EP1224678B1 - Method for producing a field emission display - Google Patents

Method for producing a field emission display Download PDF

Info

Publication number
EP1224678B1
EP1224678B1 EP00960217A EP00960217A EP1224678B1 EP 1224678 B1 EP1224678 B1 EP 1224678B1 EP 00960217 A EP00960217 A EP 00960217A EP 00960217 A EP00960217 A EP 00960217A EP 1224678 B1 EP1224678 B1 EP 1224678B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
cathode
field
anode structure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00960217A
Other languages
German (de)
French (fr)
Other versions
EP1224678A1 (en
Inventor
Ernst Hammel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrovac AG
Original Assignee
Electrovac AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrovac AG filed Critical Electrovac AG
Priority to AT00960217T priority Critical patent/ATE298926T1/en
Publication of EP1224678A1 publication Critical patent/EP1224678A1/en
Application granted granted Critical
Publication of EP1224678B1 publication Critical patent/EP1224678B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/18Assembling together the component parts of electrode systems
    • H01J9/185Assembling together the component parts of electrode systems of flat panel display devices, e.g. by using spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display

Definitions

  • the invention relates to a method for producing a field emission display (FED), wherein electrodes of an anode structure and a parallel cathode structure on a substrate and a layer of a luminescent material is formed, and wherein at least partially applied field emitter and the Cathode and anode structure prior to application of field emitters except at least one gas inlet and a gas outlet is closed gas-tight, and the field emitter produced by deposition of field emitter material from a carrier gas become.
  • FED field emission display
  • a flat screen is an electronic screen display that consists of a large screen Field of individual pixels, referred to in the jargon as pixels, is composed. These pixels are in the form of a two-dimensional matrix, checkered arranged side by side.
  • various technologies are known, for example electroluminescent, AC-plasma DC plasma and field emission screens.
  • the subject invention relates to field emission screens.
  • Display devices are in a relatively small distance from each other a cathode and a Anode structure arranged, wherein by generating an electric field between these two electrodes emit electrons from the cathode and toward the anode to be driven.
  • the electrodes are the Cathode structure at least partially covered with a field emitter, a material, which has good field emission properties.
  • the anode structure is itself translucent and coated with a luminescent material, e.g. Phosphorus, which is deposited in those places where the emitted electrons on them strike, shines.
  • a luminescent material e.g. Phosphorus
  • the cathode and anode structure at a distance, optionally under Intermediate arrangement of a spacer and / or a grid electrode, superimposed and connected together gas-tight along their side edges.
  • the space between the cathode and anode structure is evacuated to the discussed electron motion from the electrodes of the cathode to those of the anode enable.
  • the cathode structure more precisely the surfaces of the field emitters defined on this must be absolutely pure between their preparation and the connection with the anode structure, i.e. be kept free of dust particles.
  • a dust particles on the Field emitter surfaces can be located in the region of this particle from the cathode emitted electrons do not reach the anode, bringing the display in the area of this Particles are not working. Be such, lying on the surfaces of the field emitter Dust particles are not recognized prior to assembly of the two electrode structures and removed, creates a FED with defects, which is unusable and represents committee.
  • EP 0 800 198 A discloses a method for producing a field emission display, comprising a bottom and a cover plate, a phosphorescent layer and a Substrate with arranged electrode structure shown.
  • a carbonaceous field-emitting layer on the substrate which by depositing one into the space between the bottom and the top plate carbonaceous gas, e.g. Acetylene can be made.
  • a first activation step to form the electrode structure on the substrate followed by a second activation step to form the carbonaceous film.
  • the remaining organic substances are removed in the display.
  • further organic material becomes internal Area of the display let in to the wear of the field-emitting counteract carbonaceous layer during operation of the display.
  • the electrodes through inductive heating on the expiration of the deposition of field emitter material on the Electrodes necessary temperature are brought.
  • the electrodes for Heating on the process of deposition of field emitter material on the electrodes required temperature to be supplied with electricity.
  • the field emitters are formed by carbon-containing layers, for which purpose a carbon-containing carrier gas is introduced between the cathode and the anode structure becomes.
  • the carbon-containing layers in the form of nanotube layers on the electrodes be deposited.
  • Carbon nanotubes have particularly good field emission properties, which causes a This manner produced FED particularly good, i. especially with low Drive voltages and long time worked.
  • anode structure 4 which, like the cathode structure 1, has a plurality of strip-shaped electrodes 5 includes, which are also fixed to a substrate 6.
  • This substrate 6 constitutes the user-viewed surface of the FED and consists of transparent material, preferably glass.
  • the electrodes 5 are also made of one transparent, electrically conductive material formed, a known in this context Material is ITO (Indium Tin Oxide).
  • the electrodes 5 are made with a layer 7 luminescent material, e.g. Phosphor, coated.
  • Said cathode and anode structures 1 and 2 are in fully assembled FED aligned parallel to each other and held at a distance from each other.
  • the electrodes 2 are offset from the electrodes 5 offset by 90 °.
  • the electrodes 2 and 5 are supplied with voltage, which is in the range of cover pixel 8 to be controlled.
  • top left lying pixels 8 are thus the first horizontal and the first vertical electrode with Voltage applied.
  • the electrodes 2 of the cathode structure 1 are full-surface or at least in the areas of a pixel 8 covered with a material, the good Has field emission characteristics, i. that under the influence of an electric field Send out electrons.
  • Such materials hereinafter referred to as "field emitter 19" are known and have a hedgehog-like, with a variety of tips covered free surface. At these peaks are particularly high, the emission of electron-causing field strengths.
  • polycrystalline diamond, whiskers and Nanotubes be specified. These materials are each known or are their suitability for field emission of electrons known.
  • Whiskers is the common name for thread crystals in the art Strength, which consists, for example, of metals, oxides, borides, carbides, nitrides, Polytitanat, carbon od. Like. May exist. The structure of such whiskers is single crystal (see R ⁇ MPP Chemie Lexikon, 10th completely revised edition, ed. Jürgen Falbe and Prof.Dr. Manfred Regitz, Georg Thieme Verlag Stuttgart - New York, Volume 6, page 4975f). As an electron-emitting material can be used in the context of representational invention Whiskers be used from electrically conductive material.
  • Nanotubes are cylindrical, single or multi-layer carbon tubes with or without hemispherical graduations (see R ⁇ MPP Chemie Lexikon, 10th completely revised Edition, ed. Prof.Dr. Jürgen Falbe and Prof.Dr. Manfred Regitz, Georg Thieme Verlag Stuttgart - New York, Volume 4, page 2804f.), which are characterized by particularly high hardness, the may even exceed the hardness of diamond. They point Diameter in the range of 5-30nm and thus have the in this context necessary especially fine tips.
  • the production of such nanotubes is for example described in: "Production of carbon nanotubes", C. Journet, P.Bernier; Applied Physics A Materials Science & Processing, Springer-Verlag 1998, pages 1-9.
  • Electrons are released from the field emitters of the cathode structure 1 and in the direction of Anode structure 4 driven. These electrons strike the phosphor layer 7 and make them shine in the area of the pixel 8 to be illuminated.
  • the gap between the cathode and anode structure is evacuated.
  • Cathode structures 1 whose field emitters are formed by nanotubes have a row of advantages over the previously known, held in "Spindt technology" Cathode structures:
  • the electron bombardment of the phosphor layer turns these ions knocked out, spread in the space between the cathode and anode or on knock down the cathode and thus affect the function of the display.
  • the carbon of the nano-tubes is chemically very resistant (see diamond) and reacts not with these ions, so that the discussed functional impairment can not take place. If phosphorus ions are deposited on the field emitter of the cathode structure, then these - because they rest only on the field emitter, but chemically not me them are disconnected again by the electron emanating from the field emitter become. The lifetime of Nano-Tubes FEDs is therefore essential longer.
  • Nanotubes show sufficient field emission properties even at a much smaller vacuum; in concrete terms, the vacuum between cathode and anode structure only needs about 10 -5 -10 -6 torr instead of the usual 10 -8 torr.
  • Nano-Tubes have as well as the polycrystalline field emitters Diamond crystals a particularly low emission voltage, which is about 100-200V.
  • FED field emission display
  • LCD liquid crystal display
  • LC screens suitable for laptops or notebooks In operation, size require an electrical power in the range of 1 to 10 watts while FED can be operated with milliwatts (mW).
  • mW milliwatts
  • LC screens must be viewed by the user from the front, even when looking at the side of the Screen with only slightly different from 90 ° viewing angles is the picture only indistinct or not recognizable at all.
  • FEDs have the full viewing angle of 180 °, i. that on them displayed image is clearly visible even when viewed from the side.
  • the image is exposed to sunlight on the screen unrecognizable, which problem does not occur with the FED as well.
  • the following is done proceeding: First, on a first substrate 6, the electrodes 5 of Anode structure 4 set. This can be done by methods known in the art, such as. Sputtering or vapor deposition of metal, especially platinum, done. Subsequently becomes the layer 7 of luminescent material, the electrodes 5 overlapping the first Substrate 6 fixed. This step is also handled with known measures. Furthermore, the cathode structure 1 is prepared by on a second substrate 3 from electrodes 2 made of metal, also by means of known methods become.
  • the electrodes 2 can be fixed on a flat substrate surface, It is cheaper, however, to provide the substrate 1 with groove-like recesses 9, within which extend the electrodes 2 (see Fig.3).
  • the electrodes 2 are characterized by the Walls 15 separated from each other and thus particularly well against each other electrically isolated. In addition, they are applied to the electrodes 5 of a laid on the ridges of the walls 15 Anode structure 4 spaced sufficiently far. The provision of such recesses 9 or methods for their preparation are known prior art.
  • the substrates are 3.6 formed by glass plates, so that said gas-tight Connection is formed by a glass bead 12, which very well on these glass plates adheres and thus the required gas-tight connection causes particularly reliable.
  • a gas inlet opening 16 and a gas outlet 17 provided in the glass bead 12.
  • the connection between cathode and anode substrate 1.4 is therefore only with the exception of this gas inlet and outlet opening 16,17 gas-tight.
  • the distance, now between the cathode and anode structure 1.4 is present, can already for the proper operation of the FED. But it can too be provided, the distance at the present time greater than the operating distance to to increase the space between the cathode and anode structure 1.4.
  • the Glass bead 12 is carried out correspondingly wider.
  • the field emitter 19 is produced on the electrodes 2 of the cathode structure 1 only after said gas-tight bonding of cathode and anode structure 1.4 by Deposition of field emitter material from the gas phase on these electrodes 2.
  • the deposition of field emitter material can take place on the electrodes 2, at least these electrodes 2 must have a correspondingly high temperature, why it is necessary to heat at least these electrodes 2 accordingly.
  • the luminescent layer 7 is heat sensitive, i. too high heating their luminescent properties loses. For these reasons, it is necessary to target only the electrodes 2 alone on the Sequence of deposition of field emitter material on them necessary temperature too bring.
  • the FED is thereby moved by a coil 18 surrounded, which is connectable to an AC voltage source 20.
  • the coil 18 builds up all the components of the FED enforcing alternating magnetic field, whereby 2 eddy voltages are induced in the electrically conductive electrodes, the lead to the formation of eddy currents within the electrodes 2. These eddy currents generate 2 heat directly in the electrodes, which targeted only the electrodes 2 on the Deposition of field emitter material necessary temperature to be heated.
  • the AC voltage source 20 is therefore preferably a high frequency voltage source, which frequencies greater than 1kHz generated.
  • a second possibility of selectively heating the electrodes 2 is to pass them through To connect to a voltage or current source with power, which Current from the electrical resistance of the electrodes 2 is converted into heat.
  • the field emitter 19 must -as already mentioned - have the property under Influence of an electric field to emit electrons. Show this property For example, carbon-containing layers, which is why the field emitter 19 in inventive method preferably formed by such carbonaceous layers including a carbon-containing carrier gas between the cathode and anode structure 1,4 introduced and from which the carbon is deposited on the electrodes 2.
  • the field emitters 19 are particularly preferred Embodiment of an FED the shape of carbon nanotubes on.
  • the deposition conditions temperature of the electrodes, Carbon content in the carrier gas, flow rate of the carrier gas selected so that the Carbon of the carrier gas in the form of nanotubes deposited on the electrodes 2 becomes.
  • the electrodes 2 were formed of platinum, which is metal was vapor-deposited on the cathode substrate 1 by known methods. After this Connecting cathode and anode substrate to a glass bead 12, the between These two substrates were purged with nitrogen for 15 minutes.
  • acetylene was introduced as a carbon-containing carrier gas between the cathode and anode substrate 1.4, which was also carried out by purging this gap with this carrier gas.
  • the acetylene gas stream had a flow rate of about 15 sccm min -1 .
  • the electrodes 2 were heated to 650 ° C, which according to the invention by Applying a voltage to the electrodes 2 was performed.
  • the height of this tension was according to the geometischen dimensions, in particular the lengths of these Electrodes 2 selected and may be in the range between about 5 and 12 volts.
  • heating of the electrodes 2 by inductive means was the coil 18 shown in Figure 3 with an AC voltage of 2 kV at a Current of 0.65mA applied.
  • the gas inlet opening 16 and the gas outlet opening 17 was after completing the Gas supply and discharge lines sealed gas-tight, which by melting the Glaswulstes 12 in the areas of these openings 16,17 and then allowed to cool of these areas was carried out.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Feldemissions-Displays (FED), wobei Elektroden einer Anodenstruktur und einer dazu parallelen Kathodenstruktur auf einem Substrat festgelegt werden und eine Schicht aus einem lumineszierenden Material ausgebildet wird, und wobei zumindest abschnittweise Feldemitter aufgebracht und die Kathoden- und Anodenstruktur vor dem Aufbringen der Feldemitter mit Ausnahme von zumindest einer Gaseinlaß- und einer Gasauslaßöffnung gasdicht abgeschlossen wird, und die Feldemitter durch Abscheidung von Feldemitter-Material aus einem Trägergas hergestellt werden.The invention relates to a method for producing a field emission display (FED), wherein electrodes of an anode structure and a parallel cathode structure on a substrate and a layer of a luminescent material is formed, and wherein at least partially applied field emitter and the Cathode and anode structure prior to application of field emitters except at least one gas inlet and a gas outlet is closed gas-tight, and the field emitter produced by deposition of field emitter material from a carrier gas become.

Ein Flachbildschirm ist eine elektronische Anzeige in Bildschirmform, die aus einem großen Feld von einzelnen Bildpunkten, im Fachjargon als Pixel bezeichnet, zusammengesetzt ist. Diese Pixel sind in Gestalt einer zweidimensionalen Matrix, schachbrettartig nebeneinanderliegend angeordnet. Für die Realisierung dieser Flachbildschirme sind verschiedene Technologien bekannt, beispielsweise können Elektrolumineszenz-, AC-Plasma- DC-Plasma- und Feldemissions-Bildschirme angegeben werden.A flat screen is an electronic screen display that consists of a large screen Field of individual pixels, referred to in the jargon as pixels, is composed. These pixels are in the form of a two-dimensional matrix, checkered arranged side by side. For the realization of these flat screens are various technologies are known, for example electroluminescent, AC-plasma DC plasma and field emission screens.

Die gegenständliche Erfindung bezieht sich auf Feldemissions-Bildschirme. Bei solchen Anzeigegeräten sind in relativ kleinem Abstand zueinander eine Kathoden- und eine Anodenstruktur angeordnet, wobei durch Erzeugung eines elektrischen Feldes zwischen diesen beiden Elektroden Elektronen von der Kathode emittert und in Richtung der Anode getrieben werden. Damit diese Elektronen-Emission stattfinden kann, sind die Elektroden der Kathodenstruktur zumindest abschnittsweise mit einem Feldemitter bedeckt, einem Material, das gute Feldemissionseigenschaften aufweist.The subject invention relates to field emission screens. In such Display devices are in a relatively small distance from each other a cathode and a Anode structure arranged, wherein by generating an electric field between these two electrodes emit electrons from the cathode and toward the anode to be driven. For this electron emission to take place, the electrodes are the Cathode structure at least partially covered with a field emitter, a material, which has good field emission properties.

Die Anodenstruktur ist selbst durchsichtig und mit einem lumineszenten Material, wie z.B. Phosphor, beschichtet, welches an jenen Stellen, wo die emittierten Elektronen auf sie auftreffen, leuchtet.The anode structure is itself translucent and coated with a luminescent material, e.g. Phosphorus, which is deposited in those places where the emitted electrons on them strike, shines.

Nach bisher bekanntem Stand der Technik werden zur Herstellung eines solchen Feldemissions-Bildschirmes zunächst sowohl die Anodenstruktur als auch die Kathodenstruktur vollständig hergestellt, indem auf plattenförmige Substrate die Elektroden aufgebracht, beim Substrat der Anodenstruktur auch die Schicht aus lumineszentem Material und bei der Kathodenstruktur auch die Feldemitter aufgebracht werden.According to the prior art, for the production of such Field emission screen initially both the anode structure and the Cathode structure completely made by electrodes on plate-shaped substrates applied, the substrate of the anode structure and the layer of luminescent material and in the cathode structure, the field emitters are applied.

Danach werden Kathoden- und Anodenstruktur mit Abstand, gegebenenfalls unter Zwischenordnung eines Abstandhalters und/oder einer Gitterelektrode, übereinander gelegt und entlang ihrer Seitenkanten gasdicht miteinander verbunden.Thereafter, the cathode and anode structure at a distance, optionally under Intermediate arrangement of a spacer and / or a grid electrode, superimposed and connected together gas-tight along their side edges.

Abschließend wird der Raum zwischen Kathoden- und Anodenstruktur evakuiert, um die erörterte Elektronen-Bewegung von den Elektroden der Kathode zu jenen der Anode zu ermöglichen.Finally, the space between the cathode and anode structure is evacuated to the discussed electron motion from the electrodes of the cathode to those of the anode enable.

Die Kathodenstruktur, genauer die Oberflächen der auf dieser festgelegten Feldemitter müssen zwischen ihrer Herstellung und der Verbindung mit der Anodenstruktur absolut rein, d.h. frei von Staubpartikeln gehalten werden. Kommt nämlich ein Staubpartikel auf den Feldemitter-Oberflächen zu liegen, können im Bereich dieses Partikels die aus der Kathode emittierten Elektronen nicht bis zur Anode gelangen, womit das Display im Bereich dieses Partikels nicht funktioniert. Werden solche, auf den Oberflächen der Feldemitter liegende Staubpartikel vor dem Zusammenbau der beiden Elektrodenstrukturen nicht erkannt und entfernt, entsteht ein FED mit Fehlstellen, welcher unbrauchbar ist und Ausschuß darstellt.The cathode structure, more precisely the surfaces of the field emitters defined on this must be absolutely pure between their preparation and the connection with the anode structure, i.e. be kept free of dust particles. Comes namely a dust particles on the Field emitter surfaces can be located in the region of this particle from the cathode emitted electrons do not reach the anode, bringing the display in the area of this Particles are not working. Be such, lying on the surfaces of the field emitter Dust particles are not recognized prior to assembly of the two electrode structures and removed, creates a FED with defects, which is unusable and represents committee.

Die Verhinderung der Ablagerung von Staubpartikeln auf der Kathodenstruktur ist aber nur mit relativ großem technischen Aufwand verbunden, nämlich mit Durchführung des gesamten FED-Herstellungsverfahrens in Reinsträumen, erreichbar.However, the prevention of the deposition of dust particles on the cathode structure is only associated with relatively high technical complexity, namely with implementation of the entire FED manufacturing process in clean rooms, reachable.

In der EP 0 800 198 A ist ein Verfahren zur Herstellung eines Feldemissions-Displays, umfassend eine Boden- und eine Deckplatte, eine phosphorisierende Schicht sowie ein Substrat mit angeordneter Elektrodenstruktur gezeigt. Im Zuge dieses Verfahrens wird unter anderem eine kohlenstoffhaltige feldemittierende Schicht auf das Substrat aufgebracht, was durch Abscheiden aus einem in den Zwischenraum zwischen der Boden- und der Deckplatte des Displays eingebrachten kohlenstoffhaltigen Gas wie z.B. Acetylen erfolgen kann.EP 0 800 198 A discloses a method for producing a field emission display, comprising a bottom and a cover plate, a phosphorescent layer and a Substrate with arranged electrode structure shown. In the course of this procedure is under Others applied a carbonaceous field-emitting layer on the substrate, which by depositing one into the space between the bottom and the top plate carbonaceous gas, e.g. Acetylene can be made.

Nach einem ersten Aktivierungsschritt zur Bildung der Elektrodenstruktur auf dem Substrat folgt ein zweiter Aktivierungsschritt zur Bildung des kohlenstoffhaltigen Filmes. In einem Stabilisierungsschritt werden die restlichen organischen Substanzen im Display entfernt. Schließlich wird in einem Veredelungsschritt weiteres organisches Material in den inneren Bereich des Displays eingelassen, um dem Verschleiß der feldemittierenden kohlenstoffhaltigen Schicht während des Betriebes des Displays entgegenzuwirken. Durch das Einbringen organischer Substanzen werden die durch die Aktivierung einzelner Pixel aus der feldemittierenden Schicht herausgeschlagene Atome durch im Vakuum vorhandene Kohlenstoffatome ersetzt. Da dies im wesentlichen ein Gleichgewichtsprozeß zu sein hat, müssen die eingebrachten organischen Substanzen mittlere Adsorptionszeiten aufweisen, die im Bereich der Aktivierungsfrequenz des Displays, welche bei üblichen Computerdisplays etwa 60 Hz beträgt, liegen.After a first activation step to form the electrode structure on the substrate followed by a second activation step to form the carbonaceous film. In one Stabilization step, the remaining organic substances are removed in the display. Finally, in a refining step, further organic material becomes internal Area of the display let in to the wear of the field-emitting counteract carbonaceous layer during operation of the display. By the introduction of organic substances are those by the activation of individual pixels atoms ejected from the field-emitting layer by vacuum Replaced carbon atoms. Since this has to be essentially an equilibrium process, the introduced organic substances must have average adsorption times, the in the range of the activation frequency of the display, which in conventional computer displays is about 60 Hz.

Es ist Aufgabe der vorliegende Erfindung, ein Verfahren zur Herstellung von Feldemissions-Bildschirmen anzugeben, welches mit deutlich geringerem technischen Aufwand verbunden durchgeführt werden kann, weil die Anforderungen an die Reinheit der Umgebungsatmosphäre deutlich herabgesetzt sind. Erfindungsgemäß wird dies dadurch erreicht, daß die Elektroden der Anodenstruktur auf einem ersten Substrat und die Elektroden der Kathodenstruktur auf einem zweiten Substrat festgelegt werden, daß die Schicht aus dem lumineszierenden Material die Elektroden der Anodenstruktur überdeckend festgelegt wird, daß die Kathodenstruktur und die mit der lumineszierenden Schicht versehene Anodenstruktur in einander gegenüberliegender Lage entlang ihrer Seitenkanten gasdicht miteinander verbunden werden, und daß die Feldemitter nach dem gasdichten Verbinden von Kathoden- und Anodenstruktur aus dem zwischen Kathoden- und Anodenstruktur eingebrachten Trägergas auf die Elektroden der Kathodenstruktur abgeschieden werden.It is an object of the present invention to provide a method of fabricating field emission displays specify, which is associated with significantly less technical effort can be performed because the purity requirements of Ambient atmosphere are significantly reduced. According to the invention this is achieved in that the electrodes of the anode structure a first substrate and the electrodes of the cathode structure on a second substrate be determined that the layer of the luminescent material, the electrodes of the Covering the anode structure is determined that the cathode structure and with the luminescent layer provided anode structure in facing position be connected together gas-tight along their side edges, and that the field emitters after the gas-tight connection of cathode and anode structure of the between Cathode and anode structure introduced carrier gas to the electrodes of the Cathode structure are deposited.

Damit ist die Ablagerung von Staubpartikeln auf den fertigen Feldemitter-Oberflächen prinzipiell unmöglich, da die Feldemitter ja erst entstehen, wenn die Oberfläche der Kathodenstruktur durch gasdichte Verbindung mit der Anodenstruktur hermetisch von der Umgebung abgeschlossen und somit wirksam vor Staubpartikel geschützt ist.This is the deposition of dust particles on the finished field emitter surfaces in principle impossible, since the field emitters only arise when the surface of the Cathode structure hermetically sealed by gas-tight connection with the anode structure Environment completed and thus effectively protected from dust particles.

In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, daß die Elektroden durch induktive Heizung auf die zum Ablauf der Abscheidung von Feldemitter-Material auf den Elektroden notwendige Temperatur gebracht werden.In a further embodiment of the invention can be provided that the electrodes through inductive heating on the expiration of the deposition of field emitter material on the Electrodes necessary temperature are brought.

Damit werden gezielt nur die Elektroden erhitzt, während sämtliche anderen Komponenten des FED auf einer für die Feldemitter-Material-Abscheidung zu niedrigen Temperatur belassen werden. Die Bildung von störenden Feldemitter-Schichten auf von den Elektroden der Kathodenstruktur verschiedenen FED-Komponenten ist damit wirksam ausgeschlossen. Gemäß einer anderen Variante der Erfindung kann vorgesehen sein, daß die Elektroden zur Heizung auf die zum Ablauf der Abscheidung von Feldemitter-Material auf den Elektroden notwendige Temperatur mit Strom beaufschlagt werden.This specifically heats only the electrodes, while all other components of the FED on a too low temperature for field emitter material deposition be left. The formation of interfering field emitter layers on the electrodes The cathode structure different FED components is thus effectively excluded. According to another variant of the invention can be provided that the electrodes for Heating on the process of deposition of field emitter material on the electrodes required temperature to be supplied with electricity.

Auch hier ist die Bildung von störenden Feldemitterschichten auf von den Kathodenstruktur-Elektroden verschiedenen Komponenten ausgeschlossen, gegenüber der ersten Beheizungsvariante ergibt sich der zusätzliche Vorteil, daß zur Durchführung dieser Beheizungsmöglichkeit (außer einer Spannungs- oder Stromquelle) keinerlei zusätzlichen Bauteile benötigt werden, werden ja die Elektroden selbst als Heizkörper betrieben.Again, the formation of interfering field emitter layers from the cathode structure electrodes different components excluded, compared to the first Heating variant results in the additional advantage that to carry out this Heating option (except for a voltage or current source) no additional If components are required, the electrodes themselves are operated as radiators.

Gemäß einer besonders bevorzugten Ausführungsform der gegenständlichen Erfindung kann vorgesehen sein, daß die Feldemitter durch kohlenstoffhältige Schichten gebildet werden, wozu ein kohlenstoffhältiges Trägergas zwischen Kathoden- und Anodenstruktur eingebracht wird.According to a particularly preferred embodiment of the subject invention be provided that the field emitters are formed by carbon-containing layers, for which purpose a carbon-containing carrier gas is introduced between the cathode and the anode structure becomes.

Diese Schichten weisen relativ gute Feldemissionseigenschaften auf, weshalb sie zur Bildung von zuverlässig funktionierenden Feldemittem geeignet sind. Darüberhinaus sind die Abscheidebedingungen für kohlenstoffhältige Schichten im Stand der Technik hinlänglich bekannt und vor allem auch innerhalb des relativ engen Raumes zwischen Kathoden- und Anodenstruktur erzeugbar.These layers have relatively good field emission properties, which is why they contribute to the formation reliable field emitters are suitable. In addition, the Deposition conditions for carbonaceous layers in the prior art sufficient known and especially within the relatively narrow space between cathode and Anode structure can be generated.

In diesem Zusammenhang kann in weiterer Ausgestaltung der Erfindung vorgesehen sein, daß die kohlenstoffhältigen Schichten in Gestalt von Nanotube-Schichten auf den Elektroden abgeschieden werden.In this context, it can be provided in a further embodiment of the invention, that the carbon-containing layers in the form of nanotube layers on the electrodes be deposited.

Kohlenstoff-Nanotubes haben besonders gute Feldemissions-Eigenschaften, wodurch ein auf diese Weise hergestellter FED besonders gut, d.h. insbesondere mit niedrigen Ansteuerspannungen und lange Zeit hindurch funktioniert.Carbon nanotubes have particularly good field emission properties, which causes a This manner produced FED particularly good, i. especially with low Drive voltages and long time worked.

Die Erfindung wird unter Bezugnahme auf die beigeschlossenen Zeichnungen, in welchen besonders bevorzugte Ausführungsbeispiele dargestellt sind, näher beschrieben. Dabei zeigt:

  • Fig.1 die Kathoden- und die Anodenstruktur 1,4 eines Feldemissions-Bildschirmes (FED) in schematischer Schrägriß-Darstellung;
  • Fig.2 den FED gemäß Fig.1 im Grundriß und
  • Fig.3 einen vertikal geführten Schnitt durch ein FED, dessen Kathoden- und Anodenstruktur 1,4 bereits gasdicht miteinander verbunden sind.
  • The invention will be described in more detail with reference to the accompanying drawings, in which particularly preferred embodiments are shown. Showing:
  • 1 shows the cathode and the anode structure 1.4 of a field emission screen (FED) in a schematic oblique view;
  • 2 shows the FED according to Figure 1 in plan and
  • 3 shows a vertical section through a FED, the cathode and anode structure 1.4 are already connected to each other gas-tight.
  • Ein Feldemissions-Flachbildschirm, auch als FED (="Field Emission Display") bezeichnet, weist den in Fig. 1 dargestellten prinzipiellen Aufbau auf: Es ist zunächst eine Kathodenstruktur 1 vorgesehen, welche eine Vielzahl von streifenförmigen, parallel zueinander verlaufenden Elektroden 2 aufweist, welche Elektroden 2 auf einem Substrat 3 festgelegt sind.A field emission flat screen, also referred to as FED (= "Field Emission Display"), has the basic structure shown in Fig. 1: It is first a Cathode structure 1 is provided, which a plurality of strip-shaped, parallel having electrodes 2 extending to each other, which electrodes 2 on a substrate. 3 are fixed.

    Weiters gibt es eine Anodenstruktur 4, die so wie die Kathodenstruktur 1 eine Vielzahl von streifenförmigen Elektroden 5 umfaßt, die ebenfalls auf einem Substrat 6 festgelegt sind. Dieses Substrat 6 bildet die vom Benutzer angesehene Oberfläche des FED und besteht aus transparentem Material, vorzugsweise Glas. Die Elektroden 5 sind aus einem ebenfalls transparenten, elektrisch leitenden Material gebildet, ein in diesem Zusammenhang bekanntes Material ist ITO (Indium-Tin-Oxide). Die Elektroden 5 sind mit einer Schicht 7 aus lumineszenten Material, wie z.B. Phosphor, beschichtet.Further, there is an anode structure 4 which, like the cathode structure 1, has a plurality of strip-shaped electrodes 5 includes, which are also fixed to a substrate 6. This substrate 6 constitutes the user-viewed surface of the FED and consists of transparent material, preferably glass. The electrodes 5 are also made of one transparent, electrically conductive material formed, a known in this context Material is ITO (Indium Tin Oxide). The electrodes 5 are made with a layer 7 luminescent material, e.g. Phosphor, coated.

    Besagte Kathoden- und Anodenstruktur 1 und 2 sind bei fertig zusammengebautem FED planparallel zueinander ausgerichtet und mit Abstand zueinander gehalten. Die Elektroden 2 sind dabei gegenüber den Elektroden 5 um 90° versetzt angeordnet. Die bei Draufsicht auf das Anodensubstrat 6 einander überdeckenden Elektroden-Abschnitte der Anoden- und der Kathodenstruktur bilden die Bildpunkte 8 (=Pixel) des FED (vgl. Fig.2).Said cathode and anode structures 1 and 2 are in fully assembled FED aligned parallel to each other and held at a distance from each other. The electrodes 2 are offset from the electrodes 5 offset by 90 °. The on top view the anode substrate 6 overlapping electrode portions of the anode and the Cathode structure form the pixels 8 (= pixels) of the FED (see Fig.2).

    Um einen bestimmten Pixel 8 des FED zum Leuchten zu bringen, werden über eine entsprechende, für sich bekannte und im weiteren nicht näher erörterte Ansteuer-Elektronikjene der Elektroden 2 und 5 mit Spannung beaufschlagt, welche sich im Bereich des anzusteuernden Pixel 8 überdecken. Für die Ansteuerung des in Fig.2 ganz links oben liegenden Pixel 8 werden also die erste waagrechte und die erste senkrechte Elektrode mit Spannung beaufschlagt. Die Elektroden 2 der Kathodenstruktur 1 sind vollflächig oder zumindest in den Bereichen eines Pixels 8 mit einem Material bedeckt, das gute Feldemissionseigenscharten aufweist, d.h. das unter Einfluß eines elektrischen Feldes Elektronen aussendet. Solche Materialien, die im folgenden als "Feldemitter 19" bezeichnet werden, sind für sich bekannt und weisen eine igelartige, mit einer Vielzahl von Spitzen bedeckte freie Oberfläche auf. An diesen Spitzen ergeben sich besonders hohe, die Emission von Elektronen bewirkende Feldstärken.To bring a certain pixel 8 of the FED to light, are over a corresponding, known per se and not discussed in further detail Ansteu-Elektronikjene the electrodes 2 and 5 are supplied with voltage, which is in the range of cover pixel 8 to be controlled. For the control of the left in Fig.2 top left lying pixels 8 are thus the first horizontal and the first vertical electrode with Voltage applied. The electrodes 2 of the cathode structure 1 are full-surface or at least in the areas of a pixel 8 covered with a material, the good Has field emission characteristics, i. that under the influence of an electric field Send out electrons. Such materials, hereinafter referred to as "field emitter 19" are known and have a hedgehog-like, with a variety of tips covered free surface. At these peaks are particularly high, the emission of electron-causing field strengths.

    Als Beispiele für solche Materialien können polykristalliner Diamant, Whiskers und Nanotubes angegeben werden. Diese Materialien sind jeweils für sich bekannt bzw. ist auch ihre Eignung zur Feldemission von Elektronen bekannt.As examples of such materials, polycrystalline diamond, whiskers and Nanotubes be specified. These materials are each known or are their suitability for field emission of electrons known.

    Whiskers ist die im Stand der Technik gebräuchliche Bezeichnung für Fadenkristalle hoher Festigkeit, welche beispielsweise aus Metallen, Oxiden, Boriden, Carbiden, Nitriden, Polytitanat, Kohlenstoff od. dgl. bestehen können. Die Struktur solcher Whisker ist einkristallin (vgl. RÖMPP Chemie Lexikon, 10. völlig überarbeitet Auflage, Hrsg. Prof.Dr. Jürgen Falbe und Prof.Dr. Manfred Regitz, Georg Thieme Verlag Stuttgart - New York, Band 6, Seite 4975f). Als elektronenemittierendes Material können im Rahmen der gegenständlichen Erfindung Whiskers aus elektrisch leitendem Material eingesetzt werden. Nanotubes sind zylindrische, ein- oder mehrlagige Kohlenstoff-Röhren mit oder ohne halbkugelförmigen Abschlüssen (vgl. RÖMPP Chemie Lexikon, 10. völlig überarbeitete Auflage, Hrsg. Prof.Dr. Jürgen Falbe und Prof.Dr. Manfred Regitz, Georg Thieme Verlag Stuttgart - New York, Band 4, Seite 2804f.), die sich durch besonders hohe Härte, die teilweise sogar über der Härte von Diamant liegen kann, auszeichnen. Sie weisen Durchmesser im Bereich von 5-30nm auf und haben damit die in diesem Zusammenhang notwendigen besonders feinen Spitzen. Die Herstellung solcher Nanotubes ist beispielsweise beschrieben in: "Production of carbon nanotubes", C.Journet, P.Bernier; Applied Physics A Materials Science&Processing, Springer-Verlag 1998, Seiten 1-9.Whiskers is the common name for thread crystals in the art Strength, which consists, for example, of metals, oxides, borides, carbides, nitrides, Polytitanat, carbon od. Like. May exist. The structure of such whiskers is single crystal (see RÖMPP Chemie Lexikon, 10th completely revised edition, ed. Jürgen Falbe and Prof.Dr. Manfred Regitz, Georg Thieme Verlag Stuttgart - New York, Volume 6, page 4975f). As an electron-emitting material can be used in the context of representational invention Whiskers be used from electrically conductive material. Nanotubes are cylindrical, single or multi-layer carbon tubes with or without hemispherical graduations (see RÖMPP Chemie Lexikon, 10th completely revised Edition, ed. Prof.Dr. Jürgen Falbe and Prof.Dr. Manfred Regitz, Georg Thieme Verlag Stuttgart - New York, Volume 4, page 2804f.), Which are characterized by particularly high hardness, the may even exceed the hardness of diamond. They point Diameter in the range of 5-30nm and thus have the in this context necessary especially fine tips. The production of such nanotubes is for example described in: "Production of carbon nanotubes", C. Journet, P.Bernier; Applied Physics A Materials Science & Processing, Springer-Verlag 1998, pages 1-9.

    Die Verwendung von Nanotubes bzw. Nanotube-Filmen zur Feldemission wurde z.B. beschrieben in:

  • "Unraveling Nanotubes: Field Emission from an Atomic Wire"; A.G.Rinzler et al.; Science; Vol.269; 15.September 1995; Seiten 1550-1553;
  • "A Carbon Nanotube Field-Emission Electron Source"; Walt A. de Heer et al.; Science; Vol.270; 17.November 1995; Seite 1179f;
  • "Field Emission from single-wall carbon nanotube films"; Jean-Marc Bonard et al.; Applied Physical Letters, Volume 73; Number 7; Seiten 918-920.
  • The use of nanotubes or nanotube films for field emission has been described, for example, in:
  • "Unraveling Nanotubes: Field Emission from an Atomic Wire"; AGRinzler et al .; Science; Vol.269; September 15, 1995; Pages 1550-1553;
  • "A Carbon Nanotube Field-Emission Electron Source"; Walt A. de Heer et al .; Science; Vol.270; November 17, 1995; Page 1179f;
  • "Field emission from single-wall carbon nanotube films"; Jean-Marc Bonard et al .; Applied Physical Letters, Volume 73; Number 7; Pages 918-920.
  • Unter dem Einfluß des durch das Anlegen von Spannung sich ausbildenden elektrischen Feldes zwischen den Elektroden 2,5 im Bereich des zu erleuchtenden Pixels 8 werden Elektronen aus den Feldemittem der Kathodenstruktur 1 gelöst und in Richtung der Anodenstruktur 4 getrieben. Diese Elektronen treffen auf der Phosphorschicht 7 auf und bringen diese dadurch im Bereich des zu erleuchtenden Pixels 8 zum Leuchten.Under the influence of the voltage generated by the application of voltage Field between the electrodes 2.5 in the region of the pixel 8 to be illuminated Electrons are released from the field emitters of the cathode structure 1 and in the direction of Anode structure 4 driven. These electrons strike the phosphor layer 7 and make them shine in the area of the pixel 8 to be illuminated.

    Um sicherzustellen, daß die Elektronen unbehindert von der Kathode zur Anode gelangen können, ist der Zwischenraum zwischen Kathoden- und Anodenstruktur evakuiert.To ensure that the electrons pass unhindered from the cathode to the anode can, the gap between the cathode and anode structure is evacuated.

    Kathodenstrukturen 1, deren Feldemitter durch Nanotubes gebildet sind, haben eine Reihe von Vorteilen gegenüber den bisher bekannten, in "Spindt-Technologie" gehaltenen Kathodenstrukturen:Cathode structures 1 whose field emitters are formed by nanotubes have a row of advantages over the previously known, held in "Spindt technology" Cathode structures:

    Durch den Elektronenbeschuß der Phosphorschicht werden aus dieser Ionen herausgeschlagen, die sich im Raum zwischen Kathode und Anode verteilen bzw. sich auf den Kathoden niederschlagen und damit die Funktion des Displays beeinträchtigen können.The electron bombardment of the phosphor layer turns these ions knocked out, spread in the space between the cathode and anode or on knock down the cathode and thus affect the function of the display.

    Der Kohlenstoff der Nano-Tubes ist chemisch sehr beständig (vgl. Diamant) und reagiert nicht mit diesen Ionen, sodaß die erörterte Funktionsbeeinträchtigung nicht stattfinden kann. Sollten sich Phosphor-Ionen auf den Feldemittem der Kathodenstruktur ablagern, so können diese ―weil sie ja nur auf den Feldemittem aufliegen, aber chemisch nicht mir ihnen verbunden sind- durch den vom Feldemitter ausgehenden Elektronenstrom wieder abgelöst werden. Die Lebensdauer von mit Nano-Tubes aufgebauten FEDs ist deshalb wesentlich länger.The carbon of the nano-tubes is chemically very resistant (see diamond) and reacts not with these ions, so that the discussed functional impairment can not take place. If phosphorus ions are deposited on the field emitter of the cathode structure, then these - because they rest only on the field emitter, but chemically not me them are disconnected again by the electron emanating from the field emitter become. The lifetime of Nano-Tubes FEDs is therefore essential longer.

    Nanotubes zeigen bereits bei wesentlich kleinerem Vakuum ausreichende Felemissions-Eigenschaften, konkret braucht das Vakuum zwischen Kathoden- und Anodenstruktur nur mehr etwa 10-5-10-6 torr anstelle der bisher üblichen 10-8 torr aufweisen.Nanotubes show sufficient field emission properties even at a much smaller vacuum; in concrete terms, the vacuum between cathode and anode structure only needs about 10 -5 -10 -6 torr instead of the usual 10 -8 torr.

    Nano-Tubes haben genauso wie die ebenfalls als Feldemitter verwendbaren polykristallinen Diamantkristalle eine besonders geringe Emissionsspannung, die bei etwa 100-200V liegt.Nano-Tubes have as well as the polycrystalline field emitters Diamond crystals a particularly low emission voltage, which is about 100-200V.

    Die bisher bekannten, auf der "Spindt-Technologie" basierenden Displays benötigen hingegen 1-3kV Emissionsspannung.The previously known, on the "Spindt technology" based displays need whereas 1-3kV emission voltage.

    Ganz allgemein weisen FED gegenüber den bisher eingesetzten Flachbildschirmen, die als LCD ("liquid crystal display") gehalten sind vor allem den Vorteil eines deutlich geringeren Energieverbrauches auf: LC-Bildschirme in der für Laptops bzw. Notebooks geeigneten Größe benötigen im Betrieb eine elektrische Leistung im Bereich von 1 bis 10 Watt, während FED mit Milliwatt (mW) betrieben werden können. Darüberhinaus müssen LC-Bildschirme vom Benutzer genau von vorne betrachtet werden, schon bei seitlicher Betrachtung des Bildschirmes unter nur relativ geringfügig von 90° abweichenden Sichtwinkeln ist das Bild nur undeutlich bzw. überhaupt nicht mehr zu erkennen.In general, FED have compared to the previously used flat screens, as LCD ("liquid crystal display") are held above all the advantage of a much lower Energy consumption: LC screens suitable for laptops or notebooks In operation, size require an electrical power in the range of 1 to 10 watts while FED can be operated with milliwatts (mW). In addition, LC screens must be viewed by the user from the front, even when looking at the side of the Screen with only slightly different from 90 ° viewing angles is the picture only indistinct or not recognizable at all.

    FED weisen demgegenüber den vollen Sichtwinkel von 180° auf, d.h. das auf ihnen dargestellte Bild ist selbst bei seitlicher Betrachtung deutlich erkennbar. Daneben wird ein auf LC-Bildschirmen dargestelltes Bild bei Sonnenlichteinstrahlung auf den Bildschirm unerkennbar, welches Problem beim FED ebenfalls nicht auftritt.By contrast, FEDs have the full viewing angle of 180 °, i. that on them displayed image is clearly visible even when viewed from the side. Next to it is a On LC screens, the image is exposed to sunlight on the screen unrecognizable, which problem does not occur with the FED as well.

    Zur Herstellung eines in Fig.1 und 2 dargestellten Feldemissions-Displays wird wie folgt vorgegangen: Zunächst werden auf einem ersten Substrat 6 die Elektroden 5 der Anodenstruktur 4 festgelegt. Dies kann mittels im Stand der Technik bekannter Methoden, wie z.B. Sputtern oder Aufdampfen von Metall, insbesondere Platin, erfolgen. Anschließend wird die Schicht 7 aus lumineszierenden Material die Elektroden 5 überdeckend am ersten Substrat 6 festgelegt. Auch dieser Schritt wird mit bekannten Maßnahmen abgewickelt. Weiters wird die Kathodenstruktur 1 hergestellt, indem auf einem zweiten Substrat 3 die aus einem Metall bestehenden Elektroden 2 -ebenfalls unter Zuhilfenahme bekannter Verfahrenaufgebracht werden.For producing a field emission display shown in Figs. 1 and 2, the following is done proceeding: First, on a first substrate 6, the electrodes 5 of Anode structure 4 set. This can be done by methods known in the art, such as. Sputtering or vapor deposition of metal, especially platinum, done. Subsequently becomes the layer 7 of luminescent material, the electrodes 5 overlapping the first Substrate 6 fixed. This step is also handled with known measures. Furthermore, the cathode structure 1 is prepared by on a second substrate 3 from electrodes 2 made of metal, also by means of known methods become.

    Die Elektroden 2 können dabei auf einer ebenen Substratoberfläche festgelegt werden, günstiger ist es jedoch, das Substrat 1 mit nutartigen Ausnehmungen 9 zu versehen, innerhalb welcher die Elektroden 2 verlaufen (vgl. Fig.3). Die Elektroden 2 sind dabei durch die Wände 15 voneinander getrennt und damit besonders gut gegeneinander elektrisch isoliert. Zusätzlich dazu sind sie zu den Elektroden 5 einer auf die Kämme der Wände 15 aufgelegten Anodenstruktur 4 ausreichend weit beabstandet. Das Vorsehen solcher Ausnehmungen 9 bzw. Methoden zu deren Herstellung sind bekannter Stand der Technik.The electrodes 2 can be fixed on a flat substrate surface, It is cheaper, however, to provide the substrate 1 with groove-like recesses 9, within which extend the electrodes 2 (see Fig.3). The electrodes 2 are characterized by the Walls 15 separated from each other and thus particularly well against each other electrically isolated. In addition, they are applied to the electrodes 5 of a laid on the ridges of the walls 15 Anode structure 4 spaced sufficiently far. The provision of such recesses 9 or methods for their preparation are known prior art.

    Das Wesen der Erfindung liegt nun darin, nicht schon jetzt Feldemitter 19 auf die Elektroden 2 der Kathodenstruktur 1 aufzubringen, sondern Kathoden- und Anodenstruktur 1,4 vor dem Aufbringen von Feldemittern 19 beabstandet parallel zueinander auszurichten und entlang ihrer Seitenkanten 11,14 gasdicht miteinander zu verbinden.The essence of the invention is now, not already field emitter 19 on the electrodes 2 of the cathode structure 1, but cathode and anode structure 1.4 before Applying field emitters 19 spaced parallel to each other and align along their side edges 11,14 gastight to connect with each other.

    In der Regel sind die Substrate 3,6 durch Glasplatten gebildet, sodaß besagte gasdichte Verbindung durch einen Glaswulst 12 gebildet wird, welcher sehr gut an diesen Glasplatten haftet und damit die geforderte gasdichte Verbindung besonders zuverlässig bewirkt. Wie aus Fig.3 hervorgeht, ist im Glaswulst 12 eine Gaseinlaßöffnung 16 und eine Gasauslaßöffnung 17 vorgesehen. Die Verbindung zwischen Kathoden- und Anodensubstrat 1,4 ist daher nur mit Ausnahme dieser Gaseinlaß- und ―auslaßöffnung 16,17 gasdicht. Der Abstand, der jetzt zwischen Kathoden- und Anodenstruktur 1,4 vorliegt, kann bereits der für den ordnungsgemäßen Betrieb des FED erforderliche Abstand sein. Es kann aber auch vorgesehen sein, den Abstand im jetzigen Zeitpunkt größer als den Betriebs-Abstand zu wählen, damit der Raum zwischen Kathoden- und Anodenstruktur 1,4 größer wird. Der Glaswulst 12 wird dazu entsprechend breiter ausgeführt.In general, the substrates are 3.6 formed by glass plates, so that said gas-tight Connection is formed by a glass bead 12, which very well on these glass plates adheres and thus the required gas-tight connection causes particularly reliable. How out 3 shows, in the glass bead 12, a gas inlet opening 16 and a gas outlet 17 provided. The connection between cathode and anode substrate 1.4 is therefore only with the exception of this gas inlet and outlet opening 16,17 gas-tight. The distance, now between the cathode and anode structure 1.4 is present, can already for the proper operation of the FED. But it can too be provided, the distance at the present time greater than the operating distance to to increase the space between the cathode and anode structure 1.4. Of the Glass bead 12 is carried out correspondingly wider.

    Die Herstellung der Feldemitter 19 auf den Elektroden 2 der Kathodenstruktur 1 erfolgt erst nach besagtem gasdichten Verbinden von Kathoden- und Anodenstruktur 1,4 durch Abscheidung von Feldemitter-Material aus der Gasphase auf diese Elektroden 2.The field emitter 19 is produced on the electrodes 2 of the cathode structure 1 only after said gas-tight bonding of cathode and anode structure 1.4 by Deposition of field emitter material from the gas phase on these electrodes 2.

    Verfahren zur Abscheidung von verschiedenen Materialien aus der Gasphase sind hinlänglich im Stand der Technik bekannt. Beim erfindungsgemäßen Verfahren wird auch eines dieser für sich bekannten Verfahren verwendet, allerdings erst nach der gasdichten Verbindung von Kathoden- und Anodenstruktur 1,4 angewandt.Methods for the separation of various materials from the gas phase are sufficient known in the art. In the method according to the invention is also one of these used for known methods, but only after the gas-tight connection of Cathode and anode structure 1.4 applied.

    Dazu wird der Raum zwischen Kathoden- und Anodenstruktur 1,4 über die Gaseinlaß- und die Gasauslaßöffnung 16,17 mit einem Trägergas gespült, welches Feldemitter-Material enthält. For this purpose, the space between the cathode and anode structure 1.4 via the gas inlet and the gas outlet 16,17 flushed with a carrier gas, which field emitter material contains.

    Damit die Abscheidung von Feldemitter-Material auf den Elektroden 2 stattfinden kann, müssen zumindest diese Elektroden 2 eine entsprechend hohe Temperatur aufweisen, weshalb es notwendig ist, zumindest diese Elektroden 2 entsprechend aufzuheizen. Theoretisch könnte dies dadurch erreicht werden, daß das gesamte Feldemission-Display erhitzt wird, allerdings lägen dann auch bei allen, von den Elektroden 2 verschiedenen Komponenten des FED Abscheidebedingungen vor, weshalb sich auch auf diesen Schichten aus Feldemitter-Material bilden würden, welche aber die Funktion des FED nachteilig beeinträchtigen würden. Dazu kommt noch, daß die lumineszierende Schicht 7 wärmeempfindlich ist, d.h. bei zu starker Erwärmung ihre lumineszierenden Eigenschaften verliert. Aus diesen Gründen ist es notwendig, gezielt nur die Elektroden 2 allein auf die zum Ablauf der Abscheidung von Feldemitter-Material auf ihnen notwendige Temperatur zu bringen.So that the deposition of field emitter material can take place on the electrodes 2, at least these electrodes 2 must have a correspondingly high temperature, why it is necessary to heat at least these electrodes 2 accordingly. Theoretically, this could be achieved by having the entire field emission display is heated, however, then would be at all, of the electrodes 2 different Components of the FED deposition conditions, which is why on these layers form field emitter material, but which adversely affect the function of the FED would affect. In addition, the luminescent layer 7 is heat sensitive, i. too high heating their luminescent properties loses. For these reasons, it is necessary to target only the electrodes 2 alone on the Sequence of deposition of field emitter material on them necessary temperature too bring.

    Eine erste Möglichkeit, dies zu erreichen, liegt in der Verwendung einer induktiven Heizung:A first way to achieve this is to use an inductive heater:

    Wie in Fig.3 mit strichlierten Linien eingetragen, wird der FED dabei von einer Spule 18 umgeben, welche mit einer Wechselspannungsquelle 20 verbindbar ist.As indicated in FIG. 3 with dashed lines, the FED is thereby moved by a coil 18 surrounded, which is connectable to an AC voltage source 20.

    Die Spule 18 baut ein sämtliche Bauteile des FED durchsetzendes Wechsel-Magnetfeld auf, wodurch in den elektrisch leitenden Elektroden 2 Wirbelspannungen induziert werden, die zur Ausbildung von Wirbelströmen innerhalb der Elektroden 2 führen. Diese Wirbelströme erzeugen direkt in den Elektroden 2 Wärme, womit gezielt nur die Elektroden 2 auf die zur Abscheidung von Feldemitter-Material notwendige Temperatur geheizt werden. Der Effekt der induktiven Beheizung ist umso höher, je höher die Frequenz des Wechsel-Magnetfeldes ist, denn bekanntlich verhält sich die Höhe einer induzierten Spannung (und damit auch die Höhe des von dieser Spannung getriebenen (Beheizungs-) Stromes) direkt proportional zur Frequenz des Wechsel-Magnetfeldes. Die Wechselspannungsquelle 20 ist daher vorzugsweise eine Hochfrequenz-Spannungsquelle, welche Frequenzen von größer 1kHz erzeugt.The coil 18 builds up all the components of the FED enforcing alternating magnetic field, whereby 2 eddy voltages are induced in the electrically conductive electrodes, the lead to the formation of eddy currents within the electrodes 2. These eddy currents generate 2 heat directly in the electrodes, which targeted only the electrodes 2 on the Deposition of field emitter material necessary temperature to be heated. The effect The higher the frequency of the alternating magnetic field, the higher the inductive heating is, because it is known that the height of an induced voltage (and thus the Height of the (heating) current driven by this voltage) directly proportional to Frequency of the alternating magnetic field. The AC voltage source 20 is therefore preferably a high frequency voltage source, which frequencies greater than 1kHz generated.

    Eine zweite Möglichkeit der selektiven Beheizung der Elektroden 2 liegt darin, sie durch Verbindung mit einer Spannungs- oder Stromquelle mit Strom zu beaufschlagen, welcher Strom vom elektrischen Widerstand der Elektroden 2 in Wärme umgesetzt wird.A second possibility of selectively heating the electrodes 2 is to pass them through To connect to a voltage or current source with power, which Current from the electrical resistance of the electrodes 2 is converted into heat.

    Die Prozeßbedingungen zur Abscheidung von Feldemitter-Material (Trägergasstrom im Raum zwischen Kathoden- und Anodenstruktur 1,4 und Heizen der Elektroden 2 auf eine die Abscheidung erlaubende Temperatur) werden solange aufrecht erhalten, bis sich eine ausreichend dicke Feldemitter-Schicht auf den Elektroden 2 gebildet hat. Danach wird die Spülung des FED mit dem Trägergas beendet, der Raum zwischen Kathoden- und Anodenstruktur 1,4 evakuiert und abschließend Gaseinlaß- und Gasauslaßöffnung 16,17 hermetisch dicht verschlossen.The process conditions for the deposition of field emitter material (carrier gas flow in Space between cathode and anode structure 1,4 and heating the electrodes 2 on a Deposition permitting temperature) are maintained until a has formed sufficiently thick field emitter layer on the electrodes 2. After that, the Flushing of the FED with the carrier gas ends, the space between the cathode and Anode structure evacuated 1.4 and finally gas inlet and gas outlet 16,17 hermetically sealed.

    Sollte der Abstand zwischen Kathoden- und Anodenstruktur 1,4 noch größer sein als der für den ordnungsgemäßen Betrieb des FED notwendige Abstand zwischen diesen beiden Komponenten, wird dieser Abstand nun auf den Betriebsabstand reduziert, wozu der Glaswulst 12 durch entsprechende Erwärmung erweicht und die beiden Strukturen 1,4 aufeinander zu bewegt werden.Should the distance between the cathode and anode structure 1.4 be even greater than that for the proper operation of the FED necessary distance between these two Components, this distance is now reduced to the operating distance, including the Glass bead 12 softened by appropriate heating and the two structures 1.4 be moved towards each other.

    Die Feldemitter 19 müssen -wie eingangs bereits erwähnt- die Eigenschaft haben, unter Einfluß eines elektrischen Feldes Elektronen auszusenden. Diese Eigenschaft weisen beispielsweise kohlenstoffhältige Schichten auf, weshalb die Feldemitter 19 beim erfindungsgemäßen Verfahren bevorzugt durch solche kohlenstoffhaltige Schichten gebildet werden, wozu ein kohlenstoffhältiges Trägergas zwischen Kathoden- und Anodenstruktur 1,4 eingebracht und aus diesem der Kohlenstoff auf die Elektroden 2 abgeschieden wird.The field emitter 19 must -as already mentioned - have the property under Influence of an electric field to emit electrons. Show this property For example, carbon-containing layers, which is why the field emitter 19 in inventive method preferably formed by such carbonaceous layers including a carbon-containing carrier gas between the cathode and anode structure 1,4 introduced and from which the carbon is deposited on the electrodes 2.

    Wie eingangs erörtert, weisen die Feldemitter 19 bei einer besonders bevorzugten Ausführungsform eines FED die Gestalt von Kohlenstoff-Nanotubes auf. Zur Bildung dieser Nanotubes werden die Abscheidebedingungen (Temperatur der Elektroden, Kohlenstoffgehalt im Trägergas, Fließgeschwindigkeit des Trägergases) so gewählt, daß der Kohlenstoff des Trägergases in Gestalt von Nanotubes auf den Elektroden 2 abgeschieden wird.As discussed at the beginning, the field emitters 19 are particularly preferred Embodiment of an FED the shape of carbon nanotubes on. To form this Nanotubes are the deposition conditions (temperature of the electrodes, Carbon content in the carrier gas, flow rate of the carrier gas) selected so that the Carbon of the carrier gas in the form of nanotubes deposited on the electrodes 2 becomes.

    Die Auswahl dieser Abscheidebedingungen zur Bildung von Kohlenstoff-Nanotubes ist im Stand der Technik hinlänglich bekannt, sodaß sie von einem Fachmann am Gebiet der Abscheidetechnik problemlos eingestellt werden können.The selection of these deposition conditions for the formation of carbon nanotubes is in The prior art is well known, so that it can be used by a person skilled in the art Separation technology can be easily adjusted.

    Ohne diese Erfindung in irgendeiner Weise einzuschränken wird abschließend der gesamte Ablauf einer tatsächlich durchgeführten Vorgangsweise zur Erzeugung von aus Kohlenstoff-Nanotubes bestehenden Feldemittem 19 beschrieben.Without limiting this invention in any way, the entire Sequence of an actual procedure for the production of carbon nanotubes existing Feldemittem 19 described.

    Kathoden- und Anodensubstrat 1,4 wurden dabei durch Platten aus PYREX®-Glas (=ein Borosilicat-Glas) gebildet. Die Elektroden 2 wurden aus Platin gebildet, welches Metall durch bekannte Verfahren auf das Kathodensubstrat 1 aufgedampft wurde. Nach dem Verbinden von Kathoden- und Anodensubstrat mit einem Glaswulst 12, wurde der zwischen diesen beiden Substraten verbleibende Raum 15min lang mit Stickstoff gespült.Cathode and anode substrate 1.4 were covered by plates made of PYREX® glass (= a Borosilicate glass). The electrodes 2 were formed of platinum, which is metal was vapor-deposited on the cathode substrate 1 by known methods. After this Connecting cathode and anode substrate to a glass bead 12, the between These two substrates were purged with nitrogen for 15 minutes.

    Danach wurde Acetylen als kohlenstoffhältiges Trägergas zwischen Kathoden- und Anodensubstrat 1,4 eingebracht, was ebenfalls durch Spülung dieses Zwischenraumes mit diesem Trägergas durchgeführt wurde. Der Acetylen-Gasstrom wies dabei eine Strömungsgeschwindigkeit von etwa 15 sccm min-1 auf.Thereafter, acetylene was introduced as a carbon-containing carrier gas between the cathode and anode substrate 1.4, which was also carried out by purging this gap with this carrier gas. The acetylene gas stream had a flow rate of about 15 sccm min -1 .

    Jetzt wurden die Elektroden 2 auf 650°C aufgeheizt, was entsprechend der Erfindung durch Anlegen einer Spannung an die Elektroden 2 durchgeführt wurde. Die Höhe dieser Spannung wurde entsprechend der geometischen Abmessungen, insbesondere der Längen dieser Elektroden 2 gewählt und kann im Bereich zwischen etwa 5 und 12 Volt liegen. Bei der in einem zweiten Versuch durchgeführten Aufheizung der Elektroden 2 auf induktivem Weg wurde die in Fig.3 dargestellte Spule 18 mit einer Wechselspannung von 2 kV bei einem Strom von 0.65mA beaufschlagt.Now the electrodes 2 were heated to 650 ° C, which according to the invention by Applying a voltage to the electrodes 2 was performed. The height of this tension was according to the geometischen dimensions, in particular the lengths of these Electrodes 2 selected and may be in the range between about 5 and 12 volts. At the in a second attempt carried out heating of the electrodes 2 by inductive means was the coil 18 shown in Figure 3 with an AC voltage of 2 kV at a Current of 0.65mA applied.

    Beim Erreichen der erwähnten Temperatur von 650°C setzte die Abscheidung von Kohlenstoff auf den Elektroden 2 und damit das Wachstum von Nanotubes auf diesen Elektroden 2 ein, was erkennbar war an der Bildung einer homogenen schwarzen Schicht auf den Elektroden 2. Die erörterten Prozeßbedingungen (Spülung mit Acetylen und Heizen des Substrates auf 650°C) wurden 40 Minuten lang aufrecht erhalten, danach wurde der FED mittels eines Stickstoff-Gasstromes auf Raumtemperatur abgekühlt.Upon reaching the mentioned temperature of 650 ° C continued the deposition of Carbon on the electrodes 2 and thus the growth of nanotubes on this Electrodes 2, which was evident on the formation of a homogeneous black layer on the electrodes 2. The process conditions discussed (rinsing with acetylene and heating the Substrates at 650 ° C) were maintained for 40 minutes, after which the FED became cooled to room temperature by means of a nitrogen gas stream.

    Die Gaseinlaßöffnung 16 und die Gasauslaßöffnung 17 wurde nach Abschließen der Gaszufuhr- und -abfuhrleitungen gasdicht verschlossen, was durch Aufschmelzen des Glaswulstes 12 in den Bereichen dieser Öffnungen 16,17 und anschließendes Auskühlen-Lassen dieser Bereiche durchgeführt wurde.The gas inlet opening 16 and the gas outlet opening 17 was after completing the Gas supply and discharge lines sealed gas-tight, which by melting the Glaswulstes 12 in the areas of these openings 16,17 and then allowed to cool of these areas was carried out.

    Claims (5)

    1. A method for producing a field emission display (FED), with electrodes (5, 2) of an anode structure (4) and a cathode structure (1) parallel thereto being fixed on a substrate (6, 3) and with a layer of a luminescent material being formed, and with field emitters (19) being applied at least in sections and the cathode and anode structure (1, 4) being sealed in a gas-tight manner with the exception of at least one gas inlet and gas outlet opening (16, 17) prior to the application of the field emitters (19), and with the field emitters (19) being produced by precipitation of field emitter material from a carrier gas, characterized in that the electrodes (5) of the anode structure (4) are fixed on a first substrate (6) and the electrodes (2) of the cathode structure (1) are fixed on a second substrate (3), that the layer (7) of the luminescent material is fixed in a manner covering the electrodes (5) of the anode structure (4), that the cathode structure (1) and the anode structure (4) provided with the luminescent layer (7) are joined with each other in mutually opposite position along their lateral edges (11, 14), and that the field emitters (19), after the gas-tight joining of cathode and anode structure (1, 4), are precipitated from the carrier gas introduced between the cathode and anode structure (1, 4) onto the electrodes (2) of the cathode structure (1).
    2. A method according to claim 1, characterized in that the electrodes (2) are brought by inductive heating to the temperature necessary for the progress of the precipitation of field emitter material onto the electrodes (2).
    3. A method according to claim 1, characterized in that the electrodes (2) are subjected to current for heating to the temperature necessary for the progress of the precipitation of field emitter material onto the electrodes (2).
    4. A method according to one of the claims 1, 2 or 3, characterized in that the field emitters (19) are formed by carbon-containing layers, for which purpose a carbon-containing carrier gas is introduced between cathode and anode structure (1, 4).
    5. A method according to claim 4, characterized in that the carbon-containing layers are precipitated in the form of nanotube layers onto the electrodes (2).
    EP00960217A 1999-10-15 2000-09-20 Method for producing a field emission display Expired - Lifetime EP1224678B1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    AT00960217T ATE298926T1 (en) 1999-10-15 2000-09-20 METHOD FOR PRODUCING A FIELD EMISSION DISPLAY

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    AT174499 1999-10-15
    AT0174499A AT408157B (en) 1999-10-15 1999-10-15 METHOD FOR PRODUCING A FIELD EMISSION DISPLAY
    PCT/AT2000/000249 WO2001029861A1 (en) 1999-10-15 2000-09-20 Method for producing a field emission display

    Publications (2)

    Publication Number Publication Date
    EP1224678A1 EP1224678A1 (en) 2002-07-24
    EP1224678B1 true EP1224678B1 (en) 2005-06-29

    Family

    ID=3520082

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00960217A Expired - Lifetime EP1224678B1 (en) 1999-10-15 2000-09-20 Method for producing a field emission display

    Country Status (6)

    Country Link
    US (1) US6722936B2 (en)
    EP (1) EP1224678B1 (en)
    AT (1) AT408157B (en)
    AU (1) AU7260400A (en)
    DE (1) DE50010647D1 (en)
    WO (1) WO2001029861A1 (en)

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    TW582047B (en) * 2002-08-08 2004-04-01 Ind Tech Res Inst Method to bond spacers onto the anode plate of FED
    EP1388903B1 (en) * 2002-08-09 2016-03-16 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
    US7164520B2 (en) 2004-05-12 2007-01-16 Idc, Llc Packaging for an interferometric modulator
    US7834530B2 (en) * 2004-05-27 2010-11-16 California Institute Of Technology Carbon nanotube high-current-density field emitters
    US7710629B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. System and method for display device with reinforcing substance
    US7551246B2 (en) * 2004-09-27 2009-06-23 Idc, Llc. System and method for display device with integrated desiccant
    US7746537B2 (en) 2006-04-13 2010-06-29 Qualcomm Mems Technologies, Inc. MEMS devices and processes for packaging such devices
    US8040587B2 (en) 2006-05-17 2011-10-18 Qualcomm Mems Technologies, Inc. Desiccant in a MEMS device
    US7816164B2 (en) 2006-12-01 2010-10-19 Qualcomm Mems Technologies, Inc. MEMS processing
    EP2179434A1 (en) * 2007-08-23 2010-04-28 E. I. du Pont de Nemours and Company Field emission device with protecting vapor
    EP2116508A3 (en) 2007-09-28 2010-10-13 QUALCOMM MEMS Technologies, Inc. Optimization of desiccant usage in a MEMS package
    KR20100083555A (en) * 2009-01-14 2010-07-22 삼성에스디아이 주식회사 Light emission device and display device using the same
    US8410690B2 (en) * 2009-02-13 2013-04-02 Qualcomm Mems Technologies, Inc. Display device with desiccant

    Family Cites Families (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5505647A (en) * 1993-02-01 1996-04-09 Canon Kabushiki Kaisha Method of manufacturing image-forming apparatus
    FR2705163B1 (en) * 1993-05-12 1995-07-28 Pixel Int Sa METHOD FOR VACUUMING AND SEALING FLAT VISUALIZATION SCREENS.
    JP3382031B2 (en) * 1993-11-16 2003-03-04 株式会社東芝 Method for manufacturing semiconductor device
    US5697825A (en) * 1995-09-29 1997-12-16 Micron Display Technology, Inc. Method for evacuating and sealing field emission displays
    US5692942A (en) * 1995-11-30 1997-12-02 The Boc Group, Inc. Display forming method
    US5998924A (en) * 1996-04-03 1999-12-07 Canon Kabushiki Kaisha Image/forming apparatus including an organic substance at low pressure
    JP3300877B2 (en) * 1996-06-07 2002-07-08 キヤノン株式会社 Electron emitting element, electron source, and method of manufacturing image forming apparatus
    JP3372848B2 (en) * 1996-10-31 2003-02-04 キヤノン株式会社 Electron emitting device, image display device, and manufacturing method thereof
    US6416374B1 (en) * 1997-09-16 2002-07-09 Canon Kabushiki Kaisha Electron source manufacturing method, and image forming apparatus method
    US5944573A (en) * 1997-12-10 1999-08-31 Bav Technologies, Ltd. Method for manufacture of field emission array
    JP3394173B2 (en) * 1997-12-26 2003-04-07 富士通株式会社 Gas discharge panel and exhaust method thereof
    US6213834B1 (en) * 1998-04-23 2001-04-10 Canon Kabushiki Kaisha Methods for making electron emission device and image forming apparatus and apparatus for making the same
    US6630772B1 (en) * 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
    US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
    EP1061554A1 (en) * 1999-06-15 2000-12-20 Iljin Nanotech Co., Ltd. White light source using carbon nanotubes and fabrication method thereof
    JP3483537B2 (en) * 2000-03-06 2004-01-06 キヤノン株式会社 Method of manufacturing image display device
    US6440763B1 (en) * 2001-03-22 2002-08-27 The United States Of America As Represented By The Secretary Of The Navy Methods for manufacture of self-aligned integrally gated nanofilament field emitter cell and array

    Also Published As

    Publication number Publication date
    WO2001029861A1 (en) 2001-04-26
    US20020119724A1 (en) 2002-08-29
    DE50010647D1 (en) 2005-08-04
    AU7260400A (en) 2001-04-30
    ATA174499A (en) 2001-01-15
    AT408157B (en) 2001-09-25
    US6722936B2 (en) 2004-04-20
    EP1224678A1 (en) 2002-07-24

    Similar Documents

    Publication Publication Date Title
    DE10122602B4 (en) Nanotube emitter structure for a field emission display
    EP1224678B1 (en) Method for producing a field emission display
    DE60011166T2 (en) Electron emitting element and image output device
    DE60021778T2 (en) Carbon ink, electron-emitting element, process for producing an electron-emitting element and image display device
    DE69725653T2 (en) Flat scoreboard and method for mounting spacers in a flat scoreboard
    DE60201689T2 (en) A method of fabricating a triode carbon nanotube field emission device
    US6911767B2 (en) Field emission devices using ion bombarded carbon nanotubes
    DE60104907T2 (en) A method of fabricating a triode carbon nanotube field emission device
    DE69814664T2 (en) FIELD EMISSION DEVICES
    DE69333555T2 (en) Flat field emission cathode using flat display device with triode structure
    DE60122747T2 (en) FIELD EMISSIONING DEVICE WITH CARBONATED PEAKS
    DE10020383A1 (en) Process for producing a field emitter
    DE60305371T2 (en) Carbon nanotube plasma display and method of making the front panel of the plasma display device
    DE1957247C3 (en) picture tube
    DE4112078A1 (en) DISPLAY DEVICE
    DE60037027T2 (en) ELECTRO-EMITTING AND INSULATING PARTICLES CONTAINING FIELD EMISSIONS CATHODES
    DE60200369T2 (en) Method for producing a field emission display using carbon nanotubes
    DE102006013223B4 (en) Field emission display device and method of operating the same
    Lee et al. Carbon nanotube-based field-emission displays for large-area and full-color applications
    DE69737331T2 (en) Image forming apparatus and related manufacturing method
    KR20060061215A (en) Apparatus for orientating carbon nanotube, method of orientating carbon nanotube and method of fabricating field emission display
    DE69818733T2 (en) Imaging device and its manufacturing method
    DE4416597B4 (en) Method and device for producing the pixel radiation sources for flat color screens
    DE60028844T2 (en) Production method of a non-evaporable getter and manufacturing method of an image forming apparatus
    DE69730851T2 (en) CONNECTION METHOD FOR FIELD EMISSIONS FROM FIBERS AND FIELD EMISSION CATEGORY PRODUCED THEREOF

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020515

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: HAMMEL, ERNST

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: HAMMEL, ERNST

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050629

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050629

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050629

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050629

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 50010647

    Country of ref document: DE

    Date of ref document: 20050804

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: BOVARD AG PATENTANWAELTE

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20050919

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050920

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050929

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050929

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050929

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20051109

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051207

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    26N No opposition filed

    Effective date: 20060330

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20060922

    Year of fee payment: 7

    Ref country code: GB

    Payment date: 20060922

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070401

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20070401

    BERE Be: lapsed

    Owner name: ELECTROVAC, FABRIKATION ELEKTROTECHNISCHER SPEZIAL

    Effective date: 20050930

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20070920

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20080531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071001

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070920

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20110922

    Year of fee payment: 12

    Ref country code: DE

    Payment date: 20110927

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 298926

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20120920

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120920

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130403

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50010647

    Country of ref document: DE

    Effective date: 20130403