EP1206627B1 - Turbine and method for discharging leakage fluid - Google Patents

Turbine and method for discharging leakage fluid Download PDF

Info

Publication number
EP1206627B1
EP1206627B1 EP00956463A EP00956463A EP1206627B1 EP 1206627 B1 EP1206627 B1 EP 1206627B1 EP 00956463 A EP00956463 A EP 00956463A EP 00956463 A EP00956463 A EP 00956463A EP 1206627 B1 EP1206627 B1 EP 1206627B1
Authority
EP
European Patent Office
Prior art keywords
turbine
fluid
rotor
area
leakage fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00956463A
Other languages
German (de)
French (fr)
Other versions
EP1206627A1 (en
Inventor
Stefan Sasse
Rainer Tamme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP00956463A priority Critical patent/EP1206627B1/en
Publication of EP1206627A1 publication Critical patent/EP1206627A1/en
Application granted granted Critical
Publication of EP1206627B1 publication Critical patent/EP1206627B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam

Definitions

  • the invention relates to a turbine, in particular one Steam turbine with a rotor, which has a blading area for moving blades and a thrust compensation piston which thrust compensating piston has the blading area hot side facing and the blading area facing away from the cold side.
  • the invention further relates to a procedure for the transfer of over Leaking fluid flowing through the thrust compensation piston.
  • German utility model 6809708 from 03.12.1968 is a multi-shell axial, throttle-controlled steam turbine for described high pressures and temperatures.
  • the steam turbine here has an inner housing part and a guide vane carrier on, which into a single, divided in the axis plane Inner shell are structurally summarized.
  • the inner shell is surrounded by a pot-shaped outer casing.
  • the inner shell in turn encloses a turbine shaft, also called rotor, which is a blading area with blades.
  • rotor also called rotor, which is a blading area with blades.
  • On each of the opposite The ends of the rotor are shaft seals provided between the rotor and the outer housing.
  • German patent 281 253 is a facility specified to relieve a ship's turbine.
  • the turbine has a forward and a backward turbine with equal pressure and overpressure sets in a single Housing are housed and by a drum wall are relieved. There is a subdivided to relieve the turbine Relief area between the forward turbine and provided a shaft bearing. This will both Forward and reverse when the ship is moving Relief of the shovel thrust and the thrust of the Ship propellers enabled.
  • German published patent application DE 197 01 020 there is one Steam turbine with a high pressure and a medium pressure turbine with one that changes across the turbine stages Degree of reaction described.
  • the medium and high pressure turbine section can be housed in a single housing be, with each of the sub-turbines then single-flow is executed.
  • a Thrust compensation piston provided. This is between one Shaft bearings and the high-pressure turbine part arranged. At the the thrust compensating piston becomes the side assigned to the shaft bearing with steam from the exhaust steam area of the medium pressure turbine and on the associated with the high pressure turbine section Side with steam from the exhaust steam area of the high-pressure turbine section applied.
  • the partial turbines can also be housed in two separate housings. With single flow Execution is then also a thrust compensation piston intended.
  • the object of the invention is a turbine with a thrust compensation arrangement for high temperatures the turbine to specify driving working medium.
  • Another job the invention is a method for removal of leakage steam in a thrust compensation arrangement.
  • the task directed to a turbine solved by a turbine with a rotor, which a blading area for moving blades and one Thrust compensation piston, which thrust compensation piston a hot side facing the blading area and a cold side facing away from the blading area has, and with a mixing area in which one of the cold side assigned supply for sealing fluid and one with the Blading area fluidically connected leakage fluid supply flow and from which a discharge line branches.
  • a thrust compensation arrangement is located under a thrust compensation piston understood that mechanically with the Rotor of the turbine is connected, for example with this is made in one piece, in particular forged or cast, or welded to it, screwed or is otherwise mechanically firmly connected.
  • the thrust compensating piston has areas that are marked by a Medium, such as steam or gas, can be charged, so that in A total force is generated on the thrust compensation piston the direction of the working medium towards the rotor its axis of rotation imposed thrust against is.
  • a fluidic connection between two parts or two areas means that a fluid from one area (Part) can flow to the other.
  • a fluidic Connection is e.g. B. via a fluid line, an opening or something similar.
  • the invention is based on the consideration that the Thrust compensating piston, hereinafter referred to as the piston, with working medium came into contact.
  • This working medium can between the piston and a fixed turbine part, for example, an inner casing. hereby there is a leakage flow of the working medium.
  • This Leakage flow can be reduced through seals; a complete seal is non-contact Seals not possible.
  • the leakage flow can be high temperatures have, with steam turbines up to 600 C and Gas turbines even higher. The hot leak steam flow can thus encounter turbine parts that are not for such high Temperatures are designed. To avoid this you would have to also turbine parts outside the flow range of the hot working medium with for such high temperatures suitable, often expensive and difficult to process Materials.
  • a suction device be provided for suction of the leakage flow.
  • leakage current through the piston would be reversed proportional to the flow resistance of the additional Sealing area and that contained in the suction device Suction pipes.
  • the invention is a mixing of the hot leakage fluid provided with a colder sealing fluid so that after mixing the two fluids, a fluid mixture is present.
  • the fluid mixture can then be removed from the Exit the mixing area. This ensures that controls the colder fluid mixture compared to the leakage fluid is discharged into corresponding turbine areas.
  • the leakage fluid is complete Sealing of the piston reached.
  • a leakage flow outside the piston, e.g. B. along the rotor, is thereby safely avoided.
  • the temperature of the fluid mixture is preferably below the permissible operating temperature of turbine parts outside the flow range of the hot working medium.
  • the mixing area is preferably on the cold side of the piston arranged. This allows between the hot side of the Piston and the mixing area in the leakage fluid supply Sealing area, for example with a non-contact Seal should be provided.
  • a conveying device is preferably on the cold side of the piston to generate a radially outward Flow of the sealing fluid is provided, the conveying device fluidic with the supply for sealing fluid connected is.
  • the conveyor device a plurality of flow guide elements, such as radial grooves, radial bores, baffles or equivalent Shapes and geometries.
  • Such a conveyor represents a centrifugal fan.
  • funding is provided with the conveyor device of the sealing fluid in the direction of the mixing area by the rotation of the rotor. So without further ado Additional devices the sealing fluid in the mixing area. A flow of the Sealing fluid is therefore preferred to the flow of the leakage fluid opposite direction.
  • the conveyor device with the thrust compensation piston is preferred made in one piece.
  • they are Flow guide elements on the cold side of the piston welded or fastened there in a similar manner.
  • the turbine is preferably a steam turbine, in particular a medium pressure turbine.
  • The is more preferred Turbine executed single-flow.
  • the turbine preferably has an outer housing in which an inner housing is arranged. Surrounds the inner case the rotor, being between the thrust compensating piston and the Inner housing the leakage fluid supply with a radial Gap is formed. In such a gap is preferred a non-contact seal arranged.
  • the object directed to a method is achieved according to the invention solved by a method of removing hot Leakage fluid, in which the leakage fluid flows through in a turbine a radial gap between a thrust compensation piston a rotor and a fixed turbine part flows, the hot leakage fluid with a colder sealing fluid is mixed and discharged.
  • a method of removing hot Leakage fluid in which the leakage fluid flows through in a turbine a radial gap between a thrust compensation piston a rotor and a fixed turbine part flows, the hot leakage fluid with a colder sealing fluid is mixed and discharged.
  • the leakage fluid By mixing the leakage fluid with the sealing fluid a fluid mixture that is also colder than the leakage fluid is. By suitable choice of the place where the Mixing takes place, a complete seal can be made of the piston.
  • the leak fluid preferably on the thrust compensation piston, in particular on the cold side, mixed with the sealing fluid.
  • a flow of the sealing fluid is preferably through a Rotation of the rotor generated. This happens in particular by means of a arranged on the thrust compensation piston Conveyor.
  • the flow of the sealing fluid is preferred directed radially outwards. Through the conveyor the sealing fluid is conveyed radially outwards.
  • Steam is preferably used as the sealing fluid if the leakage fluid is hot steam, the sealing fluid being colder Steam is. This is particularly true in a steam turbine the case.
  • a gas turbine is preferably used as Sealing fluid used a gas, such as cooling air.
  • the turbine 1 shows a turbine 1 in a longitudinal section, here a pot-type high-pressure steam turbine.
  • the turbine 1 has a rotor 2, which extends along an axis of rotation 19 extends.
  • the rotor 2 is of an inner casing 11 surrounded, which in turn by an outer housing 10 is surrounded. On both sides of the outer housing 10 the rotor 2 is supported with a respective shaft bearing 22. At the two end regions 25 of the outer housing 10 from which the rotor 2 protrudes is a shaft seal 24 provided.
  • the rotor 2 has between one Inflow area 21 and an evaporation area 20 for a hot action medium 26, here superheated steam, a blading area 3 on. Points in the blading area 3 the rotor 2 rotor blades 4 axially spaced apart from one another on. Between each axially adjacent blades 4 a series of guide vanes 23 on the inner casing 11 attached.
  • the rotor 2 has a thrust compensation piston 5, wherein the inflow region 21 axially between the blading region 3 and the thrust compensation piston 5 is arranged.
  • the flow compensating piston faces the inflow region 21 5, short the piston 5, a hot side 6 and a cold side 7 facing away from the inflow region 21.
  • the action medium 26 flows in the inflow area 21, flows through the blading area 3 and leaves the turbine 1 through the evaporation area 20.
  • the action medium 26 exerts a force on the moving blades 4 and thus on the rotor 2. This creates a boost in the direction of the axis of rotation 19.
  • This thrust is caused by counteracted the thrust compensation piston 5.
  • the piston 5 does not point to this on the cold side 7 and the hot side 6 surfaces of the same or different Size up with the same pressure or different Pressures are applied. From the difference of Products from pressure and relevant surface on the cold side 7 and the hot side 6 results in an axial force that the Counteracts thrust.
  • leak fluid 17 (see FIG. 2) in the axial direction over the piston 5, especially if one between cold side 7 and hot side 6 There is a pressure difference.
  • the amount of leak fluid 17 will small by a contactless seal, not shown held.
  • Fig. 2 is a section of a longitudinal section through a turbine 1, in particular a single-flow medium-pressure steam turbine, shown.
  • a Thrust compensating piston 5 is one Surround inner housing 11.
  • the piston 5 has one Blading area 3 not shown facing Hot side 6 and a cold side 7 facing away from this.
  • the Hot side 6 associated with a leakage fluid supply 12 is formed. This forms a radial gap at least in some areas between the piston 5 and the inner housing 11.
  • a feed 14 for sealing fluid 15 intended is a feed 14 for sealing fluid 15 intended.
  • a mixing area 13 At the end of the cold side 7 facing Piston 5 is a mixing area 13, a chamber or similar provided. Both open into the mixing area 13 the leakage fluid supply 12 and the supply 14 for the Sealing fluid 15. An outlet leads from the mixing area 13 16 into the inner housing 11.
  • a conveyor 8 On the cold side 7 is on the piston 5 a conveyor 8 with a plurality of flow guide elements 9 (see FIG. 3).
  • this conveyor device 8 acts as a radial fan.
  • a flow of the sealing fluid 15 in the Mixing area 13 reached.
  • hot leakage fluid 17 is thereby mixed, hot steam, with the colder sealing fluid 15, colder Steam.
  • That from the mixing area 13 via the discharge line 16 flowing fluid mixture 18 of leakage fluid 17 and sealing fluid 15 thus has a lower temperature than that Leaking fluid 17.
  • Fig. 3 shows a perspective elevation through a Turbine 1 according to Figure 2 in the area of the piston 5. At the Cold side 7 radial depressions are provided which the Form flow elements 9 of the conveyor 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to a turbine (1) equipped with a rotor (2) which comprises a blade area (3) for accommodating moving blades (4) and comprises a thrust balance piston (5). The thrust balance piston (5) has a hot side (6) that faces the blade area (3) and has a cold side (7) that faces away from said blade area (3). Both a feed (14), which is provided for sealing fluid (15) and which is assigned to the cold side (7), as well as a leakage fluid feed (12), which is fluidically connected to the blade area (3), open into a mixing area (13) on one side, and a discharge line (16) branches off from the mixing area on the other side. The invention also relates to a method for discharging hot leakage fluid (17). The leakage fluid (17) enters a turbine (1) through a radial gap (12), which is located between a thrust balance piston (5) of a rotor (2) and a stationary turbine part (11), is mixed with a cooler sealing fluid (15) and is discharged.

Description

Die Erfindung betrifft eine Turbine, insbesondere eine Dampfturbine mit einem Rotor, welcher einen Beschaufelungsbereich für Laufschaufeln sowie einen Schubausgleichskolben aufweist, welcher Schubausgleichskolben eine dem Beschaufelungsbereich zugewandte Heißseite und eine dem Beschaufelungsbereich abgewandte Kaltseite aufweist. Die Erfindung betrifft weiterhin ein Verfahren zur Abführung von über den Schubausgleichkolben hinweg strömenden Leckfluid.The invention relates to a turbine, in particular one Steam turbine with a rotor, which has a blading area for moving blades and a thrust compensation piston which thrust compensating piston has the blading area hot side facing and the blading area facing away from the cold side. The invention further relates to a procedure for the transfer of over Leaking fluid flowing through the thrust compensation piston.

In dem deutschen Gebrauchsmuster 6809708 vom 03.12.1968 ist eine mehrschalige axiale, drosselgeregelte Dampfturbine für hohe Drücke und Temperaturen beschrieben. Die Dampfturbine weist hierbei ein Innengehäuseteil und einen Leitschaufelträger auf, die zu einer einzigen, in Achsebene geteilten Innenschale baulich zusammengefaßt sind. Die Innenschale ist von einem in Topfbauart ausgeführten Aussengehäuse umgeben. Die Innenschale umschließt ihrerseits eine Turbinenwelle, auch als Rotor bezeichnet, die einen Beschaufelungsbereich mit Laufschaufeln besitzt. An jedem der sich gegenüberliegenden Enden des Rotors sind Wellendichtungen zwischen Rotor und Aussengehäuse vorgesehen. An einem Ende des Rotors tritt der die Dampfturbine durchströmende Dampf in den Beschaufelungsbereich ein und versetzt den Rotor in eine Rotationsbewegung um seine Rotationsachse. Am gegenüberliegenden Ende tritt der nunmehr zumindest teilweise entspannte Dampf aus dem Beschaufelungsbereich und der Dampfturbine aus. Der Dampf übt hierbei einen Schub auf den Rotor aus. Um diesem Schub entgegenzuwirken, weist der Rotor an dem Ende, an dem der Dampf einströmt, eine Ausgleichskolbenanordnung auf. Diese zeichnet sich durch ein dem Beschaufelungsbereich zugewandte Stirnfläche aus, die eine größere Fläche als eine gegenüber einer dem Beschaufelungsbereich abgewandten Strinfläche hat. Eine ähnliche Dampfturbine in Topfbauart ist in der US-Patentschrift 3,754,833 beschrieben.In the German utility model 6809708 from 03.12.1968 is a multi-shell axial, throttle-controlled steam turbine for described high pressures and temperatures. The steam turbine here has an inner housing part and a guide vane carrier on, which into a single, divided in the axis plane Inner shell are structurally summarized. The inner shell is surrounded by a pot-shaped outer casing. The inner shell in turn encloses a turbine shaft, also called rotor, which is a blading area with blades. On each of the opposite The ends of the rotor are shaft seals provided between the rotor and the outer housing. At one end the steam flowing through the steam turbine enters the rotor into the blading area and moves the rotor in a rotational movement around its axis of rotation. On the opposite The end now comes at least partially relaxed steam from the blading area and the Steam turbine off. The steam pushes the Rotor off. To counteract this surge, the Rotor at the end at which the steam flows in, a compensation piston arrangement on. This is characterized by end face facing the blading area, the a larger area than one in relation to the blading area facing away from the string surface. A similar Steam turbine in pot design is in the US patent 3,754,833.

In der deutschen Patenschrift 281 253 ist eine Einrichtung zur Entlastung einer Schiffsturbine angegeben. Die Turbine weist eine Vorwärts- und ein Rückwärtsturbine mit Gleichdruck- und Überdrucksätzen auf, die in einem einzigen Gehäuse untergebracht sind und durch eine Trommelwand entlastet sind. Zur Entlastung der Turbine ist eine unterteilte Entlastungsfläche zwischen der Vorwärtsturbine und einem Wellenlager vorgesehen. Hierdurch wird sowohl bei Vorwärts- als auch bei Rückwärtsfahrt des Schiffes eine Entlastung des Schaufelschubes sowie des Schubes des Schiffspropellers ermöglicht.In the German patent 281 253 is a facility specified to relieve a ship's turbine. The turbine has a forward and a backward turbine with equal pressure and overpressure sets in a single Housing are housed and by a drum wall are relieved. There is a subdivided to relieve the turbine Relief area between the forward turbine and provided a shaft bearing. This will both Forward and reverse when the ship is moving Relief of the shovel thrust and the thrust of the Ship propellers enabled.

In der deutschen Offenlegungsschrift DE 197 01 020 ist eine Dampfturbine mit einer Hochdruck- und einer Mitteldruckteilturbine mit einem sich über die Turbinenstufen ändernden Reaktionsgrad beschrieben. Die Mittel- und Hochdruckteilturbine können hierbei in einem einzigen Gehäuse untergebracht sein, wobei jede der Teilturbinen dann einflutig ausgeführt ist. Zur Aufnahme eines axialen Schubes einer in Trommelbauweise ausgeführten Mitteldruckteilturbine ist ein Schubausgleichskolben vorgesehen. Dieser ist zwischen einem Wellenlager und der Hochdruckteilturbine angeordnet. An der dem Wellenlager zugeordneten Seite wird der Schubausgleichskolben mit Dampf aus dem Abdampfbereich der Mitteldruckteilturbine und an der der Hochdruckteilturbine zugeordneten Seite mit Dampf aus dem Abdampfbereich der Hochdruckteilturbine beaufschlagt. Die Teilturbinen können auch in zwei seperaten Gehäusen untergebracht sein. Bei einflutiger Ausführung ist dann ebenfalls ein Schubausgleichskolben vorgesehen.In German published patent application DE 197 01 020 there is one Steam turbine with a high pressure and a medium pressure turbine with one that changes across the turbine stages Degree of reaction described. The medium and high pressure turbine section can be housed in a single housing be, with each of the sub-turbines then single-flow is executed. To accommodate an axial thrust one in Drum design medium pressure turbine is a Thrust compensation piston provided. This is between one Shaft bearings and the high-pressure turbine part arranged. At the the thrust compensating piston becomes the side assigned to the shaft bearing with steam from the exhaust steam area of the medium pressure turbine and on the associated with the high pressure turbine section Side with steam from the exhaust steam area of the high-pressure turbine section applied. The partial turbines can also be housed in two separate housings. With single flow Execution is then also a thrust compensation piston intended.

Aufgabe der Erfindung ist es, eine Turbine mit einer Schubausgleichsanordnung für hohe Temperaturen eines die Turbine antreibenden Arbeitsmediums anzugeben. Eine weitere Aufgabe der Erfindung besteht darin, ein Verfahren zur Abführung von Leckdampf einer Schubausgleichsanordnung anzugeben.The object of the invention is a turbine with a thrust compensation arrangement for high temperatures the turbine to specify driving working medium. Another job the invention is a method for removal of leakage steam in a thrust compensation arrangement.

Erfindungsgemäß wird die auf eine Turbine gerichtete Aufgabe gelöst durch eine Turbine mit einem Rotor, welcher einen Beschaufelungsbereich für Laufschaufeln sowie einen Schubausgleichskolben aufweist, welcher Schubausgleichskolben eine dem Beschaufelungsbereich zugewandte Heißseite und eine dem Beschaufelungsbereich abgewandte Kaltseite aufweist, und mit einem Mischbereich, in den eine der Kaltseite zugeordnete Zuführung für Dichtfluid und eine mit dem Beschaufelungsbereich strömungstechnisch verbundene Leckfluidzuführung münden und von dem eine Abführleitung abzweigt.According to the invention, the task directed to a turbine solved by a turbine with a rotor, which a blading area for moving blades and one Thrust compensation piston, which thrust compensation piston a hot side facing the blading area and a cold side facing away from the blading area has, and with a mixing area in which one of the cold side assigned supply for sealing fluid and one with the Blading area fluidically connected leakage fluid supply flow and from which a discharge line branches.

Unter einem Schubausgleichkolben wird hierbei eine Schubausgleichsanordnung verstanden, die mechanisch mit dem Rotor der Turbine in Verbindung steht, beispielsweise mit diesem einstückig hergestellt ist, insbesondere geschmiedet oder gegossen, oder mit diesem verschweißt, verschraubt oder anders mechanisch fest verbunden ist. Insbesondere weist der Schubausgleichskolben Flächen auf, die durch ein Medium, wie Dampf oder Gas, beaufschlagbar sind, so dass in Summe eine Kraft auf den Schubausgleichkolben erzeugt wird, die dem von dem Arbeitsmedium auf den Rotor in Richtung dessen Rotationsachse aufgeprägten Schub entgegengerichtet ist.Here, a thrust compensation arrangement is located under a thrust compensation piston understood that mechanically with the Rotor of the turbine is connected, for example with this is made in one piece, in particular forged or cast, or welded to it, screwed or is otherwise mechanically firmly connected. In particular the thrust compensating piston has areas that are marked by a Medium, such as steam or gas, can be charged, so that in A total force is generated on the thrust compensation piston the direction of the working medium towards the rotor its axis of rotation imposed thrust against is.

Eine strömungstechnische Verbindung zweier Teile oder zweier Bereiche bedeutet, dass ein Fluid von einem Bereich (Teil) zum anderen strömen kann. Eine strömungstechnische Verbindung ist z. B. über eine Fluidleitung, eine Öffnung oder ähnliches gegeben.A fluidic connection between two parts or two areas means that a fluid from one area (Part) can flow to the other. A fluidic Connection is e.g. B. via a fluid line, an opening or something similar.

Die Erfindung geht hierbei von der Überlegung aus, dass der Schubausgleichskolben, im folgenden Kolben genannt, mit Arbeitsmedium in Kontakt gelangt. Dieses Arbeitsmedium kann zwischen dem Kolben und einem feststehendem Turbinenteil, beispielsweise einem Innengehäuse, hindurchströmen. Hierdurch entsteht eine Leckströmung des Arbeitsmediums. Diese Leckströmung kann zwar durch Dichtungen reduziert werden; eine vollständige Abdichtung ist aber durch berührungslose Dichtungen nicht möglich. Die Leckströmung kann hohe Temperaturen aufweisen, bei Dampfturbinen bis zu 600 C und bei Gasturbinen noch höher. Die heiße Leckdampfströmung kann somit auf Turbinenteile treffen, die nicht für so hohe Temperaturen ausgelegt sind. Um dies zu vermeiden, müßten auch Turbineteile ausserhalb des Strömungsbereiches des heißen Arbeitsmediums mit für solch hohe Temperaturen geeigneten, häufig teueren und schwieriger zu bearbeitenden Werkstoffen ausgeführt werden. Alternativ könnte auch ein weiterer Dichtungsbereich am dem Strömungsbereich des heißen Arbeitsmediums abgewandten Ende des Kolbens, im folgenden auch Kaltseite genannt, angeordnet werden. Zusätzlich oder alternativ hierzu könnte eine Absaugvorrichtung zur Absaugung der Leckströmung vorgesehen sein. Der Leckstrom über den Kolben wäre in diesem Fall umgekehrt proportional zu den Strömungswiderständen des zusätzlichen Dichtungsbereiches und der in der Absaugvorrichtung enthaltenen Absaugrohre. Eine vollständige Abdichtung und damit eine Verhinderung, dass heißes Leckagefluid auf Turbinenbauteile ausserhalb des Strömungsbereiches des Arbeitsmediums trifft, ist hierdurch allerdings auch nicht erreichbar.The invention is based on the consideration that the Thrust compensating piston, hereinafter referred to as the piston, with working medium came into contact. This working medium can between the piston and a fixed turbine part, for example, an inner casing. hereby there is a leakage flow of the working medium. This Leakage flow can be reduced through seals; a complete seal is non-contact Seals not possible. The leakage flow can be high temperatures have, with steam turbines up to 600 C and Gas turbines even higher. The hot leak steam flow can thus encounter turbine parts that are not for such high Temperatures are designed. To avoid this you would have to also turbine parts outside the flow range of the hot working medium with for such high temperatures suitable, often expensive and difficult to process Materials. Alternatively, one could further sealing area on the flow area of the hot working medium remote end of the piston, in also called cold side. additionally or alternatively, a suction device be provided for suction of the leakage flow. The In this case, leakage current through the piston would be reversed proportional to the flow resistance of the additional Sealing area and that contained in the suction device Suction pipes. A complete seal and therefore a prevention of hot leakage fluid on turbine components outside the flow area of the working medium does not reach hereby.

Gemäß der Erfindung ist eine Vermischung des heißen Leckfluides mit einem kälteren Dichtfluid vorgesehen, so dass nach Mischung der beiden Fluide ein Fluidgemisch vorliegt. Das Fluidgemisch kann dann über die Abführung aus dem Mischbereich austreten. Hierbei wird gewährleistet, dass das gegenüber dem Leckfluid kältere Fluidgemisch kontrolliert in entsprechende Turbinenbereiche abgeführt wird. Somit ist in bezug auf das Leckfluid eine vollständige Abdichtung des Kolbens erreicht. Eine Leckströmung ausserhalb des Kolbens, z. B. entlang dem Rotor, ist hierdurch sicher vermieden. Die Temperatur des Fluidgemisches liegt dabei vorzugsweise unter der zulässigen Einsatztemperatur von Turbinenteilen ausserhalb des Strömungsbereiches des heißen Arbeitsmediums.According to the invention is a mixing of the hot leakage fluid provided with a colder sealing fluid so that after mixing the two fluids, a fluid mixture is present. The fluid mixture can then be removed from the Exit the mixing area. This ensures that controls the colder fluid mixture compared to the leakage fluid is discharged into corresponding turbine areas. Thus, the leakage fluid is complete Sealing of the piston reached. A leakage flow outside the piston, e.g. B. along the rotor, is thereby safely avoided. The temperature of the fluid mixture is preferably below the permissible operating temperature of turbine parts outside the flow range of the hot working medium.

Vorzugweise ist der Mischbereich an der Kaltseite des Kolbens angeordnet. Hierdurch kann zwischen der Heißseite des Kolbens und dem Mischbereich in der Leckfluidzuführung ein Dichtbereich, mit beispielsweise einer berührungslosen Dichtung vorgesehen sein.The mixing area is preferably on the cold side of the piston arranged. This allows between the hot side of the Piston and the mixing area in the leakage fluid supply Sealing area, for example with a non-contact Seal should be provided.

Vorzugsweise ist an der Kaltseite des Kolbens eine Fördervorrichtung zur Erzeugung einer radial nach außen gerichteten Strömung des Dichtfluides vorgesehen, wobei die Fördervorrichtung strömungstechnisch mit der Zuführung für Dichtfluid verbunden ist. Insbesondere weist die Fördervorrichtung eine Mehrzahl von Strömungsführungselementen, wie radiale Nuten, radiale Bohrungen, Leitbleche oder gleichwirkende Formen und Geometrien auf. Eine solche Fördervorrichtung stellt einen Radialventilator dar.A conveying device is preferably on the cold side of the piston to generate a radially outward Flow of the sealing fluid is provided, the conveying device fluidic with the supply for sealing fluid connected is. In particular, the conveyor device a plurality of flow guide elements, such as radial grooves, radial bores, baffles or equivalent Shapes and geometries. Such a conveyor represents a centrifugal fan.

Mit der Fördervorrichtung erfolgt insbesondere eine Förderung des Dichtfluides in Richtung des Mischbereiches bereits durch die Rotation des Rotors. Somit gelangt ohne weitere Zusatzeinrichtungen das Dichtfluid in den Mischbereich. Eine durch die Födervorrichtung erzeugte Strömung des Dichtfluides ist der Strömung des Leckfluides somit vorzugsweise entgegengerichtet.In particular, funding is provided with the conveyor device of the sealing fluid in the direction of the mixing area by the rotation of the rotor. So without further ado Additional devices the sealing fluid in the mixing area. A flow of the Sealing fluid is therefore preferred to the flow of the leakage fluid opposite direction.

Vorzugweise ist die Fördervorrichtung mit dem Schubausgleichskolben einteilig hergestellt. Insbesondere sind die Strömungsführungselemente an die Kaltseite des Kolbens angeschweißt oder auf ähnliche Weise dort befestigt.The conveyor device with the thrust compensation piston is preferred made in one piece. In particular, they are Flow guide elements on the cold side of the piston welded or fastened there in a similar manner.

Vorzugsweise ist die Turbine eine Dampfturbine, insbesondere eine Mitteldruck-Teilturbine. Weiter bevorzugt ist die Turbine einflutig ausgeführt. Vorzugsweise weist die Turbine ein Außengehäuse auf, in dem ein Innengehäuse angeordnet ist. Das Innengehäuse umgibt den Rotor, wobei zwischen dem Schubausgleichskolben und dem Innengehäuse die Leckfluidzuführung mit einem radialen Spalt gebildet ist. In einem solchen Spalt ist vorzugsweise eine berührungslose Dichtung angeordnet.The turbine is preferably a steam turbine, in particular a medium pressure turbine. The is more preferred Turbine executed single-flow. The turbine preferably has an outer housing in which an inner housing is arranged. Surrounds the inner case the rotor, being between the thrust compensating piston and the Inner housing the leakage fluid supply with a radial Gap is formed. In such a gap is preferred a non-contact seal arranged.

Die auf ein Verfahren gerichtete Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Abführung von heißem Leckfluid, bei dem das Leckfluid in einer Turbine durch einen radialen Spalt zwischen einem Schubausgleichskolben eines Rotors und einem feststehendem Turbinenteil strömt, wobei das heiße Leckfluid mit einem kälteren Dichtfluid vermischt und abgeführt wird. Bezüglich der Vorteile und der Wirkungsweise des Verfahrens wird auf die obigen Ausführungen zur konstruktiven Gestaltung der Turbine verwiesen.The object directed to a method is achieved according to the invention solved by a method of removing hot Leakage fluid, in which the leakage fluid flows through in a turbine a radial gap between a thrust compensation piston a rotor and a fixed turbine part flows, the hot leakage fluid with a colder sealing fluid is mixed and discharged. Regarding the benefits and the operation of the method is based on the above refer to the constructive design of the turbine.

Durch die Mischung des Leckfluides mit dem Dichtfluid entsteht ein Fluidgemisch, dass ebenfalls kälter als das Leckfluid ist. Durch geeignete Wahl des Ortes, an dem das Vermischen stattfindet, kann eine vollständige Abdichtung des Kolbens erreicht werden. Hierbei wird das Leckfluid vorzugsweise an dem Schubausgleichskolben, insbesondere an der Kaltseite, mit dem Dichtfluid vermischt.By mixing the leakage fluid with the sealing fluid a fluid mixture that is also colder than the leakage fluid is. By suitable choice of the place where the Mixing takes place, a complete seal can be made of the piston. Here, the leak fluid preferably on the thrust compensation piston, in particular on the cold side, mixed with the sealing fluid.

Eine Strömung des Dichtfluids wird vorzugsweise durch eine Rotation des Rotors erzeugt. Dies geschieht insbesondere mittels einer an dem Schubausgleichskolben angeordneten Fördervorrichtung. Die Strömung des Dichtfluides ist vorzugsweise radial nach außen gerichtet. Durch die Födervorrichtung wird das Dichtfluid radial nach außen gefördert.A flow of the sealing fluid is preferably through a Rotation of the rotor generated. This happens in particular by means of a arranged on the thrust compensation piston Conveyor. The flow of the sealing fluid is preferred directed radially outwards. Through the conveyor the sealing fluid is conveyed radially outwards.

Als Dichtfluid wird vorzugsweise dann Dampf verwendet, wenn das Leckfluid heißer Dampf ist, wobei das Dichtfluid kälterer Dampf ist. Dies ist insbesondere in einer Dampfturbine der Fall. Bei einer Gasturbine wird vorzugsweise als Dichtfluid ein Gas, beispielsweise Kühlluft verwendet.Steam is preferably used as the sealing fluid if the leakage fluid is hot steam, the sealing fluid being colder Steam is. This is particularly true in a steam turbine the case. In a gas turbine is preferably used as Sealing fluid used a gas, such as cooling air.

Anhand der in der Zeichnung dargestellten Ausführungsbeispiele werden die Turbine und das Verfahren zur Abführung von Leckfluid beispielhaft erläutert. Es zeigen:

  • Fig. 1 einen Längsschnitt durch eine Hochdruckdampfturbine,
  • Fig. 2 einen Ausschnitt eines Längsschnittes durch eine Dampfturbine im Bereich eines Schubausgleichskolbens und
  • Fig. 3 einen räumlichen Ausschnitt im Bereich eines Schubausgleichskolbens.
  • The turbine and the method for discharging leakage fluid are explained by way of example using the exemplary embodiments shown in the drawing. Show it:
  • 1 shows a longitudinal section through a high pressure steam turbine,
  • Fig. 2 shows a detail of a longitudinal section through a steam turbine in the region of a thrust compensating piston and
  • Fig. 3 shows a spatial section in the area of a thrust compensation piston.
  • In den Figuren 1 bis 3 haben gleiche Bezugszeichen jeweils die gleiche Bedeutung.In Figures 1 to 3 have the same reference numerals in each case the same meaning.

    Fig. 1 zeigt in einem Längsschnitt eine Turbine 1, hier eine Hochdruckdampfturbine in Topfbauart. Die Turbine 1 weist einen Rotor 2 auf, der sich entlang einer Rotationsachse 19 erstreckt. Der Rotor 2 ist von einem Innengehäuse 11 umgeben, welches seinerseits von einem Außengehäuse 10 umgeben ist. Beiderseits des Außengehäuses 10 ist der Rotor 2 mit einem jeweiligen Wellenlager 22 gelagert. An den beiden Endbereichen 25 des Außengehäuses 10 aus denen der Rotor 2 hinausragt, ist jeweils eine Wellendichtung 24 vorgesehen. Der Rotor 2 weist zwischen einem Einströmbereich 21 und einem Abdampfbereich 20 für ein heißes Aktionsmedium 26, hier Heißdampf, einen Beschaufelungsbereich 3 auf. In dem Beschaufelungsbereich 3 weist der Rotor 2 axial voneinander beabstandete Laufschaufeln 4 auf. Zwischen axial benachbarten Laufschaufeln 4 ist jeweils eine Reihe von Leitschaufeln 23 an dem Innengehäuse 11 angebracht.1 shows a turbine 1 in a longitudinal section, here a pot-type high-pressure steam turbine. The turbine 1 has a rotor 2, which extends along an axis of rotation 19 extends. The rotor 2 is of an inner casing 11 surrounded, which in turn by an outer housing 10 is surrounded. On both sides of the outer housing 10 the rotor 2 is supported with a respective shaft bearing 22. At the two end regions 25 of the outer housing 10 from which the rotor 2 protrudes is a shaft seal 24 provided. The rotor 2 has between one Inflow area 21 and an evaporation area 20 for a hot action medium 26, here superheated steam, a blading area 3 on. Points in the blading area 3 the rotor 2 rotor blades 4 axially spaced apart from one another on. Between each axially adjacent blades 4 a series of guide vanes 23 on the inner casing 11 attached.

    Der Rotor 2 weist einen Schubausgleichskolben 5 auf, wobei der Einströmbereich 21 axial zwischen dem Beschaufelungsbereich 3 und dem Schubausgleichskolben 5 angeordnet ist. Dem Einströmbereich 21 zugewandt weist der Schaubausgleichskolben 5, kurz der Kolben 5, eine Heißseite 6 und dem Einströmbereich 21 abgewandt eine Kaltseite 7 auf.The rotor 2 has a thrust compensation piston 5, wherein the inflow region 21 axially between the blading region 3 and the thrust compensation piston 5 is arranged. The flow compensating piston faces the inflow region 21 5, short the piston 5, a hot side 6 and a cold side 7 facing away from the inflow region 21.

    Bei Betrieb der Turbine 1 strömt das Aktionsmedium 26 in den Einströmbereich 21 ein, durchströmt den Beschaufelungsbereich 3 und verläßt die Turbine 1 durch den Abdampfbereich 20. Bei Durchströmen des Beschaufelungsbereiches 3 übt das Aktionsmedium 26 ein Kraft auf die Laufschaufeln 4 und somit auf den Rotor 2 auf. Hierdurch entsteht ein Schub in Richtung der Rotationsachse 19. Diesem Schub wird durch den Schubausgleichskolben 5 entgegengewirkt. Der Kolben 5 weist hierfür an der Kaltseite 7 und der Heißseite 6 nicht näher dargestellte Flächen gleicher oder unterschiedlicher Grösse auf, die mit dem gleichen Druck oder unterschiedlichen Drücken beaufschlagt werden. Aus der Differenz der Produkte aus Druck und relevanter Fläche an der Kaltseite 7 und der Heißseite 6 ergibt sich eine axiale Kraft, die dem Schub entgegenwirkt. Während des Betriebes der Turbine 1 strömt ein Teil des Aktionsfluides 26 als Leckfluid 17 (s. Fig.2) in axialer Richtung über den Kolben 5 hinweg, insbesondere wenn zwischen Kaltseite 7 und Heißseite 6 eine Druckdifferenz herrscht. Die Menge des Leckfluides 17 wird durch eine nicht dargestellte berührungslose Dichtung klein gehalten.When the turbine 1 is in operation, the action medium 26 flows in the inflow area 21, flows through the blading area 3 and leaves the turbine 1 through the evaporation area 20. When flowing through the blading area 3 The action medium 26 exerts a force on the moving blades 4 and thus on the rotor 2. This creates a boost in the direction of the axis of rotation 19. This thrust is caused by counteracted the thrust compensation piston 5. The piston 5 does not point to this on the cold side 7 and the hot side 6 surfaces of the same or different Size up with the same pressure or different Pressures are applied. From the difference of Products from pressure and relevant surface on the cold side 7 and the hot side 6 results in an axial force that the Counteracts thrust. During operation of the turbine 1 part of the action fluid 26 flows as leak fluid 17 (see FIG. 2) in the axial direction over the piston 5, especially if one between cold side 7 and hot side 6 There is a pressure difference. The amount of leak fluid 17 will small by a contactless seal, not shown held.

    In Fig. 2 ist ein Ausschnitt eines Längsschnittes durch eine Turbine 1, insbesondere einer einflutige Mitteldruck-Dampfturbine, gezeigt. Ein sich entlang einer Rotationsachse 19 erstreckender Rotor 2 weist einen Schubausgleichskolben 5 auf. Zur Erläuterung der Wirkungsweise sei auf die Ausführungen zu Fig. 1 verwiesen. Der Rotor 2 und damit auch der Kolben 5 ist von einem Innengehäuse 11 umgeben. Der Kolben 5 weist eine einem nicht dargestellten Beschaufelungsbereich 3 zugewandte Heißseite 6 und einem diesem abgewandte Kaltseite 7 auf. Zwischen dem Innengehäuse 11 und dem Kolben 5 ist der Heißeite 6 zugeordnet eine Leckfluidzuführung 12 gebildet. Diese bildet zumindest bereichsweise eine radialen Spalt zwischen dem Kolben 5 und dem Innengehäuse 11. An der Kaltseite 7 ist eine Zuführung 14 für Dichtfluid 15 vorgesehen. An dem der Kaltseite 7 zugewandten Ende des Kolbens 5 ist ein Mischbereich 13, eine Kammer oder ähnliches vorgesehen. In den Mischbereich 13 münden sowohl die Leckfluidzuführung 12 als auch die Zuführung 14 für das Dichtfluid 15. Von dem Mischbereich 13 führt eine Abführung 16 in das Innengehäuse 11 hinein. An der Kaltseite 7 ist an dem Kolben 5 eine Fördervorrichtung 8 mit einer Mehrzahl von Strömungsführungselementen 9 (s. Fig. 3) angeordnet. In Fig. 2 is a section of a longitudinal section through a turbine 1, in particular a single-flow medium-pressure steam turbine, shown. One along one Rotation axis 19 extending rotor 2 has a Thrust compensating piston 5. To explain the The mode of operation is referred to the explanations for FIG. 1. The rotor 2 and thus also the piston 5 is one Surround inner housing 11. The piston 5 has one Blading area 3 not shown facing Hot side 6 and a cold side 7 facing away from this. Between the inner housing 11 and the piston 5 is the Hot side 6 associated with a leakage fluid supply 12 is formed. This forms a radial gap at least in some areas between the piston 5 and the inner housing 11. At the Cold side 7 is a feed 14 for sealing fluid 15 intended. At the end of the cold side 7 facing Piston 5 is a mixing area 13, a chamber or similar provided. Both open into the mixing area 13 the leakage fluid supply 12 and the supply 14 for the Sealing fluid 15. An outlet leads from the mixing area 13 16 into the inner housing 11. On the cold side 7 is on the piston 5 a conveyor 8 with a plurality of flow guide elements 9 (see FIG. 3).

    Bei Rotation des Rotors 2 wirkt diese Födervorrichtung 8 als Radialventilator. Hierdurch wird ohne weitere Zusatzeinrichtungen eine Strömung des Dichtfluides 15 in den Mischbereich 13 hinein erreicht. In dem Mischbereich erfolgt dadurch eine Vermischung von heissem Leckfluid 17, heissem Dampf, mit dem kälteren Dichtfluid 15, kälterer Dampf. Das aus dem Mischbereich 13 über die Abführleitung 16 abströmende Fluidgemisch 18 aus Leckfluid 17 und Dichtfluid 15 hat somit auch eine geringere Temperatur als das Leckfluid 17. Hierdurch wird zweierlei erreicht: Zum einen tritt kein heisses Leckfluid 17 über den Kolben 5 aus, da das Dichtfluid 15 dem Leckfluid 17 entgegengesetzt strömt. Zum anderen tritt in das Innengehäuse 11 ein Fluidgemisch 18 ein, das eine geringere Temperatur als das Leckfluid 17 besitzt. Die mit dem Fluidgemisch 18 in Berührung kommenden Turbinenteile werden daher nicht so stark thermisch belastet, wie die mit dem Arbeitsmedium 26 in Berührung kommenden Turbinenteile. Für die mit dem Fluidgemsich 18 in Berührung kommenden Turbinenteile können daher thermisch weniger belastbare Werkstoffe, d.h. billigere und ggf. leichter verarbeitbare Werkstoffe gefahrlos eingesetzt werden.When the rotor 2 rotates, this conveyor device 8 acts as a radial fan. As a result, without additional equipment a flow of the sealing fluid 15 in the Mixing area 13 reached. In the mixing area hot leakage fluid 17 is thereby mixed, hot steam, with the colder sealing fluid 15, colder Steam. That from the mixing area 13 via the discharge line 16 flowing fluid mixture 18 of leakage fluid 17 and sealing fluid 15 thus has a lower temperature than that Leaking fluid 17. This achieves two things: Firstly no hot leakage fluid 17 emerges via the piston 5 since the sealing fluid 15 flows in the opposite direction to the leakage fluid 17. On the other hand, a fluid mixture enters the inner housing 11 18, which has a lower temperature than the leakage fluid 17 has. Those coming into contact with the fluid mixture 18 Turbine parts are therefore not subject to as much thermal stress, like that in contact with the working medium 26 coming turbine parts. For those with the fluid mix 18 in Turbine parts that come into contact can therefore be thermal less resilient materials, i.e. cheaper and possibly Materials that are easier to process are used safely become.

    Fig. 3 zeigt einen perspektivischen Aufriss durch eine Turbine 1 gemäß Fig.2 im Bereich des Kolbens 5. An der Kaltseite 7 sind radiale Vertiefungen vorgesehen, die die Strömungselemente 9 der Fördervorrichtung 8 bilden.Fig. 3 shows a perspective elevation through a Turbine 1 according to Figure 2 in the area of the piston 5. At the Cold side 7 radial depressions are provided which the Form flow elements 9 of the conveyor 8.

    Claims (11)

    1. Turbine (1) having a rotor (2) which has a bladed area (3) for rotor blades (4) and a thrust compensation piston (5), which thrust compensation piston (5) has a hot side (6), which faces the bladed area (3), and a cold side (7), which is remote from the bladed area (3), characterized by a mixing area (13), into which a feed (14) for sealing fluid (15), which is assigned to the cold side (7), and a leakage fluid feed (12), which is flow-connected to the bladed area (3), open out and from which a discharge line (16) branches off.
    2. Turbine (1) according to Claim 1, in which a delivery device (8) for generating a flow of sealing fluid (15) which is directed radially outwards is provided on the cold side (7), the delivery device (8) being flow-connected to the feed (14) for sealing fluid (15).
    3. Turbine (1) according to Claim 1 or 2, in which the delivery device (8) has a plurality of flow-guiding elements (9), such as radial grooves, radial bores or guide plates.
    4. Turbine (1) according to one of Claims 1 to 3, in which the delivery device (8) is produced integrally with the thrust compensation piston (5).
    5. Turbine (1) according to one of Claims 1 to 4, which is designed as a steam turbine, in particular as a medium-pressure part turbine.
    6. Turbine (1) according to one of the preceding claims, having an outer housing (10) in which an inner housing (11) is arranged, the inner housing (11) surrounding the rotor (2), and the leakage fluid feed (12) being formed, with a radial gap, between the thrust compensation piston (5) and the inner housing (11).
    7. Turbine (1) according to one of the preceding claims, which is of single-flow design.
    8. Method for discharging hot leakage fluid (17), which leakage fluid (17), in a turbine (1), flows through a radial gap (12) between a thrust compensation piston (5) of a rotor (2) and a stationary turbine part (11), the hot leakage fluid (17) being mixed with a cooler sealing fluid (15) and discharged.
    9. Method according to Claim 8, in which the leakage fluid (17) is mixed with the sealing fluid (15) at the thrust compensation piston (5).
    10. Method according to Claim 8 or 9, in which the sealing fluid (15) is conveyed radially outwards by a rotation of the rotor (2), by means of a delivery device (8) arranged on the thrust compensation piston (5).
    11. Method according to one of Claims 8 to 10, in which the leakage fluid (17) is hot steam and the sealing fluid (15) is cooler steam.
    EP00956463A 1999-08-27 2000-08-18 Turbine and method for discharging leakage fluid Expired - Lifetime EP1206627B1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP00956463A EP1206627B1 (en) 1999-08-27 2000-08-18 Turbine and method for discharging leakage fluid

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    EP99116939 1999-08-27
    EP99116939 1999-08-27
    EP00956463A EP1206627B1 (en) 1999-08-27 2000-08-18 Turbine and method for discharging leakage fluid
    PCT/EP2000/008089 WO2001016467A1 (en) 1999-08-27 2000-08-18 Turbine and method for discharging leakage fluid

    Publications (2)

    Publication Number Publication Date
    EP1206627A1 EP1206627A1 (en) 2002-05-22
    EP1206627B1 true EP1206627B1 (en) 2004-12-22

    Family

    ID=8238879

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00956463A Expired - Lifetime EP1206627B1 (en) 1999-08-27 2000-08-18 Turbine and method for discharging leakage fluid

    Country Status (7)

    Country Link
    US (1) US6695575B1 (en)
    EP (1) EP1206627B1 (en)
    JP (1) JP4522633B2 (en)
    KR (1) KR20020028221A (en)
    CN (1) CN1171006C (en)
    DE (1) DE50009046D1 (en)
    WO (1) WO2001016467A1 (en)

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE502004010299D1 (en) * 2004-08-23 2009-12-10 Siemens Ag STEAM INTAKE FOR COOLING OUTER HOUSINGS IN A STEAM TURBINE
    KR100644966B1 (en) * 2004-10-19 2006-11-15 한국과학기술연구원 Micro power generating device
    EP1780376A1 (en) 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Steam turbine
    EP1806476A1 (en) * 2006-01-05 2007-07-11 Siemens Aktiengesellschaft Turbine for a thermal power plant
    FR2925939A1 (en) * 2007-12-28 2009-07-03 Alstom Power Hydraulique Sa HYDRAULIC MACHINE, ENERGY CONVERSION INSTALLATION COMPRISING SUCH A MACHINE AND METHOD OF ADJUSTING SUCH A MACHINE
    EP2154332A1 (en) * 2008-08-14 2010-02-17 Siemens Aktiengesellschaft Reduction of the thermal loading of an external casing for a fluid flow engine
    DE102008045655B4 (en) * 2008-09-03 2010-06-17 Siemens Aktiengesellschaft Steam turbine system with a condensing steam turbine with an energy-efficient sealing steam supply
    US8192151B2 (en) * 2009-04-29 2012-06-05 General Electric Company Turbine engine having cooling gland
    US8221056B2 (en) * 2009-06-11 2012-07-17 General Electric Company Mixing hotter steam with cooler steam for introduction into downstream turbine
    EP2431570A1 (en) 2010-09-16 2012-03-21 Siemens Aktiengesellschaft Steam turbine with a dummy piston and wet steam blockage
    KR102406229B1 (en) * 2017-10-18 2022-06-10 한화파워시스템 주식회사 Process gas sealing system
    CN108625917B (en) * 2018-06-28 2024-05-24 西安交通大学 Supercritical carbon dioxide Brayton cycle power component cooling, sealing and heat insulating system
    CN112253259A (en) * 2020-09-16 2021-01-22 上海发电设备成套设计研究院有限责任公司 Turbine rotor system
    CN115290291B (en) * 2022-06-14 2024-05-24 南京航空航天大学 Experimental device for simulating boundary layer leakage flow and subsonic speed outflow coupling effect

    Family Cites Families (27)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE281253C (en)
    US1347591A (en) * 1915-05-13 1920-07-27 Roder Karl Compensating axial thrust in multistage turbines
    DE467562C (en) * 1926-05-03 1928-10-26 Bbc Brown Boveri & Cie Stuffing box for centrifugal compressor with feed line for a locking means
    US1895003A (en) * 1930-05-26 1933-01-24 Bbc Brown Boveri & Cie Steam turbine
    FR1001387A (en) * 1946-04-29 1952-02-22 Rateau Soc Stops for rotating parts, in particular for turbomachine rotors
    NL263276A (en) * 1960-04-07
    FR1360000A (en) * 1963-04-22 1964-04-30 Cem Comp Electro Mec Temperature conditioning device for turbo-machine shafts
    DE6809708U (en) 1968-12-03 1973-03-08 Siemens Ag MULTI-SHELLED AXIAL, THROTTLE-CONTROLLED STEAM TURBINE FOR HIGH PRESSURE AND TEMPERATURES.
    US3647311A (en) * 1970-04-23 1972-03-07 Westinghouse Electric Corp Turbine interstage seal assembly
    JPS5227282B2 (en) 1970-11-05 1977-07-19
    US4276002A (en) * 1979-03-09 1981-06-30 Anderson James H Turbopump unit for deep wells and system
    JPS5857601B2 (en) * 1981-03-31 1983-12-21 株式会社東芝 low boiling point media turbine
    US4663938A (en) * 1981-09-14 1987-05-12 Colgate Thermodynamics Co. Adiabatic positive displacement machinery
    US4439107A (en) * 1982-09-16 1984-03-27 United Technologies Corporation Rotor blade cooling air chamber
    DE3424138A1 (en) * 1984-06-30 1986-01-09 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau AIR STORAGE GAS TURBINE
    JPS62284905A (en) * 1986-06-02 1987-12-10 Mitsubishi Heavy Ind Ltd Structure of steam turbine
    JPS63167001A (en) * 1986-12-26 1988-07-11 Fuji Electric Co Ltd Reaction turbine
    US4916892A (en) * 1988-05-06 1990-04-17 General Electric Company High pressure seal
    JPH0519501U (en) * 1991-08-26 1993-03-12 三菱重工業株式会社 High and medium pressure turbine
    US5224713A (en) 1991-08-28 1993-07-06 General Electric Company Labyrinth seal with recirculating means for reducing or eliminating parasitic leakage through the seal
    JPH0559901A (en) * 1991-08-30 1993-03-09 Mitsubishi Heavy Ind Ltd Balance piston for turbine
    US5517817A (en) * 1993-10-28 1996-05-21 General Electric Company Variable area turbine nozzle for turbine engines
    DE4435322B4 (en) * 1994-10-01 2005-05-04 Alstom Method and device for shaft seal and for cooling on the exhaust side of an axial flowed gas turbine
    JPH08303202A (en) * 1995-05-09 1996-11-19 Mitsubishi Heavy Ind Ltd Single flow steam turbine with low main steam pressure
    JPH09324602A (en) * 1996-06-04 1997-12-16 Fuji Electric Co Ltd Double step balance piston steam chamber for steam turbine
    US5932940A (en) * 1996-07-16 1999-08-03 Massachusetts Institute Of Technology Microturbomachinery
    DE19701020A1 (en) 1997-01-14 1998-07-23 Siemens Ag Steam turbine

    Also Published As

    Publication number Publication date
    WO2001016467A1 (en) 2001-03-08
    CN1370254A (en) 2002-09-18
    CN1171006C (en) 2004-10-13
    JP2003508665A (en) 2003-03-04
    DE50009046D1 (en) 2005-01-27
    KR20020028221A (en) 2002-04-16
    US6695575B1 (en) 2004-02-24
    JP4522633B2 (en) 2010-08-11
    EP1206627A1 (en) 2002-05-22

    Similar Documents

    Publication Publication Date Title
    EP1206627B1 (en) Turbine and method for discharging leakage fluid
    DE69827555T2 (en) gas turbine
    DE4447507B4 (en) Annular seal
    DE69937652T2 (en) Brush seal for a turbo machine
    EP1736635B1 (en) Air transfer system between compressor and turbine of a gas turbine engine
    EP0900322B1 (en) Turbine shaft and process for cooling a turbine shaft
    DE69936184T2 (en) Abzapfringraum at the blade tips of a gas turbine engine
    CH681243A5 (en)
    DE3428892A1 (en) Vane and sealing gap optimization device for compressors of gas turbine power plants, in particular gas turbine jet power plants
    DE102017115042A1 (en) Shroud configurations for turbine blades
    EP0953099B1 (en) Steam turbine
    EP0122872B1 (en) Medium pressure steam turbine for a high temperature steam plant with intermediate reheating
    DE102016100043A1 (en) Turbine shroud assembly
    EP2410128A1 (en) Internal cooling for a flow machine
    CH694257A5 (en) Steam turbine.
    DE102005033362A1 (en) Axialdampfturbinenanordnung
    EP2718545B1 (en) Steamturbine comprising a dummy piston
    CH709128A2 (en) Steam turbine and method for assembling the same.
    EP2284426B1 (en) Turbomachine
    WO2009109430A1 (en) Sealing arrangement and gas turbine
    WO2001086121A1 (en) Method for cooling a shaft in a high-pressure expansion section of a steam turbine
    DE60224746T2 (en) Steam piping structure of a gas turbine
    DE102005033364A1 (en) Axialdampfturbinenanordnung
    DE102012107224A1 (en) Segmented fan arrangement
    WO2019137804A1 (en) Turbomachine inner housing

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020128

    RBV Designated contracting states (corrected)

    Designated state(s): CH DE FR GB IT LI

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE FR GB IT LI

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50009046

    Country of ref document: DE

    Date of ref document: 20050127

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050307

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20050923

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCOW

    Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20180822

    Year of fee payment: 19

    Ref country code: IT

    Payment date: 20180829

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20180809

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20181019

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20181107

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50009046

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20190818

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190831

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200303

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190818

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190818