EP1217085B1 - Non hardenable aluminium alloy as semi-product for structures - Google Patents

Non hardenable aluminium alloy as semi-product for structures Download PDF

Info

Publication number
EP1217085B1
EP1217085B1 EP00128050A EP00128050A EP1217085B1 EP 1217085 B1 EP1217085 B1 EP 1217085B1 EP 00128050 A EP00128050 A EP 00128050A EP 00128050 A EP00128050 A EP 00128050A EP 1217085 B1 EP1217085 B1 EP 1217085B1
Authority
EP
European Patent Office
Prior art keywords
semi
silicon
iron
magnesium
structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00128050A
Other languages
German (de)
French (fr)
Other versions
EP1217085A1 (en
Inventor
Valentin G. Prof. Davydov
Yuri Dr. Filatov
Blanka Dr. Lenczowski
Viktor Prof. Yelagin
Valeri Prof. Zakarov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP00128050A priority Critical patent/EP1217085B1/en
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Priority to ES00128050T priority patent/ES2207459T3/en
Priority to DE50003940T priority patent/DE50003940D1/en
Priority to AT00128050T priority patent/ATE251231T1/en
Priority to PCT/EP2001/014797 priority patent/WO2002050325A1/en
Priority to RU2003116892/02A priority patent/RU2277603C2/en
Priority to CA2398667A priority patent/CA2398667C/en
Priority to JP2002551202A priority patent/JP4212893B2/en
Priority to CNB018053572A priority patent/CN1173059C/en
Priority to US10/204,658 priority patent/US6676899B2/en
Publication of EP1217085A1 publication Critical patent/EP1217085A1/en
Application granted granted Critical
Publication of EP1217085B1 publication Critical patent/EP1217085B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Definitions

  • the present invention relates to the composition of alloys, in particular of naturally hard semi-finished alloys, which in this form serve as material for structures should be used.
  • Naturally hard aluminum alloys as semi-finished products for structures are used in metallurgy, but especially as an AMg6 alloy, which contains the following (% by weight): magnesium 5.8 - 6.8 manganese 0.5-0.8 titanium 0.02 - 0.1 beryllium 0.0002 - 0.005 aluminum rest
  • the document DE-A-198 38 018 discloses a weldable, corrosion-resistant high-magnesium aluminum-magnesium alloy consisting of 5-6% by weight Magnesium (Mg), 0.05-0.15% by weight zirconium (Zr), 0.05-0.12% by weight manganese (Mn), 0.01-0.2% by weight of titanium (Ti), maximum 0.1% by weight of silicon (Si), 0.05-0.5% by weight of one or more elements from the scandium group and / or terbium (Tb), where at least scandium (Sc) is contained, 0.1-0.2% by weight, copper (Cu) and / or 0.1-0.4 % By weight zinc (Zn) as well as aluminum (AI) and unavoidable impurities as the rest.
  • Mg Magnesium
  • Zr zirconium
  • Mn manganese
  • Ti titanium
  • Si maximum 0.1% by weight of silicon
  • Si 0.05-0.5% by weight of one or more elements from the scandium group and / or terbium
  • a naturally hard aluminum alloy that is used as a semi-finished product for structures also belongs to the state of the art as a prototype with the following chemical composition (% by weight): magnesium 3.9 - 4.9 titanium 0.01-0.1 beryllium 0.0001 - 0.005 zircon 0.05-0.15 scandium 0.20 - 0.50 cerium 0.001 - 0.004 aluminum rest
  • This known alloy does not show sufficient static and dynamic strength high processability during the manufacturing process, high corrosion resistance, good weldability and high operability under low temperature conditions.
  • the invention relates to a new, naturally hard aluminum alloy for semifinished products which, in addition to magnesium, titanium, beryllium, zircon, scandium and cerium, also consists of manganese, copper, zinc and iron and silicon in the following composition of the components (% by weight), the Ratio between iron and silicon is in the range of 1 to 5: magnesium 5.0 - 5.6 titanium 0.01-0.05 beryllium 0.0001 - 0.005 zircon 0.05-0.15 scandium 0.18-0.30 cerium 0.001 - 0.004 manganese 0.05-0.18 copper 0.05-0.15 zinc 0.05-0.15 Iron and silicon 0.04 - 0.24 Aluminum and unavoidable impurities rest
  • the technical effect is an improvement in the static and dynamic strength properties of the alloy, which increases the service life and operational safety as well as the weight value of the structures exposed to static and dynamic loads, especially the structures of various air and Spacecraft - including those that burn cryogenic fuel.
  • the alloy is more of a ductile matrix that consists of one Mixed crystal consisting of dissolved magnesium, manganese, copper and zinc in aluminum.
  • the particularly good operability of the alloy under dynamic Alternating stress is due to the high ductility of the matrix.
  • Secondary Precipitates from finely divided intermetallic particles, the aluminum, scandium, Contain zirconium, titanium and other transition metals found in the alloy, ensure both the high static strength of the alloy and a good one Resistance to crack propagation under alternating stress.
  • the setpoint of the Relationship between iron and silicon optimizes the morphology from the solidification originating primary intermetallic compounds, which are primarily made of aluminum, Iron and silicon exist and improve the static strength of the Alloy alloy while maintaining its dynamic strength and plasticity become.
  • the melt was prepared in an electric furnace, followed by 165 x 550 mm large and flat cast blocks of the alloy according to the invention with minimal (Composition 1), optimal (composition 2) and maximum (Composition 3) Ratio of ingredients - including those over the current constraints of the components in excess (Compositions 4 and 5) and the conventional alloy (composition 6) - were cast using semi-continuous casting techniques (Table 1).
  • the cast blocks were homogenized and machined to a thickness of 140 mm. They were then strengthened to 7 at a temperature of 400 ° C mm hot-rolled and then cold-rolled to a thickness of 4 mm. The cold rolled sheets were heat treated in an electric furnace. The heat-treated sheets served as investigation material.
  • Table 2 shows that the alloy according to the invention has a higher static and dynamic strength than the conventional one. This enables one to reduce the weight of the structures made of the alloy according to the invention by 10 to 15% in order to reduce operating costs, which is particularly important for the aircraft industry.
  • the alloy according to the invention can be used as a base material in welded structures and as a filler material for welded joints.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Hard Magnetic Materials (AREA)
  • Laminated Bodies (AREA)
  • Forging (AREA)
  • Conductive Materials (AREA)
  • Metal Rolling (AREA)
  • Extrusion Of Metal (AREA)

Abstract

The invention relates to chemical compositions of alloys, particularly naturally hard semi-finished product alloys which should be used in said form as material for semi-finished products. The invention also relates to a naturally hard aluminium alloy for semi-finished product structures which is made of magnesium, titanium, beryllium, zircon, scandium and cerium and additionally manganese, copper, zinc and an element group containing iron and silicon, whereby the ratio of iron to the silicon ranges between 1 and 5. The composition of the aluminium alloy is (in wt. %): magnesium 5.0-5.6; titanium 0.01-0.05; beryllium 0.0001-0.005; zircon 0.05-0.15; scandium 0.18-0.30; cerium 0.001-0.004; manganese 0.05-0.18; iron 0.05-0.18; zinc 0.05-0.15; the element group containing iron and silicon 0.04-0.24 and the rest being aluminium.

Description

Die vorliegende Erfindung betrifft die Zusammensetzung von Legierungen, insbesondere von naturharten Halbzeug-Legierungen, die in dieser Form als Material für Strukturen verwendet werden sollen.The present invention relates to the composition of alloys, in particular of naturally hard semi-finished alloys, which in this form serve as material for structures should be used.

Naturharte Aluminiumlegierungen als Halbzeug für Strukturen (siehe GOST Standard 4784-74) finden in der Metallurgie Verwendung, vor allem jedoch als AMg6-Legierung, die folgendes enthält (Gew.-%): Magnesium 5,8 - 6,8 Mangan 0,5 - 0,8 Titan 0,02 - 0,1 Beryllium 0,0002 - 0,005 Aluminium Rest Naturally hard aluminum alloys as semi-finished products for structures (see GOST Standard 4784-74) are used in metallurgy, but especially as an AMg6 alloy, which contains the following (% by weight): magnesium 5.8 - 6.8 manganese 0.5-0.8 titanium 0.02 - 0.1 beryllium 0.0002 - 0.005 aluminum rest

Eine derartige Legierung weist jedoch nicht ausreichende Festigkeitseigenschaften auf, insbesondere eine geringe 0,2%-Dehngrenze bei kalt- und warmgeformten Halbzeugen.However, such an alloy does not have sufficient strength properties, in particular a low 0.2% proof stress for cold and hot formed semi-finished products.

Das Dokument DE-A-198 38 018 offenbart eine schweissbare, korrosionsbeständige hochmagnesiumhaltige Aluminium-Magnesium- Legierung bestehend aus 5-6 Gew.-% Magnesium (Mg), 0,05-0,15 Gew.-% Zirkonium (Zr), 0,05-0,12 Gew.-% Mangan (Mn), 0,01-0,2 Gew.-% Titan (Ti), maximal 0,1 Gew.-% Silizium (Si), 0,05-0,5 Gew.-% eines oder mehrerer Elemente aus der Scandiumgruppe und/oder Terbium (Tb), wobei zumindest Scandium (Sc) enthalten ist, 0,1-0,2 Gew.-%, Kupfer (Cu) und/oder 0,1-0,4 Gew.-% Zink (Zn) sowie Aluminium (AI) und unvermeidbare Verunreinigungen als Rest.The document DE-A-198 38 018 discloses a weldable, corrosion-resistant high-magnesium aluminum-magnesium alloy consisting of 5-6% by weight Magnesium (Mg), 0.05-0.15% by weight zirconium (Zr), 0.05-0.12% by weight manganese (Mn), 0.01-0.2% by weight of titanium (Ti), maximum 0.1% by weight of silicon (Si), 0.05-0.5% by weight of one or more elements from the scandium group and / or terbium (Tb), where at least scandium (Sc) is contained, 0.1-0.2% by weight, copper (Cu) and / or 0.1-0.4 % By weight zinc (Zn) as well as aluminum (AI) and unavoidable impurities as the rest.

Eine naturharte Aluminiumlegierung, die als Halbzeug für Strukturen verwendet wird (siehe Patent RU Nr. 2085607, IPC-Klasse C22 C 21/06) gehört als Prototyp folgender chemischen Zusammensetzung ebenfalls zum Stand der Technik (Gew.- %): Magnesium 3,9 - 4,9 Titan 0,01 - 0,1 Beryllium 0,0001 - 0,005 Zirkon 0,05 - 0,15 Scandium 0,20 - 0,50 Cer 0,001 - 0,004 Aluminium Rest A naturally hard aluminum alloy that is used as a semi-finished product for structures (see patent RU No. 2085607, IPC class C22 C 21/06) also belongs to the state of the art as a prototype with the following chemical composition (% by weight): magnesium 3.9 - 4.9 titanium 0.01-0.1 beryllium 0.0001 - 0.005 zircon 0.05-0.15 scandium 0.20 - 0.50 cerium 0.001 - 0.004 aluminum rest

Diese bekannte Legierung zeigt nicht ausreichende statische und dynamische Festigkeit bei hoher Verarbeitbarkeit während des Herstellungsprozesses, hohe Korrosionsbeständigkeit, gute Schweißbarkeit und hohe Betriebsfähigkeit unter Tieftemperaturbedingungen.This known alloy does not show sufficient static and dynamic strength high processability during the manufacturing process, high corrosion resistance, good weldability and high operability under low temperature conditions.

Gegenstand der Erfindung ist eine neue naturharte Aluminiumlegierung für Halbzeuge, die neben Magnesium, Titan, Beryllium, Zirkon, Scandium und Cer zusätzlich aus Mangan, Kupfer, Zink sowie Eisen und Silizium in folgender Zusammensetzung der Komponenten besteht (Gew.-%), wobei das Verhältnis zwischen Eisen und Silizium im Bereich von 1 bis 5 liegt: Magnesium 5,0 - 5,6 Titan 0,01 - 0,05 Beryllium 0,0001 - 0,005 Zirkon 0,05 - 0,15 Scandium 0,18 - 0,30 Cer 0,001 - 0,004 Mangan 0,05 - 0,18 Kupfer 0,05 - 0,15 Zink 0,05 - 0,15 Eisen und Silizium 0,04 - 0,24 Aluminium und unvermeidbare Verunreinigungen Rest The invention relates to a new, naturally hard aluminum alloy for semifinished products which, in addition to magnesium, titanium, beryllium, zircon, scandium and cerium, also consists of manganese, copper, zinc and iron and silicon in the following composition of the components (% by weight), the Ratio between iron and silicon is in the range of 1 to 5: magnesium 5.0 - 5.6 titanium 0.01-0.05 beryllium 0.0001 - 0.005 zircon 0.05-0.15 scandium 0.18-0.30 cerium 0.001 - 0.004 manganese 0.05-0.18 copper 0.05-0.15 zinc 0.05-0.15 Iron and silicon 0.04 - 0.24 Aluminum and unavoidable impurities rest

Die technische Wirkung besteht in einer Verbesserung der statischen und dynamischen Festigkeitseigenschaften der Legierung, wodurch sich die Lebensdauer und Betriebssicherheit sowie der Gewichtswert der statischen und dynamischen Belastungen ausgesetzten Strukturen, besonders der Strukturen verschiedener Luft- und
Raumfahrtzeuge - einschließlich solcher die kryogener Treibstoff verbrennen, verbessern.
The technical effect is an improvement in the static and dynamic strength properties of the alloy, which increases the service life and operational safety as well as the weight value of the structures exposed to static and dynamic loads, especially the structures of various air and
Spacecraft - including those that burn cryogenic fuel.

Aufgrund des erfindungsgemäßen Verhältnisses zwischen dem chemischen Gehalt und den chemischen Bestandteilen liegt bei der Legierung eher eine duktile Matrix vor, die aus einem Mischkristall von gelöstem Magnesium, Mangan, Kupfer und Zink in Aluminium besteht.Because of the ratio according to the invention between the chemical content and the chemical components, the alloy is more of a ductile matrix that consists of one Mixed crystal consisting of dissolved magnesium, manganese, copper and zinc in aluminum.

Die besonders gute Betriebsfähigkeit der Legierung unter dynamischer Wechselbeanspruchung ist der hohen Duktilität der Matrix zu verdanken. Sekundäre Ausscheidungen aus feinst verteilten intermetallischen Teilchen, die Aluminium, Scandium, Zirkon, Titan und andere in der Legierung vorkommende Übergangsmetalle enthalten, sorgen sowohl für die hohe statische Festigkeit der Legierung als auch für einen guten Widerstand gegenüber der Rissausbreitung bei Wechselbeanspruchung. Der Sollwert des Verhältnisses zwischen Eisen und Silizium optimiert die Morphologie der aus der Erstarrung stammenden primären intermetallischen Verbindungen, die vornehmlich aus Aluminium, Eisen und Silizium bestehen und für eine Verbesserung der statischen Festigkeit der Legierung sorgen, während ihre dynamische Festigkeit und Plastizität aufrechterhalten werden. The particularly good operability of the alloy under dynamic Alternating stress is due to the high ductility of the matrix. secondary Precipitates from finely divided intermetallic particles, the aluminum, scandium, Contain zirconium, titanium and other transition metals found in the alloy, ensure both the high static strength of the alloy and a good one Resistance to crack propagation under alternating stress. The setpoint of the Relationship between iron and silicon optimizes the morphology from the solidification originating primary intermetallic compounds, which are primarily made of aluminum, Iron and silicon exist and improve the static strength of the Alloy alloy while maintaining its dynamic strength and plasticity become.

Beispielexample

Unter Verwendung von Aluminium A85, Magnesium MG90, Kupfer MO, Zink TsO, binärer Vorlegierungen wie Aluminium-Titan, Aluminium-Beryllium, Aluminium-Zirkon, Aluminium-Scandium, Aluminium-Cer, Aluminium-Mangan, Aluminium-Eisen und Silumin als Zusatzstoff wurde die Schmelze in einem elektrischen Ofen vorbereitet, worauf 165 x 550 mm große und flache Gussblöcke der erfindungsgemäßen Legierung mit minimalem (Zusammensetzung 1), optimalem (Zusammensetzung 2) und maximalem (Zusammensetzung 3) Verhältnis der Bestandteile - einschließlich der über die gegenwärtigen Einschränkungen hinausgehender Verhältnisse der Bestandteile (Zusammensetzungen 4 und 5) sowie der herkömmlichen Legierung (Zusammensetzung 6) - mit Hilfe halbkontinuierlicher Gießtechniken gegossen wurden (Tabelle 1).Using aluminum A85, magnesium MG90, copper MO, zinc TsO, binary Master alloys such as aluminum titanium, aluminum beryllium, aluminum zircon, aluminum scandium, Aluminum cerium, aluminum manganese, aluminum iron and silumin as Additive, the melt was prepared in an electric furnace, followed by 165 x 550 mm large and flat cast blocks of the alloy according to the invention with minimal (Composition 1), optimal (composition 2) and maximum (Composition 3) Ratio of ingredients - including those over the current constraints of the components in excess (Compositions 4 and 5) and the conventional alloy (composition 6) - were cast using semi-continuous casting techniques (Table 1).

Wird die Legierung unter metallurgischen Produktionsbedingungen vorbereitet, kann Schrott aus Aluminium-Magnesium-Legierungen als Zusatzstoff verwendet werden.If the alloy is prepared under metallurgical production conditions, can Scrap made of aluminum-magnesium alloys can be used as an additive.

Die Gussblöcke wurden homogenisiert und maschinell bearbeitet, bis auf eine Stärke von 140 mm. Anschließend wurden sie bei einer Temperatur von 400°C auf eine Stärke von 7 mm warmgewalzt und dann auf eine Stärke von 4 mm kaltgewalzt. Die kaltgewalzten Bleche wurden in einem elektrischen Ofen wärmebehandelt. Die wärmebehandelten Bleche dienten als Untersuchungsmaterial.The cast blocks were homogenized and machined to a thickness of 140 mm. They were then strengthened to 7 at a temperature of 400 ° C mm hot-rolled and then cold-rolled to a thickness of 4 mm. The cold rolled sheets were heat treated in an electric furnace. The heat-treated sheets served as investigation material.

Aus den Blechen herausgearbeitete standardmäßige Querproben wurden zur Bestimmung der statischen Zugfestigkeit (Rm, Rp0,2, A) und der dynamischen Festigkeit verwendet:

  • Bruchlastspielzahl (N) bei Bestimmung der Kurzzeitfestigkeit (LCF), wofür Proben mit einem Kerbfaktor von Kt = 2,5 und einer maximalen Spannung σmax 160 MPa verwendet werden;
  • Rissausbreitungsgeschwindigkeit da/dN in einem Bereich des Spannungsintensitätsfaktors ΔK = 31,2 MPa√m;
  • kritischer Spannungsintensitätsfaktor KC im ebenen Spannungszustand, wobei die Breite (B) der Probe 160 mm beträgt.
Standard transverse samples worked out from the sheets were used to determine the static tensile strength (R m , R p0.2 , A) and the dynamic strength:
  • Number of breaking load cycles (N) when determining the short-term strength (LCF), for which samples with a notch factor of K t = 2.5 and a maximum stress σ max 160 MPa are used;
  • Crack propagation velocity da / dN in a range of the stress intensity factor ΔK = 31.2 MPa√m;
  • critical stress intensity factor K C in the flat stress state, the width (B) of the sample being 160 mm.

Alle Tests wurden bei Raumtemperatur durchgeführt.All tests were carried out at room temperature.

Die Testergebnisse sind in Tabelle 2 aufgelistet.The test results are listed in Table 2.

Tabelle 2 belegt, dass die erfindungsgemäße Legierung gegenüber der herkömmlichen eine höhere statische und dynamische Festigkeit aufweist. Dies ermöglicht einem, das Gewicht der Strukturen aus der erfindungsgemäßen Legierung um 10 bis 15% zu reduzieren, um Betriebskosten zu senken, was insbesondere für die Flugzeugindustrie wichtig ist. Die hohe Betriebsfähigkeit der erfindungsgemäßen Legierung unter statischen und dynamischen Bedingungen sowie die Tatsache, dass die erfindungsgemäßen Legierung eine naturharte ist, die eine hohe Korrosionsbeständigkeit und eine gute Schweißbarkeit aufweist, ermöglicht einem sie für die Konstruktion ganz neuer Luft- und Raumfahrzeuge, Hochseeschiffe, bodengebundene Fahrzeuge und anderer Fahrzeuge, deren Strukturelemente durch Schweißen verbunden werden, zu verwenden. Die erfindungsgemäße Legierung kann als Grundmaterial in geschweißten Strukturen und als Scheißzusatzwerkstoff für Schweißverbindungen genutzt werden.

Figure 00070001
Figure 00080001
Table 2 shows that the alloy according to the invention has a higher static and dynamic strength than the conventional one. This enables one to reduce the weight of the structures made of the alloy according to the invention by 10 to 15% in order to reduce operating costs, which is particularly important for the aircraft industry. The high operability of the alloy according to the invention under static and dynamic conditions and the fact that the alloy according to the invention is a naturally hard, which has a high corrosion resistance and good weldability, enables it for the construction of completely new air and space vehicles, ocean-going vessels, ground-based vehicles and other vehicles, the structural elements of which are connected by welding. The alloy according to the invention can be used as a base material in welded structures and as a filler material for welded joints.
Figure 00070001
Figure 00080001

Claims (1)

  1. Naturally hard aluminium alloy as a semi-finished product for structures, characterised in that,
    in addition to magnesium, titanium, beryllium, zirconium, scandium and cerium, it additionally consists of manganese, copper and zinc, as well as iron and silicon, in the following composition of the components (% w/w), the ratio between iron and silicon being in the range of 1 to 5: Magnesium 5.0 - 5.6 Titanium 0.01 - 0.05 Beryllium 0.0001 - 0.005 Zirconium 0.05 - 0.15 Scandium 0.18 - 0.30 Cerium 0.001 - 0.004 Manganese 0.05 - 0.18 Copper 0.05 - 0.15 Zinc 0.05 - 0.15 Iron and silicon 0.04 - 0.24 Aluminium and unavoidable impurities remainder
EP00128050A 2000-12-21 2000-12-21 Non hardenable aluminium alloy as semi-product for structures Expired - Lifetime EP1217085B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ES00128050T ES2207459T3 (en) 2000-12-21 2000-12-21 TEMPABLE ALUMINUM ALLOY AS A SEMI-FINISHED PRODUCT FOR STRUCTURES.
DE50003940T DE50003940D1 (en) 2000-12-21 2000-12-21 Non-hardenable aluminum alloy as semi-finished product for structures
AT00128050T ATE251231T1 (en) 2000-12-21 2000-12-21 NON-HARDENABLE ALUMINUM ALLOY AS A SEMI-FINISHED PRODUCT FOR STRUCTURES
EP00128050A EP1217085B1 (en) 2000-12-21 2000-12-21 Non hardenable aluminium alloy as semi-product for structures
RU2003116892/02A RU2277603C2 (en) 2000-12-21 2001-12-14 Non-aging aluminum alloy as semifinished product for making constructions
CA2398667A CA2398667C (en) 2000-12-21 2001-12-14 Non-age-hardening aluminum alloy as a semifinished material for structures
PCT/EP2001/014797 WO2002050325A1 (en) 2000-12-21 2001-12-14 Non-hardenable aluminium alloy as a semi-finished product for structures
JP2002551202A JP4212893B2 (en) 2000-12-21 2001-12-14 Self-hardening aluminum alloys for structural materials
CNB018053572A CN1173059C (en) 2000-12-21 2001-12-14 Non-hardenable aluminium alloy as a semi-finished product for structures
US10/204,658 US6676899B2 (en) 2000-12-21 2001-12-14 Non-hardenable aluminum alloy as a semi-finished product for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00128050A EP1217085B1 (en) 2000-12-21 2000-12-21 Non hardenable aluminium alloy as semi-product for structures

Publications (2)

Publication Number Publication Date
EP1217085A1 EP1217085A1 (en) 2002-06-26
EP1217085B1 true EP1217085B1 (en) 2003-10-01

Family

ID=8170749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00128050A Expired - Lifetime EP1217085B1 (en) 2000-12-21 2000-12-21 Non hardenable aluminium alloy as semi-product for structures

Country Status (9)

Country Link
EP (1) EP1217085B1 (en)
JP (1) JP4212893B2 (en)
CN (1) CN1173059C (en)
AT (1) ATE251231T1 (en)
CA (1) CA2398667C (en)
DE (1) DE50003940D1 (en)
ES (1) ES2207459T3 (en)
RU (1) RU2277603C2 (en)
WO (1) WO2002050325A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111656A1 (en) * 2015-12-25 2017-06-29 Общество С Ограниченной Ответственностью "Смв Инжиниринг" High-strength non-heat-treatable aluminium alloy and method for production thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852365B2 (en) * 2009-01-07 2014-10-07 The Boeing Company Weldable high-strength aluminum alloys
CN102912199A (en) * 2012-10-29 2013-02-06 虞海香 Aluminum alloy sheet for vehicle body
CN104313414A (en) * 2014-11-06 2015-01-28 广西柳州银海铝业股份有限公司 Aluminum-magnesium alloy and preparation method of plate of aluminum-magnesium alloy
WO2016130426A1 (en) 2015-02-11 2016-08-18 Scandium International Mining Corporation Scandium-containing master alloys and methods for making the same
EP3181711B1 (en) 2015-12-14 2020-02-26 Apworks GmbH Aluminium alloy containing scandium for powder metallurgy technologies
EP3556875B1 (en) * 2018-04-18 2020-12-16 Newfrey LLC Fastener made of aluminium alloy comprising scandium
RU2726520C1 (en) * 2019-09-03 2020-07-14 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Welded thermally non-hardened alloy based on al-mg system
CN113231601A (en) * 2021-04-15 2021-08-10 安徽天平机械股份有限公司 Reduction gearbox shell casting method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2038405C1 (en) * 1993-02-19 1995-06-27 Всероссийский научно-исследовательский институт авиационных материалов Aluminium-base alloy
FR2717827B1 (en) * 1994-03-28 1996-04-26 Jean Pierre Collin Aluminum alloy with high Scandium contents and process for manufacturing this alloy.
RU2085607C1 (en) * 1995-06-30 1997-07-27 Борис Иванович Бондарев Deformable thermally cryogenic unreinforced aluminium- based alloy
DE19838018C2 (en) * 1998-08-21 2002-07-25 Eads Deutschland Gmbh Welded component made of a weldable, corrosion-resistant, high-magnesium aluminum-magnesium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111656A1 (en) * 2015-12-25 2017-06-29 Общество С Ограниченной Ответственностью "Смв Инжиниринг" High-strength non-heat-treatable aluminium alloy and method for production thereof
RU2636781C2 (en) * 2015-12-25 2017-11-28 ООО "СМВ Инжиниринг" High-strength thermally non-strengthened aluminium alloy and method for its production

Also Published As

Publication number Publication date
CA2398667C (en) 2010-05-18
CN1173059C (en) 2004-10-27
CN1404533A (en) 2003-03-19
JP2004516385A (en) 2004-06-03
ATE251231T1 (en) 2003-10-15
CA2398667A1 (en) 2002-06-27
JP4212893B2 (en) 2009-01-21
WO2002050325A1 (en) 2002-06-27
RU2277603C2 (en) 2006-06-10
EP1217085A1 (en) 2002-06-26
DE50003940D1 (en) 2003-11-06
ES2207459T3 (en) 2004-06-01

Similar Documents

Publication Publication Date Title
US4094705A (en) Aluminum alloys possessing improved resistance weldability
EP0656956B9 (en) Tough aluminum alloy containing copper and magnesium
DE10352932B4 (en) Cast aluminum alloy
DE10392806B4 (en) Process for producing a high-strength balanced Al-Mg-Si alloy
DE2265686C2 (en) Use of a nickel-chromium alloy
US7993474B2 (en) Aircraft structural member made of an Al-Cu-Mg alloy
JP3053352B2 (en) Heat-treated Al alloy with excellent fracture toughness, fatigue properties and formability
DE202006020514U1 (en) 2000 series alloys with damage tolerance performance for aerospace applications
EP0642598B1 (en) Low density, high strength al-li alloy having high toughness at elevated temperatures
DE102016219711B4 (en) Aluminum alloy for die casting and process for its heat treatment
EP1217085B1 (en) Non hardenable aluminium alloy as semi-product for structures
DE112012004846T5 (en) Aluminum-magnesium alloy and alloy plate
DE60210899T2 (en) High strength and creep resistant magnesium alloys
US3414406A (en) Aluminium alloys and articles made therefrom
DE60211830T2 (en) Creep resistant magnesium alloys with good castability
US20230087605A1 (en) New aluminum alloys having bismuth and/or tin
EP0219629A1 (en) Heat-resisting aluminium alloy and process for its manufacture
DE2239467A1 (en) HIGH STRENGTH COPPER ALLOYS AND METHOD FOR THEIR PRODUCTION
JPH0121217B2 (en)
WO2000043560A1 (en) Aluminum-magnesium-silicon alloy
JPH0734169A (en) Wear resistant aluminum alloy excellent in strength
RU2233345C1 (en) Aluminium-base structural, deformable, thermally non-strengthening alloy
CH690916A5 (en) Thermaformed and weldable aluminum alloy of the AlMgSi type.
US20030156967A1 (en) Non-hardenable aluminium alloy as a semi-finished product for structures
US3370945A (en) Magnesium-base alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS DEUTSCHLAND GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031001

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031001

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031001

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031001

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZAKAROV, VALERI PROF.

Inventor name: LENCZOWSKI, BLANKA DR.

Inventor name: YELAGIN, VIKTOR PROF.

Inventor name: DAVYDOV, VALENTIN G. PROF.

Inventor name: FILATOV, YURI DR.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003940

Country of ref document: DE

Date of ref document: 20031106

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031221

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040101

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040101

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2207459

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
BERE Be: lapsed

Owner name: *EADS DEUTSCHLAND G.M.B.H.

Effective date: 20031231

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50003940

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140819

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 17

Ref country code: DE

Payment date: 20161213

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161213

Year of fee payment: 17

Ref country code: FR

Payment date: 20161222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161223

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50003940

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171221

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171221

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171222