EP1214988B1 - Device for producing pipes from a compactable material - Google Patents

Device for producing pipes from a compactable material Download PDF

Info

Publication number
EP1214988B1
EP1214988B1 EP01125971A EP01125971A EP1214988B1 EP 1214988 B1 EP1214988 B1 EP 1214988B1 EP 01125971 A EP01125971 A EP 01125971A EP 01125971 A EP01125971 A EP 01125971A EP 1214988 B1 EP1214988 B1 EP 1214988B1
Authority
EP
European Patent Office
Prior art keywords
main shaft
gyroscope
core
axis
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01125971A
Other languages
German (de)
French (fr)
Other versions
EP1214988A3 (en
EP1214988A2 (en
Inventor
Jörg-Henry Schwabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Fertigteiltechnik und Fertigbau Weimar eV
Original Assignee
Institut fuer Fertigteiltechnik und Fertigbau Weimar eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Fertigteiltechnik und Fertigbau Weimar eV filed Critical Institut fuer Fertigteiltechnik und Fertigbau Weimar eV
Publication of EP1214988A2 publication Critical patent/EP1214988A2/en
Publication of EP1214988A3 publication Critical patent/EP1214988A3/en
Application granted granted Critical
Publication of EP1214988B1 publication Critical patent/EP1214988B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • B28B1/087Producing shaped prefabricated articles from the material by vibrating or jolting by means acting on the mould ; Fixation thereof to the mould
    • B28B1/0873Producing shaped prefabricated articles from the material by vibrating or jolting by means acting on the mould ; Fixation thereof to the mould the mould being placed on vibrating or jolting supports, e.g. moulding tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • B28B1/093Producing shaped prefabricated articles from the material by vibrating or jolting by means directly acting on the material, e.g. by cores wholly or partly immersed in the material or elements acting on the upper surface of the material
    • B28B1/0935Producing shaped prefabricated articles from the material by vibrating or jolting by means directly acting on the material, e.g. by cores wholly or partly immersed in the material or elements acting on the upper surface of the material using only elements wholly or partly immersed in the material, e.g. cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/02Methods or machines specially adapted for the production of tubular articles by casting into moulds
    • B28B21/10Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means
    • B28B21/14Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means vibrating, e.g. the surface of the material

Definitions

  • the invention relates to a pipe manufacturer for producing pipes from a compactable mixture, wherein the compression takes place under the action of mechanical vibrations.
  • Such devices comprise a device for coupling mechanical vibrations in the compactable mixture, a vibrating body which is connected to the coupling device, and a main shaft which is rotatably mounted on the oscillating body about its longitudinal axis.
  • the bearings of the shaft are rigidly connected to the core, so that the vibration generated by unbalance excitation can act on the core on the compactable mixture. Accordingly, the distribution of the surface acceleration of the core along the longitudinal axis thereof is of great importance for the achievable densification of the batch and thus for the quality of the molded article produced therefrom.
  • the mechanical vibrations can be influenced, for example, via the rotational speed of the main shaft.
  • imbalance masses can be provided in several parallel planes along the longitudinal axis of the main shaft. By varying the individual imbalance masses in the respective levels tilt oscillations can also be corrected or adjusted specifically.
  • the invention is therefore based on the object to show alternatives for vibration generation and vibration control.
  • a pipe manufacturer for producing pipes according to claim 1 is proposed.
  • at least one gyroscope is connected to the main shaft and is rotatable about a gyro axis, the gyro axis being disposed non-parallel to the longitudinal axis of the main shaft and further comprising driving means for rotating the main shaft and gyro about their respective axes.
  • the gyro rotates about its gyro axis. Furthermore, the gyroscope is subjected to forced rotation about the longitudinal axis of the main shaft. The resulting reaction moments try to rotate the gyroscope so that the axis of the gyroscope rotation and the axis of the forced rotation are aligned in the same direction parallel to each other. However, such a relative movement is prevented by the connection of the gyro to the main shaft. Rather, the reaction torque whose vector is substantially perpendicular to the gyro axis and the longitudinal axis leads to a tilting moment on the oscillating body, which rotates at the speed of the main shaft. Accordingly, the vibration amplitudes vary along the longitudinal axis of the main shaft. This is not readily possible with the devices disclosed in DE 43 17 351 A1 and DE 196 43 978 C2.
  • the coupling device is for example a section of a molding tool.
  • the vibration exciter is connected with its oscillating body directly or via additional spring elements.
  • a ring may be formed on the mold surrounding the vibrating body in the manner of a sleeve.
  • the coupling device is a core of a hollow or tubular shape, which is resiliently mounted relative to other portions of the hollow or tubular shape.
  • the coupling device is a core of a hollow or tubular shape, which is resiliently mounted relative to other portions of the hollow or tubular shape.
  • the core takes the main shaft at least partially.
  • the entire vibration exciter is accommodated as far as possible within the core. This makes it possible in a particularly simple manner to protect the rotating elements against contamination.
  • the core is aligned in the operating position with its longitudinal axis in the vertical direction and resiliently mounted at its lower end, however, at its upper axial end unbent, so that he can swing freely there.
  • the gyro may for example be arranged within the core in the operating position in an upper end portion of the core or else halfway up the same.
  • the gyro may for example be arranged between two imbalance masses. However, it is also possible, the gyro at a free end portion of the main shaft to install. In the latter case, the gyro can also sit on a cantilevered end portion of the main shaft.
  • one or more further gyros are provided on the main shaft, which are each rotatable about their gyroscope axis, wherein the gyro axis is arranged non-parallel to the longitudinal axis of the main shaft.
  • the effect of the first gyroscope can be enhanced.
  • the or the gyroscope are preferably arranged such that the gyroscope axis or the gyroscope axes intersect the longitudinal axis of the main shaft.
  • the gyro axis or the gyro axes with the longitudinal axis of the main shaft at an angle of 90 ° which can be achieved with relatively small gyratory large tilting moments.
  • the circular axes of two identical gyros are coaxial with each other.
  • the gyros themselves do not become effective as imbalance mass.
  • the gyro axis coincides with the axis of symmetry of the associated gyroscope.
  • a separate, speed-controllable drive device is provided for the main shaft and for the gyroscope.
  • the vibration behavior of the vibration generator can be adjusted by a variation of the speed and the sense of rotation.
  • the superimposed tilting moment which rotates with the speed of the main shaft, can be increased or decreased.
  • the gyroscope is coupled to a speed-controllable centrifugal motor, wherein the gyro motor is attached to the main shaft.
  • the centrifugal motor can be an electric motor.
  • a section of the main shaft leading to the gyroscopic motor is designed as a hollow shaft.
  • an electrical supply line, but also a hydraulic or pneumatic line can be guided to the centrifugal motor.
  • the main shaft and the gyroscope are driven by a common drive means, wherein the drive means is coupled to the main shaft and the gyro rotating about the longitudinal axis with the main shaft is guided directly or via a gear on the oscillating body.
  • a sepa-rater drive for the or the gyroscope is not required in this case, so that there is a particularly simple structure.
  • the possibilities of speed variation for the gyroscope are somewhat limited here.
  • a further main shaft can be mounted parallel to the first main shaft on the oscillating body, on which in turn, in correspondence with the first main shaft, at least one gyroscope is provided.
  • further drive means are provided in correspondence with the first drive means in order to set the further main shaft and the or the further gyro in rotation.
  • one or more imbalance masses are again provided on each of the shafts.
  • a directional component of the unbalance excitation can be fully compensated, so that an unbalance-induced oscillatory motion in the form of a reciprocating motion along an axis can be generated, which are superimposed additional tilting depending on the control of the rotary speeds.
  • the first embodiment in Figure 1 shows an apparatus for the production of moldings from a compactable mixture G in the form of a tube-making machine with rising core.
  • the device comprises first in its operating position in the vertical direction aligned mold with an outer shell 1, often referred to as a jacket, and a retractable in this from below core 2, which has a substantially cylindrical outer shape.
  • 1 shows the state during filling and compacting of the molded part, for example a concrete pipe.
  • the core 2 which is supported on a machine frame 3 via elastic spring elements 4, substantially completely pulled out of the outer shell 1 down, so that the mold is just closed down.
  • the core 2 During filling of the mold with compressible batch G, the core 2 is moved upwards with increasing batch level. At the same time, the core 2 in this case performs a vibratory or vibrating motion in order to couple mechanical vibrations into the mixture G and thus to compact the mixture G located between its outer wall and the outer shell 1 of the forming tool. In this case, there is a great interest, especially the just freshly filled, still loose mixture solidify as possible without the inclusion of cavities, so that just in this area the highest possible surface acceleration and surface amplitudes at the upper axial end portion of the core 2 are desired.
  • a vibration exciter which is arranged as far as possible within the core 2.
  • This vibration exciter comprises first a vibrating body 5 in the form of a frame or vibrator tree, which is firmly clamped to the core 2.
  • a main shaft 6 On the oscillating body 5 is a main shaft 6 rotatably mounted, whose longitudinal axis L is aligned coaxially to the longitudinal axis of the core 2.
  • An electric motor 7 is coupled as a speed-controllable drive device for the main shaft 6 to an end section of the main shaft 6 projecting from the core 2 at the bottom, by way of example.
  • an electric motor 7 for example an asynchronous motor with frequency converter
  • a hydraulically or pneumatically driven motor can also be provided. It is also possible to use a separate from the main shaft 6 arranged drive means and to transmit the drive power, for example via a chain or belt drive on the main shaft 6.
  • the gyro axis K are arranged non-parallel to the longitudinal axis L of the main shaft 6.
  • the gyroscope axis K each with the longitudinal axis L at an angle of 90 °, wherein the gyro axis K intersect the longitudinal axis L.
  • the two gyros 8 are driven by a speed-controllable motor 9, the housing is fixedly connected to a cantilevered end portion of the main shaft 6.
  • the centrifugal motor 9 is here an electric motor, for example, again an asynchronous motor with frequency converter. However, it can also be used a hydraulically or pneumatically driven motor.
  • an unbalance mass 10 is rigidly secured to the main shaft 6 within the upper axial end portion of the core 2 between two bearing points of the main shaft 6.
  • the imbalance mass 10 generates radially directed imbalance forces, which excite the core 2 to a circumferential tilting movement, so that the outer wall of the core 2 introduces vibrations into the mixture G to be compacted or already compressed.
  • This unbalance excitation is superimposed on a further oscillation resulting from the rotation of the rotating gyro 8 about the longitudinal axis L.
  • a moment is generated, which is orthogonal to the respective gyro axis K as well as the longitudinal axis L, which essentially causes a tilting oscillation at the core 2.
  • This tilting oscillation has the same excitation frequency as the unbalance excitation.
  • a tilt oscillation excited by the gyroscope 8 can be used to reduce the tilting vibration generated by the imbalance mass 10.
  • the moments generated by the gyroscope can be adjusted in size with the speed of the gyroscope 8, so that in this way a simple correction of the vibration generated by the Umwuchtmassen 10 is possible without it being necessary for this, the core 2 and to disassemble the arranged substantially in this vibration exciter. Disassembly can still be done here in a very simple manner by the tension of the vibrating body 5 solved with the core 2 and the vibrating body 5 is pulled axially out of the core 2.
  • FIG. 1 A second exemplary embodiment of an apparatus for producing molded parts is shown in FIG.
  • This device is also designed as a tube finisher, which, in contrast to the first embodiment, however, has a stationary core 2 as a section of a molding tool.
  • the outer shell 1 of the mold and the core 2 during filling and compacting of the batch G in a fixed position to each other.
  • a vibrating body 5 is arranged within the core 2, which is supported via elastic elements 4 against a foundation 11 or a stationary machine frame, in turn, a vibrating body 5 is arranged.
  • This vibrating body 5 is connected via clamping devices 12 fixed to the core 2.
  • the tensioning devices 12 allow the use of similar vibrating bodies 5 in different cores 2.
  • a main shaft 6 is again rotatably mounted about its longitudinal axis L.
  • the drive of Hauptwel-le 6 can be carried out as in the first embodiment. In the example shown in Figure 2, however, the drive means 7 is arranged relative to the main shaft 6 off-axis, so that the corresponding end of the main shaft 6 remains free and optionally usable elsewhere.
  • the drive power is transmitted here from the drive device 7 via a belt drive 1 3 to the main shaft 6.
  • two gyros 8 are connected to the main shaft 6, wherein here, as in the first embodiment, the coupling via a Centrifugal motor 9 takes place, which is attached between two bearings of the main shaft 6 at the same.
  • the gyro 8 as well as the rotary motor 9 are formed as in the first embodiment and therefore need no further explanation.
  • the supply of the gyroscopic motor 9 takes place through a hollow shaft section 14 of the main shaft 6. Through this hollow shaft portion 14, for example, an electrical line or a hydraulic or pneumatic supply line to the centrifugal motor 9 are performed.
  • balancing masses 10 are provided on the main shaft 6, which are rigidly fixed here in each case at one end portion of the main shaft 6.
  • two additional bearings for the storage of the main shaft 6 are provided on the vibrating body 5 respectively.
  • the clamping devices 12 are each arranged at the level of Umwuchtmassen 10, so that the unbalance forces generated are introduced via the oscillating body 5 on a short path into the core 2.
  • the operation of the vibration actuator of the second embodiment is substantially the same as that of the first embodiment. Again, by a variation of the direction of rotation as well as the rotational speed of the gyroscope 8, the vibration excitation during filling and compression of the mold can be varied by the unbalanced vibration is superimposed over a circular excited vibration.
  • FIG. 3 A non-inventive example of a vibration exciter, which exploits the principle of gyro excitation is shown in Figure 3 based on a vibrating table, in which z. B. tilting vibrations due to load differences can be compensated by a Kreiselerregung.
  • the vibrating table comprises a vibrating body 5 in the form of a table, which is mounted at four points via resilient elements 8 on a stationary foundation 11.
  • the oscillating body 5 carries two mutually parallel main shafts 6 and 6 ', whose rotation is coupled via a gear 15, so that only a drive means 9 for both main shafts 6 and 6' is needed.
  • the gear 15, for example, a gear pair
  • a desired speed ratio between the main shafts 6 and 6 ' can be fixed.
  • Both Hauptwel len 6 and 6 ' rotate at the same speed, but in the opposite direction of rotation.
  • 6 or 6 'unbalanced masses 10 and 10' are fixed to each main shaft, which are arranged on both shafts in the same manner.
  • each gyro 8 or 8' provided with an associated rotary motor 9 and 9 ' here also the gyroscopes K to the respective longitudinal axis L of the associated main shaft 6 and 6' non-parallel are arranged.
  • an angle of 90 ° between the gyro axis K and the associated longitudinal axis L is provided.
  • the gyros 8 generate at the speed of the main shafts 6 and 6 'circumferential moments in a direction orthogonal to the respective gyro axis K and the associated longitudinal axis L, the size u. a. depends on the respective rotary speed. For example, if the two gyros 8 and 8 'driven at the same speed, so the horizontally acting moment components cancel, while the vertically acting moment components affect the tilting movement.
  • circularly excited tilting oscillations are used to influence the vibration behavior of a vibration exciter, this being possible simply by a change in the rotational speed of the gyroscope (s).
  • this can be influenced by a vibration generated by imbalance masses, wherein the correction torque of the or the gyroscope is delivered in the frequency of the unbalance excitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Moulding By Coating Moulds (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Materials For Medical Uses (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The molded component producing device includes a gyroscope (8). The gyroscope axis (K) is not parallel to the longitudinal axis (L) of the main shaft (6). There are drives to rotate both the main shaft and the gyroscope about their respective axes. Vibrations are induced by a device having one or more unbalanced weights (10) on the main shaft.

Description

Gebiet der ErfindungField of the invention

Die Erfindung bezieht sich auf einen Rohrfertiger zum Herstellen von Rohren aus einem verdichtungsfähigen Gemenge, bei dem die Verdichtung unter Einwirkung von mechanischen Schwingungen erfolgt. Derartige Vorrichtungen umfassen eine Einrichtung zur Einkopplung von mechanischen Schwingungen in das verdichtungsfähige Gemenge, einen Schwingkörper, der mit der Einkopplungseinrichtung verbunden ist, sowie eine Hauptwelle, die an dem Schwingkörper um ihre Längsachse drehbar gelagert ist.The invention relates to a pipe manufacturer for producing pipes from a compactable mixture, wherein the compression takes place under the action of mechanical vibrations. Such devices comprise a device for coupling mechanical vibrations in the compactable mixture, a vibrating body which is connected to the coupling device, and a main shaft which is rotatably mounted on the oscillating body about its longitudinal axis.

Stand der TechnikState of the art

Vorrichtungen der eingangs genannten Art sind zur Herstellung von Betonrohren bereits allgemein bekannt. Beispiele hierfür sind unter anderem in der DE 43 17 351 A1 sowie in der DE 196 43 978 A1 beschrieben. Bei diesen bekannten Vorrichtungen wird der noch unverdichtete Beton in ein Formwerkzeug eingegeben, das einen Kern in Form eines Hohlrohres aufweist. Zur Verdichtung des eingefüllten Betons wird der Kern zu Schwingungen bzw. Vibrationen angeregt. Die Erzeugung der mechanischen Schwingungen erfolgt mittels einer in dem Kern angeordneten Welle, an der Unwuchtmassen befestigt sind und die über einen Elektromotor in Rotation versetzt wird.Devices of the type mentioned are already well known for the production of concrete pipes. Examples of this are described inter alia in DE 43 17 351 A1 and in DE 196 43 978 A1. In these known devices, the still uncompacted concrete is introduced into a mold having a core in the form of a hollow tube. For compacting the filled concrete, the core is excited to oscillate or vibrate. The generation of the mechanical vibrations takes place by means of a shaft arranged in the core the imbalance masses are fixed and which is rotated by an electric motor in rotation.

Die Lagerungen der Welle sind mit dem Kern starr verbunden, so daß die durch Unwuchterregung erzeugten Schwingungen über den Kern auf das verdichtungsfähige Gemenge einwirken können. Dementsprechend ist die Verteilung der Oberflächenbe-schleunigung des Kerns entlang der Längsachse desselben für die erreichbare Verdichtung des Gemenges und damit für die Qualität des aus diesem hergestellten Formkörpers von großer Bedeutung.The bearings of the shaft are rigidly connected to the core, so that the vibration generated by unbalance excitation can act on the core on the compactable mixture. Accordingly, the distribution of the surface acceleration of the core along the longitudinal axis thereof is of great importance for the achievable densification of the batch and thus for the quality of the molded article produced therefrom.

Insbesondere bei der Herstellung von Rohren erfolgt oftmals eine Relativbewegung zwischen dem Kern und weiteren Abschnitten des Formwerkzeuges, so daß das herzustellende Formteil, beispielsweise ein Rohr, sukzessive aufgebaut wird. Üblicherweise wird bei der Fertigung von Rohren oder ähnlichen Hohlkörpern mit Kernen gearbeitet, die in ihrer Betriebsstellung in Vertikalrichtung ausgerichtet sind. Der Kern ist dabei entweder feststehend oder aber er wird von unten in den Außenmantel des Formwerkzeuges eingeführt. Aus der Relativbewegung zwischen dem Kern und dem Formwerkzeug sowie dem bei der Ausformung des Formteils ansteigenden Füllgrad des Formwerkzeuges ergibt sich der Wunsch, das Schwingungsverhalten des Kerns an den Ablauf des Herstellungsprozesses anzupassen, um den Verdichtungsgrad in dem herzustellenden Formteil möglichst präzise beeinflussen zu können.In particular, in the production of pipes often takes place a relative movement between the core and other portions of the mold, so that the molded part to be produced, for example, a pipe is constructed successively. Usually, in the manufacture of pipes or similar hollow bodies, cores are used which are aligned in their operating position in the vertical direction. The core is either fixed or he is introduced from below into the outer shell of the mold. From the relative movement between the core and the mold and the increasing in the molding of the molding degree of the mold results in the desire to adapt the vibration behavior of the core to the flow of the manufacturing process in order to influence the degree of compaction in the molded part to be produced as precisely as possible.

Bei herkömmlichen Vorrichtungen können die mechanischen Schwingungen beispielsweise über die Drehzahl der Hauptwelle beeinflußt werden. Zudem besteht die Möglichkeit, die Oberflächenbeschleunigungen und Amplituden des Kerns über die Anordnung der Unwuchtmassen zu beeinflussen. Dazu können beispielsweise Unwuchtmas-sen in mehreren parallelen Ebenen entlang der Längsachse der Hauptwelle vorgesehen werden. Durch eine Variation der einzelnen Unwuchtmassen in den jeweiligen Ebenen können überdies Kippschwingungen korrigiert oder auch gezielt eingestellt werden. Um das Schwingungsverhalten eines solchen Kerns zu verstellen, ist in der Regel eine Umrüstung der gesamten Vorrichtung erforderlich, wozu insbesondere der Kern und die in diesem aufgenommenen Einrichtungen ausund umgebaut werden müssen.In conventional devices, the mechanical vibrations can be influenced, for example, via the rotational speed of the main shaft. In addition, it is possible to influence the surface accelerations and amplitudes of the core on the arrangement of the imbalance masses. For this example, imbalance masses can be provided in several parallel planes along the longitudinal axis of the main shaft. By varying the individual imbalance masses in the respective levels tilt oscillations can also be corrected or adjusted specifically. In order to adjust the vibration behavior of such a core, it is usually necessary to retrofit the entire apparatus, for which purpose in particular the core and the devices accommodated in it must be retrofitted and reconstructed.

In der bereits erwähnten DE 43 17 351 A1 wird zur Beeinflussung der Schwingungsamplitude vorgeschlagen, in dem Kern zwei parallele Wellen anzuordnen, die jeweils mit Unwuchtmassen versehen sind. Durch eine gezielte Ansteuerung der Rotation der beiden Wellen ergänzen sich die von den Unwuchtmassen erzeugten Schwingungen oder heben sich gegeneinander auf. Eine Demontage des Kerns ist hierzu nicht erforderlich. Jedoch bleiben die Möglichkeiten zur Beeinflussung des Schwingungsverhaltens auf eine Überlagerung der Schwingungen der beiden Hauptwellen beschränkt, d. h. es ist lediglich eine Variation der Schwingungsamplitude durch Einstellung eines definierten Phasenunterschiedes zwischen den Drehbewegungen der beiden Wellen möglich.In the already mentioned DE 43 17 351 A1 it is proposed to influence the oscillation amplitude to arrange in the core two parallel waves, which are each provided with imbalance masses. By selectively controlling the rotation of the two waves, the vibrations generated by the imbalance masses complement each other or cancel each other out. Disassembly of the core is not required for this purpose. However, the possibilities for influencing the vibration behavior remain limited to a superposition of the oscillations of the two main shafts, i. H. it is only a variation of the oscillation amplitude by setting a defined phase difference between the rotational movements of the two waves possible.

Eine weitere Möglichkeit zur Veränderung des Schwingungsverhaltens besteht in der Verwendung eines kontinuierlich einstellbaren hydraulischen Fliehkraftstellers, wie er beispielsweise aus der DE 196 43 978 C2 bekannt ist. Die dort vorgeschlagene Lösung ist jedoch konstruktiv sehr aufwendig.Another possibility for changing the vibration behavior is the use of a continuously adjustable hydraulic centrifugal force actuator, as it is known for example from DE 196 43 978 C2. However, the solution proposed there is structurally very expensive.

Beschreibung der ErfindungDescription of the invention

Der Erfindung liegt daher die Aufgabe zugrunde, Alternativen für die Schwingungserzeugung und Schwingungsbeeinflussung aufzuzeigen.The invention is therefore based on the object to show alternatives for vibration generation and vibration control.

Hierzu wird ein Rohrfertiger zum Herstellen von Rohren gemäß Anspruch 1 vorgeschlagen. Darin wird mindestens ein Kreisel mit der Hauptwelle verbunden und um eine Kreiselachse drehbar ist, wobei die Kreiselachse nicht-parallel zu der Längsachse der Hauptwelle angeordnet ist und weiterhin Antriebsmittel vorgesehen sind, um die Hauptwelle und den Kreisel in Drehung um ihre jeweilige Achse zu versetzen.For this purpose, a pipe manufacturer for producing pipes according to claim 1 is proposed. Therein, at least one gyroscope is connected to the main shaft and is rotatable about a gyro axis, the gyro axis being disposed non-parallel to the longitudinal axis of the main shaft and further comprising driving means for rotating the main shaft and gyro about their respective axes.

Im Betrieb rotiert der Kreisel um seine Kreiselachse. Weiterhin ist der Kreisel einer Zwangsdrehung um die Längsachse der Hauptwelle unterworfen. Die hierbei entstehenden Reaktionsmomente versuchen den Kreisel so zu drehen, daß die Achse der Kreiseldrehung und die Achse der Zwangsdrehung gleichsinnig parallel zueinander ausgerichtet sind. Durch die Verbindung des Kreisels mit der Hauptwelle wird jedoch eine solche Relativbewegung verhindert. Vielmehr führt das Reaktionsmoment, dessen Vektor im wesentlichen senkrecht zu der Kreiselachse und der Längsachse steht, zu einem Kippmoment an dem Schwingkörper, das mit der Drehzahl der Hauptwelle umläuft. Dementsprechend variieren die Schwingungsamplituden entlang der Längsachse der Hauptwelle. Dies ist mit den in der DE 43 17 351 A1 und DE 196 43 978 C2 offenbarten Vorrichtungen nicht ohne weiteres möglich.In operation, the gyro rotates about its gyro axis. Furthermore, the gyroscope is subjected to forced rotation about the longitudinal axis of the main shaft. The resulting reaction moments try to rotate the gyroscope so that the axis of the gyroscope rotation and the axis of the forced rotation are aligned in the same direction parallel to each other. However, such a relative movement is prevented by the connection of the gyro to the main shaft. Rather, the reaction torque whose vector is substantially perpendicular to the gyro axis and the longitudinal axis leads to a tilting moment on the oscillating body, which rotates at the speed of the main shaft. Accordingly, the vibration amplitudes vary along the longitudinal axis of the main shaft. This is not readily possible with the devices disclosed in DE 43 17 351 A1 and DE 196 43 978 C2.

In einer vorteilhaften Ausgestaltung ist die Einkopplungseinrichtung beispielsweise ein Abschnitt eines Formwerkzeuges. An dieses wird der Schwingungserreger mit seinem Schwingkörper unmittelbar oder über zusätzliche Federelemente angeschlossen. Beispielsweise kann am Formwerkzeug ein Ring ausgebildet werden, der den Schwingkörper in der Art einer Manschette umgibt.In an advantageous embodiment, the coupling device is for example a section of a molding tool. At this the vibration exciter is connected with its oscillating body directly or via additional spring elements. For example, a ring may be formed on the mold surrounding the vibrating body in the manner of a sleeve.

Vorzugsweise ist die Einkopplungseinrichtung ein Kern einer Hohl- oder Rohrform, der gegenüber weiteren Abschnitten der Hohl- bzw. Rohrform federelastisch gelagert ist. Insbesondere bei Rohrherstellungsverfahren, bei denen der Aufbau des Rohres sukzessive durch Zufuhr von verdichtungsfähigem Gemenge erfolgt. Ermöglicht die umlaufende Kippbewegung, welche durch die Kreiselreaktionsmomente an dem Kern erzeugt wird, die größten Schwingungsamplituden im Bereich des gerade frisch eingefüllten Gemenges, das auf diese Art und Weise besonders wirkungsvoll verdichtet wird.Preferably, the coupling device is a core of a hollow or tubular shape, which is resiliently mounted relative to other portions of the hollow or tubular shape. In particular, in pipe manufacturing processes in which the structure of the tube is successively carried out by supplying compressible mixture. Allows the circumferential tilting movement, which is generated by the gyroscopic reaction moments on the core, the largest vibration amplitudes in the region of the freshly filled batch, which is compacted in this way particularly effective.

In einer besonders raumsparenden Ausgestaltungsform nimmt der Kern die Hauptwelle wenigstens teilweise auf. Vorzugsweise wird der gesamte Schwingungserreger weitestgehend innerhalb des Kerns untergebracht. Hierdurch ist es in besonders einfacher Weise möglich, dessen drehende Elemente gegen Verunreinigungen zu schützen.In a particularly space-saving embodiment of the core takes the main shaft at least partially. Preferably, the entire vibration exciter is accommodated as far as possible within the core. This makes it possible in a particularly simple manner to protect the rotating elements against contamination.

In einer weiteren, vorteilhaften Ausgestaltung der Vorrichtung ist der Kern in Betriebsstellung mit seiner Längsachse in Vertikalrichtung ausgerichtet und an seinem unteren Ende federelastisch gelagert, an seinem oberen axialen Ende hingegen ungefesselt, so daß er dort frei schwingen kann. Dies ist insbesondere bei der Rohrfertigung mit aufsteigendem oder stehendem Kern für die Verdichtung des Gemenges vorteilhaft. Der Kreisel kann beispielsweise innerhalb des Kerns in der Betriebsstellung in einem oberen Endabschnitt des Kerns oder aber auch auf halber Höhe desselben angeordnet werden.In a further advantageous embodiment of the device, the core is aligned in the operating position with its longitudinal axis in the vertical direction and resiliently mounted at its lower end, however, at its upper axial end unbent, so that he can swing freely there. This is particularly advantageous in pipe production with rising or standing core for the compression of the batch. The gyro may for example be arranged within the core in the operating position in an upper end portion of the core or else halfway up the same.

Der Kreisel kann beispielsweise zwischen zwei Unwuchtmassen angeordnet werden. Es ist jedoch auch möglich, den Kreisel an einem freien Endabschnitt der Hauptwelle anzubringen. Im letztgenannten Fall kann der Kreisel auch an einem fliegend gelagerten Endabschnitt der Hauptwelle sitzen.The gyro may for example be arranged between two imbalance masses. However, it is also possible, the gyro at a free end portion of the main shaft to install. In the latter case, the gyro can also sit on a cantilevered end portion of the main shaft.

In einer vorteilhaften Ausgestaltung der Erfindung sind ein oder mehrere weitere Kreisel an der Hauptwelle vorgesehen, die jeweils um ihre Kreiselachse drehbar sind, wobei die Kreiselachse nicht-parallel zu der Längsachse der Hauptwelle angeordnet ist. Hierdurch kann die Wirkung des ersten Kreisels verstärkt werden. Überdies ist es möglich, verschiedene Kreiselerregungen einander zu überlagern, indem beispielsweise die Drehzahlen der Kreisel individuell angesteuert werden.In an advantageous embodiment of the invention, one or more further gyros are provided on the main shaft, which are each rotatable about their gyroscope axis, wherein the gyro axis is arranged non-parallel to the longitudinal axis of the main shaft. As a result, the effect of the first gyroscope can be enhanced. Moreover, it is possible to superimpose different gyros to each other by, for example, the rotational speeds of the gyros are controlled individually.

Der bzw. die Kreisel werden bevorzugt derart angeordnet, daß die Kreiselachse bzw. die Kreiselachsen die Längsachse der Hauptwelle schneiden.The or the gyroscope are preferably arranged such that the gyroscope axis or the gyroscope axes intersect the longitudinal axis of the main shaft.

In einer weiteren vorteilhaften Ausgestaltung schließen die Kreiselachse bzw. die Kreiselachsen mit der Längsachse der Hauptwelle einen Winkel von 90° ein, wodurch sich große Kippmomente mit verhältnismäßig kleinen Kreiselmassen erreichen lassen.In a further advantageous embodiment, the gyro axis or the gyro axes with the longitudinal axis of the main shaft at an angle of 90 °, which can be achieved with relatively small gyratory large tilting moments.

Vorzugsweise liegen die Kreisachsen von zwei gleichartigen Kreiseln koaxial zueinander. In diesem Fall werden die Kreisel selbst nicht als Unwuchtmasse wirksam. Zur Vermeidung von Störmomenten ist es vorteilhaft, wenn die Kreiselachse mit der Symmetrieachse des zugehörigen Kreisels zusammenfällt.Preferably, the circular axes of two identical gyros are coaxial with each other. In this case, the gyros themselves do not become effective as imbalance mass. To avoid disturbing moments, it is advantageous if the gyro axis coincides with the axis of symmetry of the associated gyroscope.

In der erfindungsgemäßen Ausgestaltung ist für die Hauptwelle und für die Kreisel jeweils eine separate, drehzahlsteuerbare Antriebseinrichtung vorgesehen. Hierdurch läßt sich das Schwingungsverhalten des Schwingungserregers durch eine Variation der Drehzahl und des Drehsinns einstellen. Durch die Variation der Kreiseldrehzahl kann das überlagerte Kippmoment, das mit der Drehzahl der Hauptwelle umläuft, vergrößert oder verringert werden.In the embodiment according to the invention, a separate, speed-controllable drive device is provided for the main shaft and for the gyroscope. As a result, the vibration behavior of the vibration generator can be adjusted by a variation of the speed and the sense of rotation. By varying the rotary speed, the superimposed tilting moment, which rotates with the speed of the main shaft, can be increased or decreased.

Bevorzugt ist der Kreisel mit einem drehzahlsteuerbaren Kreiselmotor gekoppelt, wobei der Kreiselmotor an der Hauptwelle befestigt ist. Dies erlaubt eine besonders kompakte Bauweise des Schwingungserregers. Der Kreiselmotor kann dabei ein Elektromotor sein. Es ist jedoch auch möglich, einen hydraulischen oder pneumatischen Motor vorzusehen.Preferably, the gyroscope is coupled to a speed-controllable centrifugal motor, wherein the gyro motor is attached to the main shaft. This allows a particularly compact design of the vibration exciter. The centrifugal motor can be an electric motor. However, it is also possible to provide a hydraulic or pneumatic motor.

Zur Energieversorgung des Kreiselmotors ist in einer weiteren, vorteilhaften Ausgestaltung ein zu dem Kreiselmotor führender Abschnitt der Hauptwelle als Hohlwelle ausgebildet. Durch diese Hohlwelle kann beispielsweise eine elektrische Versorgungsleitung, aber auch eine Hydraulik- oder Pneumatikleitung zu dem Kreiselmotor geführt werden.For supplying power to the gyro motor, in a further advantageous embodiment, a section of the main shaft leading to the gyroscopic motor is designed as a hollow shaft. Through this hollow shaft, for example, an electrical supply line, but also a hydraulic or pneumatic line can be guided to the centrifugal motor.

In einer alternativen Ausgestaltungsform werden die Hauptwelle und die Kreisel über eine gemeinsame Antriebseinrichtung angetrieben, wobei die Antriebseinrichtung mit der Hauptwelle gekoppelt ist und der mit der Hauptwelle um die Längsachse drehende Kreisel unmittelbar oder über ein Getriebe an dem Schwingkörper geführt ist. Ein sepa-rater Antrieb für den bzw. die Kreisel ist in diesem Fall nicht erforderlich, so daß sich ein besonders einfacher Aufbau ergibt. Allerdings sind die Möglichkeiten der Drehzahlvariation für die Kreisel hier etwas eingeschränkt.In an alternative embodiment, the main shaft and the gyroscope are driven by a common drive means, wherein the drive means is coupled to the main shaft and the gyro rotating about the longitudinal axis with the main shaft is guided directly or via a gear on the oscillating body. A sepa-rater drive for the or the gyroscope is not required in this case, so that there is a particularly simple structure. However, the possibilities of speed variation for the gyroscope are somewhat limited here.

Weiterhin kann an dem Schwingkörper eine weitere Hauptwelle parallel zu der ersten Hauptwelle gelagert werden, an der wiederum, in Entsprechung zu der ersten Haupt-welle, wenigstens ein Kreisel vorgesehen ist. Zudem sind hierbei weitere Antriebsmittel in Entsprechung zu dem ersten Antriebsmittel vorgesehen, um die weitere Hauptwelle sowie den bzw. die weiteren Kreisel in Drehung zu versetzen. Durch eine gezielte Abstimmung der Drehgeschwindigkeiten sowie des Phasenwinkels der Hauptwellen zueinander ergibt sich hiermit eine sehr hohe Variabilität der erregbaren Schwingungen.Furthermore, a further main shaft can be mounted parallel to the first main shaft on the oscillating body, on which in turn, in correspondence with the first main shaft, at least one gyroscope is provided. In addition, in this case further drive means are provided in correspondence with the first drive means in order to set the further main shaft and the or the further gyro in rotation. By a specific coordination of the rotational speeds and the phase angle of the main shafts to each other, this results in a very high variability of the excitable vibrations.

Vorzugsweise sind an jeder der Wellen wiederum eine oder mehrere Unwuchtmassen vorgesehen. Bei einer gegenläufigen Bewegung der Drehrichtungen der Hauptwellen kann hierdurch beispielsweise eine Richtungskomponente der Unwuchterregung vollständig kompensiert werden, so daß eine unwuchtinduzierte Schwingungsbewegung in Form einer Hin- und Herbewegung entlang einer Achse erzeugt werden kann, der je nach Ansteuerung der Kreiseldrehzahlen zusätzliche Kippbewegungen überlagerbar sind.Preferably, one or more imbalance masses are again provided on each of the shafts. In an opposite movement of the directions of rotation of the main shafts, for example, a directional component of the unbalance excitation can be fully compensated, so that an unbalance-induced oscillatory motion in the form of a reciprocating motion along an axis can be generated, which are superimposed additional tilting depending on the control of the rotary speeds.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die Erfindung wird nachfolgend anhand von drei Ausführungsbeispielen näher erläutert. Die zugehörigen Zeichnungen zeigen in:

Fig.1
ein erstes Ausführungsbeispiel einer Vorrichtung zur Herstellung von Formteilen aus einem verdichtungsfähigen Gemenge mit einem Schwingungserreger zur Verdichtung des Gemenges,
Fig.2
ein zweites Ausführungsbeispiel einer Vorrichtung zum Herstellen von Formteilen mit einem zweiten Schwingungserreger, und in
Fig.3
einen Rütteltisch mit einem weiteren Schwingungserreger.
The invention will be explained in more detail below with reference to three exemplary embodiments. The accompanying drawings show in:
Fig.1
a first embodiment of an apparatus for producing molded parts from a compactable mixture with a vibration exciter for compressing the batch,
Fig.2
a second embodiment of an apparatus for producing molded parts with a second vibration exciter, and in
Figure 3
a vibrating table with another vibrator.

Ausführliche Beschreibung der ZeichnungenDetailed description of the drawings

Das erste Ausführungsbeispiel in Fig.1 zeigt eine Vorrichtung zur Herstellung von Formteilen aus einem verdichtungsfähigen Gemenge G in Form eines Rohrfertigers mit steigendem Kern. Die Vorrichtung umfaßt zunächst ein in seiner Betriebsstellung in Vertikalrichtung ausgerichtetes Formwerkzeug mit einer Außenschale 1, häufig auch als Mantel bezeichnet, sowie einem in diese von unten einfahrbaren Kern 2, der eine im wesentlichen zylindrische Außenform aufweist. Fig.1 zeigt den Zustand während des Füllens und Verdichtens des Formteils, beispielsweise eines Betonrohres. Zu Beginn des Fertigungsprozesses ist der Kern 2, der an einem Maschinenrahmen 3 über elastische Federelemente 4 abgestützt ist, im wesentlichen vollständig aus dem Außenschale 1 nach unten herausgezogen, so daß das Formwerkzeug nach unten gerade geschlossen ist.The first embodiment in Figure 1 shows an apparatus for the production of moldings from a compactable mixture G in the form of a tube-making machine with rising core. The device comprises first in its operating position in the vertical direction aligned mold with an outer shell 1, often referred to as a jacket, and a retractable in this from below core 2, which has a substantially cylindrical outer shape. 1 shows the state during filling and compacting of the molded part, for example a concrete pipe. At the beginning of the manufacturing process, the core 2, which is supported on a machine frame 3 via elastic spring elements 4, substantially completely pulled out of the outer shell 1 down, so that the mold is just closed down.

Während des Füllens des Formwerkzeuges mit verdichtungsfähigem Gemenge G wird der Kern 2 mit ansteigendem Gemengepegel nach oben bewegt. Gleichzeitig vollführt der Kern 2 hierbei eine Schwingungs- oder Rüttelbewegung, um mechanische Schwingungen in das Gemenge G einzukoppeln und somit das zwischen seiner Außenwand und dem Außenschale 1 des Formwerkzeuges befindliche Gemenge G zu verdichten. Dabei besteht ein großes Interesse daran, insbesondere das gerade frisch eingefüllte, noch lockere Gemenge möglichst ohne den Einschluß von Hohlräumen zu verfestigen, so daß gerade in diesem Bereich möglichst hohe Oberflächenbeschleunigungen und Oberflächenamplituden an dem oberen axialen Endabschnitt des Kerns 2 erwünscht sind.During filling of the mold with compressible batch G, the core 2 is moved upwards with increasing batch level. At the same time, the core 2 in this case performs a vibratory or vibrating motion in order to couple mechanical vibrations into the mixture G and thus to compact the mixture G located between its outer wall and the outer shell 1 of the forming tool. In this case, there is a great interest, especially the just freshly filled, still loose mixture solidify as possible without the inclusion of cavities, so that just in this area the highest possible surface acceleration and surface amplitudes at the upper axial end portion of the core 2 are desired.

Zur Erzeugung der Schwingungen ist ein Schwingungserreger vorgesehen, der weitestgehend innerhalb des Kerns 2 angeordnet ist. Dieser Schwingungserreger umfaßt zunächst einen Schwingkörper 5 in Form eines Rahmens oder Vibratorbaums, der fest mit dem Kern 2 verspannt ist. An dem Schwingkörper 5 ist eine Hauptwelle 6 drehbar gelagert, deren Längsachse L koaxial zu der Längsachse des Kerns 2 ausgerichtet ist. An einem beispielhaft unten aus dem Kern 2 hinausragenden Endabschnitt der Haupt-welle 6 ist ein Elektromotor 7 als drehzahlsteuerbare Antriebseinrichtung für die Hauptwelle 6 angekoppelt. Anstelle eines Elektromotors 7, beispielsweise eines Asynchronmotors mit Frequenzumrichter, kann auch ein hydraulisch oder pneumatisch angetriebener Motor vorgesehen werden. Auch ist es möglich, eine getrennt von der Hauptwelle 6 angeordnete Antriebseinrichtung zu verwenden und die Antriebsleistung beispielsweise über einen Ketten- oder Riementrieb auf die Hauptwelle 6 zu übertragen.To generate the vibrations, a vibration exciter is provided, which is arranged as far as possible within the core 2. This vibration exciter comprises first a vibrating body 5 in the form of a frame or vibrator tree, which is firmly clamped to the core 2. On the oscillating body 5 is a main shaft 6 rotatably mounted, whose longitudinal axis L is aligned coaxially to the longitudinal axis of the core 2. An electric motor 7 is coupled as a speed-controllable drive device for the main shaft 6 to an end section of the main shaft 6 projecting from the core 2 at the bottom, by way of example. Instead of an electric motor 7, for example an asynchronous motor with frequency converter, a hydraulically or pneumatically driven motor can also be provided. It is also possible to use a separate from the main shaft 6 arranged drive means and to transmit the drive power, for example via a chain or belt drive on the main shaft 6.

Am gegenüberliegenden Endabschnitt der Hauptwelle 6 sind zwei Kreisel 8 vorgesehen, deren Kreiselachse K nicht-parallel zu der Längsachse L der Hauptwelle 6 angeordnet sind. In dem dargestellten Ausführungsbeispiel schließen die Kreiselachse K mit der Längsachse L jeweils einen Winkel von 90° ein, wobei die Kreiselachse K die Längsachse L schneiden.At the opposite end portion of the main shaft 6, two gyros 8 are provided, the gyro axis K are arranged non-parallel to the longitudinal axis L of the main shaft 6. In the illustrated embodiment, the gyroscope axis K each with the longitudinal axis L at an angle of 90 °, wherein the gyro axis K intersect the longitudinal axis L.

Die beiden Kreisel 8 werden über einen drehzahlsteuerbaren Motor 9 angetrieben, dessen Gehäuse fest mit einem fliegend gelagerten Endabschnitt der Hauptwelle 6 verbunden ist. Der Kreiselmotor 9 ist hier ein Elektromotor, beispielsweise wiederum ein Asynchronmotor mit Frequenzumrichter. Es kann jedoch auch ein hydraulisch oder pneumatisch angetriebener Motor eingesetzt werden.The two gyros 8 are driven by a speed-controllable motor 9, the housing is fixedly connected to a cantilevered end portion of the main shaft 6. The centrifugal motor 9 is here an electric motor, for example, again an asynchronous motor with frequency converter. However, it can also be used a hydraulically or pneumatically driven motor.

Unmittelbar unterhalb des Kreiselmotors 9 ist innerhalb des oberen axialen Endabschnittes des Kerns 2 zwischen zwei Lagerstellen der Hauptwelle 6 eine Unwuchtmas-se 10 an der Hauptwelle 6 starr befestigt. Bei einer Rotation der Hauptwelle 6 erzeugt die Unwuchtmasse 10 radial gerichtete Unwuchtkräfte, die den Kern 2 zu einer umlau-fenden Kippbewegung anregen, so daß die Außenwand des Kerns 2 Schwingungen in das zu verdichtende bzw. bereits verdichtete Gemenge G einträgt. Dieser Unwuchterregung wird eine weitere Schwingung überlagert, die aus der Rotation der drehenden Kreisel 8 um die Längsachse L resultiert. Hierbei wird ein Moment erzeugt, das zu der jeweiligen Kreiselachse K wie auch der Längsachse L orthogonal ist, wodurch im wesentlichen eine Kippschwingung am Kern 2 verursacht wird. Diese Kippschwingung besitzt die gleiche Erregungsfrequenz, wie die Unwuchterregung.Immediately below the rotor motor 9, an unbalance mass 10 is rigidly secured to the main shaft 6 within the upper axial end portion of the core 2 between two bearing points of the main shaft 6. During a rotation of the main shaft 6, the imbalance mass 10 generates radially directed imbalance forces, which excite the core 2 to a circumferential tilting movement, so that the outer wall of the core 2 introduces vibrations into the mixture G to be compacted or already compressed. This unbalance excitation is superimposed on a further oscillation resulting from the rotation of the rotating gyro 8 about the longitudinal axis L. In this case, a moment is generated, which is orthogonal to the respective gyro axis K as well as the longitudinal axis L, which essentially causes a tilting oscillation at the core 2. This tilting oscillation has the same excitation frequency as the unbalance excitation.

Durch eine gezielte Einstellung der Drehzahl der Kreisel 8 wie auch der Drehrichtung der Kreisel 8, lassen sich eine Vielzahl von unterschiedlichen Schwingungserregungen generieren. Beispielsweise kann eine durch die Kreisel 8 erregte Kippschwingung dazu verwendet werden, die von der Unwuchtmasse 10 erzeugte Kippschwingung zu vermindern. Es ist jedoch genauso möglich, deren Schwingungswirkung über die Kreisel 8 zu verstärken. Die durch die Kreiselbewegung erzeugten Momente lassen sich in ihrer Größe mit der Drehzahl der Kreisel 8 einstellen, so daß auf diese Art und Weise eine einfache Korrektur der durch die Umwuchtmassen 10 erzeugten Schwingung möglich ist, ohne daß es hierzu erforderlich wäre, den Kern 2 sowie den im wesentlichen in diesem angeordneten Schwingungserreger zu demontieren. Eine Demontage kann hier trotzdem auf sehr einfache Art und Weise erfolgen, indem die Verspannung des Schwingkörpers 5 mit dem Kern 2 gelöst und der Schwingkörper 5 axial aus dem Kern 2 herausgezogen wird.By a targeted adjustment of the speed of the gyro 8 as well as the direction of rotation of the gyroscope 8, a variety of different vibration excitations can be generated. For example, a tilt oscillation excited by the gyroscope 8 can be used to reduce the tilting vibration generated by the imbalance mass 10. However, it is equally possible to amplify their vibration effect on the gyroscope 8. The moments generated by the gyroscope can be adjusted in size with the speed of the gyroscope 8, so that in this way a simple correction of the vibration generated by the Umwuchtmassen 10 is possible without it being necessary for this, the core 2 and to disassemble the arranged substantially in this vibration exciter. Disassembly can still be done here in a very simple manner by the tension of the vibrating body 5 solved with the core 2 and the vibrating body 5 is pulled axially out of the core 2.

Ein zweites Ausführungsbeispiel für eine Vorrichtung zur Herstellung von Formteilen ist in Fig.2 dargestellt. Auch diese Vorrichtung ist als Rohrfertiger ausgebildet, die im Unterschied zu dem ersten Ausführungsbeispiel jedoch einen stehenden Kern 2 als Abschnitt eines Formwerkzeuges aufweist. In diesem Fall befindet sich der Außenschale 1 des Formwerkzeuges und der Kern 2 während des Einfüllens und Verdichtens des Gemenges G in einer festen Position zueinander.A second exemplary embodiment of an apparatus for producing molded parts is shown in FIG. This device is also designed as a tube finisher, which, in contrast to the first embodiment, however, has a stationary core 2 as a section of a molding tool. In this case, the outer shell 1 of the mold and the core 2 during filling and compacting of the batch G in a fixed position to each other.

Innerhalb des Kerns 2, der über elastische Elemente 4 gegen ein Fundament 11 oder einen stationären Maschinenrahmen abgestützt ist, ist wiederum ein Schwingkörper 5 angeordnet. Dieser Schwingkörper 5 ist über Spanneinrichtungen 12 fest mit dem Kern 2 verbunden. Die Spanneinrichtungen 12 erlauben die Verwendung gleichartiger Schwingkörper 5 in unterschiedlichen Kernen 2. An dem Schwingkörper 5 ist wieder eine Hauptwelle 6 um ihre Längsachse L drehbar gelagert. Der Antrieb der Hauptwel-le 6 kann wie in dem ersten Ausführungsbeispiel erfolgen. In dem in Fig.2 dargestellten Beispiel ist jedoch die Antriebseinrichtung 7 relativ zu der Hauptwelle 6 außeraxial angeordnet, so daß das entsprechende Ende der Hauptwelle 6 frei bleibt und gegebenenfalls anderweitig nutzbar ist. Die Antriebsleistung wird hier von der Antriebseinrichtung 7 über einen Riementrieb 1 3 an die Hauptwelle 6 übertragen.Within the core 2, which is supported via elastic elements 4 against a foundation 11 or a stationary machine frame, in turn, a vibrating body 5 is arranged. This vibrating body 5 is connected via clamping devices 12 fixed to the core 2. The tensioning devices 12 allow the use of similar vibrating bodies 5 in different cores 2. On the vibrating body 5, a main shaft 6 is again rotatably mounted about its longitudinal axis L. The drive of Hauptwel-le 6 can be carried out as in the first embodiment. In the example shown in Figure 2, however, the drive means 7 is arranged relative to the main shaft 6 off-axis, so that the corresponding end of the main shaft 6 remains free and optionally usable elsewhere. The drive power is transmitted here from the drive device 7 via a belt drive 1 3 to the main shaft 6.

Etwa auf halber Höhe des Kerns 2 sind zwei Kreisel 8 mit der Hauptwelle 6 verbunden, wobei hier wie in dem ersten Ausführungsbeispiel die Ankopplung über einen Kreiselmotor 9 erfolgt, der zwischen zwei Lagern der Hauptwelle 6 an derselben befestigt ist. Die Kreisel 8 wie auch der Kreiselmotor 9 sind wie in dem ersten Ausführungsbeispiel ausgebildet und bedürfen daher hier keiner erneuten Erläuterung. Die Versorgung des Kreiselmotors 9 erfolgt durch einen Hohlwellenabschnitt 14 der Hauptwelle 6 hindurch. Durch diesen Hohlwellenabschnitt 14 kann beispielsweise eine elektrische Leitung oder auch eine hydraulische oder pneumatische Zuleitung zu dem Kreiselmotor 9 geführt werden.About halfway up the core 2, two gyros 8 are connected to the main shaft 6, wherein here, as in the first embodiment, the coupling via a Centrifugal motor 9 takes place, which is attached between two bearings of the main shaft 6 at the same. The gyro 8 as well as the rotary motor 9 are formed as in the first embodiment and therefore need no further explanation. The supply of the gyroscopic motor 9 takes place through a hollow shaft section 14 of the main shaft 6. Through this hollow shaft portion 14, for example, an electrical line or a hydraulic or pneumatic supply line to the centrifugal motor 9 are performed.

Weiterhin sind an der Hauptwelle 6 zwei Umwuchtmassen 10 vorgesehen, die hier jeweils an einem Endabschnitt der Hauptwelle 6 starr befestigt sind. Um die Unwuchtmassen 10 sind jeweils zwei zusätzliche Lagerstellen für die Lagerung der Hauptwelle 6 an dem Schwingkörper 5 vorgesehen. Überdies sind die Spanneinrichtungen 12 jeweils auf der Höhe der Umwuchtmassen 10 angeordnet, so daß die erzeugten Unwuchtkräfte über den Schwingkörper 5 auf kurzem Weg in den Kern 2 eingeleitet werden.Furthermore, six balancing masses 10 are provided on the main shaft 6, which are rigidly fixed here in each case at one end portion of the main shaft 6. To the unbalanced masses 10 two additional bearings for the storage of the main shaft 6 are provided on the vibrating body 5 respectively. Moreover, the clamping devices 12 are each arranged at the level of Umwuchtmassen 10, so that the unbalance forces generated are introduced via the oscillating body 5 on a short path into the core 2.

Die Betriebsweise des Schwingungserregers des zweiten Ausführungsbeispiels entspricht im wesentlichen derjenigen des ersten Ausführungsbeispiels. Auch hier kann durch eine Variation der Drehrichtung wie auch der Drehzahl der Kreisel 8 die Schwingungserregung während des Füllens und Verdichtens des Formwerkzeuges variiert werden, indem der unwuchterregten Schwingung eine kreiselerregte Schwingung über-lagert wird.The operation of the vibration actuator of the second embodiment is substantially the same as that of the first embodiment. Again, by a variation of the direction of rotation as well as the rotational speed of the gyroscope 8, the vibration excitation during filling and compression of the mold can be varied by the unbalanced vibration is superimposed over a circular excited vibration.

Ein nicht erfindungsgemäßes Beispiel für einen Schwingungserreger, der das Prinzip der Kreiselerregung ausnutzt, ist in Fig.3 anhand eines Rütteltisches dargestellt, bei dem z. B. Kippschwingungen aufgrund von Beladungsunterschieden durch eine Kreiselerregung kompensiert werden können.A non-inventive example of a vibration exciter, which exploits the principle of gyro excitation is shown in Figure 3 based on a vibrating table, in which z. B. tilting vibrations due to load differences can be compensated by a Kreiselerregung.

Der Rütteltisch umfaßt einen Schwingkörper 5 in Form eines Tisches, der an vier Stellen über federelastische Elemente 8 an einem stationären Fundament 11 gelagert ist. Der Schwingkörper 5 trägt zwei parallel zueinander verlaufende Hauptwellen 6 und 6', deren Rotation über ein Getriebe 15 gekoppelt ist, so daß lediglich eine Antriebseinrichtung 9 für beide Hauptwellen 6 und 6' benötigt wird. Durch das Getriebe 15, beispielsweise ein Zahnradpaar, kann ein gewünschtes Drehzahlverhältnis zwischen den Hauptwellen 6 bzw. 6' fest vorgegeben werden. Vorzugsweise rotieren beide Hauptwel-len 6 und 6' mit der gleichen Drehzahl, jedoch in umgekehrter Drehrichtung. Weiterhin sind an jeder Hauptwelle 6 bzw. 6' Unwuchtmassen 10 bzw. 10' befestigt, die an beiden Wellen in gleicher Art und Weise angeordnet sind. Bei Rotation der Hauptwellen 6 und 6' ergibt sich in dem dargestellten Ausführungsbeispiel aufgrund der Anordnung der Unwuchtmassen 10 und 10' eine Schwingungserregung lediglich in Vertikalrichtung. Hingegen heben sich die horizontalen Fliehkraftanteile der Unwuchterreger aufgrund der Symmetrieeigenschaften des Systems gegeneinander auf.The vibrating table comprises a vibrating body 5 in the form of a table, which is mounted at four points via resilient elements 8 on a stationary foundation 11. The oscillating body 5 carries two mutually parallel main shafts 6 and 6 ', whose rotation is coupled via a gear 15, so that only a drive means 9 for both main shafts 6 and 6' is needed. By the gear 15, for example, a gear pair, a desired speed ratio between the main shafts 6 and 6 'can be fixed. Preferably Both Hauptwel len 6 and 6 'rotate at the same speed, but in the opposite direction of rotation. Furthermore, 6 or 6 'unbalanced masses 10 and 10' are fixed to each main shaft, which are arranged on both shafts in the same manner. Upon rotation of the main shafts 6 and 6 'results in the illustrated embodiment, due to the arrangement of the imbalance masses 10 and 10', a vibration excitation only in the vertical direction. By contrast, the horizontal centrifugal force components of the unbalance exciters cancel each other due to the symmetry properties of the system.

Weiterhin sind an den beiden Hauptwellen 6 und 6' jeweils Kreisel 8 bzw. 8' mit einem zugehörigen Kreiselmotor 9 bzw. 9' vorgesehen, wobei auch hier die Kreiselachsen K zu der jeweiligen Längsachse L der zugehörigen Hauptwelle 6 bzw. 6' nicht-parallel angeordnet sind. In dem dritten Ausführungsbeispiel ist, wie in den beiden vorher beschriebenen Ausführungsbeispielen, wiederum ein Winkel von 90° zwischen der Kreiselachse K und der zugehörigen Längsachse L vorgesehen. Die Kreisel 8 erzeugen mit der Drehzahl der Hauptwellen 6 und 6' umlaufende Momente in einer Richtung orthogonal zu der jeweiligen Kreiselachse K und der zugehörigen Längsachse L, deren Größe u. a. von der jeweiligen Kreiseldrehzahl abhängt. Werden beispielsweise die beiden Kreisel 8 bzw. 8' mit gleicher Drehzahl angetrieben, so heben sich die horizontal wirkenden Momentenanteile auf, während die vertikal wirkenden Momentenanteile die Kippbewegung beeinflussen.Furthermore, at the two main shafts 6 and 6 'each gyro 8 or 8' provided with an associated rotary motor 9 and 9 ', here also the gyroscopes K to the respective longitudinal axis L of the associated main shaft 6 and 6' non-parallel are arranged. In the third embodiment, as in the two previously described embodiments, again an angle of 90 ° between the gyro axis K and the associated longitudinal axis L is provided. The gyros 8 generate at the speed of the main shafts 6 and 6 'circumferential moments in a direction orthogonal to the respective gyro axis K and the associated longitudinal axis L, the size u. a. depends on the respective rotary speed. For example, if the two gyros 8 and 8 'driven at the same speed, so the horizontally acting moment components cancel, while the vertically acting moment components affect the tilting movement.

In allen, vorstehend erläuterten Ausführungsbeispielen werden kreiselerregte Kippschwingungen dazu verwendet, das Schwingungsverhalten eines Schwingungserregers zu beeinflussen, wobei dies einfach durch eine Veränderung der Drehzahl des bzw. der Kreisel möglich ist. Insbesondere kann hierdurch eine durch Unwuchtmassen erzeugte Schwingung beeinflußt werden, wobei das Korrekturmoment des bzw. der Kreisel in der Frequenz der Unwuchterregung abgegeben wird.In all the above-described embodiments, circularly excited tilting oscillations are used to influence the vibration behavior of a vibration exciter, this being possible simply by a change in the rotational speed of the gyroscope (s). In particular, this can be influenced by a vibration generated by imbalance masses, wherein the correction torque of the or the gyroscope is delivered in the frequency of the unbalance excitation.

Es ist in sämtlichen vorstehend beschriebenen Ausführungsbeispielen möglich, die Unwuchtmassen vollständig wegzulassen, um dadurch einen auf dem Prinzip der Kreiselerregung beruhenden Schwingungserreger zu schaffen. Es ist überdies auch möglich, eine Unwuchtmasse durch die Masse eines Kreisels zu ersetzen. In der einfachsten Form kann daher ein einziger Kreisel als Schwingungserreger dienen, der sowohl Unwuchtschwingungen aufgrund seiner außeraxialen Anordnung an der Hauptwelle als auch durch die Kreiselbewegung erregte Schwingungen erzeugt.It is possible in all the embodiments described above to omit the imbalance masses completely, thereby creating a vibration exciter based on the principle of gyroscopic excitation. It is also possible to replace an imbalance mass by the mass of a gyroscope. In the simplest form, therefore, a single gyro can serve as a vibration exciter, which generates both unbalance vibrations due to its off-axis arrangement on the main shaft and excited by the gyroscopic vibrations.

Claims (18)

  1. Pipe-manufacturing device for producing pipes from a compactable mixture, compaction being effected under the influence of mechanical vibrations, said device comprising:
    - a unit for coupling mechanical vibrations into the compactable mixture (G);
    - a vibrating body (5) which is connected to the coupling unit;
    - a main shaft (6) which is supported, in a manner rotatable about its longitudinal axis (L), on the vibrating body (5) and whose longitudinal axis (L) is coaxial to the longitudinal axis of the coupling unit, characterised in that
    - at least one gyroscope (8) is provided which is connected to the main shaft (6) and is rotatable about a gyroscopic axis (K), said gyroscopic axis (K) being non-parallel to the longitudinal axis (L) of the main shaft (6),
    - drive means are provided by which the main shaft (6) and the gyroscope (8) are driven in rotation about the respective axis (L, K), and
    - the main shaft (6) and the gyroscope (8) are respectively provided with a separate drive units with controllable speed.
  2. Device according to claim 1, characterised in that the coupling unit is a portion of a form tool.
  3. Device according to claim 1 or 2, characterised in that the coupling unit is provided as a core (2) of a hollow mould or pipe mould and is resiliently supported with respect to further portions of the hollow mould or pipe mould.
  4. Device according to claim 3, characterised in that the core (2) encloses the main shaft (6) on at least a partial portion of its entire length.
  5. Device according to claim 3 or 4, characterised in that the core (2), in its operative position, has its longitudinal axis (L) oriented in a vertical direction, is thus resiliently supported by its lower axial end and is thereby held such that its upper axial end oscillates freely.
  6. Device according to any one of the aforementioned claims, characterised in that a gyroscope (8) is arranged within an upper end portion of the core (2) when the latter is in its operative position.
  7. Device according to any one of the aforementioned claims, characterised in that a gyroscope (8) is arranged within the core (2) in the operative position, at half the height of the core (2).
  8. Device according to any one of claims 1 to 7, characterised in that one or more eccentric weights (10) are provided on the main shaft (6).
  9. Device according to any one of the aforementioned claims, characterised in that a gyroscope (8) is arranged between two eccentric weights (10).
  10. Device according to any one of the aforementioned claims, characterised in that a gyroscope (8) is arranged at a free end portion of the main shaft (6).
  11. Device according to any one of the aforementioned claims, characterised in that one or more further gyroscopes (8) are provided on the main shaft (6) and are rotatable about their respective gyroscopic axes (K), said gyroscopic axes (K) being non-parallel to the longitudinal axis (L) of the main shaft (6).
  12. Device according to any one of the aforementioned claims, characterised in that the gyroscopic axis (K) or the gyroscopic axes (K), respectively, intersect the longitudinal axis (L) of the main shaft (6).
  13. Device according to any one of the aforementioned claims, characterised in that the gyroscopic axis (K) or the gyroscopic axes (K), respectively, enclose an angle of 90° with the longitudinal axis (L) of the main shaft (6).
  14. Device according to any one of the aforementioned claims, characterised in that the gyroscopic axes (K) of two similar gyroscopes (8) are coaxial to one another and both gyroscopes (8) are driven to rotate in the same direction.
  15. Device according to any one of the aforementioned claims, characterised in that the respective gyroscopic axis (K) coincides with the axis of symmetry of the associated gyroscope (8).
  16. Device according to any one of the aforementioned claims, characterised in that each gyroscope (8) is coupled to a gyroscope motor (9) with controllable speed and that the gyroscope motor (9) is mounted to the main shaft (6).
  17. Device according to claim 16, characterised in that two gyroscopes (8) each are respectively coupled to one gyroscope motor (9).
  18. Device according to claim 16 or 17, characterised in that a portion (14) of the main shaft (6) is provided as a hollow shaft, said portion being connected to the gyroscope motor (9).
EP01125971A 2000-12-13 2001-10-31 Device for producing pipes from a compactable material Expired - Lifetime EP1214988B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10062530A DE10062530C1 (en) 2000-12-13 2000-12-13 Device for the production of molded parts from a compactable mixture, vibrating table and vibration exciter
DE10062530 2000-12-13

Publications (3)

Publication Number Publication Date
EP1214988A2 EP1214988A2 (en) 2002-06-19
EP1214988A3 EP1214988A3 (en) 2004-12-08
EP1214988B1 true EP1214988B1 (en) 2007-05-09

Family

ID=7667278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01125971A Expired - Lifetime EP1214988B1 (en) 2000-12-13 2001-10-31 Device for producing pipes from a compactable material

Country Status (4)

Country Link
EP (1) EP1214988B1 (en)
AT (1) ATE361790T1 (en)
DE (2) DE10062530C1 (en)
DK (1) DK1214988T3 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3708126A1 (en) * 1987-03-13 1988-09-22 Henkel Kgaa VIBRATION DEVICE AND METHOD FOR VIBRATING A WORK HEAD
JP2813453B2 (en) * 1990-11-01 1998-10-22 三菱重工業株式会社 Low frequency exciter
US5172599A (en) * 1991-05-15 1992-12-22 Woltering Howard M Vibratory device
DE4317351A1 (en) * 1993-05-25 1994-12-01 Omag Maschinenbau Ag Concrete mould vibrating machine, in particular core vibrator
DE19643978C2 (en) * 1996-10-31 1999-07-08 Rebei Michael Dipl Ing Th Vibration generator with continuously adjustable centrifugal force during operation for use in the core vibrating machines (concrete pipe machines), vibrating devices for concrete block molding machines, as well as in vibratory rollers

Also Published As

Publication number Publication date
EP1214988A3 (en) 2004-12-08
DK1214988T3 (en) 2007-07-02
EP1214988A2 (en) 2002-06-19
ATE361790T1 (en) 2007-06-15
DE10062530C1 (en) 2002-06-20
DE50112480D1 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
EP1337713B1 (en) Compactor
DE19921145B4 (en) Vibrating drive for a mold
EP0653244B1 (en) Eccentric vibrating mill
EP2910312A1 (en) Pivoting assembly for a vibrating table or a screening device
DE972488C (en) Vibrating conveyor or screen
WO2004069504A1 (en) Device for moulding mixtures
DE3634157C2 (en) Vibrating device with changing vibration force
EP0980292B1 (en) Device for generating directed vibrations
EP0658382B1 (en) Vibrating table for vibrating a compactable material, and method for compacting concrete
EP1305121A1 (en) Controllable vibration generator
EP1214988B1 (en) Device for producing pipes from a compactable material
DE69821247T2 (en) Process for compacting molding sand
WO2013010277A1 (en) Unbalance exciter for a ground compaction device
EP2242590B1 (en) Unbalance exciter with one or more rotatable unbalances
EP3851583A1 (en) Electromagnetic exciter for ground compacting device
EP1534439A1 (en) Vibration exciter for soil compacting devices
WO2017076525A1 (en) Vibration generator and method for driving a pile into a soil
EP3384096B1 (en) Arrangement for providing a pulsing compressive force
EP3718646B1 (en) Plate production system with vibrating device
DE102020102950A1 (en) External vibrator with adjustable force vector
DE202004014585U1 (en) Vibration exciter for e.g. compaction roller, has imbalance mass arranged on pivoted imbalance-shaft and force transmission unit moving imbalance mass, such that angular speed of imbalance mass is varied during each revolution
DE3611219A1 (en) Vibratory drive
DE202021101018U1 (en) Device for foaming at least one substance
EP4183924A1 (en) Soil working roller and method for operating a soil working roller
DE3238695A1 (en) Process for producing moulded concrete bricks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20050603

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: DEVICE FOR PRODUCING PIPES FROM A COMPACTABLE MATERIAL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHWABE, JOERG-HENRY

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50112480

Country of ref document: DE

Date of ref document: 20070621

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070820

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070509

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN3 Fr: translation not filed ** decision concerning opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080212

BERE Be: lapsed

Owner name: INSTITUT FUR FERTIGTEILTECHNIK UND FERTIGBAU WEIM

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080104

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091015

Year of fee payment: 9

Ref country code: DK

Payment date: 20091014

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091023

Year of fee payment: 9

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031