EP1216757A1 - Flüssigkeitszerstäuber - Google Patents

Flüssigkeitszerstäuber Download PDF

Info

Publication number
EP1216757A1
EP1216757A1 EP01310829A EP01310829A EP1216757A1 EP 1216757 A1 EP1216757 A1 EP 1216757A1 EP 01310829 A EP01310829 A EP 01310829A EP 01310829 A EP01310829 A EP 01310829A EP 1216757 A1 EP1216757 A1 EP 1216757A1
Authority
EP
European Patent Office
Prior art keywords
rotor
fluid
blade portions
nozzles
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01310829A
Other languages
English (en)
French (fr)
Inventor
Edward Hugh Owens
George Henry Smith
Mark Thomas Leonard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rynex Engineering Ltd
Original Assignee
Rynex Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rynex Engineering Ltd filed Critical Rynex Engineering Ltd
Publication of EP1216757A1 publication Critical patent/EP1216757A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/04Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • B05B3/0486Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet the spray jet being generated by a rotary deflector rotated by liquid discharged onto it in a direction substantially parallel its rotation axis

Definitions

  • the present invention relates to sprinkler devices suitable for dispersing fluid into a more or less mist-like form.
  • Water dispersing systems incorporating sprinkler devices are well-known and are used in a variety of forms (static, rotary, oscillating etc.) in a wide range of applications such as in fire suppression systems, in agricultural/horticultural systems and in commercial automated vehicle wash systems.
  • a water dispersing system is used for example, to water plants, care must be taken not to damage seedlings and/or delicate plants. Additionally, it is highly desirable to provide an even distribution of water over a particular area of choice to be watered. Damage to seedlings and/or delicate plants can occur where the water droplet size is too large, and may also occur where water strikes the seedling plants with too much force.
  • WO96/01153 and GB 2 330 783A describe sprinkler devices in which a rotor is rotated in turbine fashion, under the action of laminar flow jets of water. Some or all of the jets of water are arranged to make partial or "skliffing" contact with the edges of turbine blades of the rotor so as to produce a mist of water droplets.
  • One problem encountered in practice with this design is that the spray or mist generated by the device tends to be inhomogeneous, the respective plumes of spray from the various jets being clearly discernible in the overall spray pattern.
  • the present invention provides a fluid atomising device suitable for use in a fluid dispersing system wherein the atomising device comprises a turbine rotor having a plurality of blade portions, and at least two nozzles for directing a fluid, supplied to the nozzles in use of the device, onto the turbine rotor in at least two fluid jets, and wherein the nozzles are formed and arranged so that, in use, each said fluid jet impinges substantially fully upon one or more of the blade portions of the rotor, so that the rotor is rotated under the force of the impinging water, thereby causing the blade portions of the rotor to intercept said fluid jets.
  • the atomizing device of the present invention provides a fine and substantially homogeneous mist which is particularly useful in a number of different applications - without the need for any separate power source for rotating the rotor thereof.
  • Suitable applications which may be mentioned include fire suppression systems; various agricultural/horticultural systems for watering, humidifying, delivering nutrient and/or treatment fluids; commercial automated washing systems, for example for washing vehicles; scrubbing systems for removing particulates and/or soluble components from flue gases and the like; aerating systems such as for example those used in waste water treatment installations in order to oxygenate the water in order to promote microbial digestion of waste materials present therein, etc.
  • the present invention provides such a system characterized by the use of an atomizing device of the present invention.
  • the atomising device When fluid, preferably water, is supplied to the nozzles at a sufficiently high pressure, the atomising device produces a plume of fine droplets of fluid due to the action of the turbine blade portions upon the high velocity fluid jets.
  • the rotor is driven by the force of the fluid jets striking the blade portions, without the need for the rotor to be powered by a secondary drive means.
  • each fluid jet impinges substantially fully upon one or more said blade portions in the sense that said blade portion(s) upon which the jet impinges, intersect the jet across substantially the full diameter of the jet.
  • the blade portions can take a variety of forms including, but not limited to: conventional turbine blades where the blade portions are typically relatively thin members projecting from a rotor body, or parts of channels or passages formed in or through a rotor body.
  • the turbine rotor blade portions are preferably formed and arranged so as to substantially continuously intercept each said fluid jet from the nozzles, in use of the atomising device.
  • there are a multiplicity of said blade portions which are arranged circumferentially about the rotor, advantageously from 10 to 25, preferably from 12 to 18.
  • Each blade portion preferably comprises a plurality of angled surfaces provided on the rotor.
  • the blade portions may each have a profile which varies either substantially continuously or discontinuously. The incidence angle at which each fluid jet impinges upon the blade portions may therefore vary substantially continuously or discontinuously concomitant with the profile of the blade portion towards which said fluid jet is directed by the nozzles, in use.
  • the nozzles are preferably mounted in a stator body about which the rotor rotates.
  • Bearing means is preferably provided between the stator and rotor, providing at least one bearing surface, therebetween.
  • the bearing means comprises stable low friction material such as, for example, Torlon or Vesconite (both Trade Marks). This ensures steady rotation of the rotor relative to the stator.
  • the rotor and/or stator could be made from such a material, so as to minimise friction therebetween, although this is generally less preferred since a rotor made of low friction material may exhibit erosion problems due to the action of the impinging jets and/or a stator made of low friction material could limit the maximum pressure of fluid which can be supplied to the nozzles.
  • an annular bearing mechanism conveniently a ball or roller bearing device, which advantageously is provided with suitable protection, for example labyrinth seals either side thereof, so as to make it substantially resistant to water ingress and damage.
  • the stator is provided with an inner hollow core portion which is in fluid communication with said nozzles.
  • This core portion is preferably generally cylindrical and substantially aligned with a longitudinal axis of the atomising device about which axis the rotor rotates.
  • water is supplied, preferably by a pump device, to said inner core portion, which water then exits the nozzles as fluid jets which impinge substantially fully and, preferably, continuously upon the rotor blade portions, as above described.
  • the nozzles may be formed integrally in the stator or, preferably, are removable nozzles seated in the stator body so as to direct the fluid jets at said rotor blade portions as described herein above.
  • Each nozzle preferably comprises an orifice in the form of a generally cylindrical bore in a nozzle body which is detachably mounted in a stator body so as to be removable from the stator, this cylindrical bore being in fluid communication with said central core portion of the device.
  • the diameter of the orifices may vary axially therealong, for example the orifice may widen towards its outward (outlet) end.
  • the chosen diameter of the orifices is sufficiently small, and the water is pumped to the device, in use, under sufficiently high pressure, that the water flow in the water jets issuing from the orifices is substantially turbulent.
  • the diameter of each orifice is in the range of 0.5mm to 1.5mm. With such orifice diameters, a desired average water flow-rate is from 1 litre/minute to 2.6 litres/minute approximately, through each orifice. Nevertheless significantly larger diameters may be appropriate for at least some applications and/or with larger sizes of atomizing device.
  • the rotor is formed and arranged such that the blade portions are constituted by parts of the walls of passages which extend radially outwardly of the rotor, wherein the passages each have a fluid inlet to receive a said fluid jet and a fluid outlet, the inlet being located radially inwardly of the outlet.
  • the fluid jet in order for the fluid jet to impinge substantially continuously on one or more blade portions, each located within or forming part of the inner surface forming the passages, then the fluid jet should have substantially continuous access to said one or more blade portions.
  • At least the fluid inlet of each passage should have a relatively large diameter and/or be shaped such that the edges of successive inlets are substantially adjacent, thereby allowing a fluid jet substantially continuous access to said one or more blade portions.
  • the blade portions form at least part of an inner surface forming the passages.
  • the blade portions may be constituted by blades located within and extending across at least part of the inner diameter of said passages so that a fluid jet impinges thereon in use of the device of the present invention.
  • the passages may be of any shape of cross-section, for example circular, elliptical, square, triangular or polygonal. Moreover, the shape and size of the cross-section of the passages may vary along the longitudinal extent thereof from the inlet to the outlet.
  • the nozzles are preferably arranged to direct a fluid jet into the passages through said inlets so that, in use, the fluid jet strikes said blade portions of the passages and exits through the outlets thereof.
  • the longitudinal axis of the passage is preferably arranged to extend at an angle which is offset from the longitudinal axis of the fluid jet within a plane which includes the longitudinal axis of the fluid jet and the rotational axis of the rotor. That is the fluid jet strikes the blade portion at an incidence angle within the horizontal plane formed between the longitudinal axis of the fluid jet and at least part of a said blade portion.
  • the passages are preferably angled relative to the longitudinal axis of the device so as to lie in a conical surface plane.
  • the cone angle ( ⁇ ) may be in the range of from 20° to 160°, preferably from 50° to 120°, and most preferably about 90°.
  • the blade portions extend in a direction which is offset from a radial direction in order to provide rotation of the rotor when the fluid jet impacts the blade portions.
  • the offset is by an angle of from 15 to 40°, advantageously from 20 to 35°.
  • the nozzles may take the form of a set of screw-in implants or other removable forms which may be fitted into a corresponding set of openings provided in the stator body.
  • a plurality of sets of nozzles may be provided so that there are more nozzles than there are openings provided therefor in the stator, and at least some of the nozzles may have different size orifice diameters whereby one said nozzle of one diameter may be exchanged for another said nozzle having a different diameter.
  • the feature of providing exchangeable nozzles of different diameters is significantly advantageous in that different diameter fluid jets can be produced by the device by changing nozzles. Additionally, should a nozzle become blocked or damaged, then it may be easily replaced by another such nozzle, thereby allowing more or less continuous operation of the atomiser device while the blocked/damaged nozzle is unblocked or repaired.
  • the nozzles are preferably spaced circumferentially about the longitudinal axis of the device and are angled thereto so as to lie in a conical plane.
  • the cone angle ( ⁇ ) may be in the range of 20° to 160°, preferably substantially 90°.
  • the water jet from each nozzle upon impacting with the turbine blades, forms a plume or spray of water which expands radially outwardly from the rotor to produce an expanding arc of water droplets.
  • Each such plume produced by a nozzle of the atomiser device preferably has an angle of spread which is in the range of from 30 degrees to 45 degrees to the axis of the nozzle.
  • the individual plumes produced from the nozzles merge together and disperse from the device as a single "grand" plume.
  • At least some of the nozzles may also be configured so that the cylindrical bores thereof are angled at different angles to the longitudinal axis of the device when they are located in the openings provided to receive them in the stator. In this manner the angle of the fluid jets relative to the rotor blade portions can be varied by interchanging nozzles.
  • the atomiser 1 has an upright generally cylindrical hollow bodied stator 2 which incorporates a disc-like collar portion 4 located towards an upper end 2a thereof.
  • the stator 2 comprises an axial inner core or passageway 5 in fluid communication with a water inlet 3, for connection to a pumped water supply (now shown) in use of the device.
  • a generally cap-shaped rotor 6 is rotatably mounted about the stator 2, just above the collar portion 4 of the stator 2.
  • a bearing 8 is located between the rotor and an inner sleeve portion 10 of the stator 2 which protrudes above the collar portion 4.
  • the bearing 8 is made of Torlon to provide substantially free rotation of the rotor in use of the device 1, so that a steady rotational velocity of the rotor 6 can be maintained.
  • the bearing 8 is configured so that the rotor 6 does not have any surfaces which bear directly on the stator (i.e. all bearing surfaces are on the bearing 8).
  • Each fluid jet nozzle 14 has an outlet orifice 18 of diameter 2 mm at the end of a cylindrical fluid conduit 20 of inner diameter d which is in the range of from 0.6 to 1.5 mm and which is in fluid communication with the axial inner passageway 5 of the stator 2 (see Fig. 1B).
  • the nozzles 14 are seated in the stator so that the fluid conduit 20 of each nozzle is angled to the longitudinal axis X of the device 1 at approximately 45°, the nozzles thereby lying in a conical plane of cone angle 90°.
  • the nozzles 14 are directed towards turbine blade portions 22 on the rotor 6.
  • the blade portions 22 are integrally formed in the rotor and are circumferentially spaced about the axis of the rotor, as seen most clearly from Fig. 1A. As seen in Figs. 1A and 1B, the blades are located at the outer (i.e. upper in Fig. 1A) end 6a of the cap-shaped rotor 6. As best seen from Fig. 1, each blade portion 22 consists of three angled surfaces, these being a forward F, middle M, and rear R surface, which converge generally downwardly towards an apex 32. The blade portions can thus be viewed as defining a series of generally pyramid-shaped projections in the rotor 6. The structure of the blade portions is described in further detail later.
  • each nozzle outlet 18 in the form of a jet 24 which is directed towards, and impacts fully upon the blade portions 22 of the rotor 6, (i.e. the full diameter D of each jet strikes the rotor).
  • the force of the water jets 24 striking the blade portions 22 causes the rotor 6 to rotate about the stator 2 at high speed.
  • the water is pumped to the stator at a sufficiently high pressure (for the given number and diameter of the nozzle outlets 18) to cause turbulent flow in the jets 24.
  • a sufficiently high pressure for the given number and diameter of the nozzle outlets 18
  • the blade portions of the rapidly rotating rotor 6 continually intercept the turbulent water jets 24, breaking the structure of the jets apart, forming a high density of water droplets with an average droplet size of ⁇ 100 ⁇ m.
  • Fig. 2 shows in detail the upper end 16 part of an inner sleeve portion 10 of the stator 2, illustrating the removable nature of a nozzle 14 a .
  • a socket 28 in the stator 2 is formed and arranged to receive the nozzle 14 a which is screwed (threads not shown) into the socket 28.
  • a watertight seal between the nozzle 14a and the socket 28 is achieved by use of an o-ring/washer 30 placed therebetween.
  • the cone angle ( ⁇ ) between nozzles 14 and 14 a is 90°, such that each nozzle 14 points upwardly at an angle ( ⁇ ) of 45° to the horizontal.
  • each blade portion 22 are configured in the rotor so that each water jet 24 is continuously intercepted by the blade portions 22 of the rotor 6, as described above. This is illustrated in Figs. 3A to 3C. These show a water jet 24 (from one of the jet nozzles 14) travelling, in the direction indicated by arrow A, towards blade portions 22 of the rotor.
  • the blade portions of the rotor are in practice formed by cutting away portions of the rotor component at manufacture so as to define the blade surfaces F,M,R of each blade portion 22 in the rotor 6.
  • each blade portion 22 of the rotor comprises a generally pyramid-shaped projection 23 defined by three adjacent, elongate, and generally V-shaped surfaces F,M,R on the rotor which surfaces F,M,R form a channel 23a (Fig. 3C) therebetween.
  • V-shaped surfaces point generally downwardly from the upper end 16 of the rotor, and generally forwardly with respect to the direction of rotation B.
  • Two of these three V-shaped surfaces namely the middle M and rear R of the three, act as the turbine blade surfaces upon which the jets 24 impinge.
  • Figs.3A-C illustrate three sequential positions of the blade portions during rotation of the rotor in direction B, as illustrated clearly by the middle surface M of the second blade portion 22b, marked with an X, which can be seen to be moving towards the jet 24.
  • the turbine blade portions are projecting out of the plane of the paper in Figs3A-C.
  • the jet 24 originates from in front of the plane of the paper and is directed in an upward direction in towards the plane of the paper.
  • Fig.3A shows the jet 24 hitting the first blade portion 22a in the sequence, on the middle blade surface F.
  • Fig.3B shows the jet 24 hitting both the rear blade surface R of the first blade portion 22a and the middle blade surface M of the second blade portion 22b. It can be seen that before the jet 24 stops hitting the rear blade surface R of the first blade portion 22a and can escape between the first and second blade portions (through the indented channel 23 defined therebetween) the middle blade M of the second blade portion interrupts the jet to prevent this happening.
  • Fig.3C shows the jet 24 fully hitting the middle blade surface F of the second blade portion 22b.
  • the relative angles of the two blade surfaces M,R of each blade portion, and the size S of the circumferential spacing of adjacent blade portions, are all chosen so that there is an overlap of the trailing blade surface R of one blade portion 22a and the middle blade surface M of the adjacent blade portion 22b, in the direction A of the jet 24, as described above with reference to Fig.3B.
  • the shape and surface area of each of the blade surfaces M,F is chosen so that the whole cross-section of the jet 24 impinges upon one or more blade portions 22 of the rotor at any time.
  • the whole diameter of the jet 24 may be intercepted by only one blade surface (as in Fig.3A and B), or by a plurality of blade surfaces (as in Fig.3C).
  • more than one set of nozzles 14 may be provided for the atomiser 1.
  • a spare set 6 of nozzles having different orifice diameter to the first set 6 of nozzles may be provided, so that by interchanging the nozzles different diameter water jets can be produced.
  • the spare nozzles may also be configured so that the fluid bores thereof are at a different angle to the longitudinal axis X of the device, as compared to the fluid bores of the first set of nozzles, when seated in the stator. In this manner, the angle at which the water jets strike the blade surfaces of the rotor can be varied.
  • the atomiser 101 has an upright generally cylindrical hollow bodied stator 102 which incorporates a disc-like collar portion 104 located towards an upper end 102a thereof.
  • the stator 102 comprises an axial inner core or passageway 105 in fluid communication with a water inlet 103, for connection to a pumped water supply (not shown) in use of the device 101.
  • a generally cap-shaped rotor 106 is rotatably mounted about the stator 102, just above the collar portion 104 of the stator 102.
  • a bearing 108 is located between the rotor 106 and an inner sleeve portion 110 of the stator 102 which protrudes above the collar portion 104.
  • the bearing 108 is made of Torlon to provide substantially free rotation of the rotor 106 in use of the device 101, so that a steady rotational velocity. of the rotor 106 can be maintained.
  • the bearing 108 is configured so that the rotor 106 does not have any surfaces which bear directly on the stator 102 (i.e. all bearing surfaces are on the bearing 108).
  • Each fluid jet nozzle 114 has an outlet orifice 118 of diameter 2 mm at the end of a cylindrical fluid conduit 120 of inner diameter d (see Fig. 2) which is in the range of from 0.6 to 1.5 mm and which is in fluid communication with the axial inner passageway 105 of the stator 102 (see Fig. 5B).
  • the nozzles 114 are seated in the stator 102 so that the fluid conduit 120 of each nozzle is angled to the longitudinal axis Y of the device 101 at approximately 45°, the nozzles 14 thereby lying in a conical plane of cone angle 90°.
  • the nozzles 114 are directed towards an inlet 122 of a circular section fluid channel 124 which extends vertically at an angle ( ⁇ ) of 45° from the horizontal.
  • the channel 124 exists at a fluid outlet 126 located on the outer circumference of the rotor 102.
  • the inner surface of the channel 124 forms a blade portion 128 (Fig. 6).
  • the blade portions 128 which are integrally formed in the fluid channel 124 which are circumferentially spaced about the rotational axis of the rotor 102, as seen most clearly from Fig. 5A.
  • water 129 (Fig. 7, indicated by dotted shading) is pumped (using a pump - not shown) through the inner passageway 105 of the stator, from where it is forced out the outlets 118 of the nozzles 114.
  • the water exits each nozzle outlet 118 in the form of a jet 130 which is directed towards, and impacts fully upon the blade portions 128 of the rotor 106, (i.e. the full diameter D' of each jet strikes the rotor 106).
  • the force of the water jets 130 striking the blade portions 128 within the channel 124 causes the rotor 106 to rotate (as indicated by arrow C) about the stator 102 at high speed.
  • the water 129 is pumped to the stator 102 at a sufficiently high pressure (for the given number and diameter of the nozzle outlets 118) to cause turbulent flow in the jets 130.
  • a sufficiently high pressure for the given number and diameter of the nozzle outlets 118
  • the blade portions 128 of the rapidly rotating rotor 106 continually intercept the turbulent water jets 130, breaking the structure of the jets apart, forming a high density of water droplets with an average droplet size of ⁇ 100 ⁇ m.
  • the rotation of the turbine tends to throw the droplets created from each colliding jet tangentially away from the rotor, thus producing a plume 132 of droplets.
  • Each individual nozzle produces such a plume of droplets and these plumes merge together and disperse away from the atomising device as a single "grand" plume having an overall angle of spread ⁇ , as illustrated in Fig.1.
  • the fluid channels 124 extend at around 45° ( ⁇ ) relative to the horizontal, and are off set from the radius within the horizontal plane by an angle ( ⁇ ) of 25° (see Fig. 5A).
  • the offset angle ( ⁇ ) ensures that the blade portions 128 allow the transfer of at least a portion of the momentum from the water jet 130 to the rotor 106 which is thereby rotated.
  • the water jet 130 substantially continuous impinges upon one or more blade portions 128 of adjacent passages 124.
  • Fig. 8 like parts corresponding to those of the earlier described embodiments.
  • the ball race bearing 108 is substantially projected against ingress of water, by means of labyrinth seals 133, 134 above and below it.
  • Fig. 9 shows a modified rotor 106 provided with a belled out distal end portion 136 extending upwardly and outwardly in the frusto-conical plane of the fluid channels 124 so that the fluid channels 124 have an increased length and the fluid outlets 126 thereof are disposed at an increased diameter. This results in an increased tangential speed of the release point of the fluid for a given rotational speed of the rotor which will tend to provide a smaller droplet size.

Landscapes

  • Nozzles (AREA)
EP01310829A 2000-12-23 2001-12-21 Flüssigkeitszerstäuber Withdrawn EP1216757A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0031673A GB0031673D0 (en) 2000-12-23 2000-12-23 Fluid atomising device
GB0031673 2000-12-23

Publications (1)

Publication Number Publication Date
EP1216757A1 true EP1216757A1 (de) 2002-06-26

Family

ID=9905916

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01310829A Withdrawn EP1216757A1 (de) 2000-12-23 2001-12-21 Flüssigkeitszerstäuber

Country Status (2)

Country Link
EP (1) EP1216757A1 (de)
GB (1) GB0031673D0 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095933A (zh) * 2022-06-29 2022-09-23 江西镁淇实业有限公司 一种纺织车间用的增湿装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2266455A1 (en) * 1974-04-04 1975-10-31 Perrot Regnerbau Gmbh & Co Sprinkler head for watering circular areas - has turbine wheel deflecting upwards projected water jets
US4624411A (en) * 1985-01-08 1986-11-25 Won Vann Y Self-propelled, rotary, liquid atomizer
EP0339966A2 (de) * 1988-04-29 1989-11-02 Dan Mamtirim, Limited Partnership Rotierende Berieselungsanlage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2266455A1 (en) * 1974-04-04 1975-10-31 Perrot Regnerbau Gmbh & Co Sprinkler head for watering circular areas - has turbine wheel deflecting upwards projected water jets
US4624411A (en) * 1985-01-08 1986-11-25 Won Vann Y Self-propelled, rotary, liquid atomizer
EP0339966A2 (de) * 1988-04-29 1989-11-02 Dan Mamtirim, Limited Partnership Rotierende Berieselungsanlage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095933A (zh) * 2022-06-29 2022-09-23 江西镁淇实业有限公司 一种纺织车间用的增湿装置
CN115095933B (zh) * 2022-06-29 2023-09-01 江西镁淇实业有限公司 一种纺织车间用的增湿装置

Also Published As

Publication number Publication date
GB0031673D0 (en) 2001-02-07

Similar Documents

Publication Publication Date Title
US20090078788A1 (en) Sprinkler Head
EP0010925B1 (de) Spritz- oder Zerstäuberdüse
EP2974794B1 (de) Bewässerungssprinkler
US9751095B2 (en) Shower heads and shower apparatus
US6899287B2 (en) Rotary sprinkler
AU753619B2 (en) Fluid injection spray system for a wind machine
WO2005097345A1 (en) Liquid atomizer
US20020066801A1 (en) Fluid atomising device
US4379523A (en) Sprinkler
EP1216757A1 (de) Flüssigkeitszerstäuber
AU713843B2 (en) Agricultural and other spraying systems
US6036103A (en) Agricultural spraying systems
US4216913A (en) Method and apparatus for enhancing the distribution of water from an irrigation sprinkler
CA2204942A1 (en) Device for simulating flying fish
US5984204A (en) Sprinkler device for dispersing water or other liquid
EP0602776B1 (de) Flüssigkeitsverteilungsvorrichtung
US4361278A (en) Irrigation sprinkler
RU2243656C1 (ru) Вентиляторный опрыскиватель растений
KR101625072B1 (ko) 원거리 액체 비산 장치
RU2136154C1 (ru) Вентиляторный опрыскиватель
JP3074176U (ja) 中空式ノズル
RU2178759C2 (ru) Распылитель вращающийся мелкокапельный
RU2077845C1 (ru) Вентиляторный опрыскиватель
AU5193701A (en) A spray fan
SU1498444A1 (ru) Опрыскиватель

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021227