EP1212761A2 - Method for controlling an electromechanical actuator - Google Patents

Method for controlling an electromechanical actuator

Info

Publication number
EP1212761A2
EP1212761A2 EP00943624A EP00943624A EP1212761A2 EP 1212761 A2 EP1212761 A2 EP 1212761A2 EP 00943624 A EP00943624 A EP 00943624A EP 00943624 A EP00943624 A EP 00943624A EP 1212761 A2 EP1212761 A2 EP 1212761A2
Authority
EP
European Patent Office
Prior art keywords
coil
predetermined
contact surface
supplied
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00943624A
Other languages
German (de)
French (fr)
Other versions
EP1212761B1 (en
Inventor
Stefan Butzmann
Joachim Melbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1212761A2 publication Critical patent/EP1212761A2/en
Application granted granted Critical
Publication of EP1212761B1 publication Critical patent/EP1212761B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/123Guiding or setting position of armatures, e.g. retaining armatures in their end position by ancillary coil

Definitions

  • the invention relates to a method for controlling an electromechanical actuator, in particular for a gas exchange valve of an internal combustion engine.
  • a known actuator (DE 195 26 683 AI) is assigned an actuator which is designed as a gas exchange valve.
  • the actuator has two electromagnets, between each of which an armature plate can be moved against the force of a restoring means by switching off the coil current on the holding electromagnet and switching on the coil current on the catching electromagnet.
  • the coil current of the respective capturing electromagnet is regulated to a predefined catch value, namely for a predefined period of time which is dimensioned such that the armature plate hits a contact surface on the capturing electromagnet within the period.
  • the coil current of the capturing electromagnet is then regulated to a holding value.
  • the object of the invention is to provide a method for controlling an electromechanical actuator which minimizes the sound generation when an armature plate strikes an electromagnet and at the same time ensures reliable operation of the actuator.
  • the object is achieved by the features of claim 1.
  • Advantageous embodiments of the invention are characterized in the subclaims.
  • the invention is based on the knowledge that to move the anchor plate from the first or second contact surface to the second or first contact surface with the requirement that the speed of impact of the anchor plate on the second contact surface is close to zero, the spring-mass oscillator Amount of energy must be supplied, which is withdrawn from the spring-mass oscillator by the electrical and mechanical losses. Energy can be supplied to the coil of the electromagnet very precisely if the armature plate is still outside the vicinity of the contact surface on the electromagnet.
  • the invention is characterized in that a required first amount of electrical energy is supplied when the armature plate is still outside the vicinity of the contact surface on the electromagnet.
  • a second predetermined amount of electrical energy is supplied to the coil after an operating state of the freewheel and before the armature plate bears against the contact surface on the electromagnet.
  • the coil is then controlled again in the operating state of the freewheel until the armature plate comes into contact with the contact surface on the electromagnet.
  • the second amount of electrical energy which is preferably supplied when the armature plate is in the vicinity of the contact surface on the electromagnet, the accuracy of the detection of the exact time of impact of the armature plate on the contact surface on the electromagnet can be increased.
  • the sum of the first and second with the electrical energy is preferably determined so that it corresponds exactly to the amount of energy which is withdrawn by electrical and mechanical losses of the spring-mass oscillator.
  • FIG. 1 shows an arrangement of an actuator in an internal combustion engine
  • FIG. 2 shows a flowchart of a first embodiment of a method for controlling the actuator
  • FIG. 3 shows a further flowchart of another embodiment of a method for controlling the actuator
  • Figure 4 waveforms of the current through the coil, the time derivative of the current and the speed of the armature plate plotted over time.
  • An actuator 1 ( Figure 1) comprises an actuator 11 and an actuator 12 that this embodiment is designed as a gas exchange valve, and has a shaft 121 and a plate 122.
  • the actuator 11 has a housing 111 in which a first and a second electromagnet are arranged.
  • the first electromagnet has a first core 112, in which a first coil 113 is embedded in an annular groove.
  • the second electromagnet has a second core 114, in which a second coil 115 is embedded in a further annular groove.
  • An armature is provided, the armature plate 116 of which is movably arranged in the housing 111 between a first contact surface 115 a of the first electromagnet and a second contact surface 115 b of the second electromagnet.
  • the armature further comprises an armature shaft 117 which is guided through the recess in the first and second core 112, 114 and which can be mechanically coupled to the shaft 121 of the actuator 12.
  • a first reset means 118 a and a second reset means 118 b bias the anchor plate 116 into an intended rest position N.
  • Actuator 1 is rigidly connected to a cylinder head 21.
  • An intake port and a cylinder with a piston are assigned to the cylinder head 21.
  • the piston 24 is coupled to a crankshaft 26 via a connecting rod 25.
  • a control device 3 is provided, which detects signals from sensors and generates control signals and whose dependency the first and second coils 113, 115 of the control device 1 are controlled in a power controller 5a, 5b.
  • the sensors which are assigned to the control device 3 are designed as a first ammeter 4a, which detects an actual value I_AV1 of the current through the first coil 113, or as a second ammeter 4b, which detects an actual value I_AV2 of the current through the second coil 115 recorded. In addition to the sensors mentioned, other sensors can also be present.
  • Power controller 5a has a first transistor T1, the gate connection of which is connected to an output of control device 3.
  • the power controller 5a has a second transistor T2, the gate connection of which is electrically conductively connected to a further output of the control device 3.
  • a resistor R is arranged between the source output of the second transistor T2 and the reference potential (supply voltage U v ).
  • the resistor R serves as a measuring resistor for the ammeter 4a.
  • the structure of the power controller 5b is the same as that of the power controller 5a.
  • the reference numerals of the electrical components of the power controller 5b are each identified by a """H-bridge" to distinguish them.
  • the first coil 113 is thus operated in the operating state of the freewheel.
  • the voltage drop across the first coil 113 is then given by the forward voltage of the second diode D2, the second transistor T2 and the voltage drop across the resistor R (in total, for example, two volts).
  • the current through the first coil 113 then decreases.
  • both the voltage levels at the gate connection of the first and the second transistor T1, T2 are switched from high to low, both the first diode D1 and the second diode D2 become conductive and the current through the first coil 113 becomes very fast decreased. So commutation takes place.
  • FIG. 2 shows a flow diagram of a first embodiment of the method for controlling the actuator 11, which is processed in the control device 3 in the form of a program. It is irrelevant whether the program is in the form wired logic is implemented or is implemented in the form of software and is processed by a micro-controller.
  • the program is started in a step S1.
  • data are read in from a data memory (not shown), which contain information about whether the anchor plate is in contact with the first contact surface 115a, i. h is in the closed position S, or whether the anchor plate 116 bears on the second contact surface 115b, d. H, . is 0 in the open position.
  • a step S2a various threshold values SW1, SW2, SW3, SW4 are read in, which are either predefined or corrected in previous runs of the program.
  • a predetermined catch value I_F is assigned to a target value I_SP1 of the current through the first coil 113.
  • a first regulator 31 is provided in the control device 3, which regulates the current through the first coil 113 as a function of the setpoint I_SP1 and the actual value I_AV1 of the current through the first coil 113.
  • the first controller 31 generates control signals for the gate-side connections of the first transistor T1 and the second transistor T2 with the voltage levels "low” or "high".
  • the first controller 31 is also simply designed as a two-point controller. However, it can also be designed as a further controller known to the person skilled in the art.
  • step 7a it is checked whether the electrical energy W supplied to the coil 113 is greater than the first threshold value SW1. If this is not the case, processing is continued in step S6 after a predetermined waiting time. However, if this is the case, ie a predetermined first quantity of electrical energy corresponding to the first threshold value SW1 has been supplied to the coil 113, the process branches to step S8.
  • step SlO it is checked whether the current actual value I_AV1 of the current through the first coil is less than the predetermined second threshold value SW2.
  • a step S12 it is checked whether the electrical energy W supplied to the coil 113 since the transition of the program from the step S10 to the step S11 is greater than the third threshold value SW3. If the condition is not met, the processing is continued in step S11 after a predetermined waiting time.
  • step S15 the setpoint I_SP1 of the current through the first coil 113 is assigned an increased hold value I_HE.
  • the increased holding value I_HE is chosen such that the anchor plate 116 does not come loose from the contact surface 115a after hitting the first contact surface 115a and drops to the rest position N.
  • step S16 After a predetermined period of time, the holding value I_H is then assigned to the setpoint I_SP1 of the current through the first coil 113 in step S16.
  • the program is ended in a step S17. Processing steps 1 to 17 ensures that the coil is supplied with exactly the electrical energy which compensates for the energy losses which occur when the armature plate 116 is moved from the open position 0 to the closed position S. This ensures that the speed of impact of the anchor plate on the contact surface 115a is extremely low, as a result of which only low noise emissions are generated.
  • the electrical energy W supplied in step S6 is calculated with high precision since the armature plate is not yet in the vicinity of the first electromagnet in this area.
  • the first amount of energy that is achieved when the supplied electrical energy W is greater than the first threshold value is significantly larger than the second amount of energy that is achieved when the supplied electrical energy reaches the third threshold value.
  • the first threshold value SW1 is preferably nine times as high as the third threshold value SW3.
  • step S11 the first armature plate 116 is ready in the vicinity of the coil 113, so that the electrical energy supplied can be determined less precisely than in step S6.
  • the main advantage of this procedure is that the late supply of electrical sher energy and subsequent switching to the operating state of the freewheel in step S13, both the actual value of the current I_AV1 and its time derivative can be significantly increased. For example, by two to three times compared to supplying all the energy required during the processing of steps S6 and S7a. Alternatively, it can also be checked in step S14 whether the quotient of the derivation of the actual value I_AV1 according to the time and the actual value I_AV1 reaches a predetermined threshold value.
  • step S1 If it is recognized in step S1 that the armature plate 116 is in the closed position S, a branch of the program (not shown) is processed which corresponds to steps S2a to S17 with the difference that in step S3 the setpoint I_SP1 of the current through the Coil is the zero value I_N, in step S4 the target value I_SP2 is assigned the catch value I_F and that in steps S6 and Sll the integral of the product of the target value I_AV2 of the current through the second coil 115 and the voltage drop on the second coil
  • the transistors T1 'and T2' are driven instead of the transistors T1 and T2.
  • FIG. 3 shows a further flow chart of a further embodiment of the method for controlling the actuator 11, which is processed in the form of a program.
  • step S20 the program is started and data are read from the data memory which contain information about the current position of the anchor plate 116. The steps described below are carried out when the anchor plate
  • first and second time periods ⁇ tl and ⁇ t2 are read from the data memory.
  • the first and the second time periods ⁇ tl and ⁇ t2 are fixed and in Attempts are determined in advance and / or corrected or determined in previous program runs.
  • step S22 the setpoint I_SP1 of the current through the first coil 113 is assigned the zero value I_N.
  • Controller 31 of control device 3 then regulates the current through first coil 113 to the zero value I_N.
  • the catch value I_F is assigned in the setpoint I_SP2 of the current through the second coil.
  • the second controller 32 of the control unit then regulates the current through the second coil 115 to the catch value I_F.
  • a step S24 the current time t is assigned to the time t1.
  • a step S25 it is checked whether the current time t is greater than the sum of the time tl and the first time period ⁇ tl. If this is not the case, the processing is continued in step S25 after a predetermined waiting time.
  • step S25 if the condition of step S25 is met, i. H.
  • the second coil 115 was energized for the first time period ⁇ tl with the catch value I_F of the current, which corresponds to a first amount of electrical energy, so the second coil 115 is controlled in step S8 in the operating state of the freewheel. In the operating state of the freewheel, electrical energy is no longer supplied to the coil 115 and the energy stored in the coil is supplied to the spring-mass oscillator.
  • a step S27 it is checked whether the current actual value I_AV2 of the current through the second coil 115 is smaller than the second threshold value SW2. If this is not the case, the processing is continued again in step S27 after a predetermined waiting time. If this is the case, however, the current time t is assigned to the time t2 in a step S28. Furthermore, the switchover from the operating state of the freewheeling of the second coil 115 to the normal paint control mode with the setpoint I_SP2 assigned with the catch value I_F.
  • step S30 it is checked whether the current time t is greater than the sum of the time t2 and the second time period ⁇ t2. If this is not the case, the revision is continued again in step S30 after a predetermined waiting time.
  • step S30 if the condition of step S30 is fulfilled, the second time period ⁇ t2 being predetermined such that exactly the second amount of energy has been supplied to the second coil 115 after the second time period ⁇ t2 has expired, a branch is made to a step S31 in which the second coil 115 is controlled in the operating state of the freewheel.
  • step S33 the actual value I_AV2 deviates from an actual value of the current through the coil which is predetermined by tests if the speed of the armature does not correspond to the predetermined low speed. This is the case if either too little energy or too much energy was supplied to the coil. Correction of the first time period ⁇ tl can thus ensure that the impact speed of the anchor plate is approximated to a desired impact speed in a subsequent program run. It is therefore particularly advantageous if the first time period ⁇ tl is corrected, since the supply of electrical energy outside the near range rich in the closed and open positions can be done much more precisely.
  • a step S34 with the setpoint I_SP2 of the current through the second coil 115 the increased hold value I_H is assigned for a predetermined period of time.
  • the hold value I_H is then assigned to the setpoint value of the current through the second coil after the predetermined period of time in step S34.
  • the program is ended in a step S36.
  • a step S33a can be provided in which the catch value I_F is corrected as a function of the actual value I_AV2.
  • the catch value I_F can alternatively also assume different values for supplying the first quantity of electrical energy during steps S23 to S26 and for supplying the second quantity of electrical energy during steps S28 to S30. It is also particularly advantageous if the first quantity of electrical energy is supplied to the first or second coil by energizing the coil with the catch value I_F of the current until a predetermined magnetic flux is reached in the coil.
  • FIG. 4 shows, by way of example, the signal profiles of the current I, the time derivative of the current and the speed of the armature plate 116 over time t, specifically for the embodiment according to FIG. 3.
  • the impact of the armature plate 116 on the second contact surface at the time t10 recognized based on the condition of step S32.
  • step 32 is deemed to be fulfilled if the derivation of the actual value I_AV2, starting from smaller values, exceeds the fourth threshold value. From the current course it is clearly evident that the supply of electrical Energy during the second period of time .DELTA.t2 and the subsequent switchover to the operating state of the freewheel, the derivation of the actual value I_RV2 of the current through the second coil assumes a significantly higher value than during the freewheeling before the time t2. This has the advantage that measurement errors due to interference have only an insignificant effect on the measurement signal. Such interference is caused, for example, by noise in the measurement signal and / or electromagnetic fields.
  • the invention is not restricted to the exemplary embodiments described, in particular to a combination of the exemplary embodiments according to FIGS. 2 and 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

In order to control an actuator, the following steps are carried out in the given sequence when an armature plate is moved from a position in which it is resting against a contact surface to a position in which it is resting against a contact surface of an electromagnet. A predetermined amount of electric energy is supplied to the coil. The coil is directed into an operating state of the freewheel until a first condition is fulfilled. A predetermined second amount of electric energy is supplied to the coil before the armature plate is moved to a position in which it rests against the contact surface of the electromagnet. The coil is directed into an operating state of the freewheel until a second condition is fulfilled whose fulfillment indicates that the armature plate (116) is resting against the contact surface of the electromagnet.

Description

Beschreibungdescription
Verfahren zum Steuern eines elektromechanischen StellantriebsMethod for controlling an electromechanical actuator
Die Erfindung betrifft ein Verfahren zum Steuern eines elektromechanischen Stellantriebs, insbesondere für ein Gaswechselventil einer Brennkraftmaschine.The invention relates to a method for controlling an electromechanical actuator, in particular for a gas exchange valve of an internal combustion engine.
Einem bekannten Stellantrieb (DE 195 26 683 AI) wird ein Stellglied zugeordnet, das als Gaswechselventil ausgebildet ist. Der Stellantrieb weist zwei Elektromagnete auf, zwischen denen jeweils gegen die Kraft eines Rückstellmittels eine Ankerplatte durch Abschalten des Spulenstroms am haltenden E- lektromagneten und Einschalten des Spulenstroms am fangenden Elektromagneten bewegt werden kann. Der Spulenstrom des jeweils fangenden Elektromagneten wird auf einen vorgegebenen Fangwert geregelt und zwar während einer vorgegebenen Zeitdauer, die so bemessen ist, daß die Ankerplatte innerhalb der Zeitdauer auf eine Anlagefläche am fangenden Elektromagneten trifft. Anschließend wird der Spulenstrom des fangenden E- lektromagneten auf einen Haltewert geregelt .A known actuator (DE 195 26 683 AI) is assigned an actuator which is designed as a gas exchange valve. The actuator has two electromagnets, between each of which an armature plate can be moved against the force of a restoring means by switching off the coil current on the holding electromagnet and switching on the coil current on the catching electromagnet. The coil current of the respective capturing electromagnet is regulated to a predefined catch value, namely for a predefined period of time which is dimensioned such that the armature plate hits a contact surface on the capturing electromagnet within the period. The coil current of the capturing electromagnet is then regulated to a holding value.
Immer strengere gesetzliche Grenzwerte zur Schallabstrahlung des Kraftfahrzeugs und Anforderungen nach einer leise laufen- den Brennkraftmaschine setzen für eine Serientauglichkeit des Stellantriebs zwingend voraus, daß die Schallerzeugung durch den Stellantrieb gering ist.Ever stricter legal limit values for sound radiation from the motor vehicle and requirements for a quietly running internal combustion engine require that the actuator is suitable for series production that the sound generation by the actuator is low.
Die Aufgabe der Erfindung ist es, ein Verfahren zum Steuern eines elektromechanischen Stellantriebs zu schaffen, das die Schallerzeugung beim Auftreffen einer Ankerplatte auf einen Elektromagneten minimiert und gleichzeitig einen zuverlässigen Betrieb des Stellantriebs gewährleistet . Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet .The object of the invention is to provide a method for controlling an electromechanical actuator which minimizes the sound generation when an armature plate strikes an electromagnet and at the same time ensures reliable operation of the actuator. The object is achieved by the features of claim 1. Advantageous embodiments of the invention are characterized in the subclaims.
Die Erfindung beruht auf der Erkenntnis, daß zum Bewegen der Ankerplatte von der ersten oder zweiten Anlagefläche hin zur zweiten oder ersten Anlagefläche mit der Vorgabe, daß die Auftreffgeschwindigkeit der Ankerplatte auf die zweite Anlagefläche nahe bei Null liegt, dem Feder-Masse-Schwinger genau die Energiemenge zugeführt werden muß, die ihm durch die e- lektrischen und mechanischen Verluste dem Feder-Masse- Schwinger entzogen wird. Der Spule des Elektromagneten kann Energie sehr präzise zugeführt werden, wenn die Ankerplatte noch außerhalb des Nahbereichs der Anlagefläche an dem Elekt- romagneten ist. Die Erfindung zeichnet sich dadurch aus, daß eine erforderliche erste Menge von elektrischer Energie zugeführt wird, wenn die Ankerplatte noch außerhalb des Nahbereichs der Anlagefläche an dem Elektromagneten ist. Eine zweite vorgegebene Menge elektrischer Energie wird der Spule zugeführt nach einem Betriebszustand des Freilaufs und vor dem Anliegen der Ankerplatte an der Anlagefläache an dem E- lektromagneten. Anschließend wird die Spule erneut in den Betriebszustand des Freilaufs gesteuert bis die Ankerplatte zur Anlage mit der Anlagefläche an dem Elektromagneten gelangt . Durch das Zuführen der zweiten Menge an elektrischer Energie, die vorzugsweise zugeführt wird, wenn die Ankerplatte im Nahbereich der Anlagefläche an dem Elektromagneten ist, kann die Genauigkeit des Erfassens des exakten AuftreffZeitpunktes der Ankerplatte auf die Anlagefläche an dem Elektromagneten er- höht werden. Die Summe der ersten und zweiten mit der elektrischen Energie ist vorzugsweise so bestimmt, daß sie genau der Energiemenge entspricht, die durch elektrische und mechanische Verluste der Feder-Masse-Schwinger entzogen wird. Ausführungsbeispiele der Erfindung sind anhand der schematischen Zeichnungen erläutert. Es zeigen:The invention is based on the knowledge that to move the anchor plate from the first or second contact surface to the second or first contact surface with the requirement that the speed of impact of the anchor plate on the second contact surface is close to zero, the spring-mass oscillator Amount of energy must be supplied, which is withdrawn from the spring-mass oscillator by the electrical and mechanical losses. Energy can be supplied to the coil of the electromagnet very precisely if the armature plate is still outside the vicinity of the contact surface on the electromagnet. The invention is characterized in that a required first amount of electrical energy is supplied when the armature plate is still outside the vicinity of the contact surface on the electromagnet. A second predetermined amount of electrical energy is supplied to the coil after an operating state of the freewheel and before the armature plate bears against the contact surface on the electromagnet. The coil is then controlled again in the operating state of the freewheel until the armature plate comes into contact with the contact surface on the electromagnet. By supplying the second amount of electrical energy, which is preferably supplied when the armature plate is in the vicinity of the contact surface on the electromagnet, the accuracy of the detection of the exact time of impact of the armature plate on the contact surface on the electromagnet can be increased. The sum of the first and second with the electrical energy is preferably determined so that it corresponds exactly to the amount of energy which is withdrawn by electrical and mechanical losses of the spring-mass oscillator. Embodiments of the invention are explained with reference to the schematic drawings. Show it:
Figur 1 eine Anordnung eines Stellantriebs in einer Brenn- kraftmaschine,FIG. 1 shows an arrangement of an actuator in an internal combustion engine,
Figur 2 ein Ablaufdiagramm einer ersten Ausführungsform eines Verfahrens zum Steuern des Stellantriebs, Figur 3 ein weiteres Ablaufdiagramm einer weiteren Ausführungsform eines Verfahrens zum Steuern des Stellan- triebs und2 shows a flowchart of a first embodiment of a method for controlling the actuator, FIG. 3 shows a further flowchart of another embodiment of a method for controlling the actuator and
Figur 4 Signalverläufe des Stroms durch die Spule, der zeitlichen Ableitung des Stroms und der Geschwindigkeit der Ankerplatte aufgetragen über die Zeit .Figure 4 waveforms of the current through the coil, the time derivative of the current and the speed of the armature plate plotted over time.
Ein Stellgerät 1 ( Figur 1) umfaßt einen Stellantrieb 11 und ein Stellglied 12, daß diese Ausführungsform als Gaswechselventil gebildet ist, und einen Schaft 121 und einen Teller 122 hat. Der Stellantrieb 11 hat ein Gehäuse 111, in dem ein erster und ein zweiter Elektromagnet angeordnet sind. Der erste Elektromagnet hat einen ersten Kern 112, in den in einer ringförmigen Nut eine erste Spule 113 eingebettet ist. Der zweite Elektromagnet hat einen zweiten Kern 114, in den in einer weiteren ringförmigen Nut eine zweite Spule 115 eingebettet ist. Ein Anker ist vorgesehen, dessen Ankerplatte 116 in dem Gehäuse 111 beweglich zwischen einer ersten Anlagefläche 115 a des ersten Elektromagneten und einer zweiten Anlagefläche 115 b des zweiten Elektromagneten angeordnet ist. Der Anker umfaßt des weiteren einen Ankerschaft 117, der durch Ausnehmung des ersten und zweiten Kerns 112, 114 ge- führt wird und der mit dem Schaft 121 des Stellglieds 12 mechanisch koppelbar ist. Ein erstes Rückstellmittel 118 a und ein zweites Rückstellmittel 118 b spannen die Ankerplatte 116 in eine vorgesehene Ruheposition N vor. Das Stellgerät 1 ist mit einem Zylinderkopf 21 starr verbunden. Dem Zylinderkopf 21 ist ein Ansaugkanal und ein Zylinder mit einem Kolben zugeordnet . Der Kolben 24 ist über eine Pleuelstange 25 mit einer Kurbelwelle 26 gekoppelt. Eine Steuereinrichtung 3 ist vorgesehen, die Signale von Sensoren erfaßt und Stellsignale erzeugt und deren Abhängigkeit die erste und zweite Spule 113, 115 des Stellgeräts 1 in einem Leistungssteller 5a, 5b angesteuert werden.An actuator 1 (Figure 1) comprises an actuator 11 and an actuator 12 that this embodiment is designed as a gas exchange valve, and has a shaft 121 and a plate 122. The actuator 11 has a housing 111 in which a first and a second electromagnet are arranged. The first electromagnet has a first core 112, in which a first coil 113 is embedded in an annular groove. The second electromagnet has a second core 114, in which a second coil 115 is embedded in a further annular groove. An armature is provided, the armature plate 116 of which is movably arranged in the housing 111 between a first contact surface 115 a of the first electromagnet and a second contact surface 115 b of the second electromagnet. The armature further comprises an armature shaft 117 which is guided through the recess in the first and second core 112, 114 and which can be mechanically coupled to the shaft 121 of the actuator 12. A first reset means 118 a and a second reset means 118 b bias the anchor plate 116 into an intended rest position N. Actuator 1 is rigidly connected to a cylinder head 21. An intake port and a cylinder with a piston are assigned to the cylinder head 21. The piston 24 is coupled to a crankshaft 26 via a connecting rod 25. A control device 3 is provided, which detects signals from sensors and generates control signals and whose dependency the first and second coils 113, 115 of the control device 1 are controlled in a power controller 5a, 5b.
Die Sensoren, die der Steuereinrichtung 3 zugeordnet sind, sind ausgebildet als ein erster Strommesser 4a, der einen Istwert I_AV1 des Stroms durch die erste Spule 113 erfaßt, o- der als ein zweiter Strommesser 4b, der einen Istwert I_AV2 des Stroms durch die zweite Spule 115 erfaßt. Neben den erwähnten Sensoren können auch weitere Sensoren vorhanden sein.The sensors which are assigned to the control device 3 are designed as a first ammeter 4a, which detects an actual value I_AV1 of the current through the first coil 113, or as a second ammeter 4b, which detects an actual value I_AV2 of the current through the second coil 115 recorded. In addition to the sensors mentioned, other sensors can also be present.
Leistungssteller 5a hat einen ersten Transistor Tl, dessen Gate-Anschluß mit einem Ausgang der Steuereinrichtung 3 ver- bunden ist. Der Leistungssteller 5a hat einen zweiten Transistor T2 , dessen Gate-Anschluß elektrisch leitend mit einem weiteren Ausgang der Steuereinrichtung 3 elektrisch leitendverbunden ist. Ferner ist ein Widerstand R zwischen dem Sour- ce-Ausgang des zweiten Transistors T2 und dem Bezugspotential (Versorgungsspannung Uv) angeordnet. Der Widerstand R dient als Meßwiderstand für den Strommesser 4a.Power controller 5a has a first transistor T1, the gate connection of which is connected to an output of control device 3. The power controller 5a has a second transistor T2, the gate connection of which is electrically conductively connected to a further output of the control device 3. Furthermore, a resistor R is arranged between the source output of the second transistor T2 and the reference potential (supply voltage U v ). The resistor R serves as a measuring resistor for the ammeter 4a.
Der Aufbau des Leistungsstellers 5b ist der gleiche wie der des Leistungsstellers 5a. Die Bezugszeichen der elektrischen bauelemente des Leistungsstellers 5b sind zur Unterscheidung jeweils mit einem " ' "H-Brücke" bezeichnet. Im folgenden wird exemplarisch die Funktionsweise des Leistungstellers 5a dargestellt. Liegt an dem Gate-Anschluß des ersten Transistors Tl ein hoher Spannungspegel an, so wird der erste Transistor Tl vom Drain bis zur Source leitend (Tl=0n) . Liegt zusätzlich am zweiten Transistor T2 am Gate- Anschluß der hohe Spannungspegel an, so wird auch der zweite Transistor T2 leitend (T2=On) . An der ersten Spule 113 fällt an die VersorgungsSpannung Uv verringert um den Spannungsabfall an dem Widerstand R und den Transistoren Tl und T2 ab. Der Strom durch die Spule 113 steigt dann an. Der Ersten Spule wird elektrische Energie zugeführt.The structure of the power controller 5b is the same as that of the power controller 5a. The reference numerals of the electrical components of the power controller 5b are each identified by a """H-bridge" to distinguish them. The mode of operation of the power controller 5a is shown below as an example. If a high voltage level is present at the gate terminal of the first transistor T1, the first transistor T1 becomes conductive from the drain to the source (T1 = 0n). If the high voltage level is additionally present at the second transistor T2 at the gate connection, then the second transistor T2 also becomes conductive (T2 = On). The supply voltage U v drops at the first coil 113, reduced by the voltage drop across the resistor R and the transistors T1 and T2. The current through coil 113 then increases. Electrical energy is supplied to the first coil.
Wird anschließend an den Gate-Anschluß des ersten Transistors Tl ein Spannungspegel vorgegeben, so sperrt der Transistor Tl (Tl=Off) und die Diode D2 wird im Freilauf leitend. Die erste Spule 113 wird somit im Betriebszustand des Freilaufs betrieben. Der Spannungsabfall an der ersten Spule 113 ist dann gegeben durch die Durchlaßspannung der zweiten Diode D2 , des zweiten Transistors T2 und dem Spannungsabfall an dem Wider- stand R (insgesamt beispielsweise zwei Volt) . Der Strom durch die erste Spule 113 nimmt dann ab.If a voltage level is then specified at the gate connection of the first transistor T1, the transistor T1 blocks (T1 = off) and the diode D2 becomes conductive in the freewheeling mode. The first coil 113 is thus operated in the operating state of the freewheel. The voltage drop across the first coil 113 is then given by the forward voltage of the second diode D2, the second transistor T2 and the voltage drop across the resistor R (in total, for example, two volts). The current through the first coil 113 then decreases.
Werden sowohl die Spannungspegel an dem Gate-Anschluß des ersten als auch des zweiten Transistors Tl, T2 von hoch auf niedrig geschaltet, so werden sowohl die erste Diode Dl als auch die zweite Diode D2 leitend und der Strom durch die erste Spule 113 wird sehr schnell verringert. Es findet also eine Abkommutierung statt.If both the voltage levels at the gate connection of the first and the second transistor T1, T2 are switched from high to low, both the first diode D1 and the second diode D2 become conductive and the current through the first coil 113 becomes very fast decreased. So commutation takes place.
Figur 2 zeigt ein Ablaufdiagramm einer ersten Ausführungsform des Verfahrens zum Steuern des Stellantriebs 11, das in der Steuereinrichtung 3 in der Form eines Programms abgearbeitet wird. Dabei ist es unerheblich, ob das Programm in Form fest- verdrahteter Logik realisiert ist oder in Form von Software realisiert ist und von einem Mikro-Controller abgearbeitet wird.FIG. 2 shows a flow diagram of a first embodiment of the method for controlling the actuator 11, which is processed in the control device 3 in the form of a program. It is irrelevant whether the program is in the form wired logic is implemented or is implemented in the form of software and is processed by a micro-controller.
In einem Schritt Sl wird das Programm gestartet. Dabei werden Daten aus einem nicht dargestellten Datenspeicher eingelesen, die Informationen darüber enthalten, ob die Ankerplatte an der ersten Anlagefläche 115a anliegt, d. h in der Schließposition S ist, oder ob die Ankerplatte 116 an der zweiten An- lagefläche 115b anliegt, d. h, . in der Offenposition 0 ist. Im folgenden wird das Programm für den Fall beschrieben, daß die Ankerplatte 116 ursprünglich in der Offenposition O ist. In einem Schritt S2a werden verschiedene Schwellenwerte SW1 , SW2 , SW3 , SW4 eingelesen, die entweder fest vorgegeben sind oder in vorherigen Durchläufen des Programms korrigiert wurden.The program is started in a step S1. In this case, data are read in from a data memory (not shown), which contain information about whether the anchor plate is in contact with the first contact surface 115a, i. h is in the closed position S, or whether the anchor plate 116 bears on the second contact surface 115b, d. H, . is 0 in the open position. The following describes the program for the case where the anchor plate 116 is originally in the open position O. In a step S2a, various threshold values SW1, SW2, SW3, SW4 are read in, which are either predefined or corrected in previous runs of the program.
Ein erster Schwellenwert SW1 und ein dritter Schwellenwert SW3 sind derart vorgegeben, daß die Summe des ersten und dritten Schwellwertes SW1 der Energiemenge entspricht, die dem Feder-Masse-Schwinger zugeführt werden muß, um die Energieverluste zu kompensieren, die beim Bewegen der Ankerplatte 116 von der Offenposition O in die Schließposition S auftreten.A first threshold value SW1 and a third threshold value SW3 are predefined such that the sum of the first and third threshold values SW1 corresponds to the amount of energy that has to be supplied to the spring-mass oscillator in order to compensate for the energy losses that occur when the armature plate 116 is moved by the open position O occur in the closed position S.
In einem Schritt S3 wird einem Sollwert I_SP2 ein vorgegebener Nullwert I_N zugeordnet. Der Nullwert hat vorzugsweise den Wert null Ampere. Demnach wird im Schritt S3 der Strom durch die zweite Spule 115 vorzugsweise abgeschaltet. Ein zweiter Regler 32 in der Steuereinrichtung 3 regelt den Strom durch die zweite Spule 115 abhängig von dem Sollwert I_SP2 und dem Istwert I_AV2 des Stroms durch die zweite Spule 115. Der zweite Regler 32 erzeugt Stellsignale für die Gate- Anschlüsse des ersten Transistors Tl ' und des zweiten Tran- sistors T2 ' , die die hohen oder niedrigen Spannungspegel sind. Der zweite Regler 32 ist als Zweipunkt-Regler ausgebil- det, kann jedoch als ein beliebiger anderer dem Fachmann bekannter Regler ausgebildet sein.In a step S3, a predetermined zero value I_N is assigned to a setpoint I_SP2. The zero value is preferably zero amperes. Accordingly, the current through the second coil 115 is preferably switched off in step S3. A second controller 32 in the control device 3 regulates the current through the second coil 115 as a function of the setpoint I_SP2 and the actual value I_AV2 of the current through the second coil 115. The second controller 32 generates control signals for the gate connections of the first transistor T1 'and of the second transistor T2 ', which are the high or low voltage levels. The second controller 32 is designed as a two-point controller. det, however, can be designed as any other controller known to the person skilled in the art.
In einem Schritt S4 wird ein vorgegebener Fangwert I_F einem Sollwert I_SP1 des Stroms durch die erste Spule 113 zugeordnet. In der Steuereinrichtung 3 ist ein erster Regler 31 vorgesehen, der den Strom durch die erste Spule 113 abhängig von dem Sollwert I_SP1 und dem Istwert I_AV1 des Stroms durch die erste Spule 113 regelt. Der erste Regler 31 erzeugt Stellsig- nale für die Gate-seitigen Anschlüsse des ersten Transistors Tl und des zweiten Transistors T2 mit den Spannungspegeln "niedrig" oder "hoch" . Der erste Regler 31 ist ebenfalls einfacherweise als ein Zweipunkt-Regler ausgebildet. Er kann jedoch auch als ein weiterer dem Fachmann bekannter Regler aus- gebildet sein.In a step S4, a predetermined catch value I_F is assigned to a target value I_SP1 of the current through the first coil 113. A first regulator 31 is provided in the control device 3, which regulates the current through the first coil 113 as a function of the setpoint I_SP1 and the actual value I_AV1 of the current through the first coil 113. The first controller 31 generates control signals for the gate-side connections of the first transistor T1 and the second transistor T2 with the voltage levels "low" or "high". The first controller 31 is also simply designed as a two-point controller. However, it can also be designed as a further controller known to the person skilled in the art.
In einem Schritt S6 wird die der ersten Spule 113 seit dem Start in dem Schritt Sl zugeführte elektrische Energie ermittelt. Der elektrischen Energie W wird das Integral über das Produkt des Istwertes I_AV1 und des Spannungsabfalls U_A1 an der ersten Spule 113 zugeordnet. Der Spannungsabfall U_A1 an der ersten Spule wird beispielsweise ermittelt aus der Versorgungsspannung Uv und den Spannungabf llen an dem Widerstand R, dem zweiten Transistor T2 und dem ersten Transistor Tl.In a step S6, the electrical energy supplied to the first coil 113 since the start in step S1 is determined. The integral of the electrical energy W is assigned to the first coil 113 via the product of the actual value I_AV1 and the voltage drop U_A1. The voltage drop U_A1 at the first coil is determined, for example, from the supply voltage U v and the voltage drops at the resistor R, the second transistor T2 and the first transistor T1.
In einem Schritt 7a wird geprüft, ob die der Spule 113 zugeführte elektrische Energie W größer ist als der erste Schwellwert SW1. Ist dies nicht der Fall, so wird die Bear- beitung nach einer vorgegebenen Wartezeit in dem Schritt S6 fortgesetzt. Ist dies jedoch der Fall, d. h. eine dem ersten Schwellwert SW1 entsprechende vorgegebene erste Menge elektrischer Energie ist der Spule 113 zugeführt worden, so wird in den Schritt S8 verzweigt. In dem Schritt S8 wird die erste Spule 113 in den Betriebszustand des Freilaufs gesteuert (Tl = OFF, T2 = ON) . In einem Schritt SlO wird geprüft ob der aktuelle Istwert I_AV1 des Stroms durch die erste Spule kleiner ist als der vorgegebene zweite Schwellenwert SW2. Der Schwellenwert ist beispielsweise so vorgegeben, daß er in etwa der Hälfte des Istwertes I_AV1 des Stroms durch die erste Spule beim Übergang von dem Schritt S7a hin zu dem Schritt S8 entspricht. Ist dies nicht der Fall, so wird nach einer vorgegebenen Wartezeit die Bearbeitung erneut in dem Schritt SlO fortgesetzt.In a step 7a it is checked whether the electrical energy W supplied to the coil 113 is greater than the first threshold value SW1. If this is not the case, processing is continued in step S6 after a predetermined waiting time. However, if this is the case, ie a predetermined first quantity of electrical energy corresponding to the first threshold value SW1 has been supplied to the coil 113, the process branches to step S8. In step S8, the first coil 113 is controlled in the operating state of the freewheel (Tl = OFF, T2 = ON). In a step SlO it is checked whether the current actual value I_AV1 of the current through the first coil is less than the predetermined second threshold value SW2. The threshold value is predetermined, for example, so that it corresponds to approximately half of the actual value I_AV1 of the current through the first coil during the transition from step S7a to step S8. If this is not the case, processing is continued again in step S1 after a predetermined waiting time.
Ist die Bedingung des Schritts SlO erfüllt, so erfolgt wieder eine Regelung des Stroms durch die erste Spule auf den Fangwert I_F und in einem Schritt Sll wird die der ersten Spule 113 seit dem Übergang von dem Schritt SlO zu dem Schritt Sll zugeführten elektrischen Energie W ermittelt . Die Berechnung der elektrischen Energie W erfolgt dabei analog zu der Vorgehensweise des Schrittes S6.If the condition of step S10 is fulfilled, the current through the first coil is again regulated to the catch value I_F and in a step S11 the electrical energy W supplied to the first coil 113 since the transition from step S10 to step S11 is determined . The electrical energy W is calculated analogously to the procedure in step S6.
In einem Schritt S12 wird geprüft, ob die der Spule 113 seit dem Übergang des Programms von dem Schritt SlO hin zu dem Schritt Sll zugeführte elektrische Energie W größer ist als der dritte Schwellenwert SW3. Ist die Bedingung nicht erfüllt, so wird nach einer vorgegebenen Wartezeit die Bearbeitung in dem Schritt Sll fortgesetzt.In a step S12, it is checked whether the electrical energy W supplied to the coil 113 since the transition of the program from the step S10 to the step S11 is greater than the third threshold value SW3. If the condition is not met, the processing is continued in step S11 after a predetermined waiting time.
Ist die Bedingung jedoch erfüllt, so wird in einem SchrittHowever, if the condition is met, then in one step
S13 die erste Spule 113 in den Betriebszustand des Freilaufs gesteuert. Demnach wird der Spule dann keine elektrische E- nergie mehr zugeführt. In einem Schritt S14 wird anschließend geprüft, ob die zeitliche Ableitung des Istwertes I_AV1 des Stroms durch die erste Spule 113 einen vierten Schwellenwert SW4 erreicht hat. Dazu wird vorzugsweise geprüft, ob die zeitliche Ableitung größer ist als der vierte Schwellenwert SW4. Der vierte Schwellenwert SW4 ist vorab in Versuchen ermittelt und entspricht dem Wert, dem die zeitliche Ableitung des Istwertes I_AV1 des Stroms durch die erste Spule in demS13 controls the first coil 113 in the operating state of the freewheel. Accordingly, the coil is then no longer supplied with electrical energy. In a step S14 it is then checked whether the time derivative of the actual value I_AV1 of the current through the first coil 113 has reached a fourth threshold value SW4. For this purpose, it is preferably checked whether the time derivative is greater than the fourth threshold value SW4. The fourth threshold value SW4 is determined beforehand in experiments and corresponds to the value that the time derivative of the actual value I_AV1 of the current through the first coil in the
Zeitpunkt des Auftreffens der Ankerplatte 116 auf die erste Anlagefläche 115a hat. Ist die Bedingung des Schrittes S14 erfüllt, so wird in einem Schritt S15 dem Sollwert I_SP1 des Stroms durch die erste Spule 113 ein erhöhter Haltewert I_HE zugeordnet. Der erhöhte Haltewert I_HE ist dabei so gewählt, daß sich die Ankerplatte 116 nach dem Auftreffen auf die erste Anlagefläche 115a nicht durch Prellen von der Anlagefläche 115a löst und abfällt in die Ruhelage N.When the anchor plate 116 strikes the first contact surface 115a. If the condition of step S14 is fulfilled, then in a step S15 the setpoint I_SP1 of the current through the first coil 113 is assigned an increased hold value I_HE. The increased holding value I_HE is chosen such that the anchor plate 116 does not come loose from the contact surface 115a after hitting the first contact surface 115a and drops to the rest position N.
Nach einer vorgegebenen Zeitdauer wird dann in dem Schritt S16 dem Sollwert I_SP1 des Stroms durch die erste Spule 113 der Haltewert I_H zugeordnet . In einem Schritt S17 wird das Programm beendet . Durch die Abarbeitung des Schrittes 1 bis 17 wird gewährleistet, daß der Spule genau die elektrische E- nergie zugeführt wird, die die Energieverluste kompensieren, die beim Bewegen der Ankerplatte 116 von der Offenposition 0 in die Schließposition S auftreten. Dadurch ist gewährleistet, daß die Auftreffgeschwindigkeit der Ankerplatte auf die Anlagefläche 115a äußerst gering ist, wodurch lediglich ge- ringe Schallemissionen erzeugt werden. Die Berechnung der zugeführten elektrischen Energie W in dem Schritt S6 erfolgt dabei mit hoher Präzision, da sich die Ankerplatte in diesem Bereich noch nicht im Nahbereich des ersten Elektromagneten befindet. Vorzugsweise ist die erste Energiemenge, die er- reicht wird, wenn die zugeführte elektrische Energie W größer ist als der erste Schwellenwert, deutlich größer als die zweite Energiemenge, die erreicht wird, wenn die zugeführte elektrische Energie den dritten Schwellenwert erreicht. Vorzugsweise ist so beispielsweise der erste Schwellenwert SW1 neun mal so hoch wie der dritte Schwellenwert SW3.After a predetermined period of time, the holding value I_H is then assigned to the setpoint I_SP1 of the current through the first coil 113 in step S16. The program is ended in a step S17. Processing steps 1 to 17 ensures that the coil is supplied with exactly the electrical energy which compensates for the energy losses which occur when the armature plate 116 is moved from the open position 0 to the closed position S. This ensures that the speed of impact of the anchor plate on the contact surface 115a is extremely low, as a result of which only low noise emissions are generated. The electrical energy W supplied in step S6 is calculated with high precision since the armature plate is not yet in the vicinity of the first electromagnet in this area. Preferably, the first amount of energy that is achieved when the supplied electrical energy W is greater than the first threshold value is significantly larger than the second amount of energy that is achieved when the supplied electrical energy reaches the third threshold value. For example, the first threshold value SW1 is preferably nine times as high as the third threshold value SW3.
Während der Bearbeitung der Schritte Sll und S12 befindet sich die erste Ankerplatte 116 bereit im Nahbereich der Spule 113, so daß die Ermittlung der zugeführten elektrischen Ener- gie weniger präzise erfolgen kann als im Schritt S6. Der wesentliche Vorteil bei dieser Vorgehensweise ist jedoch, daß durch das in der Bewegungsphase späte Zuführen von elektri- scher Energie und anschließende Umschalten in den Betriebszustand des Freilaufs in dem Schritt S13 sowohl der Istwert des Stroms I_AV1 als auch dessen zeitliche Ableitung deutlich erhöht werden . Beispielsweise um das zwei bis dreifache im Vergleich zu einem Zuführen der gesamten benötigten Energie während der Abarbeitung der Schritte S6 und S7a. Alternativ kann in dem Schritt S14 auch geprüft werden, ob der Quotient der Ableitung des Istwertes I_AV1 nach der Zeit und des Istwertes I_AV1 einen vorgegebenen Schwellwert erreicht.During the processing of steps S11 and S12, the first armature plate 116 is ready in the vicinity of the coil 113, so that the electrical energy supplied can be determined less precisely than in step S6. The main advantage of this procedure, however, is that the late supply of electrical sher energy and subsequent switching to the operating state of the freewheel in step S13, both the actual value of the current I_AV1 and its time derivative can be significantly increased. For example, by two to three times compared to supplying all the energy required during the processing of steps S6 and S7a. Alternatively, it can also be checked in step S14 whether the quotient of the derivation of the actual value I_AV1 according to the time and the actual value I_AV1 reaches a predetermined threshold value.
Wird in dem Schritt Sl erkannt, daß die Ankerplatte 116 in der Schließposition S ist, so wird ein nicht dargestellter Zweig des Programms abgearbeitet, der den Schritten S2a bis S17 entspricht mit dem Unterschied, daß in dem Schritt S3 den Sollwert I_SP1 des Stroms durch die Spule der Nullwert I_N, in dem Schritt S4 den Sollwert I_SP2 der Fangwert I_F zugeordnet wird und daß in dem Schritt S6 und Sll das Integral des Produktes des Sollwertes I_AV2 des Stroms durch die zwei- te Spule 115 und des Spannungsabfalls an der zweiten SpuleIf it is recognized in step S1 that the armature plate 116 is in the closed position S, a branch of the program (not shown) is processed which corresponds to steps S2a to S17 with the difference that in step S3 the setpoint I_SP1 of the current through the Coil is the zero value I_N, in step S4 the target value I_SP2 is assigned the catch value I_F and that in steps S6 and Sll the integral of the product of the target value I_AV2 of the current through the second coil 115 and the voltage drop on the second coil
115 ermittelt wird. Ferner werden die Transistoren Tl ' und T2 ' statt der Transistoren Tl und T2 angesteuert.115 is determined. Furthermore, the transistors T1 'and T2' are driven instead of the transistors T1 and T2.
Figur 3 zeigt ein weiteres Ablaufdiagramm einer weiteren Aus- fuhrungsform des Verfahrens zum Steuern des Stellantriebs 11, das in Form eines Programms abgearbeitet wird. In dem Schritt S20 wird das Programm gestartet und Daten werden aus dem Datenspeicher eingelesen, die Informationen enthalten über die aktuelle Position der Ankerplatte 116. Die im folgenden be- schriebenen Schritte werden durchlaufen, wenn die AnkerplatteFIG. 3 shows a further flow chart of a further embodiment of the method for controlling the actuator 11, which is processed in the form of a program. In step S20, the program is started and data are read from the data memory which contain information about the current position of the anchor plate 116. The steps described below are carried out when the anchor plate
116 in der Schließposition S ist und die Ankerplatte hin zu der Offenposition bewegt werden soll .116 is in the closed position S and the anchor plate is to be moved towards the open position.
In einem Schritt S2 werden erste und zweite Zeitdauer Δtl und Δt2 aus dem Datenspeicher eingelesen. Die erste und die zweite Zeitdauer Δtl und Δt2 sind fest vorgegeben und in Versuchen vorab ermittelt und/oder in vorangegangenen Programmdurchläufen korrigiert oder ermittelt .In a step S2, first and second time periods Δtl and Δt2 are read from the data memory. The first and the second time periods Δtl and Δt2 are fixed and in Attempts are determined in advance and / or corrected or determined in previous program runs.
In einem Schritt S22 wird dem Sollwert I_SP1 des Stroms durch die erste Spule 113 der Nullwert I_N zugeordnet. Der ersteIn a step S22, the setpoint I_SP1 of the current through the first coil 113 is assigned the zero value I_N. The first
Regler 31 der Steuereinrichtung 3 regelt dann den Strom durch die erste Spule 113 auf den Nullwert I_N. In einem Schritt S23 wird im Sollwert I_SP2 des Stroms durch die zweite Spule der Fangwert I_F zugeordnet. Der zweite Regler 32 der Steuer- einheit regelt dann den Strom durch die zweite Spule 115 auf den Fangwert I_F .Controller 31 of control device 3 then regulates the current through first coil 113 to the zero value I_N. In a step S23, the catch value I_F is assigned in the setpoint I_SP2 of the current through the second coil. The second controller 32 of the control unit then regulates the current through the second coil 115 to the catch value I_F.
In einem Schritt S24 wird die aktuelle Zeit t dem Zeitpunkt tl zugeordnet. In einem Schritt S25 wird geprüft, ob die ak- tuelle Zeit t größer ist als die Summe des Zeitpunktes tl und der ersten Zeitdauer Δtl. Ist dies nicht der Fall, so wird nach einer vorgegebenen Wartezeit die Bearbeitung in dem Schritt S25 fortgesetzt.In a step S24, the current time t is assigned to the time t1. In a step S25 it is checked whether the current time t is greater than the sum of the time tl and the first time period Δtl. If this is not the case, the processing is continued in step S25 after a predetermined waiting time.
Ist die Bedingung des Schrittes S25 jedoch erfüllt, d. h. die zweite Spule 115 wurde für die erste Zeitdauer Δtl mit dem Fangwert I_F des Stroms bestromt, was einer ersten Menge e- lektrischer Energie entspricht, so wird die zweite Spule 115 in dem Schritt S8 in dem Betriebszustand des Freilaufs ge- steuert. In dem Betriebszustand des Freilaufs wird der Spule 115 keine elektrische Energie mehr zugeführt und die in der Spule gespeicherte Energie dem Feder-Masse-Schwinger zugeführt .However, if the condition of step S25 is met, i. H. The second coil 115 was energized for the first time period Δtl with the catch value I_F of the current, which corresponds to a first amount of electrical energy, so the second coil 115 is controlled in step S8 in the operating state of the freewheel. In the operating state of the freewheel, electrical energy is no longer supplied to the coil 115 and the energy stored in the coil is supplied to the spring-mass oscillator.
In einem Schritt S27 wird geprüft, ob der aktuelle Istwert I_AV2 des Stroms durch die zweite Spule 115 kleiner ist als der zweite Schwellenwert SW2. Ist dies nicht der Fall, so wird nach einer vorgegebenen Wartezeit die Bearbeitung erneut in dem Schritt S27 fortgesetzt. Ist dies jedoch der Fall, so wird in einem Schritt S28 die aktuelle Zeit t dem Zeitpunkt t2 zugeordnet. Ferner erfolgt das Umschalten von dem Be- triebszustand des Freilaufs der zweiten Spule 115 in den nor- malen Regelbetrieb mit dem Sollwert I_SP2 belegt mit dem Fangwert I_F .In a step S27, it is checked whether the current actual value I_AV2 of the current through the second coil 115 is smaller than the second threshold value SW2. If this is not the case, the processing is continued again in step S27 after a predetermined waiting time. If this is the case, however, the current time t is assigned to the time t2 in a step S28. Furthermore, the switchover from the operating state of the freewheeling of the second coil 115 to the normal paint control mode with the setpoint I_SP2 assigned with the catch value I_F.
In einem Schritt S30 wird geprüft, ob die aktuelle Zeit t größer ist als die Summe des Zeitpunktes t2 und der zweiten Zeitdauer Δt2. Ist dies nicht der Fall, so wird nach einer vorgegebenen Wartezeit die Überarbeitung in dem Schritt S30 erneut fortgesetzt.In a step S30 it is checked whether the current time t is greater than the sum of the time t2 and the second time period Δt2. If this is not the case, the revision is continued again in step S30 after a predetermined waiting time.
Ist die Bedingung des Schrittes S30 jedoch erfüllt, wobei die zweite Zeitdauer Δt2 so vorgegeben ist, daß nach Ablauf der zweiten Zeitdauer Δt2 der zweiten Spule 115 genau die zweite Energiemenge zugeführt worden ist, so wird in einen Schritt S31 verzweigt, in dem die zweite Spule 115 in dem Betriebszu- stand des Freilaufs gesteuert wird.However, if the condition of step S30 is fulfilled, the second time period Δt2 being predetermined such that exactly the second amount of energy has been supplied to the second coil 115 after the second time period Δt2 has expired, a branch is made to a step S31 in which the second coil 115 is controlled in the operating state of the freewheel.
In einem Schritt S32 wird geprüft, ob die zeitliche Ableitung des Sollwertes I_AV2 des Stroms durch die zweite Spule größer ist als der vorgegebene vierte Schwellenwert SW4. Ist dies nicht erfüllt, so wird nach einer vorgegebenen Wartezeit die Bearbeitung erneut in dem Schritt S32 aufgenommen.In a step S32 it is checked whether the time derivative of the setpoint I_AV2 of the current through the second coil is greater than the predefined fourth threshold value SW4. If this is not the case, the processing is resumed in step S32 after a predetermined waiting time.
Ist die Bedingung des Schrittes S32 hingegen erfüllt, so wird in einem Schritt S33 die vorgegebene erste Zeitdauer Δtl ab- hängig von dem aktuellen Istwert I_AV2 des Stromes durch die zweite Spule 115 korrigiert. Der Istwert I_AV2 weicht in dem Schritt S33 von einem durch Versuche vorgegebenen Istwert des Stromes durch die Spule ab, wenn die Geschwindigkeit des Ankers nicht der vorgegebenen niedrigen Geschwindigkeit ent- spricht. Dies ist der Fall, wenn der Spule entweder zu wenig Energie oder zu viel Energie zugeführt wurde. Durch eine Korrektur der ersten Zeitdauer Δtl kann so gewährleistet werden, daß die Auftreffgeschwindigkeit der Ankerplatte in einem folgenden Programmdurchlauf einer gewünschten Auftreffge- schwindigkeit angenähert wird. Daher ist es besonders vorteilhaft, wenn die erste Zeitdauer Δtl korrigiert wird, da das Zuführen von elektrischer Energie außerhalb des Nahbe- reichs an den Schließ- und Offenpositionen wesentlich präziser erfolgen kann.If, on the other hand, the condition of step S32 is met, the predetermined first time period Δtl is corrected in a step S33 depending on the current actual value I_AV2 of the current through the second coil 115. In step S33, the actual value I_AV2 deviates from an actual value of the current through the coil which is predetermined by tests if the speed of the armature does not correspond to the predetermined low speed. This is the case if either too little energy or too much energy was supplied to the coil. Correction of the first time period Δtl can thus ensure that the impact speed of the anchor plate is approximated to a desired impact speed in a subsequent program run. It is therefore particularly advantageous if the first time period Δtl is corrected, since the supply of electrical energy outside the near range rich in the closed and open positions can be done much more precisely.
In einen Schritt S34 mit dem Sollwert I_SP2 des Stroms durch die zweite Spule 115 der erhöhte Haltewert I_H für eine vorgegebene Zeitdauer zugeordnet. In einem Schritt S35 wird dem Sollwert des Stroms durch die zweite Spule dann nach der vorgegebenen Zeitdauer des Schrittes S34 der Haltewert I_H zugeordnet. In einem Schritt S36 wird das Programm beendet. Al- ternativ oder zusätzlich zu dem Schritt S33 kann ein Schritt S33a vorgesehen sein, in dem der Fangwert I_F abhängig von dem Istwert I_AV2 korrigiert wird. Der Fangwert I_F kann alternativ auch verschiedene Werte annehmen für das Zuführen der ersten Menge der elektrischen Energie während der Schrit- te S23 bis S26 und dem Zuführen der zweiten Menge der elektrischen Energie während der Schritte S28 bis S30. Besonders vorteilhaft ist auch, wenn die erste Menge elektrischer Enr- gie der ersten oder zweiten Spule zugeführt wird durch Bestromen der Spule mit dem Fangwert I_F des Stroms bis ein vorgegebener magnetischer Fluß in der Spule erreicht ist.In a step S34 with the setpoint I_SP2 of the current through the second coil 115, the increased hold value I_H is assigned for a predetermined period of time. In a step S35, the hold value I_H is then assigned to the setpoint value of the current through the second coil after the predetermined period of time in step S34. The program is ended in a step S36. Alternatively or in addition to step S33, a step S33a can be provided in which the catch value I_F is corrected as a function of the actual value I_AV2. The catch value I_F can alternatively also assume different values for supplying the first quantity of electrical energy during steps S23 to S26 and for supplying the second quantity of electrical energy during steps S28 to S30. It is also particularly advantageous if the first quantity of electrical energy is supplied to the first or second coil by energizing the coil with the catch value I_F of the current until a predetermined magnetic flux is reached in the coil.
Dies hat den Vorteil, daß die Zuführung der ersten Menge der elektrischen Energie erfolgt bis eine vorgegebene Position der Ankerplatte 116 erreicht ist, da die Position der Ankerplatte in einer fest vorgegebenen Beziehung zu dem magneti- sehen Fluß durch die Spule bei vorgegebenen Strom durch die Spule ist. Der Fluß kann dabei einfach über Integration des Spannungsabfalls an der Spule über die Zeit ermittelt werden. In Figur 4 sind beispielhaft die Signalverläufe des Stroms I, der zeitlichen Ableitung des Stroms und der Geschwindigkeit der Ankerplatte 116 aufgetragen über die Zeit t und zwar für die Ausführungsform gemäß Figur 3. Das Auftreffen der Ankerplatte 116 auf die zweite Anlagefläche zu den Zeitpunkt tlO wird anhand der Bedingung des Schrittes S32 erkannt. Dabei gilt die Bedingung des Schrittes 32 als erfüllt, wenn die Ab- leitung des Istwertes I_AV2 , ausgehend von kleineren Werten den vierten Schwellenwert überschreitet. Aus dem Stromverlauf ist klar ersichtlich, daß durch das Zuführen von elektrischer Energie während der zweiten Zeitdauer Δt2 und das anschließende Umschalten in den Betriebszustand des Freilaufs die Ableitung des Istwertes I_RV2 des Stroms durch die zweite Spule betragsmäßig einen wesentlich höheren Wert einnimmt als während des Freilaufs vor dem Zeitpunkt t2. Dies hat den Vorteil, daß sich Meßfehler durch Störeinflüsse auf das Meßsignal nur unwesentlich auswirken derartige Störeinflüsse werden beispielsweise hervorgerufen durch ein Rauschen des Meßsignals und/oder elektromagnetische Felder.This has the advantage that the supply of the first amount of electrical energy takes place until a predetermined position of the armature plate 116 is reached, since the position of the armature plate is in a predetermined relationship to the magnetic flux through the coil at a predetermined current through the coil is. The flow can be determined simply by integrating the voltage drop across the coil over time. FIG. 4 shows, by way of example, the signal profiles of the current I, the time derivative of the current and the speed of the armature plate 116 over time t, specifically for the embodiment according to FIG. 3. The impact of the armature plate 116 on the second contact surface at the time t10 recognized based on the condition of step S32. The condition of step 32 is deemed to be fulfilled if the derivation of the actual value I_AV2, starting from smaller values, exceeds the fourth threshold value. From the current course it is clearly evident that the supply of electrical Energy during the second period of time .DELTA.t2 and the subsequent switchover to the operating state of the freewheel, the derivation of the actual value I_RV2 of the current through the second coil assumes a significantly higher value than during the freewheeling before the time t2. This has the advantage that measurement errors due to interference have only an insignificant effect on the measurement signal. Such interference is caused, for example, by noise in the measurement signal and / or electromagnetic fields.
Die Erfindung ist nicht auf die beschriebenen Ausführungsbei- spiele beschränkt, insbesondere auf eine Kombination der Ausführungsbeispiele gemäß der Figuren 2 und 3 umfaßt. The invention is not restricted to the exemplary embodiments described, in particular to a combination of the exemplary embodiments according to FIGS. 2 and 3.

Claims

Patentansprüche claims
1. Verfahren zum Steuern eines Stellantriebs (11) mit mindestens einem Elektromagneten, der eine Spule (113, 115) hat, - einem Anker, dessen Ankerplatte (116) zwischen einer Anlagefläche (112a, 114a) an dem Elektromagneten und einer weiteren Anlagefläche beweglich ist mindestens einem Rückstellmittel (115a, 115b), das mit dem Anker mechanisch gekoppelt ist, - wobei folgende Schritte in der angegebenen Reihenfolge ausgeführt werden, wenn die Ankerplatte (116) von der Anlage mit der weiteren Anlagefläche zur Anlage mit der Anlagefläche an dem Elektromagneten gebracht werden soll : eine vorgegebene erste Menge elektrischer Energie wird der Spule (115,113) zugeführt, die Spule (115,113) wird in einen Betriebszustand des Freilaufs gesteuert, bis eine erste vorgegebene Bedingung erfüllt ist, die charakteristisch dafür ist, dass die Ankerplatte im Nahbereich der Anlagefläche ist, - eine vorgegebene zweite Menge elektrischer Energie wird der Spule (115,113) zugeführt vor dem Anliegen der Ankerplatte an der Anlagefläche des Elektromagneten, die Spule (115,113) wird in einen Betriebszustand des Freilaufs gesteuert, bis eine zweite Bedingung erfüllt ist, deren Erfüllung ein Anzeichen für das Anliegen der1. Method for controlling an actuator (11) with at least one electromagnet, which has a coil (113, 115), - an armature, the armature plate (116) of which is movable between a contact surface (112a, 114a) on the electromagnet and a further contact surface is at least one resetting means (115a, 115b) which is mechanically coupled to the armature, the following steps being carried out in the order given when the armature plate (116) moves from the system with the further contact surface to the system with the contact surface on the electromagnet is to be brought: a predetermined first amount of electrical energy is supplied to the coil (115, 113), the coil (115, 113) is controlled in an operating state of the freewheel until a first predetermined condition is met, which is characteristic of the fact that the armature plate is in the vicinity of the Contact surface is, - a predetermined second amount of electrical energy is supplied to the coil (115, 113) before the contact n the armature plate on the contact surface of the electromagnet, the coil (115, 113) is controlled in an operating state of the freewheel until a second condition is fulfilled, the fulfillment of which is an indication of the concern of the
Ankerplatte (116) an der Anlagefläche (114a, 112a) des E- lektromagneten ist, und der Spule wird elektrische Leistung zugeführt, die so vorgegeben ist, daß die Ankerplatte in Anlage mit der Anlage- fläche bleibt.Armature plate (116) on the contact surface (114a, 112a) of the electromagnet, and the coil is supplied with electrical power which is predetermined so that the anchor plate remains in contact with the contact surface.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die vorgegebene erste Menge elektrischer Energie der Spule2. The method according to claim 1, characterized in that the predetermined first amount of electrical energy of the coil
(115,113) zugeführt wird durch Bestromen der Spule mit ei- nem vorgegebenen ersten Fangwert für eine vorgegebene(115, 113) is supplied by energizing the coil with a predetermined first catch value for a predetermined one
Zeitdauer . Duration.
3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die erste vorgegebene Bedingung erfüllt ist, wenn der Strom durch die Spule einen vorgegebenen Schwellenwert unterschreitet.3. The method according to any one of the preceding claims, characterized in that the first predetermined condition is met when the current through the coil falls below a predetermined threshold.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die vorgegebene zweite Menge elektrischer Energie der Spule (115,113) zugeführt wird durch Bestromen der Spule mit einem weiteren vorgegebenen Fang- wert für eine vorgegebene zweite Zeitdauer.4. The method according to any one of the preceding claims, characterized in that the predetermined second amount of electrical energy is supplied to the coil (115, 113) by energizing the coil with a further predetermined catch value for a predetermined second time period.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Bedingung erfüllt ist, wenn die zeitliche Ableitung des Stroms durch die Spule einen vorgegebenen Schwellenwert erreicht.5. The method according to any one of the preceding claims, characterized in that the second condition is met when the time derivative of the current through the coil reaches a predetermined threshold.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die erste Menge der zuzuführenden e- lektrischen Energie korrigiert wird abhängig von einer die Geschwindigkeit der Ankerplatte (116) beim Auftreffen auf die Anlagefläche (112a, 114a) charakterisierenden Größe.6. The method according to any one of the preceding claims, characterized in that the first amount of electrical energy to be supplied is corrected as a function of a variable characterizing the speed of the anchor plate (116) when it hits the contact surface (112a, 114a).
7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die vorgegebene erste Zeitdauer korrigiert wird abhängig von einer die Geschwindigkeit der Ankerplatte (116) beim Auftreffen auf die Anlagefläche (112a, 114a) charakterisierenden Größe .7. The method according to claim 2, characterized in that the predetermined first time period is corrected as a function of a variable characterizing the speed of the anchor plate (116) when it hits the contact surface (112a, 114a).
8. Verfahren nach Anspruch 2 oder 4, dadurch gekennzeichnet, daß der vorgegebene erste oder weitere Fangwert korrigiert werden abhängig von einer die Geschwindigkeit der Ankerplatte (116) beim Auftreffen auf die Anlagefläche (112a, 114a) charakterisierenden Größe.8. The method according to claim 2 or 4, characterized in that the predetermined first or further catch value are corrected as a function of a variable characterizing the speed of the anchor plate (116) when it hits the contact surface (112a, 114a).
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die die Geschwindigkeit der Ankerplatte (116) beim Auftreffen auf die Anlagefläche (112a, 114a) charakterisierende Größe der Wert des Stroms ist zu dem9. The method according to any one of claims 6 to 8, characterized in that the speed of the anchor plate (116) when hitting the contact surface (112a, 114a) characteristic size the value of the current is to that
Zeitpunkt, in dem die zweite Bedingung erfüllt wird. Time when the second condition is met.
EP00943624A 1999-06-18 2000-05-23 Method for controlling an electromechanical actuator Expired - Lifetime EP1212761B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19927982 1999-06-18
DE19927982 1999-06-18
PCT/DE2000/001649 WO2000079548A2 (en) 1999-06-18 2000-05-23 Method for controlling an electromechanical actuator

Publications (2)

Publication Number Publication Date
EP1212761A2 true EP1212761A2 (en) 2002-06-12
EP1212761B1 EP1212761B1 (en) 2007-07-11

Family

ID=7911759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00943624A Expired - Lifetime EP1212761B1 (en) 1999-06-18 2000-05-23 Method for controlling an electromechanical actuator

Country Status (5)

Country Link
US (1) US6648297B1 (en)
EP (1) EP1212761B1 (en)
JP (1) JP2003502855A (en)
DE (1) DE50014482D1 (en)
WO (1) WO2000079548A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235188B3 (en) * 2002-07-26 2004-04-01 Hydac Electronic Gmbh Method for determining the position of an actuating element of an electrically drivable actuator, associated circuit arrangement and device
US6880564B2 (en) * 2002-09-20 2005-04-19 Advanced Neuromodulation Systems, Inc. Dosage control apparatus
DE10259796B4 (en) * 2002-12-19 2006-03-09 Siemens Ag Method for controlling an electromechanical actuator
FR2906593B1 (en) 2006-10-03 2008-12-05 Valeo Sys Controle Moteur Sas DEVICE AND METHOD FOR CONTROLLING A VALVE WITH CONTROL OF CONSUMABLE ENERGY.
US11170956B2 (en) 2014-06-25 2021-11-09 Te Connectivity Germany Gmbh Switching arrangement
DE102014212132A1 (en) * 2014-06-25 2015-12-31 Te Connectivity Germany Gmbh switching arrangement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112606A (en) * 1988-10-20 1990-04-25 Isuzu Ceramics Kenkyusho:Kk Electromagnetic power-driven valve control device
US5481187A (en) * 1991-11-29 1996-01-02 Caterpillar Inc. Method and apparatus for determining the position of an armature in an electromagnetic actuator
JP3134724B2 (en) * 1995-02-15 2001-02-13 トヨタ自動車株式会社 Valve drive for internal combustion engine
DE19526683A1 (en) 1995-07-21 1997-01-23 Fev Motorentech Gmbh & Co Kg Detecting striking of armature on electromagnetically actuated positioning device e.g. for gas exchange valves in IC engine
DE19640659B4 (en) 1996-10-02 2005-02-24 Fev Motorentechnik Gmbh Method for actuating an electromagnetic actuator influencing the coil current during the armature movement
DE29703585U1 (en) 1997-02-28 1998-06-25 Fev Motorentech Gmbh & Co Kg Electromagnetic actuator with magnetic impact damping
DE19723931A1 (en) 1997-06-06 1998-12-10 Siemens Ag Device for controlling an electromechanical actuator
US6363895B1 (en) * 1998-08-13 2002-04-02 Siemens Aktiengesellschaft Device for controlling a regulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0079548A2 *

Also Published As

Publication number Publication date
WO2000079548A3 (en) 2002-04-04
DE50014482D1 (en) 2007-08-23
JP2003502855A (en) 2003-01-21
US6648297B1 (en) 2003-11-18
WO2000079548A2 (en) 2000-12-28
EP1212761B1 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
DE112014005317B4 (en) Fuel injection control device and fuel injection system
DE102012213883B4 (en) Equalization of the current flow through a fuel injector for different partial injection processes of a multiple injection
DE102013217803B4 (en) FUEL INJECTION CONTROL UNIT
DE19907505B4 (en) Method and apparatus for controlling a current rise time during multiple fuel injection events
DE102010018290B4 (en) Electrical control of a valve based on a knowledge of the closing time of the valve
EP0947001B1 (en) Method and device for controlling at least one capacitive actuator
DE102013217805A1 (en) FUEL INJECTION CONTROL UNIT
DE102017221813B4 (en) INJECTION CONTROL UNIT
WO2011003704A1 (en) Determining the closing time of a fuel injection valve based on evaluating the actuation voltage
EP1108120B1 (en) Device for controlling a regulator
DE10020896A1 (en) Position detection method for armature of electromagnetic setting device e..g. for gas changing valve of IC engine
DE102013217806B4 (en) FUEL INJECTION CONTROL UNIT
EP1628010B1 (en) Method and circuit arrangement for driving a piezoelectric actuator
WO2012156241A2 (en) Determination of the movement behaviour of a fuel injector on the basis of the time interval between the first two voltage pulses in a holding phase
DE102008043259A1 (en) Method, device, injection valve and control device for driving an injection valve
DE19958262B4 (en) Method and device for charging a piezoelectric actuator
EP1212761A2 (en) Method for controlling an electromechanical actuator
DE19745536C1 (en) Method for controlling an electromechanical actuator
DE102013222327A1 (en) Fuel injector
DE102013209077B4 (en) Method and device for determining the electrical activation duration of a fuel injector for an internal combustion engine
WO1992000447A1 (en) Process and device for controlling an electromagnetic consumer
DE19834213B4 (en) Method for controlling an electromechanical actuating device
DE102006025360B3 (en) Method for enhanced response inductive fuel injectors for IC engines by generating currents to counteract the residual currents due to magnetic remanence at the end of the injector pulse
DE102008007211B4 (en) Circuit arrangement for driving an inductive load and use of such a circuit arrangement
DE10058959A1 (en) Method for controlling injector for common-rail combustion engine, involves detecting actual potential of boost capacitor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011123

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070726

REF Corresponds to:

Ref document number: 50014482

Country of ref document: DE

Date of ref document: 20070823

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090513

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090522

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100523

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120531

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50014482

Country of ref document: DE

Effective date: 20131203