "Organic Electrochemistry", 3rd Edition, Marcel Dekker, New York 1991, beschrieben werden.
    Die Oxidation erfolgt erfindungsgemäß bevorzugt in Gegenwart von Methanol oder in Gegenwart von Ethanol oder einem Gemisch davon, bevorzugt jedoch in Gegenwart von Methanol. Diese Substrate können dabei gleichzeitig Reaktand und Lösungsmittel sein.
    Als Lösungsmittel bei der Umsetzung sind neben Furan bzw. substituiertem Furan und der zur Oxidation verwendeten Verbindung generell alle geeigneten Alkohole einsetzbar.
    Als Leitsalze können neben NaBr können im erfindungsgemäßen Verfahren beispielsweise auch Alkali- und/oder Erdalkalimetallhalogenide, wobei als Halogenide Bromide, Chloride und Iodide denkbar sind, eingesetzt werden. Ebenso sind auch Ammoniumhalogenide einsetzbar.
    Druck und Temperatur können an die Bedingungen, die bei katalytischen Hydrierungen üblich sind, angepaßt werden.
    In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Reaktionstemperatur T < 50°C, vorzugsweise T < 25°C, der Druck p < 3bar und der pH-Wert im neutralen Bereich.
    In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden zusätzlich zu den Edukten, die in die ungeteilte Elektrolysezelle eingebracht
    werden, Zwischenprodukte zugeführt. Als Zwischenprodukt wird dasjenige mindestens eine Produkt bezeichnet, das in Schritt (i) des oben beschriebenen Verfahrens durch elektrolytische Oxidation von Furan oder eines substituierten Furans oder eines Gemisches aus zwei oder mehreren davon als Furanderivat (B) erhalten wird und sich deshalb im Elektrolysekreislauf befindet. Die Konzentration der zusätzlichen Zwischenprodukte wird durch übliche elektrochemische und elektrokatalytische Parameter, wie beispielsweise Stromdichte, Katalysatorart und -menge, eingestellt, oder das Zwischenprodukt wird dem Kreislauf zugegeben.
    Bezüglich der speziellen Wahl des Materials der Elektroden besteht im erfindungsgemäßen Verfahren keine Beschränkung, solange sich die Elektroden für das wie vorstehend beschriebene Verfahren eignen.
    Vorzugsweise werden in der ungeteilten Zelle Graphitanoden verwendet.
    Was die Geometrie der Elektroden in der ungeteilten Elektrolysezelle anbelangt, so existieren dafür im wesentlichen im Rahmen der vorliegenden Erfindung keine Beschränkungen. Als bevorzugte Geometrien sind beispielsweise plan-parallele Elektrodenanordnungen und ringförmige Elektrodenanordnungen zu nennen.
    In einer bevorzugten Ausführungsform der Erfindung ist mindestens eine Elektrode in Kontakt mit mindestens einem Hydrierkatalysator. In einer besonders bevorzugten Ausführungsform ist der mindestens eine Hydrierkatalysator Bestandteil einer Gasdiffusionselektrode. In einer weiteren bevorzugten Ausführungsform der Erfindung ist mindestens eine Elektrode eine mit Edelmetall beschichtete Graphitelektrode, bestehend aus Platten, Netzen oder Filzen. In einer anderen bevorzugten Ausführungsform der Erfindung wird der Hydrierkatalysator in Form einer Suspension im Elektrolyten ständig mit mindestens einer Elektrode in Kontakt gebracht. Hierbei wird der Hydrierkatalysator, d. h. das katalytisch wirksame Material, in der Zelle umgepumpt oder auf eine entsprechend strukturierte Kathode oder Anode angeschwemmt. Eine derartige Anschwemmelektrode ist beispielsweise in DE 196 20 861 beschrieben.
    Verwendet man für mindestens eine der Elektroden eine Gasdiffusionselektrode, so kann prinzipiell das Material, aus dem die Gasdiffusionselektrode gefertigt ist, so verarbeitet sein, daß die Gasdiffusionselektrode ohne Stützmaterial als Elektrode verwendet werden kann. In einer bevorzugten Ausführungsform stellt alternativ dazu mindestens eine der verwendeten Elektroden einen Verbundkörper dar, der mindestens ein herkömmliches Elektrodenmaterial und mindestens ein Material für eine Gasdiffusionelektrode umfaßt.
    Dabei ist es denkbar, daß dieses weitere Elektrodenmaterial aus einer oder auch aus mehreren elektrischen Leitern besteht.
    Prinzipiell ist es denkbar, daß der Verbundkörper, der das herkömmliche Elektrodenmaterial und das Material der Gasdiffusionselektrode umfaßt, als eine Elektrode im erfindungsgemäßen Verfahren zusammen mit einer oder mehreren geeigneten Gegenelektroden eingesetzt wird.
    Diese eine oder mehreren geeigneten Gegenelektroden unterliegen von ihrer Geometrie und ihrer chemischen Zusammensetzung her keinen Beschränkungen, solange das erfindungsgemäße Verfahren mit ihnen durchführbar ist.
    In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das weitere Elektrodenmaterial, das mit dem Gasdiffusionselektrodenmaterial einen Verbundkörper bildet, auch als Gegenelektrode der Gasdiffusionselektrode eingesetzt. Dies wird dadurch erreicht, daß die Elektrodenanordnung bipolar geschaltet ist.
    In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird als Gasdiffusionselektrodengrundmaterial Graphit und/oder Kohlefaserpapier verwendet. Darauf ist die Katalysatormasse aufgebracht.
    Als Stützmaterial, auf der das Gasdiffusionselektrodenmaterial aufgebracht ist, werden im Rahmen des erfindungsgemäßen Verfahrens bevorzugt weitere Elektrodenmaterialien verwendet, die Kohlenstoff umfassen.
    Im Rahmen des erfindungsgemäßen Verfahrens wird, wie oben beschrieben, eine C-C-Doppelbindung unter Verwendung des in Schritt (i) erhaltenen Wasserstoffs elektrokatalytisch oder mit den entsprechenden Wasserstoffäquivalenten im Sinne einer Elektrolyse hydriert. Diese Hydrierung findet vorzugsweise so statt, daß die zu hydrierende Verbindung mit einem oder mehreren Hydrierkatalysatoren in Kontakt gebracht wird.
    Hinsichtlich der Auswahl an hydrieraktiven Katalysatoren bestehen im Rahmen des erfindungsgemäßen Verfahrens prinzipiell keine Beschränkungen. Sämtliche aus dem Stand der Technik bekannte Katalysatoren sind dabei einsetzbar. Unter anderem sind dabei die Metalle der I., II. und VIII. Nebengruppe des Periodensystems zu nennen, insbesondere Co, Ni, Fe, Ru, Rh, Re, Pd, Pt, Os, Ir, Ag, Cu, Zn und Cd.
    Beispielsweise ist es möglich, die Metalle unter anderem in feinverteilter Form einzusetzen. Beispiele unter anderen sind Raney-Ni, Raney-Co, Raney-Ag oder Raney-Fe, die jeweils auch weitere Elemente wie beispielsweise Mo, Cr, Au, Mn, Hg, Sn oder auch S, Se, Te, Ge, Ga, P, Pb, As, Bi oder Sb enthalten können.
    Ebenso können natürlich die beschriebenen hydrieraktiven Materialien ein Gemisch aus zwei oder mehreren der genannten Hydriermetalle umfassen, die gegebenenfalls mit beispielsweise einem oder mehreren der oben genannten Elemente vermengt sein können.
    Selbstverständlich ist es auch denkbar, daß das hydrieraktive Material auf einem inerten Träger aufgebracht ist. Als solche Trägersysteme können beispielsweise Aktivkohle, Graphit, Ruß, Siliciumcarbid, Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirconiumdioxid, Magnesiumoxid, Zinkoxid oder Gemische aus zwei oder mehreren davon, z. B. als Suspension oder als feinverteiltes Granulat, eingesetzt werden.
    In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das hydrieraktive Material auf Gasdiffusionselektroden-Grundmaterial aufgebracht.
    Demgemäß betrifft die vorliegende Erfindung auch ein Verfahren, wie oben beschrieben, das dadurch gekennzeichnet ist, daß das Gasdiffusionselektroden-Grundmaterial mit einem hydrieraktiven Material beladen ist.
    Als hydrieraktives Material, mit dem das Gasdiffusionselektrodensystem beladen ist, kommen alle wie oben beschriebenen Hydrierkatalysatoren in Frage. Selbstverständlich ist es auch möglich, als hydrieraktives Material ein Gemisch aus zwei oder mehreren dieser Hydrierkatalysatoren einzusetzen.
    Natürlich ist es im Rahmen des erfindungsgemäßen Verfahrens denkbar, daß das Gasdiffusionselektrodenmaterial mit hydrieraktivem Material beladen ist und zusätzlich hydrieraktives Material eingesetzt wird, das gleich oder unterschiedlich zu dem ist, mit dem das Gasdiffusionselektrodenmaterial beladen ist.
    Das erfindungsgemäße Verfahren, wie oben beschrieben, zeichnet sich insbesondere dadurch aus, daß es im wesentlichen die Wahlmöglichkeit läßt, ob die elektrokatalytisch wirksame Elektrode, d. h. die Elektrode, die mit einem Hydrierkatalysator in Kontakt ist, als Kathode oder als Anode oder als Kathode und Anode eingesetzt wird.
    Daher betrifft die vorliegende Erfindung auch ein Verfahren, wie oben beschrieben, das dadurch gekennzeichnet ist, daß die elektrokatalytisch wirksame Elektrode, wie beispielsweise eine Gasdiffusionselektrode, als Kathode und/oder als Anode verwendet wird.
    Ferner betrifft die vorliegende Erfindung ein Verfahren, wie oben beschrieben, wobei das hergestellte Furanderivat (B) zu mindestens einem ringoffenen Butanderivat umgesetzt wird. Vorzugsweise handelt es sich bei dem mindestens einen ringoffenen Butanderivat um 1,1,4,4-Tetramethoxybutan oder um ein substituiertes 1,1,4,4-Tetramethoxybutan.
    Die nachfolgenden Beispiele sollen die vorliegende Erfindung näher erläutern.
    Beispiele Beispiel 1
    Es wurde eine ungeteilte Zelle mit 6 ringförmigen Elektroden mit einer Oberfläche pro Seite von 15,7 cm2 eingesetzt. Die Elektroden wurden durch 5 Spacernetze von 0,7 mm Stärke voneinander getrennt.
    Die oberste und unterste Elektrode hatte Kontakt zu einem Stromanschluß. Die oberste Elektrode war anodisch geschaltet, die unterste kathodisch, die mittleren Elektroden waren bipolar.
    Die Elektroden bestanden aus Graphitscheiben von je 5 mm Stärke, die auf einer Seite mit Gasdiffusionselektrodenmaterial belegt waren. Dieses Material wiederum war mit 10 g Platin / m2 belegt.
    Die Gasdiffusionselektrode wurde als Kathode geschaltet.
    Der Elektrolyseansatz bestand aus 30 g Furan, 57,63 g 2,5-Dimethoxydihydrofuran, 2 g NaBr und 112 g Methanol.
    Die Elektrolyse erfolgte bei 0,47 A und einer Temperatur von 15°C. Im Laufe der Umsetzung stieg die Zellspannung von 13,0 V auf 17,4 V. Die Elektrolyse wurde gaschromatographisch verfolgt.
    Nach 1 F/mol Furan hatte sich der GC-Flächenprozentanteil von Furan von 22,9% auf 18,8% reduziert, der Dimethoxydihydrofurananteil von 32,2% auf 34,5% erhöht. Gleichzeitig entstanden 1,4% 2,5-Dimethoxytetrahydrofuran.
    Beispiel 2
    Die Zellanordnung entsprach der von Beispiel 1. Statt einer Pt-beladenen Gasdiffusions-Kathode wurde eine mit 5,2 g/m2 Pd beladene Gasdiffusionselektrode eingesetzt.
    Der Elektrolyseansatz bestand aus 60 g Furan, 126,2 g 2,5-Dimethoxydihydrofuran, 2 g NaBr und 234,4 g Methanol.
    Die Elektrolyse erfolgte bei 0,47 A und einer Temperatur von ca. 18°C. Die Zellspannung stieg von 19,1 V auf 26,4 V. Die Elektrolyse wurde gaschromatographisch verfolgt.
    Nach 1 F/mol Furan hatte sich der GC-Flächenprozentanteil von Furan von 22,8% auf 18,0% reduziert, der Dimethoxydihydrofurananteil von 30,7 auf 30,9% erhöht. Gleichzeitig entstanden 0,7% 2,5-Dimethoxytetrahydrofuran.
    Beispiel 3
    Die Zellanordnung entsprach der von Beispiel 1. Statt einer Gasdiffusions-Kathode wurde eine mit 5,2 g Pd/m2 beladene Gasdiffusionselektrode als Anode eingesetzt.
    Der Elektrolyseansatz bestand aus 30 g Furan, 57,4 g 2,5-Dimethoxydihydrofuran, 2 g NaBr und 110,6 g Methanol.
    Die Elektrolyse erfolgte bei 0,48 A und einer Temperatur von 17°C. Die Zellspannung stieg von 16,3 V auf 19,5 V. Die Elektrolyse wurde gaschromatographisch verfolgt.
    Nach 1 F/mol Furan hatte sich der GC-Flächenprozentanteil von Furan von 22,7 auf 16,9% reduziert, der GC-Flächenprozentanteil von 2,5-Dimethoxydihydrofuran hielt sich bei 30%. Gleichzeitig entstanden 3,3% 2,5-Dimethoxytetrahydrofuran.
    Beispiel 4
    Es wurde eine Zelle mit 5 ringförmigen Elektroden mit einer Oberfläche von 44 cm2 eingesetzt. Die Elektroden wurden durch je 2 Spacernetze von 1 mm Stärke voneinander getrennt.
    Die Elektroden bestanden aus Graphitscheiben von je 5 mm Stärke, die auf den elektrolytzugewandten Seiten sowohl anodisch als auch kathodisch mit Gasdiffusionselektrodenmaterial belegt waren. Dieses Material war mit 0,5 mg Pd/cm2 beaufschlagt.
    Der Elektrolyseansatz bestand aus 120g Furan, 229,9g 2,5-Dimethoxydihydrofuran, 8 g NaBr und 542,5 g MeOH.
    Die Elektrolyse erfolgte bei 1,32 A bis zu einem Stromeinsatz von 2 F/mol Furan, die Elektrolysetemperatur betrug 17°C. Die Elektrolyse wurde gaschromatographisch verfolgt.
    Furan hatte von 21,2 Fl% auf 13,4 Fl% abgenommen, 2,5-Dimethoxydihydrofuran hatte von 25,2 Fl% auf 23,3 Fl% abgenommen.
    Gleichzeitig waren 3,5 F1% Dimethoxytetrahydrofuran entstanden. Bei diesem Versuch fand eine Ringöffnung statt.
    Aus 2,5-Dimethoxydihydrofuran entstand 1,1,4,4-Tetramethoxy-cis-buten [1,3 F1%] und aus 2,5-Dimethoxytetrahydrofuran entstanden 4,2 Fl% 1,1,4,4-Tetramethoxybutan.
    Die bedeutet, daß die Menge an Furan über ein Drittel abgenommen hat, daß die Stufe der Methoxylierung (ringgeschlossen und ringoffen) nahezu konstant geblieben ist und daß die Weiterhydrierung in großem Umfang stattgefunden hat, und zwar entsprechend der Abnahme an Furan.
    Beispiel 5 Umsetzung von Furan in Gegenwart eines Hydrierkatalysators
    In einer Rahmenzelle mit je drei Anoden und Kathoden, bestehend aus einer flexiblen, einseitig mit einem Graphitnetz beschichteten Graphitpappe "Sigrabond CFC 07G" der Firma SGL, Meitingen, fand die Umsetzung statt. Je eine Anode und Kathode waren monopolar geschaltet und dienten als Endplatten, die anderen beiden Elektroden waren jeweils paarweise geschaltet und stellten somit zwei bipolare Elektroden dar. Die Elektroden wurden durch herkömmliche Spacernetze auf Abstand gehalten. Der Abstand betrug 5 mm. Die Fläche der jeweiligen Elektrode war 4,8×9,5 cm.
    In dieser Zelle wurde ein Elektrolyt, bestehend aus 75 g Furan, 222 g Methanol, 3 g NaBr und 0,5 g einer 10% Paladium enthaltenen Aktivkohle bei 26°C umgesetzt. Bei einer Stromstärke von 1,36 A und einer mittleren Zellspannung von 24 V wurde 7,5 h lang elektrolysiert, wobei die den Katalysator enthaltene Suspension ständig im Zellenkreis umgepumpt wurde. Nach Abschluß war der Furangehalt auf 55% des Ausgangswertes gefallen. Mit einer Selektivität von ca. 95% hatten sich 2,5-Dimethoxydihydrofuran, 2,5-Dimethoxytetrahydrofuran und 1,1,4,4-Tetramethoxybutan im Verhältnis 1:0,75:1,55 gebildet. Der Anteil der gleichzeitig methoxylierten und hydrierten Produkte betrug somit 70%.

    Claims (11)

    1. Verfahren zur elektrolytischen Umwandlung mindestens einer auf Furan basierenden Ausgangsverbindung (A) in einem Elektrolysekreis, das die beiden Schritte (i) und (ii) umfasst:
      (i) Elektrolytische Oxidation von Furan oder eines substituierten Furans oder eines Gemisches aus zwei oder mehreren davon unter Erhalt
      (a) mindestens einer im heterocyclischen Fünfring eine C-C-Doppelbindung aufweisenden alkoxylierten Furanverbindung (B), und
      (b) Wasserstoff;
      (ii) Hydrierung dieser C-C-Doppelbindung unter Verwendung des in Schritt (i) parallel an der Kathode erhaltenen Wasserstoffs oder von dem Elektrolysekreis von außen zugeführtem Wasserstoff oder durch elektrokatalytische Hydrierung,
      dadurch gekennzeichnet, dass das Verfahren in einer Elektrolysezelle durchgeführt wird, die mindestens einen Hydrierkatalysator umfasst.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verfahren in einer ungeteilten Elektrolysezelle abläuft.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens eine Elektrode mit mindestens einem Hydrierkatalysator, insbesondere mit einem Edelmetall, in Kontakt ist.
    4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Hydrierkatalysator, insbesondere das Edelmetall, auf einem Graphitfilz aufgebracht ist.
    5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Hydrierkatalysator auf die mindestens eine Elektrode angeschwemmt ist.
    6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Hydrierkatalysator in Form einer Suspension in Kontakt zu der mindestens einen Elektrode gebracht wird.
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mindestens eine der verwendeten Elektroden eine Gasdiffusionselektrode ist.
    8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mindestens eine der verwendeten Elektroden einen Verbundkörper darstellt, der mindestens ein herkömmliches Elektrodenmaterial und mindestens ein Material für eine Gasdiffusionselektrode umfaßt.
    9. Verfahren nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die mindestens eine Elektrode, die mit einem Hydrierkatalysator in Kontakt ist, als Kathode oder als Anode oder als Kathode und Anode verwendet wird.
    10. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 9, wobei die im Schritt (i) hergestellte alkoxylierte Furanverbindung (B) im Schritt (ii) zu mindestens einem ringoffenen Butanderivat umgesetzt wird.
    11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das mindestens eine ringoffene Butanderivat 1,1,4,4-Tetramethoxybutan oder ein substituiertes 1,1,4,4-Tetramethoxybutan ist.
    EP00966039A 1999-09-20 2000-09-15 Verfahren zur elektrolytischen umwandlung von furan oder furanderivaten Expired - Lifetime EP1230433B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19944989A DE19944989A1 (de) 1999-09-20 1999-09-20 Verfahren zur elektrolytischen Umwandlung von Furanderivaten
    DE19944989 1999-09-20
    PCT/EP2000/009072 WO2001021857A1 (de) 1999-09-20 2000-09-15 Verfahren zur elektrolytischen umwandlung von furan oder furanderivaten

    Publications (2)

    Publication Number Publication Date
    EP1230433A1 EP1230433A1 (de) 2002-08-14
    EP1230433B1 true EP1230433B1 (de) 2003-07-09

    Family

    ID=7922628

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00966039A Expired - Lifetime EP1230433B1 (de) 1999-09-20 2000-09-15 Verfahren zur elektrolytischen umwandlung von furan oder furanderivaten

    Country Status (8)

    Country Link
    US (1) US6764589B1 (de)
    EP (1) EP1230433B1 (de)
    JP (1) JP2003509593A (de)
    AT (1) ATE244778T1 (de)
    CA (1) CA2385240A1 (de)
    DE (2) DE19944989A1 (de)
    ES (1) ES2203514T3 (de)
    WO (1) WO2001021857A1 (de)

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10324192A1 (de) * 2003-05-28 2004-12-23 Basf Ag Verfahren zur Herstellung von alkoxylierten 2,5-Dihydrofuran-oder tetra-1,1,4,4-alkoxylierten But-2-enderivaten
    US8216956B2 (en) 2003-10-10 2012-07-10 Ohio University Layered electrocatalyst for oxidation of ammonia and ethanol
    US8216437B2 (en) * 2003-10-10 2012-07-10 Ohio University Electrochemical cell for oxidation of ammonia and ethanol
    US8221610B2 (en) * 2003-10-10 2012-07-17 Ohio University Electrochemical method for providing hydrogen using ammonia and ethanol
    JP5241488B2 (ja) * 2005-05-06 2013-07-17 オハイオ ユニバーシティ 固体燃料スラリーから水素を生成する方法
    DE102005036687A1 (de) * 2005-08-04 2007-02-08 Basf Ag Verfahren zur Herstellung von 1,1,4,4,-Tetraalkoxy-but-2-enderivaten
    JP2009515036A (ja) * 2005-10-14 2009-04-09 オハイオ ユニバーシティ アルカリ媒体中におけるアンモニア及びエタノールを酸化するためのカーボンファイバー電極触媒、ならびに水素生成、燃料電池および精製プロセスへのその適用
    EP2861785A2 (de) * 2012-06-15 2015-04-22 Basf Se Anodische oxidation organischer substrate in gegenwart von nukleophilen
    WO2020068872A1 (en) * 2018-09-24 2020-04-02 Massachusetts Institute Of Technology Electrochemical oxidation of organic molecules
    CN114214648B (zh) * 2022-01-10 2023-05-26 万华化学集团股份有限公司 一种制备1,1,4,4-四甲氧基-2-丁烯的电化学合成方法

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    IT1132194B (it) * 1980-07-15 1986-06-25 Anic Spa Processo elettrochimico per la sintesi di composti organici
    US4673933A (en) * 1983-11-14 1987-06-16 American Microsystems, Inc. Switch matrix encoding interface using common input/output parts
    US5668544A (en) * 1996-02-26 1997-09-16 Holtek Microelectronics, Inc. Compound type of keyboard detector
    DE19618854A1 (de) 1996-05-10 1997-11-13 Basf Ag Verfahren zur Herstellung von Phthaliden
    DE19625730A1 (de) * 1996-06-27 1998-01-02 Teves Gmbh Alfred Verwendung einer Berührungssensormatrix als Sensor in Kraftfahrzeugen

    Also Published As

    Publication number Publication date
    CA2385240A1 (en) 2001-03-29
    DE19944989A1 (de) 2001-03-22
    ES2203514T3 (es) 2004-04-16
    ATE244778T1 (de) 2003-07-15
    EP1230433A1 (de) 2002-08-14
    WO2001021857A1 (de) 2001-03-29
    US6764589B1 (en) 2004-07-20
    DE50002862D1 (de) 2003-08-14
    JP2003509593A (ja) 2003-03-11

    Similar Documents

    Publication Publication Date Title
    EP1111094A2 (de) Verfahren zur elektrochemischen Oxidation von organischen Verbindungen
    EP1230433B1 (de) Verfahren zur elektrolytischen umwandlung von furan oder furanderivaten
    EP0457320B1 (de) Verfahren zur teilweisen elektrolytischen Enthalogenierung von Di-und Trichloressigsäure sowie Elektrolyselösung
    DE3872566T2 (de) Verfahren zur herstellung von 2-arylpropionsaeuren.
    EP1348043B1 (de) Verfahren zur herstellung von alkoxylierten carbonylverbindungen durch ein anodisches oxidationsverfahren unter nutzung der kathodischen koppelreaktion zur organischen synthese
    DE3127975C2 (de) Elektrochemisches Verfahren zur Herstellung von acetoxylierten aromatischen Verbindungen
    EP2411564B1 (de) Elektrochemisches verfahern zur herstellung von 3-tert.-butylbenzaldehyd-dimethylacetal
    EP0902846B1 (de) Verfahren zur herstellung von phthaliden
    DE3132726A1 (de) Verfarhen zur herstellung von alkylsubstituierten benzaldehyden
    WO2002042249A1 (de) Herstellung von butantetracarbonsäurederivaten mittels gekoppelter elektrosynthese
    EP0638665B1 (de) Verfahren zur Herstellung von Bezaldehyddialkylacetalen
    DE2855508A1 (de) Verfahren zur herstellung von benzaldehyden
    WO2001021858A1 (de) Verfahren zur elektrolytischen umwandlung von organischen verbindungen
    DE60107281T2 (de) Elektrochemisches verfahren zur selektiven umsetzung von alkylaromatischen verbindungen zu aldehyden
    EP2534281A2 (de) Verfahren zur herstellung von 4-isopropylcyclohexylmethanol
    DE2208155A1 (de) Verfahren zur herstellung von 4-endotricyclo(5,2,1,0 hoch 2,6-endo)-decylamin
    EP0382106B1 (de) Verfahren zur Herstellung von Thiophenderivaten
    DE2331712A1 (de) Verfahren zur herstellung von 2methoxy-3,6-dichlorbenzoesaeure
    EP0030588B1 (de) Verfahren zur Herstellung von p-tert. Butylbenzaldehyd
    DE2547464A1 (de) Verfahren zur herstellung von hydrochinondimethylaethern
    EP0278219A2 (de) Verfahren zur Herstellung von (Poly)oxatetramethylendicarbonsäuren
    DE10045664A1 (de) Verfahren zur elektrochemischen Regenerierung von Mediatoren an Diamantelektroden
    DE2618276B2 (de) Verfahren zur elektrochemischen dihydrierung von naphthylaethern
    DD271700A1 (de) Verfahren zur herstellung von 1,1-dichlor-4-methyl-penta-1,3-dien

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020419

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030709

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030709

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 50002862

    Country of ref document: DE

    Date of ref document: 20030814

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030915

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030915

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030915

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031009

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031009

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031209

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2203514

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040414

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20080915

    Year of fee payment: 9

    Ref country code: IT

    Payment date: 20080926

    Year of fee payment: 9

    Ref country code: NL

    Payment date: 20080903

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080917

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20081002

    Year of fee payment: 9

    Ref country code: DE

    Payment date: 20080926

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20080922

    Year of fee payment: 9

    Ref country code: ES

    Payment date: 20081021

    Year of fee payment: 9

    Ref country code: SE

    Payment date: 20080908

    Year of fee payment: 9

    BERE Be: lapsed

    Owner name: *BASF A.G.

    Effective date: 20090930

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20100401

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090915

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100401

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090930

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090930

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090915

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090915

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090916

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20110714

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110704

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090916