EP1185385B1 - Method and device for influencing relevant quality parameters of a rolling strip - Google Patents

Method and device for influencing relevant quality parameters of a rolling strip Download PDF

Info

Publication number
EP1185385B1
EP1185385B1 EP00949106A EP00949106A EP1185385B1 EP 1185385 B1 EP1185385 B1 EP 1185385B1 EP 00949106 A EP00949106 A EP 00949106A EP 00949106 A EP00949106 A EP 00949106A EP 1185385 B1 EP1185385 B1 EP 1185385B1
Authority
EP
European Patent Office
Prior art keywords
roll
crown
rolls
controller
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP00949106A
Other languages
German (de)
French (fr)
Other versions
EP1185385A1 (en
Inventor
Otto Gramckow
Birger Schmidt
Markus Schubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26053822&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1185385(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE1999127755 external-priority patent/DE19927755A1/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1185385A1 publication Critical patent/EP1185385A1/en
Application granted granted Critical
Publication of EP1185385B1 publication Critical patent/EP1185385B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/30Control of flatness or profile during rolling of strip, sheets or plates using roll camber control
    • B21B37/32Control of flatness or profile during rolling of strip, sheets or plates using roll camber control by cooling, heating or lubricating the rolls

Definitions

  • the invention relates to a method for influencing relevant quality parameters of a rolled strip according to the preamble of claim 1 and a device for influencing relevant quality parameters of a rolled strip according to the preamble of claim 7; see DE-A-196 18 995.
  • Hot rolling stock with temperatures between 800 - 1200 ° C causes a noticeable heating of the work rolls and the resulting thermal expansion.
  • the result is the so-called thermal crowning of the work rolls, which has a direct influence on the thickness, thickness cross profile and flatness of the strip.
  • the geometry of the strip cross-section is influenced by the geometry of the rolls in a roll stand, that is, the crowning of the rolls. It is known to control the thermal crown by means of appropriate actuators such as adjustment, bending force, etc. to compensate.
  • This method comes e.g. B. in so-called CVC or taper rollers to wear.
  • CVC rollers can only be preset when they are unloaded. They are therefore used only for the default.
  • this process is extremely complex and costly and leads to a reduction in the service life of a roll stand.
  • the object of the invention is to provide a method which allows the geometry of a rolled strip to be influenced in a simpler manner.
  • the invention is also based on the object to provide a device that allows the To influence the geometry of a rolled strip in a simpler way.
  • the object is achieved according to the invention by a method according to claim 1 or by a device according to claim 7.
  • the relevant quality parameters of a rolled strip are influenced in a roll stand with rolls by adjusting the crowning of the rolls, i. H. the surface geometry of the rolls in the longitudinal direction of the rolls, the crowning of the rolls being set by adjustable cooling of the rolls or their surface in the longitudinal direction of the rolls, and the setting of the cooling of the rolls by means of a controller depending on an actual value of the crowning and a predetermined target value of Crowning occurs.
  • the control algorithm of the controller is preferably a fuzzy logic algorithm.
  • a predictive control is carried out with a view to the next rolled strip or advantageously to the next strips in analogy to the method disclosed in DE 196 18 995 A1 and in the corresponding US Pat. No. 5,855,131 A.
  • This is very advantageous because the thermal crowning reacts only sluggishly to the environment (water cooling) (controlled system with delay).
  • the setting of the thermal crown is carried out in such a way that sufficient reserves of other (delay-free) manipulated variables regarding profile and flatness remain available.
  • the appropriate controller setpoints are provided by an associated pass schedule calculation.
  • reference numeral 2 denotes a controlled system, ie a cooling device and the rolls of a roll stand, in which the cooling of the rolls is set according to a value k, which is the output variable of a controller 1.
  • the controller 1 calculates the quantity k as a function of the difference between the setpoint p soll (z, t) and an estimated value p ist (z, t) of the crowning of the rolls.
  • the estimated value p ist (z, t) of the thermal crowning is determined using a roller model 3 as a function of the value k.
  • the values p soll (z, t), p ist (z, t), p (z, t) and k are usually not scalars, but vectors.
  • the coolant distribution dependent on the value k is determined, for example, by three parameters V 1 , V 2 and V 3 (volume flows of the Cooling water) reproduced, which form the output variables of the controller 1 and are fed to the roller model 3.
  • the thermal crowning c T is determined therefrom in the roller model 3.
  • a normalized value p norm is then formed from the thermal crowning c T by normalization in a normalization unit 4 and supplied to the approximation unit 5.
  • an approximated actual value a 'of crowning is determined, which on the one hand is used for other applications in the system and on the other hand is fed back to a comparator 6 connected upstream of the controller 1.
  • the controller setpoint In addition to the target parameters for the current band, the controller setpoint also still includes the target parameters for the next band or for the next bands.
  • the shape of the thermal crown of the work rolls is to be influenced with the aid of targeted cooling strategies. It has been shown that the thermal expansion in the middle of the roller is not relevant, since this can be compensated for by the adjustment of the rollers.
  • the roller temperature model calculates the thermal expansion of the roller as a function of its axial position by solving the three-dimensional Fourier heat conduction equation, taking into account the boundary conditions on all surfaces of the roller.
  • the assumption is made that the thermal expansion is almost independent of the circumferential direction, since the areas in which azimuthal influences play a role are due to the roll rotation only in a thin layer below the roll surface. This assumption can be confirmed by three-dimensional numerical reference calculations.
  • the heat flows through the pins should also not be taken into account here, since they only have a long-term influence on the thermal deformation of the roll in the area of the belt contact and therefore have no effect on the quality of a roll crown control.
  • the distribution of the heat transfer coefficient of the water is determined by the distribution of the specific volume flow of the cooling water at the roll surface over a generally non-linear characteristic.
  • ⁇ c ( ⁇ , z, t) F ⁇ ( v ⁇ ( ⁇ , z, t))
  • This characteristic can also be subject to other influences such as the surface temperature of the roller and must be suitably modeled.
  • the distribution of the volume flow must be determined using a suitable model from the geometric arrangements of the roller, chilled beams and nozzles in the roll stand and the N independent supply volume flows in the individual cooling circuits V ⁇ i (t):
  • the specific heat flow from the roll gap q g ( ⁇ , z, t) is calculated using a suitable roll gap model.
  • a fuzzy controller the mode of operation of which is shown in FIG. 3, has proven to be particularly suitable for such a complex set of rules.
  • fuzzy controller has to be adapted to every problem, cannot be applied to strategically different cooling concepts in the same way, and the adjustment effort increases with an increasing number of independent cooling circuits (greater than 3) due to the exponentially increasing number of rules.
  • T o is the reference temperature
  • is the coefficient of thermal expansion. This relationship can be shown by neglecting mechanical stresses.
  • the associated, expected profiles standardized to the band are calculated approximately with an energy approach, which is described below.
  • the volume flows can be changed continuously in both directions, this results in 3 N combinations. If the cooling circuits can only be switched on or off, 2 N combinations result.
  • the combination that most minimizes the (square) error area between the expected thermal crowning and the target crowning in the next time step is used as the manipulated variable for the volume flows.
  • This method corresponds to a method of the steepest zero-order descent since no sensitivities have to be calculated here.
  • the process can be transferred to other cooling concepts.
  • the computing effort increases exponentially with the number of independently controllable cooling circuits.
  • the descent according to the sensitivities according to the individual volume flows is also conceivable.
  • a sensitivity model would have to exist, which either directly calculates the sensitivity of the boundary conditions from the changes in the volume flows of the individual cooling circuits or estimates them by small deflections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

Method for influencing relevant quality parameters of a rolling strip, particularly the profile or flatness of the rolling strip, in a roll stand with rolls, by adjusting the crownings of the rolls, i.e., the surface geometry of the rolls in the longitudinal direction of the rolls, wherein the crowning of the rolls is adjusted by an adjustable cooling of the rolls or of their surfaces in longitudinal direction of the rolls. The cooling of the rolls is adjusted by a controller (1) as a function of the actual value (pactual) of the crowning and a predetermined setpoint value (psetpoint) of the crowning.

Description

Die Erfindung betrifft ein Verfahren zur Beeinflussung relevanter Güteparameter eines Walzbandes gemäß Oberbegriff des Anspruchs 1 sowie eine Einrichtung zur Beeinflussung relevanter Güteparameter eines Walzbandes gemäß Oberbegriff des Anspruchs 7; siehe DE-A-196 18 995.The invention relates to a method for influencing relevant quality parameters of a rolled strip according to the preamble of claim 1 and a device for influencing relevant quality parameters of a rolled strip according to the preamble of claim 7; see DE-A-196 18 995.

Heißes Walzgut mit Temperaturen zwischen 800 - 1200 °C bewirkt eine spürbare Erwärmung der Arbeitswalzen und eine daraus resultierende Wärmeausdehnung. Das Ergebnis ist die sogenannte thermische Balligkeit der Arbeitswalzen, die unmittelbaren Einfluss auf Dicke, Dickenquerprofil und Planheit des Bandes hat. Diese stellen wichtige Maße für die Güte des Walzprozesses dar. Die Geometrie des Bandquerschnitts wird dabei durch die Geometrie der Walzen in einem Walzengerüst, das heißt der Balligkeit der Walzen, beeinflusst. Es ist bekannt, die thermische Balligkeit durch entsprechende Stellglieder wie Anstellung, Biegekraft, u.a. zu kompensieren. Dieses Verfahren kommt z. B. bei sogenannten CVC- oder Taper-Walzen zum Tragen. Die Voreinstellung von CVC-Walzen kann jedoch nur im unbelasteten Zustand erfolgen. Sie dienen darum ausschließlich der Voreinstellung. Zudem ist dieses Verfahren äußerst aufwendig und kostenintensiv und führt zur Herabsetzung der Lebensdauer eines Walzgerüstes.Hot rolling stock with temperatures between 800 - 1200 ° C causes a noticeable heating of the work rolls and the resulting thermal expansion. The result is the so-called thermal crowning of the work rolls, which has a direct influence on the thickness, thickness cross profile and flatness of the strip. These represent important measures for the quality of the rolling process. The geometry of the strip cross-section is influenced by the geometry of the rolls in a roll stand, that is, the crowning of the rolls. It is known to control the thermal crown by means of appropriate actuators such as adjustment, bending force, etc. to compensate. This method comes e.g. B. in so-called CVC or taper rollers to wear. However, CVC rollers can only be preset when they are unloaded. They are therefore used only for the default. In addition, this process is extremely complex and costly and leads to a reduction in the service life of a roll stand.

Reichen dabei die Stellreserven nicht aus, so kommt es zu Einbußen der Bandqualität.If the reserve capacity is not sufficient, the strip quality is reduced.

Aufgabe der Erfindung ist es, ein Verfahren anzugeben, das es erlaubt, die Geometrie eines Walzbandes auf einfachere Weise zu beeinflussen. Der Erfindung liegt weiterhin die Aufgabe zugrunde, eine Einrichtung zu schaffen, die es erlaubt, die Geometrie eines Walzbandes auf einfachere Weise zu beeinflussen.The object of the invention is to provide a method which allows the geometry of a rolled strip to be influenced in a simpler manner. The invention is also based on the object to provide a device that allows the To influence the geometry of a rolled strip in a simpler way.

Die Aufgabe wird erfindungsgemäß durch ein Verfahren nach Anspruch 1 bzw. durch eine Einrichtung gemäß Anspruch 7 gelöst.The object is achieved according to the invention by a method according to claim 1 or by a device according to claim 7.

Die Beeinflussung der relevanten Güteparameter eines Walzbandes, insbesondere des Profils oder der Planheit des Walzbandes, in einem Walzgerüst mit Walzen erfolgt durch Einstellung der Balligkeit der Walzen, d. h. der Oberflächengeometrie der Walzen in Walzenlängsrichtung, wobei die Einstellung der Balligkeit der Walzen durch eine einstellbare Kühlung der Walzen bzw. ihrer Oberfläche in Walzenlängsrichtung erfolgt, und wobei die Einstellung der Kühlung der Walzen mittels eines Reglers in Abhängigkeit eines Istwertes der Balligkeit und eines vorgegebenen Sollwertes der Balligkeit erfolgt.The relevant quality parameters of a rolled strip, in particular the profile or the flatness of the rolled strip, are influenced in a roll stand with rolls by adjusting the crowning of the rolls, i. H. the surface geometry of the rolls in the longitudinal direction of the rolls, the crowning of the rolls being set by adjustable cooling of the rolls or their surface in the longitudinal direction of the rolls, and the setting of the cooling of the rolls by means of a controller depending on an actual value of the crowning and a predetermined target value of Crowning occurs.

Der Regelalgorithmus des Reglers ist bevorzugt ein Fuzzy Logic-Algorithmus.The control algorithm of the controller is preferably a fuzzy logic algorithm.

Gemäß einer vorteilhaften Ausgestaltung der Erfindung erfolgt eine vorausschauende Regelung mit Blick auf das nächste Walzband oder vorteilhafterweise auf die nächsten Bänder in Analogie zu dem in der DE 196 18 995 A1 und in der korrespondierenden US 5,855,131 A offenbarten Verfahren. Dies ist sehr vorteilhaft, da die thermische Balligkeit nur träge auf die Umgebung (Wasserkühlung) reagiert (Regelstrecke mit Verzögerung).According to an advantageous embodiment of the invention, a predictive control is carried out with a view to the next rolled strip or advantageously to the next strips in analogy to the method disclosed in DE 196 18 995 A1 and in the corresponding US Pat. No. 5,855,131 A. This is very advantageous because the thermal crowning reacts only sluggishly to the environment (water cooling) (controlled system with delay).

In vorteilhafter Ausgestaltung der Erfindung erfolgt die Einstellung der thermischen Balligkeit derart, dass genügend Stellreserven anderer (verzögerungsfrei wirkender) Stellgrößen bezüglich Profil und Planheit verfügbar bleiben. Die zweckmäßigen Reglersollwerte liefert dabei eine zugehörige Stichplanvorausberechnung.In an advantageous embodiment of the invention, the setting of the thermal crown is carried out in such a way that sufficient reserves of other (delay-free) manipulated variables regarding profile and flatness remain available. The appropriate controller setpoints are provided by an associated pass schedule calculation.

Weitere vorteilhafte Ausgestaltungen der Erfindung werden nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen in Prinzipdarstellung:

FIG 1
eine erste Ausführungsform der erfindungsgemäßen Einrichtung,
FIG 2
eine zweite Ausführungsform der erfindungsgemäßen Einrichtung,
FIG 3
eine erste Ausführungsform des in der Einrichtung gemäß FIG 1 eingesetzten Reglers,
FIG 4
eine zweite Ausführungsform des in der Einrichtung gemäß FIG 1 eingesetzten Reglers.
Further advantageous refinements of the invention are explained in more detail below with reference to exemplary embodiments shown in the drawing. In principle, they show:
FIG. 1
a first embodiment of the device according to the invention,
FIG 2
a second embodiment of the device according to the invention,
FIG 3
1 shows a first embodiment of the controller used in the device according to FIG. 1,
FIG 4
a second embodiment of the controller used in the device according to FIG 1.

In FIG 1 bezeichnet das Bezugszeichen 2 eine Regelstrecke, d. h. eine Kühleinrichtung sowie die Walzen eines Walzgerüstes, bei dem die Kühlung der Walzen entsprechend einem Wert k eingestellt wird, der Ausgangsgröße eines Reglers 1 ist. Der Regler 1 berechnet die Größe k in Abhängigkeit der Differenz des Sollwertes psoll(z,t) und einem estimierten Wert pist(z,t) der Balligkeit der Walzen. Der estimierte Wert pist(z,t) der thermischen Balligkeit wird mittels eines Walzenmodells 3 in Abhängigkeit des Wertes k ermittelt. Die Werte psoll(z,t), pist(z,t), p(z,t) und k sind in der Regel keine Skalare, sondern Vektoren. Sie bezeichnen vorteilhafterweise in bezug auf psoll(z,t), pist(z,t) und p(z,t) eine Dickenverteilung und in bezug auf k eine Kühlmittelverteilung in Längsrichtung der Walzen. Dabei ist es von besonderem Vorteil, die Dickenverteilung und die Kühlmittelverteilung nicht durch einzelne Stützstellen, sondern durch Polynome und deren Parameter darzustellen. Dies veranschaulicht FIG 2.In FIG. 1, reference numeral 2 denotes a controlled system, ie a cooling device and the rolls of a roll stand, in which the cooling of the rolls is set according to a value k, which is the output variable of a controller 1. The controller 1 calculates the quantity k as a function of the difference between the setpoint p soll (z, t) and an estimated value p ist (z, t) of the crowning of the rolls. The estimated value p ist (z, t) of the thermal crowning is determined using a roller model 3 as a function of the value k. The values p soll (z, t), p ist (z, t), p (z, t) and k are usually not scalars, but vectors. They advantageously denote a distribution of thickness in relation to p should (z, t), p is (z, t) and p (z, t) and, in relation to k, a coolant distribution in the longitudinal direction of the rolls. It is particularly advantageous to represent the thickness distribution and the coolant distribution not by individual support points, but by polynomials and their parameters. This is illustrated in FIG. 2.

Die vom Wert k abhängige Kühlmittelverteilung wird beispielsweise durch drei Parameter V1, V2 und V3 (Volumenströme des Kühlwassers) wiedergegeben, die die Ausgangsgrößen des Reglers 1 bilden und dem Walzenmodell 3 zugeführt werden. Im Walzenmodell 3 wird daraus die thermische Balligkeit cT ermittelt. Aus der thermischen Balligkeit cT wird anschließend durch Normierung in einer Normiereinheit 4 ein normierter Wert pnorm gebildet und der Approximationseinheit 5 zugeführt.The coolant distribution dependent on the value k is determined, for example, by three parameters V 1 , V 2 and V 3 (volume flows of the Cooling water) reproduced, which form the output variables of the controller 1 and are fed to the roller model 3. The thermal crowning c T is determined therefrom in the roller model 3. A normalized value p norm is then formed from the thermal crowning c T by normalization in a normalization unit 4 and supplied to the approximation unit 5.

In der Approximationseinheit 5 wird ein approximierter Istwert a' der Balligkeit ermittelt, der einerseits anderen Anwendungen im System zugeführt und der andererseits auf einen dem Regler 1 vorgeschalteten Vergleicher 6 zurückgeführt wird. In dem Vergleicher 6 wird aus dem vorausberechneten approximierten Sollwert a = a4x4 + a2x2 der Balligkeit und dem approximierten Istwert a' der thermischen Balligkeit die Abweichung e ermittelt, die dem Regler 1 als Eingangsgröße zugeführt wird. In dem in FIG 2 dargestellten Ausführungsbeispiel werden damit die approximierten Sollwerte a und a' auf die Koeffizienten für den x2- sowie x4-Anteil reduziert.In the approximation unit 5, an approximated actual value a 'of crowning is determined, which on the one hand is used for other applications in the system and on the other hand is fed back to a comparator 6 connected upstream of the controller 1. In the comparator 6, the deviation e , which is supplied to the controller 1 as an input variable, is determined from the precalculated approximate target value a = a 4 x 4 + a 2 x 2 of the crowning and the approximated actual value a 'of the thermal crowning. In the exemplary embodiment shown in FIG. 2, the approximate target values a and a 'are thus reduced to the coefficients for the x 2 and x 4 component.

Der Reglersollwert umfasst neben den Sollparametern für das aktuelle Band auch immer noch die Sollparameter für das nächste Band bzw. für die nächsten Bänder.In addition to the target parameters for the current band, the controller setpoint also still includes the target parameters for the next band or for the next bands.

Bei den in FIG 3 und 4 dargestellten Einrichtungen soll die Form der thermischen Balligkeit der Arbeitswalzen mit Hilfe gezielter Kühlstrategien beeinflusst werden. Es hat sich gezeigt, dass hierfür die thermische Ausdehnung in der Walzenmitte nicht relevant ist, da diese durch die Anstellung der Walzen kompensiert werden kann. Man definiert daher die auf die Walzenmitte bezogene thermische Balligkeit zu: c ¯ T (z,t) = c T (z,t) - c T (0,t) In the devices shown in FIGS. 3 and 4, the shape of the thermal crown of the work rolls is to be influenced with the aid of targeted cooling strategies. It has been shown that the thermal expansion in the middle of the roller is not relevant, since this can be compensated for by the adjustment of the rollers. The thermal crowning related to the center of the roll is therefore defined as: c ¯ T (z, t) = c T (z, t) - c T (0, t)

Dabei wird die axiale Position der Walzenmitte der Koordinate z = 0 zugeordnet.The axial position of the roller center is assigned to the coordinate z = 0.

Es wird nun eine Sollballigkeit c * T (z,t) vorgegeben. Dieses soll über die Breite des gewalzten Bandes L im Sinne eines beliebigen Gütekriteriums I durch die thermische Balligkeit c ¯ T(z,t) optimal erreicht werden für alle Zeiten t. Dieses Gütekriterium kann z. B. der quadratische Güteindex sein: There is now a crowning c * T (z, t) specified. This should be across the width of the rolled strip L in the sense of any quality criterion I due to the thermal crowning c ¯ T (z, t) can be optimally achieved for all times t. This quality criterion can e.g. B. be the quadratic quality index:

Das Walzentemperaturmodell berechnet die thermische Ausdehnung der Walze in Abhängigkeit von ihrer axialen Position durch Lösung der dreidimensionalen Fourier'schen Wärmleitungsgleichung unter Berücksichtigung der Randbedingungen an allen Oberflächen der Walze. Dabei wird die Annahme gemacht, dass die thermische Ausdehnung nahezu von der Umfangsrichtung unabhängig ist, da die Bereiche, in denen azimutale Einflüsse eine Rolle spielen, aufgrund der Walzenrotation nur in einer dünnen Schicht unter der Walzenoberfläche liegen. Diese Annahme kann durch dreidimensionale numerische Referenzrechnungen bestätigt werden. The roller temperature model calculates the thermal expansion of the roller as a function of its axial position by solving the three-dimensional Fourier heat conduction equation, taking into account the boundary conditions on all surfaces of the roller. The assumption is made that the thermal expansion is almost independent of the circumferential direction, since the areas in which azimuthal influences play a role are due to the roll rotation only in a thin layer below the roll surface. This assumption can be confirmed by three-dimensional numerical reference calculations.

Die Randbedingungen an der Walzenoberfläche bei r = R hängen im wesentlichen vom Wärmeeintrag durch den Walzspalt und durch die Verteilung des Kühlwassers an der Walzenoberfläche ab. Andere Einflüsse wie die Kühlwirkung der Luft werden hier vernachlässigt, können aber bei Bedarf mit in die Überlegung einbezogen werden.The boundary conditions at the roll surface at r = R essentially depend on the heat input through the roll gap and on the distribution of the cooling water on the roll surface. Other influences such as the cooling effect of the air are neglected here, but can be included in the consideration if necessary.

Man kann nun davon ausgehen, dass sich die Einflüsse der Wasserkühlung durch einen Wärmeübergang dritter Art und die Einflüsse des Walzspaltes durch einen Wärmeübergang zweiter Art modellieren lassen. Diese Verteilungen werden zu einer Gesamtverteilung überlagert: α(θ,z,t) = α c (θ,z,t) q(θ,z,t) = T c α c (θ,z, t) + q g (θ,z,t) und in die Randbedingung an der Walzenoberfläche zur Berechnung der Temperaturverteilung eingesetzt: It can now be assumed that the effects of water cooling through a heat transfer of the third type and the influences of the roll gap through a heat transfer of the second type have it modeled. These distributions are superimposed into an overall distribution: α (θ, z, t) = α c (Θ, z, t) q (θ, z, t) = T c α c (θ, z, t) + q G (Θ, z, t) and used in the boundary conditions on the roll surface to calculate the temperature distribution:

Die Wärmeströme über die Zapfen sollen hier ebenfalls nicht beachtet werden, da sie nur einen Langzeiteinfluss auf die thermische Verformung der Walze im Bandkontaktbereich und deshalb keine Wirkung auf die Güte einer Walzenballigkeitsregelung haben.The heat flows through the pins should also not be taken into account here, since they only have a long-term influence on the thermal deformation of the roll in the area of the belt contact and therefore have no effect on the quality of a roll crown control.

Die Verteilung des Wärmeübergangskoeffizienten des Wassers wird durch die Verteilung des spezifischen Volumenstroms des Kühlwassers an der Walzenoberfläche über eine im allgemeinen nichtlineare Kennlinie bestimmt. α c (θ,z,t) = F α ( v ̇ (θ,z,t)) The distribution of the heat transfer coefficient of the water is determined by the distribution of the specific volume flow of the cooling water at the roll surface over a generally non-linear characteristic. α c (θ, z, t) = F α ( v ̇ (Θ, z, t))

Diese Kennlinie kann auch noch anderen Einflüssen wie der Oberflächentemperatur der Walze unterliegen und muss geeignet modelliert werden. Dabei muss die Verteilung des Volumenstroms mit Hilfe eines geeigneten Modells aus den geometrischen Anordnungen der Walze, Kühlbalken und Düsen im Walzgerüst und den N unabhängigen Versorgungsvolumenströmen in den einzelnen Kühlkreisläufen V̇i(t) bestimmt werden: This characteristic can also be subject to other influences such as the surface temperature of the roller and must be suitably modeled. The distribution of the volume flow must be determined using a suitable model from the geometric arrangements of the roller, chilled beams and nozzles in the roll stand and the N independent supply volume flows in the individual cooling circuits V̇ i (t):

Der spezifische Wärmestrom aus dem Walzspalt qg(θ,z,t) wird durch ein geeignetes Walzspaltmodell berechnet.The specific heat flow from the roll gap q g (θ, z, t) is calculated using a suitable roll gap model.

Plausibilitätsüberlegungen und Erfahrungswerte führen auf ein Regelwerk, welches den aktuellen thermischen Crown und die Oberflächentemperatur der Walze bewertet und daraus eine Entscheidung über die optimale Einstellung der Versorgungsdrücke V̇i(t) ableitet. Dieses Regelwerk ist erfahrungsgemäß sehr komplex. Auch geht hier eine Vielzahl von Einzelstrategien ein.Plausibility considerations and empirical values lead to a set of rules that evaluates the current thermal crown and the surface temperature of the roller and uses this to make a decision about the optimal setting of the supply pressures V̇ i (t). Experience has shown that this set of rules is very complex. A large number of individual strategies are also involved here.

Ein Fuzzy-Regler, dessen Wirkungsweise in in FIG 3 dargestellt ist, hat sich für ein derart komplexes Regelwerk als besonders geeignet erwiesen.A fuzzy controller, the mode of operation of which is shown in FIG. 3, has proven to be particularly suitable for such a complex set of rules.

Eigenart des Fuzzy-Reglers ist, dass er an jede Problemstellung neu angepasst werden muss, sich nicht auf strategisch unterschiedliche Kühlkonzepte in gleicher Weise anwenden lässt und der Einstellaufwand mit steigender Anzahl von unabhängigen Kühlkreisläufen (größer 3) aufgrund der exponentiell ansteigenden Anzahl von Regeln wächst.The peculiarity of the fuzzy controller is that it has to be adapted to every problem, cannot be applied to strategically different cooling concepts in the same way, and the adjustment effort increases with an increasing number of independent cooling circuits (greater than 3) due to the exponentially increasing number of rules.

Alternativ kann deshalb unter den folgenden Annahmen der Regler als Energiebilanzregler ausgeführt sein:

  • Die Volumenströme können aus dem aktuellen Arbeitspunkt schrittweise verstellt werden. Die Schrittweite kann dabei vorgegeben werden, sie beträgt aber maximal die Stellweite der Ventile im Abtastintervall.
  • Der Wärmestrom fließt im Abtastintervall näherungsweise nur in radialer Richtung. Axiale Wärmeströme spielen hier eine vernachlässigbare Rolle.
  • Die aktuelle thermische Ausdehnung der Walze und deren Oberflächentemperaturverteilung liegen entweder in Form von Messwerten oder in Form von berechneten Werten aus einem Beobachter vor. Die thermische Ausdehnung an einer axialen Position ist proportional zur mittleren Temperatur gemittelt in Umfangsrichtung und radialer Richtung an der axialen Position: c T (z,t) = β( T ¯ (z,t) - T 0 )
Alternatively, the controller can therefore be designed as an energy balance controller based on the following assumptions:
  • The volume flows can be gradually adjusted from the current working point. The step size can be specified, but it is a maximum of the positioning range of the valves in the sampling interval.
  • In the sampling interval, the heat flow only flows approximately in the radial direction. Axial heat flows play a negligible role here.
  • The current thermal expansion of the roll and its surface temperature distribution are available either in the form of measured values or in the form of calculated values from an observer. The thermal expansion at an axial position is proportional to the mean temperature averaged in the circumferential and radial directions at the axial position: c T (z, t) = β ( T ¯ (z, t) - T 0 )

To ist hier die Bezugstemperatur, β der Wärmeausdehnungskoeffizient. Diese Beziehung lässt sich unter Vernachlässigung mechanischer Spannungen zeigen.T o is the reference temperature, β is the coefficient of thermal expansion. This relationship can be shown by neglecting mechanical stresses.

Für alle möglichen Kombinationen der Volumenströme, die bei fester Schrittweite vom aktuellen Arbeitspunkt aus im nächsten Abtastintervall erreicht werden können, werden die dazugehörigen, erwarteten und auf das Band normierten Profile näherungsweise mit einem Energieansatz berechnet, welcher weiter unten beschrieben wird. Im Falle, dass die Volumenströme kontinuierlich jeweils in beide Richtungen geändert werden können, ergeben sich hier 3N Kombinationen. Lassen sich die Kühlkreisläufe nur ein- oder ausschalten, dann ergeben sich 2N Kombinationen.For all possible combinations of the volume flows that can be achieved with a fixed step size from the current working point in the next sampling interval, the associated, expected profiles standardized to the band are calculated approximately with an energy approach, which is described below. In the event that the volume flows can be changed continuously in both directions, this results in 3 N combinations. If the cooling circuits can only be switched on or off, 2 N combinations result.

Als Stellgröße für die Volumenströme wird diejenige Kombination genommen, welche die (quadratische) Fehlerfläche zwischen der erwarteten thermischen Balligkeit und der Sollballigkeit im nächsten Zeitschritt am stärksten minimiert. Dieses Verfahren entspricht einem Verfahren des steilsten Abstiegs nullter Ordnung, da hier keine Empfindlichkeiten berechnet werden müssen.The combination that most minimizes the (square) error area between the expected thermal crowning and the target crowning in the next time step is used as the manipulated variable for the volume flows. This method corresponds to a method of the steepest zero-order descent since no sensitivities have to be calculated here.

Unter Vernachlässigung der axialen Wärmeströme ergibt die Anwendung des Fourier'schen Grundgesetzes des molekularen Wärmetransports für die Änderung der thermischen Energie in einer sehr dünnen Scheibe der Walze an der Position: Neglecting the axial heat flows, applying Fourier's law of molecular heat transfer for the change in thermal energy in a very thin disc of the roller at the position:

Dies ist aber unter Ausnutzung der Randbedingung: However, this is taking advantage of the boundary condition:

Die Integrale können bei den gegebenen Annahmen zumindest numerisch geeignet berechnet werden. Man findet so unter Berücksichtigung der Tatsache, dass eine Änderung der thermischen Energie gleichbedeutend einer Änderung der mittleren Temperatur und somit der thermischen Ausdehnung ist: dE(z) dt = c w ρ2πR · dz · d T ¯ (z) dt dE(z) dt = c w ρ2πR · dz · 1 β dc T (z) dt The integral can be calculated at least numerically using the given assumptions. Taking into account the fact that a change in the thermal energy is equivalent to a change in the mean temperature and thus the thermal expansion: dE (z) dt = c w ρ2πRdz d T ¯ (Z) dt dE (z) dt = c w ρ2πRdz 1 β dc T (Z) dt

Mit der Definition eines mittleren Wärmestroms über die Walzenoberfläche findet man eine Differentialgleichung für die thermische Ausdehnung: With the definition of an average heat flow over the roll surface there is a differential equation for thermal expansion:

Ersetzt man hier nun die Ableitung durch einen Differenzenquotienten, dann erhält man mit der Annahme einer kleinen Abtastzeit und geringer Änderung der Randbedingungen einen Schätzwert für die Änderung der thermischen Ausdehnung im nächsten Abtastzeitpunkt in Abhängigkeit von der eingestellten Kühlung: If you now replace the derivative with a difference quotient, then with the assumption of a short sampling time and a small change in the boundary conditions, you get an estimate for the change in thermal expansion in the next sampling time depending on the cooling set:

Diese Änderung muss die Gegebenheiten für den Einsatz in der Regelung nur qualitativ richtig wiedergeben, da sie nur als Entscheidungsgrundlage für den zu wählenden Kühlarbeitspunkt dient.This change only has to reflect the conditions for use in the control system correctly in terms of quality, since it only serves as the basis for the decision regarding the cooling working point to be selected.

Das Verfahren ist übertragbar auf andere Kühlkonzepte. Der Rechenaufwand steigt hier allerdings exponentiell mit der Anzahl der unabhängig voneinander schaltbaren Kühlkreisläufe. Statt der Berechnung der einzelnen Kombinationen ist auch der Abstieg nach den Empfindlichkeiten nach den einzelnen Volumenströmen denkbar. Dazu müsste ein Empfindlichkeitsmodell existieren, welches die Empfindlichkeit der Randbedingungen von den Änderungen der Volumenströme der einzelnen Kühlkreisläufe entweder direkt berechnet oder durch kleine Auslenkungen schätzt.The process can be transferred to other cooling concepts. However, the computing effort increases exponentially with the number of independently controllable cooling circuits. Instead of calculating the individual combinations, the descent according to the sensitivities according to the individual volume flows is also conceivable. For this purpose, a sensitivity model would have to exist, which either directly calculates the sensitivity of the boundary conditions from the changes in the volume flows of the individual cooling circuits or estimates them by small deflections.

Wie aus der in FIG 4 dargestellten Wirkungsweise des Energiebilanzreglers ersichtlich ist, muss dieser nicht parametriert werden. Es genügt lediglich die Kenntnis der physikalischen Kenngrößen der Walze. Die Kenntnis der Oberflächentemperatur und der aktuellen thermischen Ausdehnung der Walze ist wie beim Fuzzy-Regler notwendig. Teilmodelle für die Berechnung der Wärmeströme aus dem Walzspalt und die Berechnung der Verteilung des Wärmeübergangskoeffizienten der Kühlung an der Walzenoberfläche sind notwendige Voraussetzung.As can be seen from the mode of operation of the energy balance controller shown in FIG. 4, it does not have to be parameterized. Knowing the physical characteristics of the roller is sufficient. As with the fuzzy controller, knowledge of the surface temperature and the current thermal expansion of the roller is necessary. Sub-models for the calculation of the heat flows from the roll gap and the calculation of the distribution of the heat transfer coefficient of the cooling on the roll surface are a necessary requirement.

Die in den Gleichungen (1) bis (20) verwendeten Formelzeichen sind in der nachfolgenden Übersicht aufgeführt:

  • Temperaturen
    T(r,θ,z,t)  Temperaturverteilung in der Walze
    Tc  Kühlmitteltemperatur
    T ¯ (z,t)  radial und azimutal gemittelte Temperatur
    T0  Bezugstemperatur für die thermische Ausdehnung
    E(z,t)  Thermische Energie einer Scheibe an der Position
  • Randbedingungen
    α(θ,z,t)  Wärmeübergangskoeffizient an der Walzenoberfläche
    αc(θ,z,t)  Wärmeübergangskoeffizient der Wasserkühlung an der Walzenoberfläche
    α ¯ c(θ,z,t)  azimutal gemittelter Wärmeübergangskoeffizient des Wasserkühlung
    q(θ,z,t)  Gedachter Wärmestrom
    qg(θ,z,t)  Wärmestrom Walzspalt
    (θ,z,t)  effektiver Wärmestrom Walzenoberfläche
    q ¯ (θ,z,t)  Gedachter gemittelter Wärmestrom
    q ¯ T(θ,z,t)  gemittelte Wärmestromrückkopplung Kühlung
    q ¯ g(θ,z,t)  gemittelter Wärmestrom Walzspalt
    (θ,z,t)  effektiver gemittelter Wärmestrom Walzenoberfläche
  • Volumenströme
    i(t)
    Gesamtvolumenstrom des -ten Kühlwasserkreislaufs
    v̇(θ,z,t)
    Spezifischer Volumenstrom an der Walzenoberfläche
    Fα
    Kennlinie zur Umrechnung des spez. Volumenstroms in eine Wärmeübergangsverteilung
    FvK
    Berechnung des spezifischen Volumenstroms an der Walzenoberfläche aus den Gesamtvolumenströmen
  • Materialwerte
    cw
    Wärmekapazität
    λ
    Wärmeleitfähigkeit
    ρ
    Dichte
    β
    Wärmeausdehnungskoeffizient
    L
    Breite des Walzgutes
  • Thermische Ausdehnung
    c * T (z,t)  Sollballigkeit
    cT(z,t)  Thermische Ausdehnung entlang der Achse
    c ¯ T(z,t)  Thermische Ausdehnung entlang der Achse verschoben um den Mittencrown
    ΔcT(z,t)  Erwartete Änderung der thermischen Ausdehnung im nächsten Abtastschritt
    Δt  Abtastzeit
    I(t)  Güteindex
The formula symbols used in equations (1) to (20) are listed in the following overview:
  • temperatures
    T (r, θ, z, t) temperature distribution in the roll
    T c coolant temperature
    T ¯ (z, t) radially and azimuthally averaged temperature
    T 0 reference temperature for thermal expansion
    E (z, t) thermal energy of a disk at the position
  • boundary conditions
    α (θ, z, t) heat transfer coefficient on the roll surface
    α c (θ, z, t) heat transfer coefficient of water cooling on the roll surface
    α ¯ c (θ, z, t) azimuthally averaged heat transfer coefficient of water cooling
    q (θ, z, t) Imagined heat flow
    q g (θ, z, t) heat flow roll gap
    (θ, z, t) effective heat flow roller surface
    q ¯ (θ, z, t) Imagined average heat flow
    q ¯ T (θ, z, t) averaged heat flow feedback cooling
    q ¯ g (θ, z, t) averaged heat flow nip
    (θ, z, t) effective average heat flow roll surface
  • flow rates
    i (t)
    Total volume flow of the -th cooling water circuit
    V (θ, z, t)
    Specific volume flow on the roller surface
    F α
    Characteristic curve for converting the spec. Volume flow in a heat transfer distribution
    F v K
    Calculation of the specific volume flow on the roll surface from the total volume flows
  • material values
    c w
    heat capacity
    λ
    thermal conductivity
    ρ
    density
    β
    Coefficient of thermal expansion
    L
    Width of the rolling stock
  • Thermal expansion
    c * T (z, t) nominal crowning
    c T (z, t) thermal expansion along the axis
    c ¯ T (z, t) thermal expansion along the axis shifted around the center crown
    Δc T (z, t) Expected change in thermal expansion in the next sampling step
    Δt sampling time
    I (t) quality index

Claims (12)

  1. Method for influencing relevant quality parameters of a rolled strip, in particular the profile or flatness of the rolled strip, in a roll stand with rolls by adjusting the roll crown i.e. the surface geometry of the rolls in the roll longitudinal direction, wherein the roll crown is adjusted by adjustable cooling of the rolls or of their surfaces in the roll longitudinal direction, wherein a roll model is used, characterised in that the cooling of the rolls is adjusted by means of a controller as a function of an actual value of the crown and a predefined nominal value of the crown, wherein the actual value of the crown is calculated by means of the roll model using a roll temperature model, wherein thermal boundary conditions on all surfaces of a roll are taken into account.
  2. Method according to claim 1, characterised in that the cooling of the rolls is adjusted by means of the controller as a function of a difference between the actual value of the crown and the predefined nominal value of the crown.
  3. Method according to claim 1 or 2, characterised in that the crown of the rolls is adjusted by variable cooling of the rolls in the roll longitudinal direction, e.g. by a variable coolant amount or application process.
  4. Method according to claims 1 to 3, characterised in that the roll model is an analytical model.
  5. Method according to claims 1 to 4, characterised in that the roll model is a neural network, in particular self-configuring, or a combination of an analytical model and a neural network.
  6. Method according to claims 1 to 5, characterised in that the roll model or parts thereof is or are adapted to the real process event, preferably on-line, in particular using a neural network, through on-line learning of the neural network.
  7. Device for influencing relevant quality parameters of a rolled strip, in particular the profile or flatness of the rolled strip, in a roll stand with rolls, wherein the device comprises an adjustable cooling device to adjust the roll crown, i.e. the surface geometry of the rolls in the roll longitudinal direction, characterised in that the device has a controller (1) to adjust the cooling device as a function of an actual value of the crown and a predefined nominal value of the crown, an approximation unit (5) to determine the actual crown value and a roll model (3), wherein in the roll model (3) the actual crown value is calculated using a roll temperature model, wherein thermal boundary conditions on all surfaces of a roll are taken into account.
  8. Device according to claim 7, characterised in that the controller is a fuzzy controller.
  9. Device according to claim 8, characterised in that the fuzzy rules for the fuzzy controller are specifically adaptable.
  10. Device according to claim 7, characterised in that the controller is an energy balance controller.
  11. Device according to claim 10, characterised in that the volumetric flow rates and their combination can be predefined in the energy balance controller.
  12. Device according to claim 11, characterised in that the controlled variable for the volumetric flow rates minimises the area of uncertainty between the thermal crown and the nominal crown.
EP00949106A 1999-06-17 2000-06-15 Method and device for influencing relevant quality parameters of a rolling strip Revoked EP1185385B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19927755 1999-06-17
DE1999127755 DE19927755A1 (en) 1999-06-17 1999-06-17 Process for influencing relevant quality parameters of a rolling strip in a roll stand uses a regulator to cool the rolls in their longitudinal direction depending on crowning and a predetermined set value of crowning
DE19959553 1999-12-10
DE19959553A DE19959553A1 (en) 1999-06-17 1999-12-10 Device for influencing the profile or flatness of a rolled strip
PCT/DE2000/001960 WO2000078475A1 (en) 1999-06-17 2000-06-15 Method and device for influencing relevant quality parameters of a rolling strip

Publications (2)

Publication Number Publication Date
EP1185385A1 EP1185385A1 (en) 2002-03-13
EP1185385B1 true EP1185385B1 (en) 2003-09-10

Family

ID=26053822

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00949106A Revoked EP1185385B1 (en) 1999-06-17 2000-06-15 Method and device for influencing relevant quality parameters of a rolling strip

Country Status (5)

Country Link
US (1) US6697699B2 (en)
EP (1) EP1185385B1 (en)
AT (1) ATE249291T1 (en)
DE (2) DE19959553A1 (en)
WO (1) WO2000078475A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10010916B2 (en) 2013-03-12 2018-07-03 Novelis Inc. Measuring thermal expansion and the thermal crown of rolls

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346274A1 (en) * 2003-10-06 2005-04-28 Siemens Ag Method and control device for operating a rolling train for metal strip
FR2879486B1 (en) * 2004-12-22 2007-04-13 Vai Clecim Sa REGULATING THE PLANEITY OF A METAL STRIP AT THE EXIT OF A ROLLER CAGE
DE102005042020A1 (en) * 2005-09-02 2007-03-08 Sms Demag Ag Method for lubricating and cooling rolls and metal strip during rolling, in particular during cold rolling, of metal strips
JP4556856B2 (en) * 2005-12-02 2010-10-06 株式会社Ihi Rolling equipment
JP5428173B2 (en) * 2008-03-21 2014-02-26 株式会社Ihi Rolling mill and rolling method
CN113566557B (en) * 2021-07-28 2022-06-07 国家粮食和物资储备局科学研究院 Grain dryer intelligent control method based on deep neural network

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387470A (en) * 1965-09-28 1968-06-11 Westinghouse Electric Corp Method for measuring roll crown and improving the operation of a rolling mill
SU710705A1 (en) * 1977-04-29 1980-01-25 Ордена Ленина Институт Проблем Управления Method of controlling the heat profile of rolling mill rolls
US4706480A (en) * 1985-10-11 1987-11-17 Svatos Joseph D Rolling mill cooling system
US5235835A (en) * 1988-12-28 1993-08-17 Furukawa Aluminum Co., Ltd Method and apparatus for controlling flatness of strip in a rolling mill using fuzzy reasoning
DE59608495D1 (en) * 1995-11-20 2002-01-31 Sms Demag Ag Device for influencing the profile of rolled rolled strip
DE19618995C2 (en) 1996-05-10 2002-01-10 Siemens Ag Method and device for influencing relevant quality parameters, in particular the profile or the flatness of a rolled strip
JP3495909B2 (en) * 1998-03-30 2004-02-09 株式会社東芝 Roll roll profile control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10010916B2 (en) 2013-03-12 2018-07-03 Novelis Inc. Measuring thermal expansion and the thermal crown of rolls
US10799926B2 (en) 2013-03-12 2020-10-13 Novelis Inc. Measuring thermal expansion and the thermal crown of rolls

Also Published As

Publication number Publication date
DE50003655D1 (en) 2003-10-16
US20020128741A1 (en) 2002-09-12
ATE249291T1 (en) 2003-09-15
WO2000078475A1 (en) 2000-12-28
US6697699B2 (en) 2004-02-24
DE19959553A1 (en) 2001-06-13
EP1185385A1 (en) 2002-03-13

Similar Documents

Publication Publication Date Title
DE10129565B4 (en) Cooling process for a hot-rolled rolling stock and corresponding cooling section model
EP2697001B1 (en) Control method for a rolling train
EP1624982B2 (en) Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train
EP2170535B1 (en) Method for adjusting a state of a rolling stock, particularly a near-net strip
EP1485216B1 (en) Computer-aided method for determining desired values for controlling elements of profile and surface evenness
EP2548665B1 (en) Method for determining the wear on a roller dependent on relative movement
EP2094410A1 (en) Method of monitoring the physical state of a hot-rolled sheet or hot-rolled strip while controlling a plate rolling train for working a hot-rolled sheet or hot-rolled strip
DE4040360A1 (en) Multiple-stand strip rolling control - uses model comparisons and converging parameters to maintain strip profile and flatness
EP2527054A1 (en) Operating method for a mill train
DE4338607B4 (en) Method and device for managing a process in a controlled system
EP1185385B1 (en) Method and device for influencing relevant quality parameters of a rolling strip
EP1711283B1 (en) Control method and control device for a roll stand
DE4416317A1 (en) Method and control device for controlling a material-processing process
DE4136013C2 (en) Method and device for controlling a rolling mill
DE19881041B4 (en) Method for controlling and presetting a steelworks or parts of a steelworks
DE19618995C2 (en) Method and device for influencing relevant quality parameters, in particular the profile or the flatness of a rolled strip
DE10211623A1 (en) Computer-aided determination process comprises feeding input variables to a material flow model which describes a metal strip before and after the passing through a roll stand
EP2673099B1 (en) Method for regulating a temperature of a strand by positioning a movable cooling nozzle in a strand guide of a strand casting system
EP4061552B1 (en) Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train
CH654223A5 (en) METHOD FOR REGULATING THE GAP WIDTH BETWEEN AT LEAST TWO IN A MULTI-ROLLER WORKING PARALLEL ROLLS.
EP0953384A2 (en) Method for improving the contour and for increasing the length of rolled material
DE102020205252A1 (en) Long product cooling device and method for long product cooling using the same
DE69419399T2 (en) Process for controlling the rolling process in a hot strip finishing line
AT411434B (en) Control of cold-, temper- or skin pass rolling of metals employs optimized, computerized model integrated into online process control governing strip thickness
DE19927755A1 (en) Process for influencing relevant quality parameters of a rolling strip in a roll stand uses a regulator to cool the rolls in their longitudinal direction depending on crowning and a predetermined set value of crowning

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20020314

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FI GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50003655

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031112

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030910

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ABB PATENT GMBH

Effective date: 20040521

26 Opposition filed

Opponent name: ABB PATENT GMBH

Effective date: 20040521

Opponent name: SMS DEMAG AG

Effective date: 20040609

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SMS DEMAG AG

Effective date: 20040609

Opponent name: ABB PATENT GMBH

Effective date: 20040521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090821

Year of fee payment: 10

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20100608

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100625

Year of fee payment: 11

Ref country code: AT

Payment date: 20100507

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100615

Year of fee payment: 11

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100617

Year of fee payment: 11

27W Patent revoked

Effective date: 20100528

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20100528