EP1215388B1 - Method and system for controlling an internal combustion engine - Google Patents

Method and system for controlling an internal combustion engine Download PDF

Info

Publication number
EP1215388B1
EP1215388B1 EP01123016A EP01123016A EP1215388B1 EP 1215388 B1 EP1215388 B1 EP 1215388B1 EP 01123016 A EP01123016 A EP 01123016A EP 01123016 A EP01123016 A EP 01123016A EP 1215388 B1 EP1215388 B1 EP 1215388B1
Authority
EP
European Patent Office
Prior art keywords
frequency
signal
cylinder
specific
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01123016A
Other languages
German (de)
French (fr)
Other versions
EP1215388A3 (en
EP1215388A2 (en
Inventor
Jens Damitz
Dirk Dr. Samuelsen
Ruediger Dr. Fehrmann
Matthias Schueler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1215388A2 publication Critical patent/EP1215388A2/en
Publication of EP1215388A3 publication Critical patent/EP1215388A3/en
Application granted granted Critical
Publication of EP1215388B1 publication Critical patent/EP1215388B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine according to the Preambles of the independent claims.
  • Such a method and apparatus for Control of an internal combustion engine is for example off DE 195 27 218 known.
  • the goal of this approach is to guide the individual Cylinders equalize metered amount of fuel. Differences in the metered amount of fuel between the individual cylinders are compensated. It can the Case occur that, although all cylinders the same Amount of fuel is metered and / or all cylinders that same torque contribute to the overall torque, the individual cylinders assigned different amounts of air to get. This has the consequence that in individual cylinders increased exhaust emissions, in particular particulate emissions, occur. These increased emissions can be seen in the state of the art Technology can only be reduced by reducing the total Injection quantity and / or the mean value of cylinder-specific fuel quantities so far reduced will minimize emissions. These Quantity reduction leads to a reduction in the performance of Internal combustion engine.
  • DE 199 03 721 describes a lambda control for an internal combustion engine, in which for various Cylinders or cylinder groups individual cylinder setpoints and actual values determined and compared with each other. This citation shows a cylinder-specific regulation of Lambda value.
  • sensors are used which are a signal provide the oxygen concentration in the exhaust gas characterizes, or a signal that the pressure in the exhaust gas characterized.
  • a particularly simple Signal processing consists in that the signal of the im Exhaust tract arranged sensor with at least two Filtering means with different frequencies filterable is, starting from the filtered signal at least two frequency-specific actual values, a setpoint and Frequency-specific deviations can be determined.
  • the sensor arranged in the exhaust tract means at least two bandpasses with adjustable Center frequencies is filterable, with the center frequencies lie at integer multiples of the camshaft frequency.
  • the computer program according to the invention has Program code means to clear all steps of the to carry out inventive method, if the Program on a computer, in particular a control unit for an internal combustion engine of a motor vehicle, executed becomes.
  • the invention is characterized by a in the program stored program, so that this provided with the program control unit in the same Way the invention represents as the method, to whose Execution the program is suitable.
  • the invention Computer program product comprises program code means which stored on a computer-readable medium to to carry out the process according to the invention, if the Program product on a computer, especially one Control unit for an internal combustion engine of a motor vehicle is performed.
  • the invention realized by a data carrier, so that the inventive method can be carried out when the Program product or the data carrier in a control unit for an internal combustion engine, in particular a motor vehicle is integrated.
  • disk or as Computer program product may in particular be an electrical Storage medium are used, for example, a Read-only memory (ROM), an EPROM or an electric one Permanent memory such as a CD-ROM or DVD.
  • FIG. 1 shows a block diagram of FIG Device according to the invention
  • Figure 2 is a detailed Representation
  • Figure 3 is a representation of the setpoint and Actual value.
  • the internal combustion engine is 100 characterized. You will air over a fresh air line 118, a compressor 115 and an intake passage 110 fed. The exhaust gases of the internal combustion engine pass over an exhaust pipe 120 and a turbine 125 in one Exhaust pipe 128. The turbine 125 drives the compressor 115 via a shaft, not shown.
  • the internal combustion engine is a quantity-determining Assigned adjusting device 150. About this is the Internal combustion engine supplied fuel. Sandra can do this Cylinder an individual amount of fuel metered become. This is shown in Figure 1, that each Cylinder a quantity-determining actuator 151 to 154 assigned.
  • the individual control elements 151 to 154 are from a control unit 160 with drive signals applied.
  • the actuators 151 to 154 are For example, to solenoid valves or piezo actuators, the control the fuel metering into the respective cylinder. It can be provided that per cylinder, an injector, a distributor pump or another that is injected Fuel quantity determining element, the cylinders alternately fuel literallyißt, is provided.
  • the control unit 160 also acts on another Actuator 155, the amount of fresh air that the Internal combustion engine is supplied, influenced. At a simplified embodiment, this actuator 155 may also be omitted. Furthermore, the processed Control unit 160, the output signals of various sensors 170, for example, the environmental conditions such. Temperature and pressure values as well as the driver's request characterized.
  • control unit 170 processes signals from Sensors 180, the exhaust gas composition or the pressure and / or characterizing the temperature in the exhaust gas.
  • This Sensor is preferably between the engine and the turbine 125 arranged.
  • the sensor 185 also after the turbine in the exhaust line be arranged.
  • the sensors 180 and 185 preferably detect a signal that characterized the oxygen concentration in the exhaust gas. Alternatively and / or additionally, it may also be provided that the pressure in the exhaust pipe in front of or behind the turbine is evaluated.
  • This facility works as follows.
  • the fresh air is compressed by the compressor 115 and passes through the Intake line 110 in the internal combustion engine.
  • the Internal combustion engine is about the quantity-determining Actuator 150 metered fuel. Everybody gets involved Cylinder dependent on the drive signal of the control unit 160 supplied a cylinder-specific amount of fuel.
  • the Exhaust gases pass through the exhaust pipe to the turbine, drive this and then get on the exhaust pipe 128 in the environment.
  • the turbine 125 drives the compressor 115 via a shaft, not shown.
  • the control unit 160 calculates, based on the various input signals, in particular the Driver request, the control signals to act on the Actuators 151 to 154.
  • an adjusting device 155th provided that the air supply to the engine controls.
  • This may preferably be a Exhaust gas recirculation act, which is the amount of recirculated exhaust gas determined.
  • Particularly preferred is a Embodiment in which the individual cylinder supplied amount of air is affected. This is for example, by a valve control of inputs and Exhaust valves possible.
  • the determination of the control signals for the actuating elements 151 to 155 is shown in more detail in FIG. It is in particular the calculation of the amount of fuel QK shown. When calculating the amount of air can be proceeded accordingly.
  • the actuator 150 becomes the output QK of a summing point 202 acted upon.
  • the output QKF At the first entrance of the addition point 202 is the output QKF a setpoint 210 at.
  • the quantity default 210 processes the output signal various sensors, such as one Accelerator pedal position transmitter 170a and a speed sensor 170b. Furthermore, it can be provided that the Setpoint 210, the output signal L of a sensor 180th processed. The output signal L of the sensor 180 corresponds the oxygen concentration in the exhaust tract.
  • the signal L of the sensor 180 also arrives at a Filter device 230, in turn, a first controller 241, a second controller 242, a third controller 243 and a fourth controller 244 with a signal applied to a Control deviation corresponds.
  • controller 241 to 244 referred to as controller 240.
  • the individual controllers in turn act on the multiplexer 250 with Control signals, which then cyclically as signal QKL for Addition point 202 arrive.
  • the Quantity specification 210 Based on the various sensor signals determines the Quantity specification 210 an amount of fuel QKF to be injected, which is to be supplied to the internal combustion engine. This amount QKF corresponds to the amount required by the Driver to provide desired torque.
  • the quantity control 210 contains additional functions, such as an idle controller or Quantity interventions by other control units.
  • the quantity specification 210 can already be a truancy regulation, as known in the art include.
  • a non-cylinder individual Quantity specification also takes into account a lambda signal that the Oxygen concentration in the exhaust gas characterized.
  • Air quantity error i. Deviations between the air volumes, which are supplied to the individual cylinders, are of the Quantity requirement 210 not taken into account.
  • different Lambda values of the individual cylinders lead to fluctuations of the lambda signal. These are recorded and the cylinder-specific control used.
  • the Filter device 230 calculates from the lambda signal L, the is detected with the sensor 180, a cylinder-individual Control deviation between the cylinder-specific nominal and Actual value for the lambda signal.
  • This cylinder-individual Control deviation is the respective controller, the cylinder is assigned supplied. It can be provided that a regulator is provided for each cylinder. Alternatively it is also possible that a controller in succession the processed cylinder-specific control deviations.
  • the multiplexer 250 holds these signals together to a signal QKL, which the Deviations of the individual lambda signals from a setpoint characterized.
  • This signal is designed so that at the control of the actuator 150 such Fuel quantity is metered that the lambda signal at all cylinders take the same value.
  • internal combustion engines equipped with a turbocharger i.e. one for compressor and one turbine are the signal conditioning requirements of the Lambda signal particularly high, since the evaluated Signal amplitude when using a lambda probe after the turbine is very small.
  • the lambda probe In the arrangement of the lambda probe are two alternatives to disposal.
  • the lambda probe arranged in front of the turbine. This offers the advantage that still no mixing of the cylinder individual Exhaust gas flows through the turbine has taken place. however be in this area by opening the exhaust valves strong pressure oscillations excited. These compensate partly due to the cylinder-specific lambda differences excited vibrations on the probe signal. This is based on the following Mode of action. Will be higher in a cylinder Injected injection quantity, so the corresponding sinks Residual oxygen content in the exhaust gas and thus the output voltage the lambda probe. At the same time results from the stronger Burning a higher pressure at the opening of the Outlet valve. Through a positive cross-coupling between Pressure and probe signal increases the pressure increase Sensor signal and affects the actual change in oxygen opposite. As a result, the measurable signal amplitude is clear less than expected from pure oxygen vibration would. Another disadvantage is that an additional probe is needed.
  • the lambda probe is behind the Turbine arranged.
  • the advantage here is that the Störamplitude caused by the combustion Pressure oscillations in the exhaust system is smaller. adversely However, the mixing of cylinder-specific affects Exhaust gas flows through the turbine. This also reduces at this arrangement of the probe the amplitude of the measured Oxygen vibrations.
  • the output signal of the sensor 180 passes through a Pre-filter 300 to a first filter 310 and a second Filter 320.
  • the output of the first filter 310 arrives at a first setpoint determination 312 and a first actual value determination 314.
  • the output signal of the second Filter 320 arrives at a second set point determination 322 and a second actual value determination 324.
  • the output signal NWS of the first setpoint determination 312 passes with positive sign and the output signal NWI the first actual value determination 314 with a negative sign a node 316.
  • the output signal of the node 316 with linked to a weighting factor FNW.
  • the so weighted first Control deviation NWL arrives at a summing point 340 and from there to Block 240.
  • the output signal KWS of the second setpoint determination 322 passes with positive sign and the output signal KWI the second actual value determination 324 with a negative sign to a node 326.
  • node 328 becomes the output of the node 326 associated with a weighting factor HFC.
  • the so weighted second control deviation KWL arrives at the addition point 340
  • the weighting factor FNW and the weighting factor HFC become from weighting 330.
  • the nodes 318 and 328 are a preferred embodiment of the invention. Alternatively, you can also be provided that the factors FNW and / or HFC otherwise, for example in filters 310 or 320, taken into account or not taken into account.
  • cylinder numbers may have different bandpasses provided. For example, in an internal combustion engine with four or five cylinders a band pass with the camshaft frequency and a bandpass with the double Camshaft frequency, which corresponds to the crankshaft frequency provided.
  • the output signal of the sensor 180 passes through the Pre-filter 300 to the bandpasses 310 and 320th
  • This Prefilter 300 is designed to be unwanted Interference filters out.
  • the pre-filter 300 is designed so that it oscillates the signal, the caused by the probe heating, does not let through.
  • the output signal of the sensor 180 separated into spectral components. For each Spectral component determine the first, second and third Actual value determination and the first, second and third Setpoint determination Frequency-specific setpoints and actual values. The calculation of the setpoints and actual values takes place for the individual spectral components preferably different.
  • the probe signal for the individual frequencies separated. For every frequency calculates the first actual value determination 314 and the second one Actual value determination 324 a frequency-specific actual value. Accordingly, it can be provided that for each frequency first setpoint input 312 and the second setpoint input 322 calculates a frequency-specific setpoint. In the Join points 316 and 326 then become the Frequency-specific control deviation determined.
  • the weighted or unweighted control deviations NWL and KWL are added at node 340 and the Regulator supplied.
  • the regulator corresponds to that in FIG. 2 illustrated controller 240.
  • Pressure sensor can be used, the pressure in front of or behind the turbine evaluates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.The invention relates to a method and a device for controlling an internal combustion engine according to the Preambles of the independent claims.

Ein solches Verfahren und eine solche Vorrichtung zur Steuerung einer Brennkraftmaschine ist beispielsweise aus der DE 195 27 218 bekannt. Dort wird ein Verfahren und eine Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine beschrieben, bei dem jedem Zylinder der Brennkraftmaschine eine Regelabweichung und ein Regler zugeordnet ist. Jeder Regler gibt, ausgehend von der zugeordneten Regelabweichung, ein zylinderspezifisches Ansteuersignal vor.Such a method and apparatus for Control of an internal combustion engine is for example off DE 195 27 218 known. There is a procedure and a Device for controlling the smoothness of a Internal combustion engine described in which each cylinder of the Internal combustion engine, a control deviation and a controller assigned. Each controller gives, starting from the associated control deviation, a cylinder-specific Drive signal before.

Ziel dieser Vorgehensweise ist es, die den einzelnen Zylindern zugemessene Kraftstoffmenge gleichzustellen. Unterschiede bei der zugemessenen Kraftstoffmenge zwischen den einzelnen Zylindern werden ausgeglichen. Dabei kann der Fall eintreten, daß, obwohl allen Zylindern die gleiche Kraftstoffmenge zugemessen wird und/oder alle Zylinder das gleiche Drehmoment zum Gesamtdrehmoment beitragen, die einzelnen Zylinder unterschiedliche Luftmengen zugemessen bekommen. Dies hat zur Folge, daß bei einzelnen Zylindern erhöhte Abgasemissionen, insbesondere Partikelemissionen, auftreten. Diese erhöhten Emissionen können beim Stand der Technik nur dadurch verringert werden, in dem die gesamte Einspritzmenge und/oder der Mittelwert der zylinderindividuellen Kraftstoffmengen soweit reduziert wird, dass die Emissionen minimiert werden. Diese Mengenreduktion führt zu einer Verringerung der Leistung der Brennkraftmaschine.The goal of this approach is to guide the individual Cylinders equalize metered amount of fuel. Differences in the metered amount of fuel between the individual cylinders are compensated. It can the Case occur that, although all cylinders the same Amount of fuel is metered and / or all cylinders that same torque contribute to the overall torque, the individual cylinders assigned different amounts of air to get. This has the consequence that in individual cylinders increased exhaust emissions, in particular particulate emissions, occur. These increased emissions can be seen in the state of the art Technology can only be reduced by reducing the total Injection quantity and / or the mean value of cylinder-specific fuel quantities so far reduced will minimize emissions. These Quantity reduction leads to a reduction in the performance of Internal combustion engine.

Aus der DE 197 34 072 ist eine Lambdaregelung für Einspritzanlagen mit einem adaptiven Filter bekannt. Das Signal der Lambdasonde wird mit einem adaptiven Filter, der für unterschiedliche Frequenzen adaptierbar ist, gefiltert. Dieser globale Istwert wird dann einer Regelung zugeführt, der die globale Stellgröße für alle Zylinder verändert.From DE 197 34 072 a lambda control for injection systems with an adaptive filter is known. The signal of the lambda probe comes with an adaptive filter, which can be used for different frequencies is adaptable, filtered. This global actual value is then fed to a controller which controls the changed global manipulated variable for all cylinders.

Die DE 199 03 721 beschreibt eine Lambdaregelung für eine Brennkraftmaschine, bei der für verschiedene Zylinder oder Zylindergruppen zylinderindividuelle Sollwerte und Istwerte ermittelt und miteinander verglichen werden. Diese Entgegenhaltung zeigt eine zylinderindividuelle Regelung des Lambdawertes.DE 199 03 721 describes a lambda control for an internal combustion engine, in which for various Cylinders or cylinder groups individual cylinder setpoints and actual values determined and compared with each other. This citation shows a cylinder-specific regulation of Lambda value.

Vorteile der ErfindungAdvantages of the invention

Mittels des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung.By means of the method according to the invention and the Device according to the invention.

Dadurch, daß ausgehend von einem Signal eines im Abgastrakt angeordneten Sensors zylinderspezifische Istwerte ermittelt und mit einem Sollwert verglichen werden, und dass ausgehend von dem Vergleich Ansteuersignale zur zylinderindividuellen Steuerung der Kraftstoff- und/oder Luftmenge vorgebbar sind, können die Abgasemissionen deutlich reduziert werden, wobei die Leistungsabgabe der Brennkraftmaschine nicht beeinträchtigt wird.Characterized in that, starting from a signal in the exhaust tract arranged sensor cylinder-specific actual values determined and compared with a setpoint and that outgoing from the comparison control signals to the cylinder-individual Control of the amount of fuel and / or air can be specified, The exhaust emissions can be significantly reduced, with the power output of the internal combustion engine is not is impaired.

Vorzugsweise werden Sensoren verwendet, die ein Signal bereitstellen, das die Sauerstoffkonzentration im Abgas charakterisiert, oder ein Signal, das den Druck im Abgas charakterisiert.Preferably, sensors are used which are a signal provide the oxygen concentration in the exhaust gas characterizes, or a signal that the pressure in the exhaust gas characterized.

Bevorzugt werden die Lambdawerte, das heißt die Sauerstoffkonzentrationen, aller Zylinder gleichgestellt. Als Stellgröße kann dabei sowohl die eingespritzte Kraftstoffmenge als auch die zugeführte Luftmenge, die beispielsweise mittels einer zylinderindividuellen Abgasrückführung einstellbar ist, verwendet werden. Im folgenden wird die Vorgehensweise am Beispiel der Kraftstoffmenge beschrieben.Preference is given to the lambda values, that is the Oxygen concentrations, all cylinders equal. As a control variable can both the injected Fuel quantity and the amount of air supplied, the for example by means of a cylinder-individual Exhaust gas recirculation is adjustable, can be used. in the Following is the procedure on the example of Fuel quantity described.

Besonders vorteilhaft ist es, wenn die Vorgehensweise mit einer Laufruheregelung gemäß dem Stand der Technik kombiniert wird.It is particularly advantageous if the procedure with a Laufruheregelung according to the prior art combined.

Erfindungsgemäß wurde erkannt, dass eine besonders einfache Signalaufbereitung darin besteht, dass das Signal des im Abgastrakt angeordneten Sensors mit wenigstens zwei Filtermitteln mit unterschiedlichen Frequenzen filterbar ist, wobei ausgehend von dem gefilterten Signal wenigstens zwei frequenzspezifische Istwerte, ein Sollwert und frequenzspezifische Regelabweichungen bestimmbar sind.According to the invention, it has been recognized that a particularly simple Signal processing consists in that the signal of the im Exhaust tract arranged sensor with at least two Filtering means with different frequencies filterable is, starting from the filtered signal at least two frequency-specific actual values, a setpoint and Frequency-specific deviations can be determined.

Ein besonders aussagekräftiges Signal ergibt sich, wenn zur Bereitstellung der frequenzspezifischen Größen das Ausgangssignal des im Abgastrakt angeordneten Sensors mittels wenigstens zweier Bandpässe mit einstellbaren Mittenfrequenzen filterbar ist, wobei die Mittenfrequenzen bei ganzzahligen Vielfachen der Nockenwellenfrequenz liegen.A particularly meaningful signal results, if for Providing the frequency-specific quantities the output signal the sensor arranged in the exhaust tract means at least two bandpasses with adjustable Center frequencies is filterable, with the center frequencies lie at integer multiples of the camshaft frequency.

Von besonderer Bedeutung sind weiterhin die Realisierungen in Form eines Computerprogramms mit Programmcode-Mitteln und in Form eines Computerprogrammprodukts mit Programmcode-Mitteln. Das erfindungsgemäße Computerprogramm weist Programmcode-Mittel auf, um alle Schritte des erfindungsgemäßen Verfahrens durchzuführen, wenn das Programm auf einem Computer, insbesondere einem Steuergerät für eine Brennkraftmaschine eines Kraftfahrzeugs, ausgeführt wird. In diesem Fall wird also die Erfindung durch ein in dem Steuergerät abgespeichertes Programm realisiert, so dass dieses mit dem Programm versehene Steuergerät in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Programm geeignet ist. Das erfindungsgemäße Computerprogrammprodukt weist Programmcode-Mittel auf, die auf einem computerlesbaren Datenträger gespeichert sind, um das erfindungsgemäße Verfahren durchzuführen, wenn das Programmprodukt auf einem Computer, insbesondere einem Steuergerät für eine Brennkraftmaschine eines Kraftfahrzeugs ausgeführt wird. In diesem Fall wird also die Erfindung durch einen Datenträger realisiert, so dass das erfindungsgemäße Verfahren ausgeführt werden kann, wenn das Programmprodukt bzw. der Datenträger in ein Steuergerät für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs integriert wird. Als Datenträger bzw. als Computerprogrammprodukt kann insbesondere ein elektrisches Speichermedium zur Anwendung kommen, beispielsweise ein Read-Only-Memory (ROM), ein EPROM oder auch ein elektrischer Permanentspeicher wie beispielsweise eine CD-ROM oder DVD.Of particular importance are the realizations in the form of a computer program with program code means and in the form of a computer program product with program code means. The computer program according to the invention has Program code means to clear all steps of the to carry out inventive method, if the Program on a computer, in particular a control unit for an internal combustion engine of a motor vehicle, executed becomes. In this case, therefore, the invention is characterized by a in the program stored program, so that this provided with the program control unit in the same Way the invention represents as the method, to whose Execution the program is suitable. The invention Computer program product comprises program code means which stored on a computer-readable medium to to carry out the process according to the invention, if the Program product on a computer, especially one Control unit for an internal combustion engine of a motor vehicle is performed. In this case, so the invention realized by a data carrier, so that the inventive method can be carried out when the Program product or the data carrier in a control unit for an internal combustion engine, in particular a motor vehicle is integrated. As disk or as Computer program product may in particular be an electrical Storage medium are used, for example, a Read-only memory (ROM), an EPROM or an electric one Permanent memory such as a CD-ROM or DVD.

Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Advantageous and expedient embodiments and Further developments of the invention are in the subclaims characterized.

Die erfindungsgemäße Vorgehensweise wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsform erläutert. Es zeigen Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung, Figur 2 eine detaillierte Darstellung, Figur 3 eine Darstellung der Soll- und Istwertbildung.The procedure according to the invention is explained below the embodiment shown in the drawing explained. FIG. 1 shows a block diagram of FIG Device according to the invention, Figure 2 is a detailed Representation, Figure 3 is a representation of the setpoint and Actual value.

Im folgenden wird die erfindungsgemäße Vorgehensweise am Beispiel einer selbstzündenden Brennkraftmaschine mit Abgasturbolader und 4 Zylindern beschrieben. Die Erfindung ist aber nicht auf selbstzündende Brennkraftmaschinen beschränkt. Sie kann auch bei anderen Typen von Brennkraftmaschinen eingesetzt werden. In diesem Fall sind entsprechende Bauteile auszutauschen. Insbesondere kann die Erfindung auch bei Brennkraftmaschinen mit anderer Zylinderzahl und/oder bei Brennkraftmaschinen ohne Abgasturbolader eingesetzt werden.In the following, the procedure of the invention on Example of a self-igniting internal combustion engine with Exhaust gas turbocharger and 4 cylinders described. The invention but not on self-igniting internal combustion engines limited. It can also be used with other types of Internal combustion engines are used. In this case are replace corresponding components. In particular, the Invention also in internal combustion engines with others Number of cylinders and / or internal combustion engines without Exhaust gas turbocharger can be used.

In Figur 1 ist die Brennkraftmaschine mit 100 gekennzeichnet. Ihr wird Luft über eine Frischluftleitung 118, einen Verdichter 115 und eine Ansaugleitung 110 zugeführt. Die Abgase der Brennkraftmaschine gelangen über eine Abgasleitung 120 und eine Turbine 125 in eine Auspuffleitung 128. Die Turbine 125 treibt den Verdichter 115 über eine nicht dargestellte Welle an.In FIG. 1, the internal combustion engine is 100 characterized. You will air over a fresh air line 118, a compressor 115 and an intake passage 110 fed. The exhaust gases of the internal combustion engine pass over an exhaust pipe 120 and a turbine 125 in one Exhaust pipe 128. The turbine 125 drives the compressor 115 via a shaft, not shown.

Der Brennkraftmaschine ist eine mengenbestimmende Stelleinrichtung 150 zugeordnet. Über dieses wird der Brennkraftmaschine Kraftstoff zugeführt. Dabei kann jedem Zylinder eine individuelle Kraftstoffmenge zugemessen werden. Dies ist in Figur 1 dadurch dargestellt, daß jedem Zylinder ein mengenbestimmendes Stellelement 151 bis 154 zugeordnet ist. Die einzelnen Stellelemente 151 bis 154 werden von einer Steuereinheit 160 mit Ansteuersignalen beaufschlagt. Bei den Stellelementen 151 bis 154 handelt es sich beispielsweise um Magnetventile oder Piezoaktoren, die die Kraftstoffzumessung in den jeweiligen Zylinder steuern. Dabei kann vorgesehen sein, daß pro Zylinder ein Injektor, eine Verteilerpumpe oder ein anderes die eingespritzte Kraftstoffmenge bestimmendes Element, die den Zylindern abwechselnd Kraftstoff zumißt, vorgesehen ist.The internal combustion engine is a quantity-determining Assigned adjusting device 150. About this is the Internal combustion engine supplied fuel. Anyone can do this Cylinder an individual amount of fuel metered become. This is shown in Figure 1, that each Cylinder a quantity-determining actuator 151 to 154 assigned. The individual control elements 151 to 154 are from a control unit 160 with drive signals applied. The actuators 151 to 154 are For example, to solenoid valves or piezo actuators, the control the fuel metering into the respective cylinder. It can be provided that per cylinder, an injector, a distributor pump or another that is injected Fuel quantity determining element, the cylinders alternately fuel zumißt, is provided.

Die Steuereinheit 160 beaufschlagt ferner ein weiteres Stellglied 155, das die Frischluftmenge, die der Brennkraftmaschine zugeführt wird, beeinflußt. Bei einer vereinfachten Ausführungsform kann dieses Stellglied 155 auch weggelassen werden. Desweiteren verarbeitet die Steuereinheit 160 die Ausgangssignale verschiedener Sensoren 170, die beispielsweise die Umgebungsbedingungen wie z.B. Temperatur- und Druckwerte sowie den Fahrerwunsch charakterisiert.The control unit 160 also acts on another Actuator 155, the amount of fresh air that the Internal combustion engine is supplied, influenced. At a simplified embodiment, this actuator 155 may also be omitted. Furthermore, the processed Control unit 160, the output signals of various sensors 170, for example, the environmental conditions such. Temperature and pressure values as well as the driver's request characterized.

Desweiteren verarbeitet die Steuereinheit 170 Signale von Sensoren 180, die die Abgaszusammensetzung oder den Druck und/oder die Temperatur im Abgas charakterisieren. Dieser Sensor ist vorzugsweise zwischen der Brennkraftmaschine und der Turbine 125 angeordnet. Alternativ oder ergänzend kann der Sensor 185 auch nach der Turbine in der Auspuffleitung angeordnet sein.Furthermore, the control unit 170 processes signals from Sensors 180, the exhaust gas composition or the pressure and / or characterizing the temperature in the exhaust gas. This Sensor is preferably between the engine and the turbine 125 arranged. Alternatively or additionally the sensor 185 also after the turbine in the exhaust line be arranged.

Die Sensoren 180 bzw. 185 erfassen bevorzugt ein Signal, das die Sauerstoffkonzentration im Abgas charakterisiert. Alternativ und/oder ergänzend kann auch vorgesehen sein, daß der Druck in der Abgasleitung vor oder hinter der Turbine ausgewertet wird.The sensors 180 and 185 preferably detect a signal that characterized the oxygen concentration in the exhaust gas. Alternatively and / or additionally, it may also be provided that the pressure in the exhaust pipe in front of or behind the turbine is evaluated.

Diese Einrichtung arbeitet nun wie folgt. Die Frischluft wird von dem Verdichter 115 verdichtet und gelangt über die Ansaugleitung 110 in die Brennkraftmaschine. Der Brennkraftmaschine wird über die mengenbestimmende Stelleinrichtung 150 Kraftstoff zugemessen. Dabei wird jedem Zylinder abhängig von dem Ansteuersignal der Steuereinheit 160 eine zylinderindividuelle Kraftstoffmenge zugeführt. Die Abgase gelangen über die Abgasleitung zur Turbine, treiben diese an und gelangen dann über die Auspuffleitung 128 in die Umgebung. Die Turbine 125 treibt dabei den Verdichter 115 über eine nicht dargestellte Welle an.This facility works as follows. The fresh air is compressed by the compressor 115 and passes through the Intake line 110 in the internal combustion engine. Of the Internal combustion engine is about the quantity-determining Actuator 150 metered fuel. Everybody gets involved Cylinder dependent on the drive signal of the control unit 160 supplied a cylinder-specific amount of fuel. The Exhaust gases pass through the exhaust pipe to the turbine, drive this and then get on the exhaust pipe 128 in the environment. The turbine 125 drives the compressor 115 via a shaft, not shown.

Die Steuereinheit 160 berechnet, ausgehend von den verschiedenen Eingangssignalen, insbesondere dem Fahrerwunsch, die Ansteuersignale zur Beaufschlagung der Stellelemente 151 bis 154. Bei einer bevorzugten Ausführungsform ist zusätzlich eine Stelleinrichtung 155 vorgesehen, die die Luftzufuhr zur Brennkraftmaschine steuert. Hierbei kann es sich vorzugsweise um eine Abgasrückführeinrichtung handeln, die die Menge an rückgeführtem Abgas bestimmt. Besonders bevorzugt ist eine Ausführungsform, bei der die dem einzelnen Zylinder zugeführte Luftmenge beeinflußt wird. Dies ist beispielsweise durch eine Ventilsteuerung der Ein- und Auslaßventile möglich.The control unit 160 calculates, based on the various input signals, in particular the Driver request, the control signals to act on the Actuators 151 to 154. In a preferred Embodiment is additionally an adjusting device 155th provided that the air supply to the engine controls. This may preferably be a Exhaust gas recirculation act, which is the amount of recirculated exhaust gas determined. Particularly preferred is a Embodiment in which the individual cylinder supplied amount of air is affected. This is for example, by a valve control of inputs and Exhaust valves possible.

Die Ermittlung der Ansteuersignale für die Stellelemente 151 bis 155 ist in Figur 2 detaillierter dargestellt. Dabei ist insbesondere die Berechnung der Kraftstoffmenge QK dargestellt. Bei der Berechnung der Luftmenge kann entsprechend vorgegangen werden.The determination of the control signals for the actuating elements 151 to 155 is shown in more detail in FIG. It is in particular the calculation of the amount of fuel QK shown. When calculating the amount of air can be proceeded accordingly.

Bereits in Figur 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet. Das Stellelement 150 wird mit dem Ausgangssignal QK eines Additionspunktes 202 beaufschlagt. An dem ersten Eingang des Additionspunktes 202 liegt das Ausgangssignal QKF einer Mengenvorgabe 210 an. An dem zweiten Eingang des Additionspunkts 2 liegt das Ausgangssignal QKL eines Multiplexers 250 an.Already described in Figure 1 elements are with corresponding reference numerals. The actuator 150 becomes the output QK of a summing point 202 acted upon. At the first entrance of the addition point 202 is the output QKF a setpoint 210 at. At the second input of the addition point 2 is the Output QKL of a multiplexer 250 on.

Die Mengenvorgabe 210 verarbeitet das Ausgangssignal verschiedener Sensoren, wie beispielsweise eines Fahrpedalstellungsgebers 170a sowie eines Drehzahlgebers 170b. Desweiteren kann vorgesehen sein, daß die Mengenvorgabe 210 das Ausgangssignal L eines Sensors 180 verarbeitet. Das Ausgangssignal L des Sensors 180 entspricht der Sauerstoffkonzentration im Abgastrakt.The quantity default 210 processes the output signal various sensors, such as one Accelerator pedal position transmitter 170a and a speed sensor 170b. Furthermore, it can be provided that the Setpoint 210, the output signal L of a sensor 180th processed. The output signal L of the sensor 180 corresponds the oxygen concentration in the exhaust tract.

Das Signal L des Sensors 180 gelangt ferner zu einer Filtereinrichtung 230, die wiederum einen ersten Regler 241, einen zweiten Regler 242, einen dritten Regler 243 und einen vierten Regler 244 mit einem Signal beaufschlagt, das einer Regelabweichung entspricht. Insgesamt werden die Regler 241 bis 244 als Regler 240 bezeichnet. Die einzelnen Regler beaufschlagen wiederum den Multiplexer 250 mit Ansteuersignalen, die dann zyklisch als Signal QKL zum Additionspunkt 202 gelangen.The signal L of the sensor 180 also arrives at a Filter device 230, in turn, a first controller 241, a second controller 242, a third controller 243 and a fourth controller 244 with a signal applied to a Control deviation corresponds. Overall, the controller 241 to 244 referred to as controller 240. The individual controllers in turn act on the multiplexer 250 with Control signals, which then cyclically as signal QKL for Addition point 202 arrive.

Ausgehend von den verschiedenen Sensorsignalen bestimmt die Mengenvorgabe 210 eine einzuspritzende Kraftstoffmenge QKF, die der Brennkraftmaschine zuzuführen ist. Diese Menge QKF entspricht der Menge, die erforderlich ist, um das vom Fahrer gewünschte Drehmoment bereitzustellen. Dabei beinhaltet die Mengensteuerung 210 noch weitere Funktionen, wie beispielsweise einen Leerlaufregler oder Mengeneingriffe von weiteren Steuereinheiten. Desweiteren kann die Mengenvorgabe 210 bereits eine Laufruheregelung, wie sie aus dem Stand der Technik bekannt ist, umfassen. Ferner ist es möglich, daß eine nicht zylinderindividuelle Mengenvorgabe auch ein Lambda-Signal berücksichtigt, das die Sauerstoffkonzentration im Abgas charakterisiert.Based on the various sensor signals determines the Quantity specification 210 an amount of fuel QKF to be injected, which is to be supplied to the internal combustion engine. This amount QKF corresponds to the amount required by the Driver to provide desired torque. there the quantity control 210 contains additional functions, such as an idle controller or Quantity interventions by other control units. Furthermore the quantity specification 210 can already be a truancy regulation, as known in the art include. Furthermore, it is possible that a non-cylinder individual Quantity specification also takes into account a lambda signal that the Oxygen concentration in the exhaust gas characterized.

Luftmengenfehler, d.h. Abweichungen zwischen den Luftmengen, die den einzelnen Zylindern zugeführt werden, werden von der Mengenvorgabe 210 nicht berücksichtigt. Unterschiedliche Lambda-Werte der einzelnen Zylinder führen zu Schwankungen des Lambda-Signals. Diese werden erfaßt und zur zylinderindividuellen Regelung verwendet. Die Filtereinrichtung 230 berechnet aus dem Lambda-Signal L, das mit dem Sensor 180 erfaßt wird, eine zylinderindividuelle Regelabweichung zwischen dem zylinderindividuellen Soll- und Istwert für das Lambda-Signal. Diese zylinderindividuelle Regelabweichung wird dem jeweiligen Regler, der dem Zylinder zugeordnet ist, zugeführt. Dabei kann vorgesehen sein, daß für jeden Zylinder ein Regler vorgesehen ist. Alternativ ist es auch möglich, daß ein Regler zeitlich nacheinander die zylinderindividuellen Regelabweichungen verarbeitet. Dies ist insbesondere dann der Fall, wenn die Erfindung als Steuerprogramm realisiert ist. Der Multiplexer 250 faßt diese Signale zusammen zu einem Signal QKL, das die Abweichungen der einzelnen Lambda-Signale von einem Sollwert charakterisiert. Dieses Signal ist so ausgebildet, daß bei der Ansteuerung der Stelleinrichtung 150 eine solche Kraftstoffmenge zugemessen wird, daß das Lambda-Signal bei allen Zylindern den gleichen Wert annimmt.Air quantity error, i. Deviations between the air volumes, which are supplied to the individual cylinders, are of the Quantity requirement 210 not taken into account. different Lambda values of the individual cylinders lead to fluctuations of the lambda signal. These are recorded and the cylinder-specific control used. The Filter device 230 calculates from the lambda signal L, the is detected with the sensor 180, a cylinder-individual Control deviation between the cylinder-specific nominal and Actual value for the lambda signal. This cylinder-individual Control deviation is the respective controller, the cylinder is assigned supplied. It can be provided that a regulator is provided for each cylinder. Alternatively it is It is also possible that a controller in succession the processed cylinder-specific control deviations. This is particularly the case when the invention as Control program is realized. The multiplexer 250 holds these signals together to a signal QKL, which the Deviations of the individual lambda signals from a setpoint characterized. This signal is designed so that at the control of the actuator 150 such Fuel quantity is metered that the lambda signal at all cylinders take the same value.

Mit Hilfe der zylinderindividuellen Lambda-Regelung können durch Eingriffe in die Luftmessung auch Luftmengenfehler kompensiert werden, die zwischen den einzelnen Zylindern auftreten, d.h. die Abgase aller Zylinder besitzen die gleiche Sauerstoffkonzentration. Im Vergleich zu üblichen Mengenausgleichsregelungen gemäß dem Stand der Technik können die Abgaswerte der Brennkraftmaschine deutlich verbessert werden. Dies ist insbesondere bei niederen Drehzahlen und großen Einspritzmengen von Vorteil. Schon kleine Abweichungen des Lambda-Werts, d.h. der Sauerstoffkonzentration im Abgas eines Zylinders in Richtung eines fetteren Gemisches, führen zu einem starken Anstieg der Rußemissionen in diesem Zylinder. Diese erhöhte Rußemission wird nicht durch die etwas geringere Rußentstehung in einem Zylinder mit entsprechend magerem Gemisch ausgeglichen. Mit einer zylinderindividuellen Lambda-Regelung kann somit bei gleichem Motormoment eine niedrigere Schwärzungszahl erzielt werden. Alternativ läßt sich bei gleicher Schwärzungszahl das abgegebene Moment erhöhen. Das beruht darauf, daß bei einem System ohne zylinderindividuelle Lambda-Regelung die Kraftstoffmenge und damit das abgegebene Moment so weit erniedrigt werden muß, daß die Rußmenge unterhalb eines bestimmten Wertes liegt.With the help of cylinder-specific lambda control can by interfering with the air measurement also air quantity errors be compensated, between the individual cylinders occur, i. the exhaust gases of all cylinders have the same oxygen concentration. Compared to usual Quantity compensation controls according to the prior art can the exhaust emissions of the engine significantly be improved. This is especially true for lower ones Speeds and large injection quantities of advantage. Nice small deviations of the lambda value, i. of the Oxygen concentration in the exhaust of a cylinder in the direction a richer mixture, lead to a sharp increase the soot emissions in this cylinder. This increased Soot emission is not caused by the slightly lower Soot formation in a cylinder with correspondingly lean Balanced mixture. With a cylinder-individual Lambda control can thus at the same engine torque a lower blackening number can be achieved. Alternatively leaves at the same number of blackening the delivered moment increase. This is due to the fact that in a system without cylinder-individual lambda control the amount of fuel and so that the delivered moment must be lowered so far that the amount of soot is below a certain value.

Insbesondere Brennkraftmaschinen, die mit einem Turbolader, d.h. einem für Verdichter und einer Turbine ausgestattet sind, sind die Anforderungen an die Signalaufbereitung des Lambda-Signals besonders hoch, da die auszuwertende Signalamplitude bei einer Verwendung einer Lambda-Sonde nach der Turbine sehr klein ist.In particular, internal combustion engines equipped with a turbocharger, i.e. one for compressor and one turbine are the signal conditioning requirements of the Lambda signal particularly high, since the evaluated Signal amplitude when using a lambda probe after the turbine is very small.

Bei der Anordnung der Lambda-Sonde stehen zwei Alternativen zur Verfügung. Bei einer ersten Alternative ist die Lambda-Sonde vor der Turbine angeordnet. Dies bietet den Vorteil, daß noch keine Vermischung der zylinderindividuellen Abgasströme durch die Turbine stattgefunden hat. Jedoch werden in diesem Bereich durch das Öffnen der Auslaßventile starke Druckschwingungen angeregt. Diese kompensieren teilweise die durch die zylinderindividuellen Lambda-Unterschiede angeregten Schwingungen auf dem Sondensignal. Dies beruht auf der im folgenden beschriebenen Wirkungsweise. Wird in einem Zylinder eine höhere Einspritzmenge eingespritzt, so sinkt der dazugehörige Restsauerstoffgehalt im Abgas und damit die Ausgangsspannung der Lambda-Sonde. Gleichzeitig ergibt sich aus der stärkeren Verbrennung ein höherer Druck bei der Öffnung des Auslaßventils. Durch eine positive Querkopplung zwischen Druck und Sondensignal erhöht der Druckanstieg das Sensorsignal und wirkt der eigentlichen Sauerstoffänderung entgegen. Dadurch ist die meßbare Signalamplitude deutlich kleiner als anhand der reinen Sauerstoffschwingung erwartet würde. Nachteilig ist ferner, daß eine zusätzliche Sonde benötigt wird.In the arrangement of the lambda probe are two alternatives to disposal. In a first alternative, the lambda probe arranged in front of the turbine. This offers the advantage that still no mixing of the cylinder individual Exhaust gas flows through the turbine has taken place. however be in this area by opening the exhaust valves strong pressure oscillations excited. These compensate partly due to the cylinder-specific lambda differences excited vibrations on the probe signal. This is based on the following Mode of action. Will be higher in a cylinder Injected injection quantity, so the corresponding sinks Residual oxygen content in the exhaust gas and thus the output voltage the lambda probe. At the same time results from the stronger Burning a higher pressure at the opening of the Outlet valve. Through a positive cross-coupling between Pressure and probe signal increases the pressure increase Sensor signal and affects the actual change in oxygen opposite. As a result, the measurable signal amplitude is clear less than expected from pure oxygen vibration would. Another disadvantage is that an additional probe is needed.

Bei der zweiten Alternative wird die Lambda-Sonde hinter der Turbine angeordnet. Vorteilhaft hierbei ist, daß die Störamplitude der durch die Verbrennung verursachten Druckschwingungen im Abgasstrang kleiner ist. Nachteilig wirkt sich jedoch die Vermischung der zylinderindividuellen Abgasströme durch die Turbine aus. Dies reduziert auch bei dieser Anordnung der Sonde die Amplitude der zu messenden Sauerstoffschwingungen.In the second alternative, the lambda probe is behind the Turbine arranged. The advantage here is that the Störamplitude caused by the combustion Pressure oscillations in the exhaust system is smaller. adversely However, the mixing of cylinder-specific affects Exhaust gas flows through the turbine. This also reduces at this arrangement of the probe the amplitude of the measured Oxygen vibrations.

Da sowohl beim Einsatz der Alternative 1 als auch bei der Alternative 2 das auszuwertende Signal eine deutlich kleinere Nutzamplitude aufweist als bei Brennkraftmaschinen ohne Turbolader, ist eine verbesserte Signalaufbereitung zur Störungsunterdrückung, insbesondere bei Brennkraftmaschinen mit Turbolader, von Vorteil.Since both the use of the alternative 1 and in the Alternative 2 the signal to be evaluated a clear smaller Nutzamplitude than in internal combustion engines without turbocharger, is an improved signal conditioning to Noise suppression, especially in internal combustion engines with turbocharger, an advantage.

Als besonders gravierende Störung ist die Heizfrequenz der Lambda-Sonde zu nennen. Deren Störamplitude ist etwa so groß, wie die durch die zylinderindividuellen Lambda-Unterschiede verursachten Schwingungen. Diese Schwingungen können durch eine schnelle Signalvorverarbeitung kompensiert werden.As a particularly serious disturbance is the heating frequency of To name lambda probe. Their Störamplitude is something like that big, like those due to the cylinder-specific lambda differences caused vibrations. These vibrations can be compensated by a fast signal preprocessing become.

In Figur 3 ist die Regelabweichungsberechnung 230 detaillierter dargestellt. Bereits in Figur 2 beschriebene Elemente sind in Figur 3 mit entsprechenden Bezugszeichen bezeichnet. Das Ausgangssignal des Sensors 180 gelangt über eine Vorfilter 300 zu einem ersten Filter 310 und einem zweiten Filter 320. Das Ausgangssignal des ersten Filters 310 gelangt zu einer ersten Sollwertermittlung 312 und einer ersten Istwertermittlung 314. Das Ausgangssignal des zweiten Filters 320 gelangt zu einer zweiten Sollwertermittlung 322 und einer zweiten Istwertermittlung 324.In Figure 3, the droop calculation 230 is more detailed shown. Already described in Figure 2 elements are designated in Figure 3 with corresponding reference numerals. The output signal of the sensor 180 passes through a Pre-filter 300 to a first filter 310 and a second Filter 320. The output of the first filter 310 arrives at a first setpoint determination 312 and a first actual value determination 314. The output signal of the second Filter 320 arrives at a second set point determination 322 and a second actual value determination 324.

Das Ausgangssignal NWS der ersten Sollwertermittlung 312 gelangt mit positiven Vorzeichen und das Ausgangssignal NWI der ersten Istwertermittlung 314 mit negativen Vorzeichen zu einem Verknüpfungspunkt 316. Im folgenden Verknüpfungspunkt 318 wird das Ausgangssignal des Verknüpfungspunktes 316 mit einem Wichtungsfaktor FNW verknüpft. Die so gewichtete erste Regelabweichung NWL gelangt zu einem Additionspunkt 340 und von dort zum Block 240.The output signal NWS of the first setpoint determination 312 passes with positive sign and the output signal NWI the first actual value determination 314 with a negative sign a node 316. In the following node 318, the output signal of the node 316 with linked to a weighting factor FNW. The so weighted first Control deviation NWL arrives at a summing point 340 and from there to Block 240.

Das Ausgangssignal KWS der zweiten Sollwertermittlung 322 gelangt mit positiven Vorzeichen und das Ausgangssignal KWI der zweiten Istwertermittlung 324 mit negativen Vorzeichen zu einem Verknüpfungspunkt 326. Im folgenden Verknüpfungspunkt 328 wird das Ausgangssignal des Verknüpfungspunktes 326 mit einem Wichtungsfaktor FKW verknüpft. Die so gewichtete zweite Regelabweichung KWL gelangt zu dem Additionspunkt 340The output signal KWS of the second setpoint determination 322 passes with positive sign and the output signal KWI the second actual value determination 324 with a negative sign to a node 326. In the following node 328 becomes the output of the node 326 associated with a weighting factor HFC. The so weighted second control deviation KWL arrives at the addition point 340

Der Wichtungsfaktor FNW und der Wichtungsfaktor FKW werden von der Wichtungsvorgabe 330 bereitgestellt.The weighting factor FNW and the weighting factor HFC become from weighting 330.

Am Ausgang des Additionspunktes 340 steht die Regelabweichung L zur Verfügung, die zum Regler 240 weitergeleitet wird.At the output of the addition point 340 is the control deviation L, which are forwarded to the controller 240 becomes.

Bei den Verknüpfungspunkten 318 und 328 handelt es sich um eine bevorzugte Ausgestaltung der Erfindung. Alternativ kann auch vorgesehen sein, daß die Faktoren FNW und/oder FKW andersweitig, beispielsweise in den Filtern 310 oder 320, berücksichtigt bzw. nicht berücksichtigt werden.The nodes 318 and 328 are a preferred embodiment of the invention. Alternatively, you can also be provided that the factors FNW and / or HFC otherwise, for example in filters 310 or 320, taken into account or not taken into account.

Bei der dargestellten Ausführungsform einer Brennkraftmaschine mit 4 Zylindern sind lediglich zwei Filter vorgesehen, die Signalanteile mit Nockenwellen- und Kurbelwellenfrequenz ausfiltern. Bei vorteilhaften Ausgestaltungen kann auch vorgesehen sein, daß weitere Frequenzbereiche berücksichtigt werden. Insbesondere kann auch vorgesehen sein, dass Filter vorgesehen ist, das die Frequenzen bis einschließlich der halben Zündfrequenz ausfiltern. In the illustrated embodiment of a Internal combustion engine with 4 cylinders are only two Filter provided, the signal components with camshaft and Filter out crankshaft frequency. At advantageous Embodiments can also be provided that more Frequency ranges are taken into account. In particular, can also be provided that filter is provided, which is the Frequencies up to and including half the ignition frequency filter out.

Bei der dargestellten Ausführungsform einer Brennkraftmaschine mit vier Zylindern handelt es sich bei den Filtern 310 und 320 um Bandpaßfilter, deren Mittenfrequenz beim Filter 310 bei der Nockenwellenfrequenz und beim Filter 320, bei der Kurbelwellenfrequenz liegt.In the illustrated embodiment of an internal combustion engine with four cylinders are the filters 310 and 320 around bandpass filters whose center frequency at Filter 310 at the camshaft frequency and filter 320, at the crankshaft frequency is.

Bei anderen Zylinderzahlen sind gegebenenfalls andere Bandpässe vorzusehen. So sind beispielsweise bei einer Brennkraftmaschine mit vier oder fünf Zylindern ein Bandpaß mit der Nockenwellenfrequenz und ein Bandpaß mit der doppelten Nockenwellenfrequenz, die der Kurbelwellenfrequenz entspricht vorzusehen.Other cylinder numbers may have different bandpasses provided. For example, in an internal combustion engine with four or five cylinders a band pass with the camshaft frequency and a bandpass with the double Camshaft frequency, which corresponds to the crankshaft frequency provided.

Bei einer Brennkraftmaschine mit 2*k Zylindern, wobei k eine natürliche Zahl ist, sind k Bandpässe vorzusehen, den Mittenfrequenzen bei einem ganzzahligen Vielfachen der Nockenwellenfrequenz liegen.In an internal combustion engine with 2 * k cylinders, where k is a is natural number, k band passages have to be provided, the center frequencies at an integer multiple of the camshaft frequency lie.

Das Ausgangssignal des Sensors 180 gelangt über den Vorfilter 300 zu den Bandpässen 310 und 320. Dieser Vorfilter 300 ist derart ausgebildet, dass er unerwünschte Störungen ausfiltert. Vorzugsweise ist der Vorfilter 300 derart ausgebildet, dass er Schwingungen des Signals, die durch die Sondenheizung verursacht werden, nicht durchlässt.The output signal of the sensor 180 passes through the Pre-filter 300 to the bandpasses 310 and 320th This Prefilter 300 is designed to be unwanted Interference filters out. Preferably, the pre-filter 300 is designed so that it oscillates the signal, the caused by the probe heating, does not let through.

Mittels der Bandpässe 310 und 320 wird das Ausgangssignal des Sensors 180 in Spektralanteile getrennt. Für jeden Spektralanteil ermitteln die ersten, zweiten und dritten Istwertermittlung und die ersten, zweiten und dritten Sollwertermittlung frequenzspezifische Soll- und Istwerte. Die Berechnung der Soll- und Istwerte erfolgt für die einzelnen Spektralanteile vorzugsweise unterschiedlich.By means of the bandpasses 310 and 320, the output signal of the sensor 180 separated into spectral components. For each Spectral component determine the first, second and third Actual value determination and the first, second and third Setpoint determination Frequency-specific setpoints and actual values. The calculation of the setpoints and actual values takes place for the individual spectral components preferably different.

Mittels der Bandpässe 310 und 320 wird das Sondensignal für die einzelnen Frequenzen getrennt. Für jede Frequenz berechnet die erste Istwertermittlung 314 und die zweite Istwertermittlung 324 einen frequenzspezifischen Istwert. Entsprechend kann vorgesehen sein, daß für jede Frequenz die erste Sollwertvorgabe 312 und die zweite Sollwertvorgabe 322 einen frequenzspezifischen Sollwert berechnet. In den Verknüpfungspunkten 316 und 326 wird dann die frequenzspezifische Regelabweichung ermittelt.By means of the bandpass filters 310 and 320, the probe signal for the individual frequencies separated. For every frequency calculates the first actual value determination 314 and the second one Actual value determination 324 a frequency-specific actual value. Accordingly, it can be provided that for each frequency first setpoint input 312 and the second setpoint input 322 calculates a frequency-specific setpoint. In the Join points 316 and 326 then become the Frequency-specific control deviation determined.

Besonders vorteilhaft ist, wenn diese frequenzspezifischen Regelabweichungen mittels frequenzspezifischen Wichtungsfaktoren NW und FKW frequenzspezifisch wichtbar sind. Besonders vorteilhaft ist es, wenn die Wichtungsfaktoren FNW und FKW so gewählt werden, daß die Regelkreisverstärkung für alle Frequenzen gleich eingestellt wird. Dadurch kann eine frequenzspezifische Anpassung der Reglerparameter erzielt werden.It is particularly advantageous if these frequency-specific Deviations by means of frequency-specific weighting factors NW and HFC are frequency specific weighted. Especially It is advantageous if the weighting factors FNW and HFC be chosen so that the loop gain for all Frequencies is set equal. This can be a Frequency-specific adaptation of the controller parameters achieved become.

Die so gewichteten bzw. nicht gewichteten Regelabweichungen NWL und KWL werden im Verknüpfungspunkt 340 addiert und dem Regler zugeführt. Der Regler entspricht dem in Figur 2 dargestellten Regler 240.The weighted or unweighted control deviations NWL and KWL are added at node 340 and the Regulator supplied. The regulator corresponds to that in FIG. 2 illustrated controller 240.

Besonders vorteilhaft bei dieser Vorgehensweise ist, daß die Regelbarkeit auch bei großen Unterschieden in der Phasenlage gegeben ist. Durch die frequenzspezifische Bildung der Regelabweichung ergibt sich eine erhöhte Robustheit des Reglers gegenüber Änderungen des Regelstreckenverhaltens, z.B. durch Veränderung im Bereich des Luftsystems, insbesondere im Bereich der Einlassventile, Fertigungstoleranzen oder Verschleiß.Particularly advantageous in this approach is that the Controllability even with large differences in the phase angle given is. Due to the frequency-specific formation of the control deviation results in an increased robustness of the Controller against changes in the controlled system behavior, e.g. by change in the area of the air system, especially in the field of intake valves, manufacturing tolerances or wear.

Alternativ zur Auswertung des Lambda-Signals kann auch ein Drucksensor verwendet werden, der den Druck vor bzw. hinter der Turbine auswertet.Alternatively to the evaluation of the lambda signal can also be Pressure sensor can be used, the pressure in front of or behind the turbine evaluates.

Claims (9)

  1. Method for controlling an internal combustion engine (100), in which each cylinder of the internal combustion engine (100) is assigned a control error and a controller (240), each controller (240) predefines a cylinder-specific actuation signal on the basis of the assigned control error, characterized in that a signal (L) of a sensor (180) which is arranged in the exhaust gas tract can be filtered with at least a first and a second filter means (310, 320) with different frequencies for the cylinder-specific control of the fuel quantity and/or air quantity, wherein a first frequency-specific actual value (NWI) can be determined on the basis of the filtered signal of the first filter means (310), and a second frequency-specific actual value (KWI) can be determined on the basis of the filtered signal of the second filter means (320), wherein the frequency-specific actual values (NWI, KWI) are each compared with a corresponding setpoint value (NWS,KWS), and in that actuation signals for the cylinder-specific control of the fuel quantity and/or air quantity can be predefined on the basis of the comparison.
  2. Method according to Claim 1, characterized in that, in order to make available the frequency-specific variables, the output signal (L) of the sensor (180) which is arranged in the exhaust track can be filtered by means of at least two bandpass filters (310, 320) with adjustable centre frequencies.
  3. Method according to Claim 2, characterized in that the centre frequencies are integral multiples of the cam shaft frequency.
  4. Method according to at least one of the preceding claims, characterized in that the setpoint values (NWS, KWS) can be predefined in different ways for each frequency.
  5. Method according to at least one of the preceding claims, characterized in that the control errors can be weighted differently for each frequency.
  6. Method according to at least one of the preceding claims, characterized in that the sensor which is arranged in the exhaust gas tract supplies a signal which characterizes the oxygen concentration in the exhaust gas, or a signal which characterizes the pressure in the exhaust gas.
  7. Device for controlling an internal combustion engine (100), in which each cylinder of the internal combustion engine (100) is assigned a control error and a controller (240), where each controller (240) predefines a cylinder-specific actuation signal on the basis of the assigned control error, characterized in that means are provided which, for the cylinder-specific control of the fuel quantity and/or air quantity, filter a signal (L) of a sensor (180) which is arranged in the exhaust track and has at least two filter means (310, 320) with different frequencies and which determine a first frequency-specific actual value (NWI) on the basis of the filtered signal of the first filter means (310), and a second frequency-specific actual value (KWI) on the basis of the filtered signal of the second filter means (320), and which compare the frequency-specific actual values with a corresponding setpoint value (NWS, KWS) and which, on the basis of the comparison, predefine actuation signals for the cylinder-specific control of the fuel quantity and/or air quantity.
  8. Computer program with program code means for carrying out all the steps of any of Claims 1 to 6 if the program is executed on a computer, in particular a control device for an internal combustion engine.
  9. Computer program product with program code means which are stored in a computer-readable data carrier in order to carry out the method after any of Claims 1 to 6 when the program product is executed on a computer, in particular a control device for an internal combustion engine.
EP01123016A 2000-12-16 2001-09-26 Method and system for controlling an internal combustion engine Expired - Lifetime EP1215388B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10062895 2000-12-16
DE10062895A DE10062895A1 (en) 2000-12-16 2000-12-16 Method and device for controlling an internal combustion engine

Publications (3)

Publication Number Publication Date
EP1215388A2 EP1215388A2 (en) 2002-06-19
EP1215388A3 EP1215388A3 (en) 2003-05-28
EP1215388B1 true EP1215388B1 (en) 2005-08-17

Family

ID=7667521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01123016A Expired - Lifetime EP1215388B1 (en) 2000-12-16 2001-09-26 Method and system for controlling an internal combustion engine

Country Status (4)

Country Link
US (1) US6675787B2 (en)
EP (1) EP1215388B1 (en)
JP (1) JP2002213284A (en)
DE (2) DE10062895A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045723A1 (en) 2009-10-15 2011-04-21 Robert Bosch Gmbh Method for operating internal-combustion engine, involves detecting lambda value in exhaust gas of cylinders, and controlling spin flap or adjusting device in inlet channel of cylinder depending on lambda value

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7143500B2 (en) 2001-06-25 2006-12-05 Micron Technology, Inc. Method to prevent damage to probe card
ATE546628T1 (en) * 2001-08-29 2012-03-15 Niigata Power Systems Co Ltd ENGINE, DEVICE AND METHOD FOR CONTROLLING ENGINE EXHAUST GAS TEMPERATURE
DE10206906C1 (en) * 2002-02-19 2003-11-06 Siemens Ag Method for controlling an amount of fuel injected by a pieno injector
DE10234091A1 (en) * 2002-07-26 2004-02-05 Robert Bosch Gmbh Solenoid valve supply current monitoring method for a combustion engine, especially a motor vehicle engine, involves comparing the total valve supply current with a total theoretical value
JP4205030B2 (en) * 2003-10-06 2009-01-07 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
DE10358108A1 (en) * 2003-12-12 2005-07-14 Daimlerchrysler Ag Method and device for the cylinder-specific determination and regulation of the fuel injection quantity
DE102004026176B3 (en) * 2004-05-28 2005-08-25 Siemens Ag Air fuel ratio recording method e.g. for individual cylinders of combustion engines, involves determining scanning crankshaft angle related to reference position of piston of respective cylinders and recording measuring signal
DE102004030759B4 (en) 2004-06-25 2015-12-17 Robert Bosch Gmbh Method for controlling an internal combustion engine
DE102004046083B4 (en) * 2004-09-23 2016-03-17 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
US7089922B2 (en) * 2004-12-23 2006-08-15 Cummins, Incorporated Apparatus, system, and method for minimizing NOx in exhaust gasses
DE102006001369A1 (en) * 2005-10-24 2007-05-03 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE102007030562B4 (en) 2007-06-30 2018-03-15 Volkswagen Ag Method for operating an internal combustion engine
DE102007051553A1 (en) 2007-10-29 2009-04-30 Robert Bosch Gmbh Method for operating internal combustion engine, particularly diesel internal combustion engine, involves systematic varying of beginning of fuel injection by temporal varying of appropriate controlling factor
AT506085B1 (en) * 2008-04-07 2009-06-15 Ge Jenbacher Gmbh & Co Ohg Internal combustion engine
DE102008001670B4 (en) * 2008-05-08 2022-03-31 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE102008042633A1 (en) 2008-10-06 2010-04-08 Robert Bosch Gmbh Method for monitoring fuel-air ratio in cylinders of diesel engine, involves determining value for lambda-deviation for each cylinder from average fuel-air ratio of all cylinders
JP5263327B2 (en) * 2011-04-05 2013-08-14 トヨタ自動車株式会社 Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
DE102020107132A1 (en) 2020-03-16 2021-09-16 Bayerische Motoren Werke Aktiengesellschaft Process for thermodynamic optimization by using individual cylinder injection patterns in motor vehicles

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929746A1 (en) * 1989-09-07 1991-03-14 Bosch Gmbh Robert METHOD AND DEVICE FOR CONTROLLING AND REGULATING A SELF-IGNITIONING INTERNAL COMBUSTION ENGINE
JP3315724B2 (en) * 1992-08-07 2002-08-19 トヨタ自動車株式会社 Misfire detection device
JP3162553B2 (en) * 1993-09-13 2001-05-08 本田技研工業株式会社 Air-fuel ratio feedback control device for internal combustion engine
DE19527218B4 (en) * 1994-12-23 2004-03-18 Robert Bosch Gmbh Method and device for regulating the smooth running of an internal combustion engine
JP3683357B2 (en) * 1996-08-08 2005-08-17 本田技研工業株式会社 Cylinder air-fuel ratio estimation device for internal combustion engine
DE19733958A1 (en) * 1997-08-06 1999-02-11 Bosch Gmbh Robert Method and device for correcting tolerances of a sensor wheel
DE19734072C2 (en) * 1997-08-06 2001-12-13 Iq Mobil Electronics Gmbh Lambda control for injection systems with adaptive filter
DE19846393A1 (en) * 1998-10-08 2000-04-13 Bayerische Motoren Werke Ag Cylinder-selective control of the air-fuel ratio
DE19903721C1 (en) * 1999-01-30 2000-07-13 Daimler Chrysler Ag Internal combustion engine operating method involves regulating lambda values of individual cylinders/groups to different demand values using I- and/or D-regulating components
US6382198B1 (en) * 2000-02-04 2002-05-07 Delphi Technologies, Inc. Individual cylinder air/fuel ratio control based on a single exhaust gas sensor
US6314952B1 (en) * 2000-03-23 2001-11-13 General Motors Corporation Individual cylinder fuel control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045723A1 (en) 2009-10-15 2011-04-21 Robert Bosch Gmbh Method for operating internal-combustion engine, involves detecting lambda value in exhaust gas of cylinders, and controlling spin flap or adjusting device in inlet channel of cylinder depending on lambda value

Also Published As

Publication number Publication date
US20020096157A1 (en) 2002-07-25
EP1215388A3 (en) 2003-05-28
US6675787B2 (en) 2004-01-13
DE10062895A1 (en) 2002-06-27
DE50107109D1 (en) 2005-09-22
JP2002213284A (en) 2002-07-31
EP1215388A2 (en) 2002-06-19

Similar Documents

Publication Publication Date Title
EP1215388B1 (en) Method and system for controlling an internal combustion engine
DE19945618B4 (en) Method and device for controlling a fuel metering system of an internal combustion engine
DE4207541B4 (en) System for controlling an internal combustion engine
DE102004004490A1 (en) Method for operating an internal combustion engine with at least two exhaust gas turbochargers
DE102008043165A1 (en) Method for calibrating amount of partial fuel injection into fuel injection system of internal combustion engine of motor vehicle, involves determining correction value for fuel injection by stimulating pattern and by changing vibration
DE102004004291B3 (en) Process to correct automotive fuel/air mixture jet ratio by comparison of exhaust gas composition with the respective cylinder inputs
EP0375758A1 (en) A method and device for lambda control with several probes.
DE102005012950B4 (en) Method and device for controlling an internal combustion engine
DE102006000973A1 (en) Residual gas determining method for use in internal combustion engine of vehicle, involves determining residual gas content based on parameter that characterizes combustion process in chamber
EP1398483A2 (en) Method and apparatus for controlling an intenal combustion engine with reduced emission of polutants
EP1520091A1 (en) Method and device for the control of an internal combustion engine
WO2009143858A1 (en) Method for controlling an injection process of an internal combustion engine, control device for an internal combustion engine and an internal combustion engine
DE10256241A1 (en) Method and device for controlling an internal combustion engine having exhaust gas recirculation
DE10358988B3 (en) Fuel injection control for multi-cylinder IC engine using comparison of estimated fuel/air ratio with actual fuel air ratio for correcting injected fuel mass for each engine cylinder for individual lambda regulation
DE102011004068B3 (en) Method for coordinating dispensed torques and/or lambda values of burning cylinders for combustion engine of motor vehicle, involves providing parameters for supply of fuel for incineration in cylinders depending on correction values
DE4322270B4 (en) Method and device for controlling an internal combustion engine
EP1409865A1 (en) Method for compensating injection quantity in each individual cylinder in internal combustion engines
DE19920498A1 (en) Electronic control system for internal combustion engine
EP1178202B1 (en) Method and apparatus for controlling an internal combustion engine
DE4126900C2 (en) Control device for an internal combustion engine
DE102008018013B3 (en) Method and device for operating an internal combustion engine
DE10331159A1 (en) Controlling internal combustion engine, involves deriving fuel and air quantity correction values from comparison of actual and desired fuel quantities, limiting fuel correction value to maximum value
DE4323244B4 (en) Electronic control system for fuel metering in an internal combustion engine
DE102005057974A1 (en) Internal combustion engine`s e.g. petrol engine, air flow and/or fuel-air ratio controlling method, involves controlling control valve based on cylinder-individual signal portions and determining cylinder-individual interferences
EP1432904B1 (en) Method and device for controlling an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031128

AKX Designation fees paid

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20040406

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50107109

Country of ref document: DE

Date of ref document: 20050922

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050926

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051205

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060518

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051017

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

Effective date: 20121226

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20121226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130920

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130920

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130924

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131121

Year of fee payment: 13

Ref country code: FR

Payment date: 20130918

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107109

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107109

Country of ref document: DE

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140926

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930