EP1182689B1 - Infrared radiator with a cooling facility - Google Patents

Infrared radiator with a cooling facility Download PDF

Info

Publication number
EP1182689B1
EP1182689B1 EP01116888A EP01116888A EP1182689B1 EP 1182689 B1 EP1182689 B1 EP 1182689B1 EP 01116888 A EP01116888 A EP 01116888A EP 01116888 A EP01116888 A EP 01116888A EP 1182689 B1 EP1182689 B1 EP 1182689B1
Authority
EP
European Patent Office
Prior art keywords
cooling
infrared radiator
heating tube
heating
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01116888A
Other languages
German (de)
French (fr)
Other versions
EP1182689A1 (en
Inventor
Stefan Fuchs
Joachim Scherzer
Friedhelm Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP1182689A1 publication Critical patent/EP1182689A1/en
Application granted granted Critical
Publication of EP1182689B1 publication Critical patent/EP1182689B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/04Incandescent bodies characterised by the material thereof
    • H01K1/06Carbon bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/14Incandescent bodies characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/28Envelopes; Vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/28Envelopes; Vessels
    • H01K1/32Envelopes; Vessels provided with coatings on the walls; Vessels or coatings thereon characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/50Selection of substances for gas fillings; Specified pressure thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/58Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/009Heating devices using lamps heating devices not specially adapted for a particular application
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/04Waterproof or air-tight seals for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the invention relates to a coolable infrared radiator element made of silica glass with at least one heating tube having at its two ends in each case a gas-tight electrical feedthrough, wherein in the heating tube, an elongated electrical heating element is arranged as a radiation source, with at least one cooling element having at least one cooling channel for a liquid coolant , And at least in the region of the heat conductor with a metallic reflector having at least one reflective surface.
  • Such infrared radiator elements are from the DE 26 37 338 C3 known.
  • an infrared radiating element comprising a water cooled twin tube of fused silica with a heating tube and a cooling tube, wherein on a surface of the cooling tube, a reflective layer of gold is attached.
  • the reflection layer is applied either on the outer surface of the cooling tube or on that surface of the common wall surface of heating tube and cooling tube, which is turned away from the heating element.
  • An allowable energy concentration for this radiator is described as 400 kW / m 2 .
  • the DD 257 200 A1 describes a high power infrared radiation source having an elongated incandescent emitter in a cladding tube.
  • the cladding tube is arranged in a jacket tube and thereby offset by 3 to 15% to the jacket tube in the plane of the radiation direction.
  • the jacket tube is flowed through by a liquid cooling and filter medium.
  • the cladding tube has on its surface facing the liquid medium a plurality of strip-shaped cylinder segments as reflecting surfaces.
  • the jacket tube has an approximately half-shell-shaped reflection layer on the surface facing away from the liquid medium.
  • three cylinder segments are arranged as reflection surfaces on the cladding tube, wherein the distance between two cylinder segments is equal to the width of a cylinder segment and a cylinder segment is arranged parallel to the reflection surface on the jacket tube.
  • the EP 0 163 348 describes an infrared lamp with a coiled tungsten heating conductor in a quartz vessel.
  • the quartz vessel is filled with a halogen gas to form a halogen cycle.
  • An infrared-reflective coating of gold or rhodium covers the surface of the quartz vessel, preferably in the form of a half shell, over its entire length. Gas-tight, electrical passages through the quartz vessel are realized with pinched into the ends of the vessel thin molybdenum foils with electrical connections.
  • the DE 28 03 122 C2 finally discloses a halogen incandescent lamp with a bromine cycle, wherein the incandescent lamp comprises a glass bulb of quartz glass, a filling gas and a filament of tungsten.
  • the bromine is available in the operating state of the incandescent lamp after decomposition of a solid in the glass bulb introduced metal bromide for the known tungsten-halogen cycle available. Copper bromide is used here as the metal bromide.
  • the object is to provide an infrared radiator, with the high energy concentrations> 500 kW / m 2 are achievable and in which the radiation losses are low.
  • At least one reflecting surface describes a line around a surface, wherein in the region of the surface the passage of at least part of the liquid coolant is provided.
  • the cross section is here understood to mean a section perpendicular to the longitudinal axis of the heating tube, in which case a reflecting surface can only be recognized as a line.
  • a reflecting surface should now enclose a surface in cross section.
  • the line may preferably be a circular line.
  • other lines such as the lines around a square, a rectangular, a triangular, an elliptical, a crescent-shaped or a somehow regular or unduly shaped surface are easily usable. It therefore forms at least one of the reflective surfaces recognizable in cross-section itself a channel for the liquid coolant or at least a part thereof.
  • a heating tube must be designed for a specific power of up to 190 W / cm, whereby very high heating conductor temperatures in the range of about 3000K are necessary.
  • the stability of the silica glass heating tube is on the one hand endangered and on the other hand, the probability of overheating or boiling of the cooling water and thus high for a fraction of the radiator element.
  • the stability of the silica glass heating tube is now within the meaning of the invention by a high heat absorption capacity of the liquid coolant used for cooling, in particular water, achieved.
  • the inventive design of the reflector prevents the coolant from being heated too much. This would be the case, for example, with an arrangement of a reflection layer on the outer surface of a cooling tube, as is already known from the prior art.
  • the reflector may be formed of a metal layer, wherein the cooling element is a directly adjacent to the at least one heating tube cooling tube with at least one cooling channel and wherein at least one cooling channel is lined with the metal layer.
  • a metal layer here is preferably an internal gilding of the cooling tube in question.
  • the reflector can also be formed from a thin-walled metal part, wherein the cooling element is a directly adjacent to the at least one heating tube cooling tube with at least one cooling channel and wherein a cooling channel is lined with the metal part.
  • the metal part may here be formed by a foil or a sheet, wherein a foil is more flexible and can be adapted more precisely to the inner dimensions of the cooling tube.
  • the reflector is formed of a thin-walled metal part, that the cooling element is a cooling tube surrounding the at least one heating tube and that the thin-walled Metal part is arranged in the cooling tube.
  • the cooling element is a cooling tube surrounding the at least one heating tube and that the thin-walled Metal part is arranged in the cooling tube.
  • a self-supporting reflector with a hollow structure in the cooling tube can be arranged, but also a combination of reflector layers on the cooling and / or heating tube and a metal part can be used.
  • a particular embodiment is a radiator in which the cooling element is designed as a metallic reflector. This means a combination of cooling property and reflectivity. Due to the impermeability of the reflector for radiation, however, this should only enclose a maximum of 50% of the circumference of the outer wall of the at least one heating tube.
  • the reflector can have at least two cooling channels for the transport of the coolant.
  • the heating conductor is formed from tungsten and the heating tube is filled with an inert gas which has a halogen doping. Since it comes at the high Schuleitertemperatur to a strong evaporation of tungsten, the use of a halogen doping of preferably ammonium bromide or copper bromide to form the halogen cycle process is necessary.
  • an electrical connecting line is arranged between the heating conductor and the gas-tight current feedthroughs, wherein the diameter of the connecting line is dimensioned so that the connecting line at nominal current due to their electrical resistance to a Temperature of 600 to 800 ° C heated.
  • a heating conductor made of a carbon tape can be used, in which case the heating tube can be filled or evacuated with inert gas.
  • the carbon tape can be tensioned or coiled with a spring.
  • an infrared radiating element having a first and a second heating tube, wherein a part of the wall surface of the first heating tube is simultaneously the wall surface of the second heating tube.
  • the heating tube and the cooling element can be formed bent.
  • the two gas-tight electrical feedthroughs of the heating tube can be rectified and arranged parallel to each other, whereby for example only lying on one side of a furnace chamber electrical connections for the infrared radiating element can be used.
  • the heating tube is also preferably carried out with an inner diameter of 10 - 17mm.
  • the ratio of helical diameter of a coiled heating conductor to the inner diameter of the heating tube should be at least 1: 3.
  • FIG. 1 shows an infrared radiator element 1 with a heating tube 2 and a cooling tube 3 made of silica glass.
  • the heating tube 2 is an elongated electrical heating conductor 4, which is positioned by means of spacers 4a, which are usually made of tungsten.
  • the heating conductor 4 is here made of tungsten in the form of a helix, wherein the heating tube 2 is filled with an inert gas having a halogen doping.
  • Argon is chosen here as the inert gas, while ammonium bromide is chosen for the halogen doping.
  • each connecting line 6a; 6b is in each case an electrical connection line 6a; 6b, wherein the diameter of the connecting lines 6a; 6b is dimensioned so that each connecting line 6a; 6b heated at nominal current due to their electrical resistance to a temperature of 600 to 800 ° C.
  • the gas-tight current feedthroughs 5a; 5 b are formed by a pinch and / or fusion of the silica glass at the two ends of the heating tube 2.
  • the cooling tube 3 has a cooling channel which is occupied by a metallic reflector 8.
  • the reflector 8 may be formed either by a thin inner gilding of the cooling tube 3 (see Fig. 1a ) or by a non-oxidizing metal sheet having a reflective surface, for example a gold sheet or a non-oxidizing metal foil with a reflective surface, for example a gold foil, with which the cooling channel is lined (see Figures 1b and 1c ).
  • connections 9a; 9b mounted for connection of the cooling tube 3 with a coolant line, wherein water is provided as a liquid coolant.
  • FIG. 1a shows a cross section A - A 'through the infrared radiating element according to FIG. 1 with the heating tube 2 and the cooling tube 3, which has a cooling channel 3a for the liquid coolant.
  • the heating tube 2 the heating element 4 is shown in helical form, by means of spacers 4a is positioned.
  • the cooling tube 3 has a reflector 8a in the form of an inner gilding in a layered form.
  • FIG. 1b shows a cross section A - A 'through the infrared radiating element according to FIG. 1 with the heating tube 2 and the cooling tube 3, which has a cooling channel 3a for the liquid coolant.
  • the heating element 4 is shown in helical form, which is positioned by means of spacers 4a.
  • the cooling tube 3 has a reflector 8b in the form of a non-oxidizing metal foil with a reflective surface, for example a gold foil, which is arranged in direct contact with the cooling tube 3.
  • Figure 1c shows a cross section A - A 'through the infrared radiating element according to FIG. 1 with the heating tube 2 and the cooling tube 3, which has a cooling channel 3a for the liquid coolant.
  • the heating element 4 is shown in helical form, which is positioned by means of spacers 4a.
  • the cooling tube 3 has a reflector 8c in the form of a non-oxidizing metal sheet with a reflective surface, for example a gold sheet, which is inserted into the cooling channel 3a of the cooling tube 3.
  • FIG. 2 shows a similar infrared radiator element 1 us FIG. 1 with a heating tube 2 and a cooling tube 3 made of silica glass.
  • the heating tube 2 is an elongated electrical heating element 4, which is tensioned by a spring 10.
  • the heating conductor 4 is designed here as a carbon tape, wherein the heating tube 2 is evacuated.
  • the gas-tight current feedthroughs 5a; 5b are like in FIG. 1 educated.
  • the cooling tube 3 has a cooling channel which is occupied by a metallic reflector 8.
  • the reflector 8 may be formed either by a thin inner gilding of the cooling tube 3 (see Fig.
  • FIG. 3a shows an infrared radiating element 1 in cross-section with two heating tubes 2a; 2b made of silica glass, in each of which a heating conductor 4a; 4b is arranged from carbon tape.
  • a metallic reflector 8 is attached in a form-fitting manner on one side, which assumes not only the function of a reflector but simultaneously that of a cooling element.
  • the reflector 8 has two cooling channels 3a; 3b for receiving the liquid coolant.
  • FIG. 3b shows an infrared radiating element 1 in cross-section with two heating tubes 2a; 2b made of silica glass, in each of which a heating conductor 4a; 4b is arranged in the form of a tungsten filament.
  • a metallic reflector 8 is attached in a form-fitting manner on one side, which assumes not only the function of a reflector but simultaneously that of a cooling element.
  • the reflector 8 has two cooling channels 3a; 3b for receiving the liquid coolant.
  • FIG. 4a shows an infrared radiating element 1 in cross section with a heating tube 2 made of silica glass, in which a heating element 4 is arranged in the form of a tungsten filament.
  • a metallic reflector 8 is positively mounted on one side, which takes over here not only the function of a reflector but at the same time that of a cooling element.
  • the reflector 8 has two cooling channels 3a; 3b for receiving the liquid coolant.
  • FIG. 4b shows an infrared radiating element 1 in cross section with a heating tube 2 made of silica glass, in which a heating element 4 is arranged in the form of a carbon band.
  • a metallic reflector 8 is positively mounted on one side, which takes over here not only the function of a reflector but at the same time that of a cooling element.
  • the reflector 8 has two cooling channels 3a; 3b for receiving the liquid coolant.
  • FIG. 5a shows an infrared radiator element 1 in cross section B - B 'with two heating tubes including tungsten filaments in a cooling tube 3 made of silica glass.
  • the cooling tube 3 has a cooling channel 3a, in which the heating tubes are arranged and so can be lapped by a liquid coolant.
  • a metallic reflector 8 is arranged in the cooling channel 3a, which has a crescent-shaped hollow cross-section and thereby can be flowed through by a coolant.
  • FIG. 5b shows the infrared radiator element 1 from Fig. 5a in a side view, in which the reflector is not visible.
  • the heating pipes 2a; 2b and the tungsten filaments 4a; 4b clearly visible.
  • an electrical connection line 6a; 6b; 6c; 6d is in each case an electrical connection line 6a; 6b; 6c; 6d, wherein the diameter of the connecting lines 6a; 6b; 6c; 6d each dimensioned so that each connecting line 6a; 6b; 6c; 6d heated at nominal current due to their electrical resistance to a temperature of 600 to 800 ° C.
  • the gas-tight current feedthroughs 5a; 5b are characterized by a crushing and / or fusing of the silica glass at the two ends of the heating tubes 2a; 2b formed.
  • the cooling tube 3 surrounds both heating tubes 2a; 2b spaced and can via the terminals 9a; 9b for the coolant to be connected to a coolant line.
  • FIG. 6a shows an infrared radiator element 1 with two heating tubes 2a; 2b in a cooling tube 3 made of silica glass, the two terminals 9a; 9b for the liquid coolant.
  • the heating pipes 2a; 2b is a heating conductor 4a; 4b arranged in the form of a carbon band, each via a spring 10a; 10b is stretched.
  • the heating tubes 2a; 2b gas-tight current feedthroughs 5a; 5b on.
  • FIG. 6b shows the infrared radiator element Fig. 6a in cross section C - C ', wherein the reflector 8 can be seen with a half-moon-shaped hollow shape in the cooling channel 3a.
  • the reflector 8 can also be formed in a different shape, for example, a form-fitting manner to the heating tubes 2a; 2b and the cooling tube 3 adapted.
  • FIG. 6c shows a longitudinal section through the infrared radiator element 1 from Fig. 6a , It is the cooling tube 3 and one of the heating tubes 2a arranged therein to recognize.
  • the heating tube 2a is the heating element 4a in the form of the carbon band, which is stretched with the spring 10a.
  • the reflector is not shown in this figure.
  • FIG. 7 shows an infrared radiator element 1 with a curved heating tube 2 and a bent cooling tube 3.
  • the two gas-tight current feedthroughs 5a; 5b of the heating tube 2 rectified and arranged parallel to each other.
  • the current feedthroughs 5a; 5b merged together.
  • a heating element 4 is arranged in the form of a tungsten filament, while the cooling channel 3 a of the cooling tube 3 is surrounded by a reflector 8 in the form of an inner gilding.
  • connections 9a; 9b provided to connect the cooling tube 3 with a coolant line.

Abstract

Infrared radiating element made of vitreous silica comprises: (i) a heating pipe (2) having a gas-tight current leadthrough with an electrical heat conductor (4) arranged in the pipe as radiation source; (ii) a cooling element (3) having a cooling channel (3a) for liquid coolant in the region of the conductor; and (iii) a metallic reflector (8) with a reflecting surface. The reflecting surface inscribes a line around a surface through which a part of the liquid coolant can pass. Preferred Features: The reflector is made from a metal layer and the coolant channel of the cooling element is covered with the metal layer. The cooling element is a cooling tube surrounding a heating tube. The heat conductor is made of tungsten and the heating tube is filled with an inert gas doped with ammonium bromide or copper bromide.

Description

Die Erfindung betrifft ein kühlbares Infrarotstrahlerelement aus Kieselglas mit mindestens einem Heizrohr, das an seinen beiden Enden jeweils eine gasdichte Stromdurchführung aufweist, wobei im Heizrohr ein langgestreckter elektrischer Heizleiter als Strahlungsquelle angeordnet ist, mit mindestens einem Kühlelement, das mindestens einen Kühlkanal für ein flüssiges Kühlmittel aufweist, und zumindest im Bereich des Heizleiters mit einem metallischen Reflektor, der mindestens eine reflektierende Oberfläche aufweist.The invention relates to a coolable infrared radiator element made of silica glass with at least one heating tube having at its two ends in each case a gas-tight electrical feedthrough, wherein in the heating tube, an elongated electrical heating element is arranged as a radiation source, with at least one cooling element having at least one cooling channel for a liquid coolant , And at least in the region of the heat conductor with a metallic reflector having at least one reflective surface.

Derartige Infrarotstrahlerelemente sind aus der DE 26 37 338 C3 bekannt. Hier wird ein Infrarotstrahlerelement offenbart, das ein wassergekühltes Zwillingsrohr aus Kieselglas mit einem Heizrohr und einem Kühlrohr aufweist, wobei auf einer Oberfläche des Kühlrohres eine Reflexionsschicht aus Gold angebracht ist. Die Reflexionsschicht ist dabei entweder auf der Außenoberfläche des Kühlrohres oder auf derjenigen Oberfläche der gemeinsamen Wandfläche von Heizrohr und Kühlrohr aufgebracht, die dem Heizleiter abgekehrt ist. Eine erlaubte Energiekonzentration für diesen Strahler ist mit 400 kW/m2 beschrieben.Such infrared radiator elements are from the DE 26 37 338 C3 known. Here, an infrared radiating element is disclosed comprising a water cooled twin tube of fused silica with a heating tube and a cooling tube, wherein on a surface of the cooling tube, a reflective layer of gold is attached. The reflection layer is applied either on the outer surface of the cooling tube or on that surface of the common wall surface of heating tube and cooling tube, which is turned away from the heating element. An allowable energy concentration for this radiator is described as 400 kW / m 2 .

Die DD 257 200 A1 beschreibt eine Infrarot-Hochleistungsstrahlungsquelle, die einen langgestreckten Glühstrahler in einem Hüllrohr aufweist. Das Hüllrohr ist in einem Mantelrohr angeordnet und dabei zum Mantelrohr in der Ebene der Abstrahlungsrichtung um 3 bis 15% versetzt. Dabei ist das Mantelrohr von einen flüssigen Kühl- und Filtermedium durchströmt. Das Hüllrohr weist auf seiner dem flüssigen Medium zugewandten Oberfläche mehrere streifenförmige Zylindersegmente als Reflexionsflächen auf. Dagegen besitzt das Mantelrohr auf der dem flüssigen Medium abgewandten Oberfläche eine in etwa halbschalenförmige Reflexionsschicht. Zur Erreichung der maximalen Strahlungsleistung in Vorwärtsrichtung werden drei Zylindersegmente als Reflexionsflächen auf dem Hüllrohr angeordnet, wobei der Abstand zwischen zwei Zylindersegmenten gleich der Breite eines Zylindersegmentes ist und ein Zylindersegment parallel zur Reflexionsfläche auf dem Mantelrohr angeordnet ist.The DD 257 200 A1 describes a high power infrared radiation source having an elongated incandescent emitter in a cladding tube. The cladding tube is arranged in a jacket tube and thereby offset by 3 to 15% to the jacket tube in the plane of the radiation direction. The jacket tube is flowed through by a liquid cooling and filter medium. The cladding tube has on its surface facing the liquid medium a plurality of strip-shaped cylinder segments as reflecting surfaces. In contrast, the jacket tube has an approximately half-shell-shaped reflection layer on the surface facing away from the liquid medium. To achieve the maximum radiation power in the forward direction, three cylinder segments are arranged as reflection surfaces on the cladding tube, wherein the distance between two cylinder segments is equal to the width of a cylinder segment and a cylinder segment is arranged parallel to the reflection surface on the jacket tube.

Die EP 0 163 348 beschreibt eine Infrarot-Lampe mit einem gewendelten Wolfram-Heizleiter in einem Quarzgefäß. Das Quarzgefäß ist mit einem Halogen-Gas zur Ausbildung eines Halogen-Kreislaufes befüllt. Eine infrarotes Licht reflektierende Beschichtung aus Gold oder Rhodium bedeckt die Oberfläche des Quarzgefäßes vorzugsweise auf seiner gesamten Länge halbschalenförmig. Gasdichte, elektrische Durchführungen durch das Quarzgefäß sind mit in die Enden des Gefäßes eingequetschten dünnen Molybdänfolien mit elektrischen Anschlüssen realisiert.The EP 0 163 348 describes an infrared lamp with a coiled tungsten heating conductor in a quartz vessel. The quartz vessel is filled with a halogen gas to form a halogen cycle. An infrared-reflective coating of gold or rhodium covers the surface of the quartz vessel, preferably in the form of a half shell, over its entire length. Gas-tight, electrical passages through the quartz vessel are realized with pinched into the ends of the vessel thin molybdenum foils with electrical connections.

Die DE 28 03 122 C2 offenbart schließlich eine Halogen-Glühlampe mit einem Bromkreislauf, wobei die Glühlampe einen Glaskolben aus Quarzglas, ein Füllgas und eine Glühwendel aus Wolfram aufweist. Das Brom steht im Betriebszustand der Glühlampe nach Zersetzung eines in fester Form in den Glaskolben eingebrachten Metallbromids für den bekannten Wolfram-Halogen-Kreisprozess zur Verfügung. Als Metallbromid kommt hier Kupferbromid zur Anwendung.The DE 28 03 122 C2 finally discloses a halogen incandescent lamp with a bromine cycle, wherein the incandescent lamp comprises a glass bulb of quartz glass, a filling gas and a filament of tungsten. The bromine is available in the operating state of the incandescent lamp after decomposition of a solid in the glass bulb introduced metal bromide for the known tungsten-halogen cycle available. Copper bromide is used here as the metal bromide.

Es stellt sich die Aufgabe, einen Infrarotstrahler bereitzustellen, mit dem hohe Energiekonzentrationen > 500 kW/m2 erreichbar sind und bei dem die Strahlungsverluste gering sind.The object is to provide an infrared radiator, with the high energy concentrations> 500 kW / m 2 are achievable and in which the radiation losses are low.

Die Aufgabe wird dadurch gelöst, dass zumindest eine reflektierende Oberfläche im Querschnitt betrachtet eine Linie um eine Fläche beschreibt, wobei im Bereich der Fläche der Durchtritt von mindestens einem Teil des flüssigen Kühlmittels vorgesehen ist.The object is achieved in that, viewed in cross-section, at least one reflecting surface describes a line around a surface, wherein in the region of the surface the passage of at least part of the liquid coolant is provided.

Unter dem Querschnitt wird hier ein Schnitt senkrecht zur Längsachse des Heizrohres verstanden, bei welchem eine reflektierende Oberfläche nur als Linie zu erkennen ist. Eine dieser Linien soll nun im Querschnitt eine Fläche umschließen. Dabei kann die Linie vorzugsweise eine Kreislinie sein. Aber auch andere Linienform wie die der Linien um eine quadratische, eine rechteckige, eine dreieckige, eine elliptische, eine halbmondförmige oder um eine irgendwie regel- oder unmäßig geformte Fläche sind problemlos verwendbar. Es bildet demnach mindestens eine der im Querschnitt erkennbaren reflektierenden Oberflächen selbst einen Kanal für das flüssige Kühlmittel oder zumindest einen Teil davon.The cross section is here understood to mean a section perpendicular to the longitudinal axis of the heating tube, in which case a reflecting surface can only be recognized as a line. One of these lines should now enclose a surface in cross section. In this case, the line may preferably be a circular line. But other lines such as the lines around a square, a rectangular, a triangular, an elliptical, a crescent-shaped or a somehow regular or unduly shaped surface are easily usable. It therefore forms at least one of the reflective surfaces recognizable in cross-section itself a channel for the liquid coolant or at least a part thereof.

Mit dieser geometrischen Ausgestaltung ist es möglich, einen Hochleistungs-Infrarotstrahler mit geringem Strahlungsverlust und Energiekonzentrationen von ≥ 1 MW/m2 zu realisieren. Ein Heizrohr muss dabei für eine spezifische Leistung von bis zu 190 W/cm ausgelegt sein, wobei sehr hohe Heizleitertemperaturen im Bereich von circa 3000K notwendig sind. Bei diesen hohen Heizleitertemperaturen ist jedoch einerseits die Stabilität des Kieselglas-Heizrohres gefährdet und andererseits die Wahrscheinlichkeit für eine Überhitzung beziehungsweise ein Kochen des Kühlwassers und damit für einen Bruch des Strahlerelementes hoch. Die Stabilität des Kieselglas-Heizrohres wird nun im Sinne der Erfindung durch eine hohe Wärmeaufnahmefähigkeit des zur Kühlung verwendeten flüssigen Kühlmittels, hier insbesondere Wasser, erreicht. Die erfindungsgemäße Ausgestaltung des Reflektors verhindert andererseits, dass das Kühlmittel zu stark erhitzt wird. Das wäre beispielsweise der Fall bei einer Anordnung einer Reflexionsschicht auf der äußeren Oberfläche eines Kühlrohres, wie es aus dem Stand der Technik bereits bekannt ist.With this geometric configuration, it is possible to realize a high-power infrared radiator with low radiation loss and energy concentrations of ≥ 1 MW / m 2 . A heating tube must be designed for a specific power of up to 190 W / cm, whereby very high heating conductor temperatures in the range of about 3000K are necessary. At these high Heizleitertemperaturen, however, the stability of the silica glass heating tube is on the one hand endangered and on the other hand, the probability of overheating or boiling of the cooling water and thus high for a fraction of the radiator element. The stability of the silica glass heating tube is now within the meaning of the invention by a high heat absorption capacity of the liquid coolant used for cooling, in particular water, achieved. The inventive design of the reflector, on the other hand, prevents the coolant from being heated too much. This would be the case, for example, with an arrangement of a reflection layer on the outer surface of a cooling tube, as is already known from the prior art.

Nun sind allerdings unterschiedliche Möglichkeiten vorhanden, wie die spezielle reflektierende Oberfläche angeordnet werden kann.Now, however, there are different ways in which the special reflective surface can be arranged.

So kann der Reflektor aus einer Metallschicht gebildet sein, wobei das Kühlelement ein an das mindestens eine Heizrohr unmittelbar angrenzendes Kühlrohr mit mindestens einem Kühlkanal ist und wobei mindestens ein Kühlkanal mit der Metallschicht ausgekleidet ist. Als Metallschicht kommt hier vorzugsweise eine Innenvergoldung des Kühlrohrs in Frage.Thus, the reflector may be formed of a metal layer, wherein the cooling element is a directly adjacent to the at least one heating tube cooling tube with at least one cooling channel and wherein at least one cooling channel is lined with the metal layer. As a metal layer here is preferably an internal gilding of the cooling tube in question.

Der Reflektor kann aber auch aus einem dünnwandigen Metallteil gebildet sein, wobei das Kühlelement ein an das mindestens eine Heizrohr unmittelbar angrenzendes Kühlrohr mit mindestens einem Kühlkanal ist und wobei ein Kühlkanal mit dem Metallteil ausgekleidet ist. Das Metallteil kann hier durch eine Folie oder ein Blech gebildet sein, wobei eine Folie flexibler ist und an die Innendimensionen des Kühlrohres genauer angepasst werden kann.The reflector can also be formed from a thin-walled metal part, wherein the cooling element is a directly adjacent to the at least one heating tube cooling tube with at least one cooling channel and wherein a cooling channel is lined with the metal part. The metal part may here be formed by a foil or a sheet, wherein a foil is more flexible and can be adapted more precisely to the inner dimensions of the cooling tube.

Möglich ist auch, dass der Reflektor aus einem dünnwandigen Metallteil gebildet ist, dass das Kühlelement ein das mindestens eine Heizrohr umgebendes Kühlrohr ist und dass das dünnwandige Metallteil im Kühlrohr angeordnet ist. Hier kann vorzugsweise ein selbsttragender Reflektor mit Hohlstruktur im Kühlrohr angeordnet werden, aber auch eine Kombination von Reflektorschichten auf Kühl- und/oder Heizrohr sowie einem Metallteil sind verwendbar.It is also possible that the reflector is formed of a thin-walled metal part, that the cooling element is a cooling tube surrounding the at least one heating tube and that the thin-walled Metal part is arranged in the cooling tube. Here, preferably, a self-supporting reflector with a hollow structure in the cooling tube can be arranged, but also a combination of reflector layers on the cooling and / or heating tube and a metal part can be used.

Eine besondere Ausführungsform stellt ein Strahler dar, bei welchem das Kühlelement als metallischer Reflektor ausgebildet ist. Das bedeutet eine Verbindung von Kühleigenschaft und Reflexionsvermögen. Aufgrund der Undurchlässigkeit des Reflektors für Strahlung sollte dieser allerdings nur maximal 50% des Umfangs der äußeren Wandung des mindestens einen Heizrohres umschließen. Der Reflektor kann dabei mindestens zwei Kühlkanäle für den Transport des Kühlmittels aufweisen.A particular embodiment is a radiator in which the cooling element is designed as a metallic reflector. This means a combination of cooling property and reflectivity. Due to the impermeability of the reflector for radiation, however, this should only enclose a maximum of 50% of the circumference of the outer wall of the at least one heating tube. The reflector can have at least two cooling channels for the transport of the coolant.

Es hat sich bewährt, wenn der Heizleiter aus Wolfram gebildet ist und das Heizrohr mit einem inerten Gas befüllt ist, welches eine Halogen-Dotierung aufweist. Da es bei der hohen Heizleitertemperatur zu einem starken Abdampfen von Wolfram kommt, ist der Einsatz einer Halogen-Dotierung von vorzugsweise Ammoniumbromid oder Kupferbromid zur Ausbildung des Halogen-Kreisprozesses notwendig. Um im Bereich der elektrischen Stromdurchführungen eine Kondensation von Ammoniumbromid oder Kupferbromid zu vermeiden, wird zwischen dem Heizleiter und den gasdichten Stromdurchführungen jeweils eine elektrische Verbindungsleitung angeordnet, wobei der Durchmesser der Verbindungsleitung so dimensioniert ist, dass sich die Verbindungsleitung bei Nominalstrom aufgrund ihres elektrischen Widerstandes auf eine Temperatur von 600 bis 800°C erwärmt.It has proven useful if the heating conductor is formed from tungsten and the heating tube is filled with an inert gas which has a halogen doping. Since it comes at the high Heizleitertemperatur to a strong evaporation of tungsten, the use of a halogen doping of preferably ammonium bromide or copper bromide to form the halogen cycle process is necessary. In order to avoid condensation of ammonium bromide or copper bromide in the field of electrical current feedthroughs, an electrical connecting line is arranged between the heating conductor and the gas-tight current feedthroughs, wherein the diameter of the connecting line is dimensioned so that the connecting line at nominal current due to their electrical resistance to a Temperature of 600 to 800 ° C heated.

Anstelle eines Wolfram-Heizleiters kann auch ein Heizleiter aus einem Kohlenstoffband verwendet werden, wobei hier das Heizrohr mit Edelgas befüllt oder evakuiert werden kann. Dabei kann das Kohlenstoffband mit einer Feder gespannt oder gewendelt sein.Instead of a tungsten heat conductor, a heating conductor made of a carbon tape can be used, in which case the heating tube can be filled or evacuated with inert gas. The carbon tape can be tensioned or coiled with a spring.

Besonders bevorzugt wird ein Infrarotstrahlerelement, das ein erstes und ein zweites Heizrohr aufweist, wobei ein Teil der Wandfläche des ersten Heizrohres gleichzeitig Wandfläche des zweiten Heizrohres ist.Particularly preferred is an infrared radiating element having a first and a second heating tube, wherein a part of the wall surface of the first heating tube is simultaneously the wall surface of the second heating tube.

Um besonders geformte Teile oder Räume mit dem Infrarotstrahlerelement auf- oder beheizen zu können, können das Heizrohr und das Kühlelement gebogen ausgebildet werden.In order to heat or heat specially shaped parts or rooms with the infrared radiator element, the heating tube and the cooling element can be formed bent.

Aufgrund einer solchen Biegung können die beiden gasdichten Stromdurchführungen des Heizrohres gleichgerichtet und zueinander parallel angeordnet werden, wodurch zum Beispiel nur auf einer Seite eines Ofenraumes liegende elektrischen Anschlüsse für das Infrarotstrahlerelement verwendet werden können.Due to such a bend, the two gas-tight electrical feedthroughs of the heating tube can be rectified and arranged parallel to each other, whereby for example only lying on one side of a furnace chamber electrical connections for the infrared radiating element can be used.

Zur Gewährleistung der Stabilität des Heizrohres aus Kieselglas wird das Heizrohr zudem bevorzugt mit einem Innendurchmesser von 10 - 17mm ausgeführt.To ensure the stability of the heating tube made of silica glass, the heating tube is also preferably carried out with an inner diameter of 10 - 17mm.

In diesem Zusammenhang sollte das Verhältnis von Wendeldurchmesser eines gewendelten Heizleiters zu Innendurchmesser des Heizrohres mindestens 1:3 betragen.In this context, the ratio of helical diameter of a coiled heating conductor to the inner diameter of the heating tube should be at least 1: 3.

Die nachfolgend aufgeführten Figuren 1 bis 7 sollen den Erfindungsgedanken beispielhaft erläutern. So zeigt

Fig. 1
ein Infrarotstrahlerelement mit einem Heizrohr, einem Kühlrohr und einer Wolf- ramwendel als Heizleiter
Fig. 1a
einen Querschnitt durch das Infrarotstrahlerelement aus Fig. 1 mit Innenvergol- dung des Kühlrohres
Fig. 1b
einen Querschnitt durch das Infrarotstrahlerelement aus Fig. 1 mit einer Ausklei- dung des Kühlrohres mit reflektierender Metallfolie
Fig. 1c
einen Querschnitt durch das Infrarotstrahlerelement aus Fig. 1 mit einer Ausklei- dung des Kühlrohres mit reflektierendem Metallblech
Fig. 2
ein Infrarotstrahlerelement mit einem Heizrohr, einem Kühlrohr und einem als Kohlenstoffband ausgebildeten Heizleiter
Fig. 2a
eine Seitenansicht des Infrarotstrahlerelementes aus Fig. 2
Fig. 3a
ein Infrarotstrahlerelement mit zwei Heizrohren, zwei Kühlkanälen und Kohlen- stoffbändem als Heizleiter im Querschnitt
Fig. 3b
ein Infrarotstrahlerelement mit zwei Heizrohren, zwei Kühlkanälen und Wolfram- wendeln als Heizleiter im Querschnitt
Fig. 4a
ein Infrarotstrahlerelement mit einem Heizrohr, zwei Kühlkanälen und einer Wolf- ramwendel als Heizleiter im Querschnitt
Fig. 4b
ein Infrarotstrahlerelement mit einem Heizrohr, zwei Kühlkanälen und einem Kohlenstoffband als Heizleiter im Querschnitt
Fig. 5a
ein Infrarotstrahlerelement mit zwei Heizrohren in einem Kühlrohr und Wotfram- wendeln als Heizleiter im Querschnitt
Fig. 5b
eine Seitenansicht des Infrarotstrahlerelementes aus Fig. 5a
Fig. 6a
eine Seitenansicht eines Infrarotstrahlerelementes mit zwei Heizrohren in einem Kühlrohr
Fig. 6b
das Infrarotstrahlerelement aus Fig. 6a im Querschnitt
Fig. 6c
das Infrarotstrahlerelement aus Fig. 6a in einer weiteren Seitenansicht
Fig. 7
ein Infrarotstrahlerelement mit gebogenem Heiz- und Kühlrohr.
The following FIGS. 1 to 7 are intended to illustrate the idea of the invention by way of example. So shows
Fig. 1
an infrared radiator element with a heating tube, a cooling tube and a tungsten filament as heating conductor
Fig. 1a
a cross section through the infrared radiator element Fig. 1 with internal gilding of the cooling tube
Fig. 1b
a cross section through the infrared radiator element Fig. 1 with a lining of the cooling tube with reflective metal foil
Fig. 1c
a cross section through the infrared radiator element Fig. 1 with a lining of the cooling tube with reflective metal sheet
Fig. 2
an infrared radiator element with a heating tube, a cooling tube and a heating element designed as a carbon band
Fig. 2a
a side view of the infrared radiator element Fig. 2
Fig. 3a
an infrared radiator element with two heating tubes, two cooling channels and carbon bands as heat conductor in cross section
Fig. 3b
an infrared radiator element with two heating tubes, two cooling channels and tungsten coils as heat conductor in cross section
Fig. 4a
an infrared radiator element with a heating tube, two cooling channels and a tungsten filament heating conductor in cross section
Fig. 4b
an infrared radiator element with a heating tube, two cooling channels and a carbon band as a heating conductor in cross section
Fig. 5a
an infrared radiator element with two heating tubes in a cooling tube and Wotfram- coils as heat conductor in cross section
Fig. 5b
a side view of the infrared radiator element Fig. 5a
Fig. 6a
a side view of an infrared radiator element with two heating pipes in a cooling tube
Fig. 6b
the infrared radiator element Fig. 6a in cross section
Fig. 6c
the infrared radiator element Fig. 6a in another side view
Fig. 7
an infrared radiator element with curved heating and cooling tube.

Figur 1 zeigt ein Infrarotstrahlerelement 1 mit einem Heizrohr 2 und einem Kühlrohr 3 aus Kieselglas. Im Heizrohr 2 befindet sich ein langgestreckter elektrischer Heizleiter 4, der mittels Distanzstücken 4a, die üblicherweise aus Wolfram hergestellt sind, positioniert ist. Der Heizleiter 4 ist hier aus Wolfram in Form einer Wendel ausgeführt, wobei das Heizrohr 2 mit einem inerten Gas befüllt ist, welches eine Halogen-Dotierung aufweist. Als inertes Gas ist hier Argon gewählt, während für die Halogen-Dotierung Ammoniumbromid gewählt ist. Zwischen dem Heizleiter 4 und den gasdichten Stromdurchführungen 5a; 5b durch das Heizrohr 2 ist jeweils eine elektrische Verbindungsleitung 6a; 6b angeordnet, wobei der Durchmesser der Verbindungsleitungen 6a; 6b jeweils so dimensioniert ist, dass sich jede Verbindungsleitung 6a; 6b bei Nominalstrom aufgrund ihres elektrischen Widerstandes auf eine Temperatur von 600 bis 800°C erwärmt. Die gasdichten Stromdurchführungen 5a; 5b sind durch eine Quetschung und/oder Verschmelzung des Kieselglases an den beiden Endes des Heizrohres 2 gebildet. FIG. 1 shows an infrared radiator element 1 with a heating tube 2 and a cooling tube 3 made of silica glass. In the heating tube 2 is an elongated electrical heating conductor 4, which is positioned by means of spacers 4a, which are usually made of tungsten. The heating conductor 4 is here made of tungsten in the form of a helix, wherein the heating tube 2 is filled with an inert gas having a halogen doping. Argon is chosen here as the inert gas, while ammonium bromide is chosen for the halogen doping. Between the heating conductor 4 and the gas-tight current feedthroughs 5a; 5b through the heating tube 2 is in each case an electrical connection line 6a; 6b, wherein the diameter of the connecting lines 6a; 6b is dimensioned so that each connecting line 6a; 6b heated at nominal current due to their electrical resistance to a temperature of 600 to 800 ° C. The gas-tight current feedthroughs 5a; 5 b are formed by a pinch and / or fusion of the silica glass at the two ends of the heating tube 2.

Hier ist eine dem Fachmann hinreichend bekannte Methode verwendet, bei der eine dünne Molybdänfolie 7a; 7b eingeschmolzen wird. Das Kühlrohr 3 weist einen Kühlkanal auf, der durch einen metallischen Reflektor 8 belegt ist. Der Reflektor 8 kann entweder durch eine dünne Innenvergoldung des Kühlrohres 3 gebildet sein ( siehe Fig. 1a) oder aber durch ein nichtoxidierendes Metallblech mit reflektierender Oberfläche, beispielsweise ein Goldblech oder eine nichtoxidierende Metallfolie mit reflektierender Oberfläche, beispielsweise eine Goldfolie, mit welchem/welcher der Kühlkanal ausgekleidet wird ( siehe Figuren 1b und 1c ), gebildet werden. Am Kühlrohr 3 sind Anschlüsse 9a; 9b zur Verbindung des Kühlrohres 3 mit einer Kühlmittelleitung angebracht, wobei Wasser als flüssiges Kühlmittel vorgesehen ist.Here, a method known to a person skilled in the art is used, in which a thin molybdenum foil 7a; 7b is melted down. The cooling tube 3 has a cooling channel which is occupied by a metallic reflector 8. The reflector 8 may be formed either by a thin inner gilding of the cooling tube 3 (see Fig. 1a ) or by a non-oxidizing metal sheet having a reflective surface, for example a gold sheet or a non-oxidizing metal foil with a reflective surface, for example a gold foil, with which the cooling channel is lined (see Figures 1b and 1c ). At the cooling tube 3 are connections 9a; 9b mounted for connection of the cooling tube 3 with a coolant line, wherein water is provided as a liquid coolant.

Figur 1a zeigt einen Querschnitt A - A' durch das Infrarotstrahlerelement gemäß Figur 1 mit dem Heizrohr 2 und dem Kühlrohr 3, welches einen Kühlkanal 3a für das flüssige Kühlmittel aufweist. Im Heizrohr 2 ist der Heizleiter 4 in Wendelform gezeigt, der mittels Distanzstücken 4a positioniert ist. Das Kühlrohr 3 weist einen Reflektor 8a in Form einer Innenvergoldung in Schichtform auf. FIG. 1a shows a cross section A - A 'through the infrared radiating element according to FIG. 1 with the heating tube 2 and the cooling tube 3, which has a cooling channel 3a for the liquid coolant. In the heating tube 2, the heating element 4 is shown in helical form, by means of spacers 4a is positioned. The cooling tube 3 has a reflector 8a in the form of an inner gilding in a layered form.

Figur 1b zeigt einen Querschnitt A - A' durch das Infrarotstrahlerelement gemäß Figur 1 mit dem Heizrohr 2 und dem Kühlrohr 3, welches einen Kühlkanal 3a für das flüssige Kühlmittel aufweist. Im Heizrohr 2 ist der Heizleiter 4 in Wendelform gezeigt, der mittels Distanzstücken 4a positioniert ist. Das Kühlrohr 3 weist einen Reflektor 8b in Form einer nichtoxidierenden Metallfolie mit reflektierender Oberfläche, beispielsweise einer Goldfolie auf, die in direktem Kontakt zum Kühlrohr 3 angeordnet ist. FIG. 1b shows a cross section A - A 'through the infrared radiating element according to FIG. 1 with the heating tube 2 and the cooling tube 3, which has a cooling channel 3a for the liquid coolant. In the heating tube 2, the heating element 4 is shown in helical form, which is positioned by means of spacers 4a. The cooling tube 3 has a reflector 8b in the form of a non-oxidizing metal foil with a reflective surface, for example a gold foil, which is arranged in direct contact with the cooling tube 3.

Figur 1c zeigt einen Querschnitt A - A' durch das Infrarotstrahlerelement gemäß Figur 1 mit dem Heizrohr 2 und dem Kühlrohr 3, welches einen Kühlkanal 3a für das flüssige Kühlmittel aufweist. Im Heizrohr 2 ist der Heizleiter 4 in Wendelform gezeigt, der mittels Distanzstücken 4a positioniert ist. Das Kühlrohr 3 weist einen Reflektor 8c in Form eines nichtoxidierendes Metallblechs mit reflektierender Oberfläche, beispielsweise eines Goldblechs auf, das in den Kühlkanal 3a des Kühlrohrs 3 eingelegt ist. Figure 1c shows a cross section A - A 'through the infrared radiating element according to FIG. 1 with the heating tube 2 and the cooling tube 3, which has a cooling channel 3a for the liquid coolant. In the heating tube 2, the heating element 4 is shown in helical form, which is positioned by means of spacers 4a. The cooling tube 3 has a reflector 8c in the form of a non-oxidizing metal sheet with a reflective surface, for example a gold sheet, which is inserted into the cooling channel 3a of the cooling tube 3.

Figur 2 zeigt ein ähnliches Infrarotstrahlerelement 1 wir Figur 1 mit einem Heizrohr 2 und einem Kühlrohr 3 aus Kieselglas. Im Heizrohr 2 befindet sich ein langgestreckter elektrischer Heizleiter 4, der mittels einer Feder 10 gespannt ist. Der Heizleiter 4 ist hier als Kohlenstoffband ausgeführt, wobei das Heizrohr 2 evakuiert ist. Die gasdichten Stromdurchführungen 5a; 5b sind wie in Figur 1 gebildet. Das Kühlrohr 3 weist einen Kühlkanal auf, der durch einen metallischen Reflektor 8 belegt ist. Der Reflektor 8 kann entweder durch eine dünne Innenvergoldung des Kühlrohres 3 gebildet sein ( siehe Fig. 1a) oder aber durch ein nichtoxidierendes Metallblech mit reflektierender Oberfläche, beispielsweise ein Goldblech oder eine nichtoxidierende Metallfolie mit reflektierender Oberfläche, beispielsweise eine Goldfolie, mit welchem/welcher der Kühlkanal ausgekleidet wird ( siehe Fig. 1b und 1c ), gebildet werden. Am Kühlrohr 3 sind Anschlüsse 9a; 9b zur Verbindung des Kühlrohres 3 mit einer Kühlmittelleitung angebracht, wobei Wasser als flüssiges Kühlmittel vorgesehen ist. FIG. 2 shows a similar infrared radiator element 1 us FIG. 1 with a heating tube 2 and a cooling tube 3 made of silica glass. In the heating tube 2 is an elongated electrical heating element 4, which is tensioned by a spring 10. The heating conductor 4 is designed here as a carbon tape, wherein the heating tube 2 is evacuated. The gas-tight current feedthroughs 5a; 5b are like in FIG. 1 educated. The cooling tube 3 has a cooling channel which is occupied by a metallic reflector 8. The reflector 8 may be formed either by a thin inner gilding of the cooling tube 3 (see Fig. 1a ) or by a non-oxidizing metal sheet having a reflective surface, for example a gold sheet or a non-oxidizing metal foil with a reflective surface, for example a gold foil, with which the cooling channel is lined (see Fig. 1b and 1c ). At the cooling tube 3 are connections 9a; 9b mounted for connection of the cooling tube 3 with a coolant line, wherein water is provided as a liquid coolant.

Figur 3a zeigt ein Infrarotstrahlerelement 1 im Querschnitt mit zwei Heizrohren 2a; 2b aus Kieselglas, in welchen jeweils ein Heizleiter 4a; 4b aus Kohlenstoffband angeordnet ist. An die beiden Heizrohre 2a; 2b ist an einer Seite ein metallischer Reflektor 8 formschlüssig angebracht, der hier nicht nur die Funktion eines Reflektors sondern gleichzeitig die eines Kühlelementes übernimmt. Der Reflektor 8 weist zwei Kühlkanäle 3a; 3b zur Aufnahme des flüssigen Kühlmittels auf. FIG. 3a shows an infrared radiating element 1 in cross-section with two heating tubes 2a; 2b made of silica glass, in each of which a heating conductor 4a; 4b is arranged from carbon tape. To the two Heating pipes 2a; 2 b, a metallic reflector 8 is attached in a form-fitting manner on one side, which assumes not only the function of a reflector but simultaneously that of a cooling element. The reflector 8 has two cooling channels 3a; 3b for receiving the liquid coolant.

Figur 3b zeigt ein Infrarotstrahlerelement 1 im Querschnitt mit zwei Heizrohren 2a; 2b aus Kieselglas, in welchen jeweils ein Heizleiter 4a; 4b in Form einer Wolframwendel angeordnet ist. An die beiden Heizrohre 2a; 2b ist an einer Seite ein metallischer Reflektor 8 formschlüssig angebracht, der hier nicht nur die Funktion eines Reflektors sondern gleichzeitig die eines Kühlelementes übernimmt. Der Reflektor 8 weist zwei Kühlkanäle 3a; 3b zur Aufnahme des flüssigen Kühlmittels auf. FIG. 3b shows an infrared radiating element 1 in cross-section with two heating tubes 2a; 2b made of silica glass, in each of which a heating conductor 4a; 4b is arranged in the form of a tungsten filament. To the two heating pipes 2a; 2 b, a metallic reflector 8 is attached in a form-fitting manner on one side, which assumes not only the function of a reflector but simultaneously that of a cooling element. The reflector 8 has two cooling channels 3a; 3b for receiving the liquid coolant.

Figur 4a zeigt ein Infrarotstrahlerelement 1 im Querschnitt mit einem Heizrohr 2 aus Kieselglas, in welchem ein Heizleiter 4 in Form einer Wolframwendel angeordnet ist. An dem Heizrohr 2 ist an einer Seite ein metallischer Reflektor 8 formschlüssig angebracht, der hier nicht nur die Funktion eines Reflektors sondern gleichzeitig die eines Kühlelementes übernimmt. Der Reflektor 8 weist zwei Kühlkanäle 3a; 3b zur Aufnahme des flüssigen Kühlmittels auf. FIG. 4a shows an infrared radiating element 1 in cross section with a heating tube 2 made of silica glass, in which a heating element 4 is arranged in the form of a tungsten filament. On the heating tube 2, a metallic reflector 8 is positively mounted on one side, which takes over here not only the function of a reflector but at the same time that of a cooling element. The reflector 8 has two cooling channels 3a; 3b for receiving the liquid coolant.

Figur 4b zeigt ein Infrarotstrahlerelement 1 im Querschnitt mit einem Heizrohr 2 aus Kieselglas, in welchem ein Heizleiter 4 in Form eines Kohlenstoffbandes angeordnet ist. An dem Heizrohr 2 ist an einer Seite ein metallischer Reflektor 8 formschlüssig angebracht, der hier nicht nur die Funktion eines Reflektors sondern gleichzeitig die eines Kühlelementes übernimmt. Der Reflektor 8 weist zwei Kühlkanäle 3a; 3b zur Aufnahme des flüssigen Kühlmittels auf. FIG. 4b shows an infrared radiating element 1 in cross section with a heating tube 2 made of silica glass, in which a heating element 4 is arranged in the form of a carbon band. On the heating tube 2, a metallic reflector 8 is positively mounted on one side, which takes over here not only the function of a reflector but at the same time that of a cooling element. The reflector 8 has two cooling channels 3a; 3b for receiving the liquid coolant.

Figur 5a zeigt ein Infrarotstrahlerelement 1 im Querschnitt B - B' mit zwei Heizrohren inklusive Wolframwendeln in einem Kühlrohr 3 aus Kieselglas. Das Kühlrohr 3 weist einen Kühlkanal 3a auf, in welchen die Heizrohre angeordnet sind und so von einem flüssigen Kühlmittel umspült werden können. Auf einer Seite der Heizrohre ist ein metallischer Reflektor 8 im Kühlkanal 3a angeordnet, der einen halbmondförmige Hohlquerschnitt aufweist und dadurch von einem Kühlmittel durchströmt werden kann. Zur Verbindung des Kühlrohres 3 mit einer Kühlmittelleitung sind Anschlüsse 9a; ( und 9b, siehe Fig. 5b ) vorgesehen. FIG. 5a shows an infrared radiator element 1 in cross section B - B 'with two heating tubes including tungsten filaments in a cooling tube 3 made of silica glass. The cooling tube 3 has a cooling channel 3a, in which the heating tubes are arranged and so can be lapped by a liquid coolant. On one side of the heating tubes, a metallic reflector 8 is arranged in the cooling channel 3a, which has a crescent-shaped hollow cross-section and thereby can be flowed through by a coolant. To connect the cooling tube 3 with a coolant line are connections 9a; (and 9b, see Fig. 5b ) intended.

Figur 5b zeigt das Infrarotstrahlerelement 1 aus Fig. 5a in einer Seitenansicht, bei welcher der Reflektor nicht erkennbar ist. Hier sind jedoch die Heizrohre 2a; 2b sowie die Wolframwendeln 4a; 4b deutlich zu erkennen. Zwischen den Heizleitern 4a; 4b und den gasdichten Stromdurchführungen 5a; 5b durch die Heizrohre 2a; 2b ist jeweils eine elektrische Verbindungsleitung 6a; 6b; 6c; 6d angeordnet, wobei der Durchmesser der Verbindungsleitungen 6a; 6b; 6c; 6d jeweils so dimensioniert ist, dass sich jede Verbindungsleitung 6a; 6b; 6c; 6d bei Nominalstrom aufgrund ihres elektrischen Widerstandes auf eine Temperatur von 600 bis 800°C erwärmt. Die gasdichten Stromdurchführungen 5a; 5b sind durch eine Quetschung und/oder Verschmelzung des Kieselglases an den beiden Endes der Heizrohre 2a; 2b gebildet. Das Kühlrohr 3 umgibt beide Heizrohre 2a; 2b beabstandet und kann über die Anschlüsse 9a; 9b für das Kühlmittel mit einer Kühlmittelleitung verbunden werden. FIG. 5b shows the infrared radiator element 1 from Fig. 5a in a side view, in which the reflector is not visible. Here, however, the heating pipes 2a; 2b and the tungsten filaments 4a; 4b clearly visible. Between the heating conductors 4a; 4b and the gas-tight current feedthroughs 5a; 5b through the heating pipes 2a; 2b is in each case an electrical connection line 6a; 6b; 6c; 6d, wherein the diameter of the connecting lines 6a; 6b; 6c; 6d each dimensioned so that each connecting line 6a; 6b; 6c; 6d heated at nominal current due to their electrical resistance to a temperature of 600 to 800 ° C. The gas-tight current feedthroughs 5a; 5b are characterized by a crushing and / or fusing of the silica glass at the two ends of the heating tubes 2a; 2b formed. The cooling tube 3 surrounds both heating tubes 2a; 2b spaced and can via the terminals 9a; 9b for the coolant to be connected to a coolant line.

Figur 6a zeigt ein Infrarotstrahlerelement 1 mit zwei Heizrohren 2a; 2b in einem Kühlrohr 3 aus Kieselglas, das zwei Anschlüsse 9a; 9b für das flüssige Kühlmittel aufweist. In den Heizrohren 2a; 2b ist jeweils ein Heizleiter 4a; 4b in Form eines Kohlenstoffbandes angeordnet, das jeweils über eine Feder 10a; 10b gespannt wird. Außerdem weisen die Heizrohre 2a; 2b gasdichte Stromdurchführungen 5a; 5b auf. FIG. 6a shows an infrared radiator element 1 with two heating tubes 2a; 2b in a cooling tube 3 made of silica glass, the two terminals 9a; 9b for the liquid coolant. In the heating pipes 2a; 2b is a heating conductor 4a; 4b arranged in the form of a carbon band, each via a spring 10a; 10b is stretched. In addition, the heating tubes 2a; 2b gas-tight current feedthroughs 5a; 5b on.

Figur 6b zeigt das Infrarotstrahlerelement aus Fig. 6a im Querschnitt C - C', wobei der Reflektor 8 mit halbmondförmiger Hohlform im Kühlkanal 3a zu erkennen ist. Selbstverständlich kann der Reflektor 8 auch in einer anderen Form ausgebildet werden, beispielsweise formschlüssig an die Heizrohre 2a; 2b sowie das Kühlrohr 3 angepasst. FIG. 6b shows the infrared radiator element Fig. 6a in cross section C - C ', wherein the reflector 8 can be seen with a half-moon-shaped hollow shape in the cooling channel 3a. Of course, the reflector 8 can also be formed in a different shape, for example, a form-fitting manner to the heating tubes 2a; 2b and the cooling tube 3 adapted.

Figur 6c zeigt einen Längsschnitt durch das Infrarotstrahlerelement 1 aus Fig. 6a. Es ist das Kühlrohr 3 sowie eines der darin angeordneten Heizrohre 2a zu erkennen. Im Heizrohr 2a befindet sich der Heizleiter 4a in Form des Kohlenstoffbandes, der mit der Feder 10a gespannt ist. Außerdem sind die gasdichten Stromdurchführungen 5a; 5b zu erkennen. Der Reflektor ist in dieser Figur nicht dargestellt. FIG. 6c shows a longitudinal section through the infrared radiator element 1 from Fig. 6a , It is the cooling tube 3 and one of the heating tubes 2a arranged therein to recognize. In the heating tube 2a is the heating element 4a in the form of the carbon band, which is stretched with the spring 10a. In addition, the gas-tight current feedthroughs 5a; 5b to recognize. The reflector is not shown in this figure.

Figur 7 zeigt ein Infrarotstrahlerelement 1 mit einem gebogenen Heizrohr 2 und einem gebogenen Kühlrohr 3. Dabei sind die beiden gasdichten Stromdurchführungen 5a; 5b des Heizrohres 2 gleichgerichtet und zueinander parallel angeordnet. Um die mechanische Festigkeit der Anordnung zu erhöhen, können die Stromdurchführungen 5a; 5b miteinander verschmolzen sein. Im Heizrohr 2 ist ein Heizleiter 4 in Form einer Wolframwendel angeordnet, während der Kühlkanal 3a des Kühlrohres 3 von einem Reflektor 8 in Form einer Innenvergoldung umgeben ist. Zur Verbindung des Kühlrohres 3 mit einer Kühlmittelleitung sind Anschlüsse 9a; 9b vorgesehen. FIG. 7 shows an infrared radiator element 1 with a curved heating tube 2 and a bent cooling tube 3. In this case, the two gas-tight current feedthroughs 5a; 5b of the heating tube 2 rectified and arranged parallel to each other. To the mechanical strength of the arrangement to increase, the current feedthroughs 5a; 5b merged together. In the heating tube 2, a heating element 4 is arranged in the form of a tungsten filament, while the cooling channel 3 a of the cooling tube 3 is surrounded by a reflector 8 in the form of an inner gilding. To connect the cooling tube 3 with a coolant line are connections 9a; 9b provided.

Claims (16)

  1. Coolable infrared radiator element (1) of quartz glass with
    - at least one heating tube (2) which has, on its two ends, one gas-tight current bushing each (5a, 5b), with an elongated electrical heating conductor being arranged as a radiation source in the heating tube,
    - at least one cooling element which has at least one cooling channel (3) for a liquid coolant, and at least in the area of the heating conductor
    - a metallic reflector (8) which has at least one reflecting surface,
    - characterized in that the
    - at least one reflecting surface, seen in cross-section, describes a line around a surface, with the passage of at least one part of the liquid coolant being provided in the area of the surface.
  2. Infrared radiator element according to claim 1, characterized in that the reflector is formed of a metal layer, that the cooling element is a cooling tube with at least one cooling channel and directly adjacent to the at least one heating tube, and that at least one cooling channel is lined with the metal layer.
  3. Infrared radiator element according to claim 1, characterized in that the reflector is formed of a thin-walled metal part, that the cooling element is a cooling tube with at least one cooling channel and directly adjacent to the at least one heating tube, and that one cooling channel is lined with the metal part.
  4. Infrared radiator element according to claim 1, characterized in that the reflector is formed of a thin-walled metal part, that the cooling element is a cooling tube surrounding the at least one heating tube, and that the thin-walled metal part is arranged in the cooling tube.
  5. Infrared radiator element according to claim 1, characterized in that the cooling element is designed as a metallic reflector and that the reflector encloses a maximum of 50% of the circumference of the exterior wall of the at least one heating tube.
  6. Infrared radiator element according to claim 5, characterized in that the reflector has at least two cooling channels for the coolant transport.
  7. Infrared radiator element according to any one of the claims 1 to 6, characterized in that the heating conductor is made of tungsten and that the heating tube is filled with an inert gas having halogen doping.
  8. Infrared radiator element according to claim 7, characterized in that the halogen doping is made of ammonium bromide or copper bromide.
  9. Infrared radiator element according to any one of the claims 7 to 8, characterized in that one electrical connection line each is arranged between the heating conductor and the gas-tight current bushings, with the diameter of the connection line being dimensioned such that, at nominal current, the connection line heats up to a temperature of 600 to 800°C due to its electrical resistance.
  10. Infrared radiator element according to any one of the claims 1 to 6, characterized in that the heating conductor is made of a carbon strip and the heating tube is filled with rare gas.
  11. Infrared radiator element according to any one of the claims 1 to 6, characterized in that the heating conductor is made of a carbon strip and the heating tube is evacuated.
  12. Infrared radiator element according to any one of the claims 1 to 11, characterized in that a first and a second heating tube are provided, with one part of the wall surface of the first heating tube being at the same time the wall surface of the second heating tube.
  13. Infrared radiator element according to any one of the claims 1 to 12, characterized in that the heating tube and the cooling element are bent in design.
  14. Infrared radiator element according to claim 13, characterized in that the two gas-tight current bushings of the heating tube are rectified and arranged parallel to each other.
  15. Infrared radiator element according to any one of the claims 1 to 14, characterized in that the heating tube has an inside diameter of 10 to 17mm.
  16. Infrared radiator element according to claim 15, characterized in that the heating conductor is helically wound and that the ratio of winding diameter to inside diameter of the heating tube is at least 1 to 3.
EP01116888A 2000-08-24 2001-07-11 Infrared radiator with a cooling facility Expired - Lifetime EP1182689B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10041564 2000-08-24
DE10041564A DE10041564C2 (en) 2000-08-24 2000-08-24 Coolable infrared radiator element

Publications (2)

Publication Number Publication Date
EP1182689A1 EP1182689A1 (en) 2002-02-27
EP1182689B1 true EP1182689B1 (en) 2010-04-21

Family

ID=7653630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01116888A Expired - Lifetime EP1182689B1 (en) 2000-08-24 2001-07-11 Infrared radiator with a cooling facility

Country Status (5)

Country Link
US (1) US6713945B2 (en)
EP (1) EP1182689B1 (en)
JP (1) JP3530509B2 (en)
AT (1) ATE465508T1 (en)
DE (2) DE10041564C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109874182A (en) * 2017-12-01 2019-06-11 中国飞机强度研究所 A kind of Novel quartz lamp heating device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050163937A1 (en) * 2002-03-06 2005-07-28 Bernard Hansz Method for photopolymerization of a polymerisable coating, installation therefor and product comprising the coating obtained
DE10211249B4 (en) * 2002-03-13 2004-06-17 Heraeus Noblelight Gmbh Use of a shiny precious metal preparation
FR2843629B1 (en) * 2002-08-14 2005-05-06 Joint Industrial Processors For Electronics FAST THERMAL PROCESSING DEVICE HAVING INSIDE THE REACTION CHAMBER OF COLD-WALLED HALOGEN INFRARED LAMPS
US7691928B2 (en) 2003-02-04 2010-04-06 Sony Corporation Resin composition and process for producing resin molding
JP2004273453A (en) 2003-03-04 2004-09-30 Heraeus Noblelight Gmbh Infrared emitter element and its use
DE102004002357A1 (en) * 2004-01-15 2005-08-11 Heraeus Noblelight Gmbh Method for operating an infrared radiating element and use
DE102004029364B4 (en) * 2004-01-28 2012-12-20 Advanced Photonics Technologies Ag Halogen lamp for the near infrared and method for producing such
JP4734885B2 (en) * 2004-10-08 2011-07-27 ウシオ電機株式会社 Heating unit
KR100767851B1 (en) * 2005-07-14 2007-10-18 엘지전자 주식회사 Structure of heating body
DE102005034627A1 (en) * 2005-07-19 2007-02-01 Takata-Petri Ag Apparatus and method for removing an elongated ridge on a molding
RU2503905C2 (en) * 2008-04-14 2014-01-10 Хемлок Семикондактор Корпорейшн Production plant for deposition of material and electrode for use in it
WO2009128887A1 (en) * 2008-04-14 2009-10-22 Hemlock Semiconductor Corporation Manufacturing apparatus for depositing a material on an electrode for use therein
CN102047751B (en) * 2008-04-14 2014-01-29 赫姆洛克半导体公司 Manufacturing apparatus for depositing a material and an electrode for use therein
JP2009277868A (en) * 2008-05-14 2009-11-26 Sumitomo Electric Ind Ltd Heating device and method of manufacturing semiconductor substrate
JP5251398B2 (en) * 2008-09-26 2013-07-31 ウシオ電機株式会社 Filament lamp
CN201599867U (en) * 2010-01-27 2010-10-06 任建华 Waterproof electric heater
JP4790092B1 (en) * 2010-04-30 2011-10-12 日本碍子株式会社 Coating film drying furnace
KR101036509B1 (en) * 2010-09-30 2011-05-24 정광호 Apparatus for making hot water using carbon heater
DE102011115841A1 (en) * 2010-11-19 2012-05-24 Heraeus Noblelight Gmbh irradiator
ES2390141B1 (en) * 2011-03-21 2013-07-19 Jesús Francisco Barberán Latorre HEATER FOR THERMOCONFORMING COATING FOLIOS.
EP3013196B1 (en) * 2013-06-26 2019-03-06 Nestec S.A. Volumetric heating device for beverage or food preparation machine
JP6293509B2 (en) * 2014-02-07 2018-03-14 日本碍子株式会社 Infrared heater and infrared heater unit
DE102015101511B3 (en) * 2015-02-03 2016-04-07 Heraeus Noblelight Gmbh Apparatus for irradiating a cylindrical substrate
DE102015119763A1 (en) * 2015-11-16 2017-05-18 Heraeus Quarzglas Gmbh & Co. Kg infrared Heaters
CN111757564A (en) * 2019-03-26 2020-10-09 临沂华庚新材料科技有限公司 Heating device
US11963268B2 (en) * 2019-06-19 2024-04-16 Oregon State University Resistance heater rod and method of making such
US11370213B2 (en) 2020-10-23 2022-06-28 Darcy Wallace Apparatus and method for removing paint from a surface

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE257200C (en)
US3627989A (en) * 1969-12-11 1971-12-14 Thermal Quarr Schmelze Gmbh Infrared surface heater
DE2637338C3 (en) * 1976-08-19 1979-08-09 Heraeus Quarzschmelze Gmbh, 6450 Hanau Coolable infrared radiator element
US4125493A (en) 1977-04-01 1978-11-14 The Gates Rubber Company Fibrated admix or polymer and process therefore
DE2803122A1 (en) * 1978-01-25 1979-07-26 Original Hanau Quarzlampen Incandescent tungsten filament halogen lamp - has filament at least partly coated with thermally decomposable metal bromide dissolved in volatile hydrocarbon
GB8308103D0 (en) * 1983-03-24 1983-05-05 Emi Plc Thorn Quartz infra-red lamps
US4588923A (en) * 1983-04-29 1986-05-13 General Electric Company High efficiency tubular heat lamps
DD257200B1 (en) * 1987-01-19 1991-05-23 Ardenne Forschungsinst INFRARED HIGH PERFORMANCE RADIATION SOURCE
US4839559A (en) * 1988-02-22 1989-06-13 General Electric Company Radiant energy incandescent lamp
DE8913683U1 (en) * 1989-11-20 1990-01-11 Heraeus Quarzschmelze Gmbh, 6450 Hanau, De
GB2278722A (en) * 1993-05-21 1994-12-07 Ea Tech Ltd Improvements relating to infra-red radiation sources
US5382805A (en) * 1993-11-01 1995-01-17 Fannon; Mark G. Double wall infrared emitter
DE4419285C2 (en) * 1994-06-01 1999-01-28 Heraeus Noblelight Gmbh Infrared heater
DE19722215A1 (en) * 1996-06-05 1997-12-11 Heraeus Noblelight Gmbh Infra=red radiator with manufacturing method
DE19822829A1 (en) * 1998-05-20 1999-11-25 Heraeus Noblelight Gmbh Short-wave infrared panel heater
ATE256960T1 (en) * 1998-11-04 2004-01-15 Advanced Photonics Tech Ag LAMP AND REFLECTOR ARRANGEMENT
US6399955B1 (en) * 1999-02-19 2002-06-04 Mark G. Fannon Selective electromagnetic wavelength conversion device
DE20020148U1 (en) * 2000-09-18 2001-03-22 Advanced Photonics Tech Ag Radiation source and radiation arrangement
DE20020149U1 (en) * 2000-09-18 2001-03-22 Advanced Photonics Tech Ag Radiation source and radiation arrangement
DE10058950B4 (en) * 2000-10-17 2006-04-06 Advanced Photonics Technologies Ag Heating section and stretch blow molding method
DE20020319U1 (en) * 2000-10-18 2001-03-15 Advanced Photonics Tech Ag Irradiation arrangement
DE20020320U1 (en) * 2000-10-18 2001-03-15 Advanced Photonics Tech Ag Irradiation arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109874182A (en) * 2017-12-01 2019-06-11 中国飞机强度研究所 A kind of Novel quartz lamp heating device
CN109874182B (en) * 2017-12-01 2021-05-07 中国飞机强度研究所 Novel quartz lamp heating device

Also Published As

Publication number Publication date
US20020024277A1 (en) 2002-02-28
DE10041564A1 (en) 2002-03-21
DE10041564C2 (en) 2002-06-27
ATE465508T1 (en) 2010-05-15
JP2002134253A (en) 2002-05-10
US6713945B2 (en) 2004-03-30
JP3530509B2 (en) 2004-05-24
EP1182689A1 (en) 2002-02-27
DE50115441D1 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
EP1182689B1 (en) Infrared radiator with a cooling facility
DE10029437B4 (en) Infrared radiator and method for operating such an infrared radiator
EP0015026B1 (en) Incandescent lamp
DE4438870B4 (en) Infrared emitter with an elongated resistance body as the radiation source
DE3314884A1 (en) LINE PIPE FOR THE TRANSPORT OF DEEP-FREEZED MEDIA
EP2641263B1 (en) Irradiation device
EP1363062A1 (en) Conduit for the transport of cryogenic fluids
AT401989B (en) HEATER
DE3135874A1 (en) LOW PRESSURE MERCURY STEAM DISCHARGE LAMP
WO2015078704A1 (en) Heating device
DE3841448C1 (en)
EP1283659B1 (en) Infrared radiator with twin cable sheath
EP1473057B1 (en) Infrared radiator
DE2834135C3 (en) Method for manufacturing a traveling wave tube
EP0949659A2 (en) Lamp filament
DE10059885C1 (en) Electric through-flow heater for fluid or gas has heating conductor carrier enclosing flattened central section of flow pipe
EP0987737B1 (en) Fluorescent lamp
DE1929622A1 (en) Electric lamp in long form with bent end
DE60028321T2 (en) ELECTRIC LIGHT BULB
DE10107429B4 (en) Heating cable with multi-layer construction
EP3262672B1 (en) Irradiating device with a single-ended infrared emitter, for directing infrared radiation into a vacuum process chamber
DE2111080C3 (en) Spacers for coaxial pipe systems
DE2600257C3 (en) High voltage cables
WO2009146751A1 (en) Cable bushing with a bent foil profile
DE19806030A1 (en) Waste heat dissipation system for CO2 slab laser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50115441

Country of ref document: DE

Date of ref document: 20100602

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100801

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100722

BERE Be: lapsed

Owner name: HERAEUS NOBLELIGHT G.M.B.H.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100823

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20110124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120719

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120726

Year of fee payment: 12

Ref country code: DE

Payment date: 20120720

Year of fee payment: 12

Ref country code: FR

Payment date: 20120806

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120719

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130711

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130711

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115441

Country of ref document: DE

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130711