EP1155231B1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil Download PDF

Info

Publication number
EP1155231B1
EP1155231B1 EP00993232A EP00993232A EP1155231B1 EP 1155231 B1 EP1155231 B1 EP 1155231B1 EP 00993232 A EP00993232 A EP 00993232A EP 00993232 A EP00993232 A EP 00993232A EP 1155231 B1 EP1155231 B1 EP 1155231B1
Authority
EP
European Patent Office
Prior art keywords
armature
fuel injection
injection valve
edge
valve according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00993232A
Other languages
English (en)
French (fr)
Other versions
EP1155231A1 (de
Inventor
Fevzi Yildirim
Michael Huebel
Christian Doering
Juergen Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1155231A1 publication Critical patent/EP1155231A1/de
Application granted granted Critical
Publication of EP1155231B1 publication Critical patent/EP1155231B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/07Fuel-injection apparatus having means for avoiding sticking of valve or armature, e.g. preventing hydraulic or magnetic sticking of parts

Definitions

  • the invention is based on a fuel injection valve according to the preamble of the main claim.
  • a disadvantage of the known from DE 35 35 438 A1 Fuel injection valve is the high cavitation tendency through the large cavities fueled by the fuel, in which creates currents and turbulences.
  • the Displacement of the fuel when tightening the anchor happens delayed due to the high flow resistance and thus has an adverse effect on the opening time of the fuel injection valve.
  • the cavitation is also by the position of the flow openings, which are not on Vertex, but in the flank of the flat anchor are attached, reinforced.
  • EP 0 683 862 B1 is an electromagnetic operable fuel injector known whose armature characterized in that facing the inner pole Anchor stop surface is slightly wedge-shaped, around the hydraulic damping when opening the Fuel injector and the hydraulic Adhesive force after switching off the solenoid coil To minimize or completely suppress exciting current. Furthermore, by appropriate measures such as steaming and Nitrate the stop surface of the armature wear-resistant designed so that the stop surface during the entire Life of the fuel injector the same size and the operation of the Fuel injector is not affected.
  • Fuel injection valve is mainly the despite of optimized anchor stop surface still existing hydraulic damping force in the working gap when tightening of the anchor. Is an excitation current to the solenoid applied, the armature moves in the direction of the inner pole and displaces the between the inner pole and the anchor existing fuel. Due to friction and Inertia effects are the result of building a local Pressure field, which on the anchor stop surface a generates hydraulic force, which is against the direction of movement the anchor acts. This lengthens the opening and Metering times of the fuel injection valve.
  • the fuel injection valve according to the invention with the Features of the main claim has the advantage over that by suitable geometric design of the anchor the hydraulic damping force is significantly reduced and so that the fuel injector opens faster can be, resulting in more precise metering times and quantities results.
  • a favorable geometry of the anchor stop surface is through the opposing bevels of the edge regions of Anchor stop surface reached.
  • the anchor has two annular edge zones, wherein the inner edge zone inwards is inclined to the inner radius, while the outer of Edge zones is inclined outwards to the outer radius.
  • the Anchor stop surface is thus of inclined surfaces limited. The angle of inclination of the edge surfaces influences this Flow behavior of the work gap located Fuel.
  • the anchor stop surface is through the reduced geometric design, causing the Wear surface is less.
  • the same effect can also be achieved by recesses on the Outside edge of the anchor attached at regular intervals are achieved.
  • the fuel will be in this case due to the outwardly tapered shape of the Anchor stop surface to the outer edge of the anchor receiving central recess of the Fuel injector displaced and can by the Cut out recesses in the anchor.
  • the depressions can be made by an oblique and a vertical area be limited.
  • Another possible Design variant sees a different height for the raised ones formed by the inclined surfaces ring-shaped vertices, so that only one minimal area serves as anchor stop surface.
  • FIGS. 2 to 7 Before with reference to FIGS. 2 to 7 several embodiments an anchor of an inventive Fuel injection valve will be described in more detail, should for a better understanding of the invention, first with reference to Fig. 1 is an already known fuel injection valve briefly explained with respect to its essential components become.
  • the fuel injection valve 1 is in the form of a Injector for fuel injection systems of mixture-compression, spark-ignited internal combustion engines executed.
  • the fuel injection valve 1 is suitable in particular for injecting fuel into a suction pipe 7 of an internal combustion engine.
  • the closer in the following described measures to reduce the hydraulic Anchor damping are also suitable for direct in one Combustion chamber injecting high-pressure injection valves.
  • the fuel injection valve 1 comprises a core 25, which is encapsulated with a plastic sheath 16.
  • a valve needle 3 is connected to a valve closing body 4 in Compound which is connected to a valve seat body on the fifth arranged valve seat surface 6 to a sealing seat interacts.
  • the core 25 forms an inner pole 11 of a magnetic flux circuit.
  • a solenoid 8 is in the Plastic casing 16 encapsulated and on one Coil carrier 10 wound, which rests on the core 25. Of the Core 25 and serving as an outer pole nozzle body 2 are separated by a gap 12 and supported on a non-magnetic connection member 13 from.
  • the Solenoid 8 is connected via an electrical line 14 of a via a plug contact 15 can be supplied electrical Electricity excited.
  • the magnetic flux circuit is by a z. B. bow-shaped reflux body 17 is closed.
  • a return spring 18 is supported, which in the present design of the Fuel injector 1 biased by a sleeve 19 becomes.
  • the valve needle 3 is via a weld 20th positively connected to an armature 21.
  • the fuel is passed through a central fuel supply 23 supplied via a filter 24.
  • Fig. 2 shows in an excerpt axial Sectional view of a first embodiment of the inventive design of the Fuel injector 1. It will be in the enlarged Showing only those components that are related are essential to the invention.
  • the Design of the other components can with a known fuel injection valve 1, z. B. with the in Fig. 1 illustrated fuel injector 1, be identical. Already described elements are with matching Numeral provided so that a repeating Description is unnecessary.
  • the armature 21 has two edge zones 31a, 31b in FIG. which by mutually inclined surfaces 32nd distinguished.
  • the edge zones 31a, 31b there are two recesses 34 formed, each by two inwardly inclined Distinguish areas 32.
  • the depressions 34 are available axial channels 35 in connection, parallel to the Longitudinal axis 30 of the armature 21 extend and the armature 21st penetrate.
  • a recess 36 on a magnetic pole surface 44 of a magnetic body 43 which is annular and has a working gap 37 between the armature stopper surface 42 and the magnetic pole surface 44 enlarged locally.
  • the recess 36 can be up to extend to the solenoid 8.
  • the magnetic body 43 can also another solenoid 8 from the fuel be provided separating component.
  • the magnetic coil 8 moves the armature 21 in the direction of the magnetic body 43 and displaces the existing in the working gap 37 Fuel. This is on the inclined surfaces 32 in the Channels 35 and to the inner edge 47 and the outer edge 46th displaced and can flow off via the armature 21.
  • the Distribution of the fuel in the channels 35 and in the Outside and inside of the armature 21 is a faster Outflow of the liquid in the working gap 37, which the opening operation of the fuel injection valve. 1 does not bother.
  • FIG. 3 shows, in an excerpted plan view, the armature 21 of the embodiment in Fig. 2 of the invention Embodiment of the fuel injection valve 1.
  • Recessed concentric vertices 39 are in the Recesses 34. At regular intervals are in the recesses 34 channels 35, which are parallel to the longitudinal axis 30 of the armature 21 pierce the armature 21. It is also the diameter of the channels 35 to make variable, so that in each of the recesses 34 differently dimensioned Channels 35 corresponding to the increasing diameter Catchment area are attached.
  • channels 35 affects that Flow behavior of the fuel considerably.
  • Fig. 3 are therefore in the outer edge 46 of the armature 21st closer recess 34 channels 35 with larger Diameter, in the deeper recess 34th Channels 35 shown with a smaller diameter.
  • a particularly advantageous arrangement of the channels 35 is present if they lie in the radial direction on a line.
  • Fig. 4 shows in a partial axial Sectional view of a second embodiment of a inventive design of the Fuel injection valve 1.
  • the recesses 34 are here not two adjoining inclined surfaces 32.
  • the two recesses 34 each have an inclined Surface 32 and a parallel to the longitudinal axis 30 of the armature 21st extending surface 40 on.
  • the channels 35 and the in Area of the magnetic coil 8 located annular recess 36 of the magnetic body 43 are as in the first Embodiment designed in Fig. 2.
  • the sawtooth Design of the recesses 34 is a particularly simple producible embodiment of the armature 21st
  • Fig. 5 shows in an excerpt axial Sectional view of a third embodiment of a inventive design of the Fuel injection valve 1.
  • the embodiment described here is a simplified variant of the embodiment in Fig. 2nd
  • the anchor stop surface 42 also has two edge zones here 31a, 31b, which by two each inclined to each other Surfaces 32 are limited.
  • In the only one intermediate recess 34 are channels 35th
  • Fig. 6 shows in a partial axial Sectional view of a fourth embodiment of a inventive design of the Fuel injection valve 1.
  • Fig. 5 Compared to the embodiment variant in Fig. 5 is distinguished the shape described in Fig. 6 by lowering a of the raised vertices 33. This results in a further reduction of the effective Anchor stop surface 38, whereby the armature 21 only at one of the vertices 33 and the adhesion of the anchor 21 on the magnetic body 43 is further reduced.
  • the lowering of the one raised vertex 33 also causes there an enlargement of the working gap 37, which is favorable the flow behavior of existing in the working gap 37 Fuel effects.
  • Fig. 7 shows in a plan view of the anchor stop surface 42 a fifth embodiment of an inventive Embodiment of the fuel injection valve 1.
  • the invention is not limited to that shown Embodiment limited and also in a variety other designs of fuel injectors realizable.
  • the invention also in Dive anchors 21 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Ein Brennstoffeinspritzventil (1) für Brennstoffeinspritzanlagen von Brennkraftmaschinen besteht aus einer Magnetspule (8), einem in einer Schliessrichtung von einer Rückstellfeder beaufschlagten Anker (21) und einem mit dem Anker (21) kraftschlüssig in Verbindung stehenden Ventilschliesskörper. Dieser bildet zusammen mit einer Ventilsitzfläche einen Dichtsitz, wobei der Anker (21) mit einer Ankeranschlagfläche (42) an einer Magnetpolfläche (44) eines Magnekörpers (43) anschlägt. Die Ankeranschlagfläche (42) weist eine an einen Innenrand (47) angrenzende, innenliegende, ringförmige erste Randzone (31a), die bezüglich einer Ebene senkrecht zur Längsachse (30) des Ankers (21) nach innen geneigt ist, und eine an einen Aussenrand (46) angrenzende, aussenliegende, ringförmige zweite Randzone (31b), die bezüglich einer Ebene senkrecht zur Längsachse (30) des Ankers (21) nach aussen geneigt ist, auf.

Description

Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs.
Aus der DE 35 35 438 A1 ist bereits ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, welches in einem Gehäuse eine einen ferromagnetischen Kern umschließende Magnetspule aufweist. Zwischen einem fest mit dem Gehäuse verbundenen Ventilsitzträger und der Stirnseite des Gehäuses ist ein Flachanker angeordnet. Der Flachanker wirkt über zwei Arbeitsluftspalte mit Gehäuse und Kern zusammen und wird mittels einer ein Ventilschließteil umgreifenden, gehäusefest eingespannten Führungsmembran radial geführt. Die Verbindung zwischen dem Flachanker und dem Ventilschließteil wird über einen das Ventilschließteil umfassenden Ring hergestellt, welcher mit dem Flachanker verschweißt ist. Das Ventilschließteil wird über eine Schraubenfeder mit Schließdruck beaufschlagt. Brennstoffkanäle sowie die Geometrie des Flachankers, insbesondere die Absenkung der den Brennstoffkanälen benachbarten Bereiche, erlauben ein Umströmen des Ankers durch den Brennstoff.
Nachteilig an dem aus der DE 35 35 438 A1 bekannten Brennstoffeinspritzventil ist die hohe Kavitationsneigung durch die großen vom Brennstoff durchflossenen Hohlräume, in denen Strömungen und Verwirbelungen entstehen. Die Verdrängung des Brennstoffs beim Anziehen des Ankers geschieht aufgrund des hohen Strömungswiderstands verzögert und hat damit nachteilige Auswirkungen auf die Öffnungszeit des Brennstoffeinspritzventils. Die Kavitation wird zudem durch die Lage der Durchströmöffnungen, welche nicht am Scheitelpunkt, sondern in der Flanke des Flachankers angebracht sind, verstärkt.
In der DE 31 43 849 C2 wird ein ähnlich geformter Flachanker in einem Brennstoffeinspritzventil verwendet. Hier sind zwar die Durchströmöffnungen an den Scheitelpunkten des Flachankers angebracht; die hydrodynamischen Eigenschaften sind jedoch durch den nach wie vor hochgezogenen Rand des Ankers, welcher parallel zu der Ankeranschlagfläche ausgerichtet ist und eine Verdrängung des Brennstoffs in die Randbereiche des Ankers unmöglich macht, nur unwesentlich verbessert.
Aus der EP 0 683 862 B1 ist ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, dessen Anker dadurch gekennzeichnet ist, daß die dem Innenpol zugewandte Ankeranschlagfläche geringfügig keilförmig ausgebildet ist, um die hydraulische Dämpfung beim Öffnen des Brennstoffeinspritzventils und die hydraulische Adhäsionskraft nach Abschaltung des die Magnetspule erregenden Stromes zu minimieren oder ganz zu unterbinden. Ferner ist durch geeignete Maßnahmen wie Bedampfen und Nitrieren die Anschlagfläche des Ankers verschleißfest gestaltet, so daß die Anschlagfläche während der gesamten Lebensdauer des Brennstoffeinspritzventils die gleiche Größe aufweist und die Funktionsweise des Brennstoffeinspritzventils nicht beeinträchtigt wird.
Nachteilig an dem aus der EP 0 683 862 B1 bekannten Brennstoffeinspritzventil ist vor allem die trotz der optimierten Ankeranschlagfläche nach wie vor vorhandene hydraulische Dämpfungskraft im Arbeitsspalt beim Anziehen des Ankers. Wird ein Erregerstrom an die Magnetspule angelegt, bewegt sich der Anker in Richtung des Innenpols und verdrängt dabei den zwischen dem Innenpol und dem Anker vorhandenen Brennstoff. Aufgrund von Reibungs- und Trägheitseffekten kommt es dabei zum Aufbau eines lokalen Druckfeldes, welches auf der Ankeranschlagfläche eine hydraulische Kraft erzeugt, die gegen die Bewegungsrichtung des Ankers wirkt. Dadurch verlängern sich die Öffnungs- und Zumeßzeiten des Brennstoffeinspritzventils.
Vorteile der Erfindung
Das erfindungsgemäße Brennstoffeinspritzventil mit den Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß durch geeignete geometrische Gestaltung des Ankers die hydraulische Dämpfungskraft erheblich herabgesetzt wird und damit das Brennstoffeinspritzventil schneller geöffnet werden kann, was in präziseren Zumeßzeiten und -mengen resultiert.
Eine günstige Geometrie der Ankeranschlagfläche wird durch das gegensinnige Abschrägen der Randbereiche der Ankeranschlagfläche erreicht. Der Anker besitzt zwei ringförmige Randzonen, wobei die innere Randzone nach innen zum Innenradius geneigt ist, während die äußere der Randzonen nach außen zum Außenradius geneigt ist. Die Ankeranschlagfläche ist somit von geneigten Flächen begrenzt. Der Neigungswinkel der Randflächen beeinflußt das Strömungsverhalten des im Arbeitsspalt befindlichen Brennstoffs. Die Ankeranschlagfläche wird durch die geometrische Gestaltung verkleinert, wodurch die Verschleißfläche geringer ist.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Brennstoffeinspritzventils möglich.
Von Vorteil ist insbesondere das Anbringen von axialen Kanälen im Anker, wodurch der im Arbeitsspalt vorhandene Brennstoff die Möglichkeit erhält, bei Betätigung des Ankers durch diesen hindurch abzuströmen. Die Kanäle werden vorteilhafterweise in Vertiefungen angeordnet, wodurch sich das Strömungsverhalten weiter verbessert, da der Brennstoff ohne Verzögerung durch den Anker entweichen kann.
Derselbe Effekt kann auch durch Aussparungen, die am Außenrand des Ankers in regelmäßigen Abständen angebracht sind, erzielt werden. Der Brennstoff wird in diesem Fall bedingt durch die nach außen abgeschrägte Form der Ankeranschlagfläche an den äußeren Rand einer den Anker aufnehmenden zentralen Ausnehmung des Brennstoffeinspritzventils verdrängt und kann durch die Aussparungen im Anker abströmen.
Die Vertiefungen können durch eine schräge und eine senkrechte Fläche begrenzt werden. Eine weitere mögliche Ausgestaltungsvariante sieht eine unterschiedliche Höhe für die durch die geneigten Flächen gebildeten, erhabenen ringförmigen Scheitelpunkte vor, so daß nur noch eine minimale Fläche als Ankeranschlagfläche dient.
Eine ringförmige Aussparung an der Magnetfläche im Bereich der Magnetspule bewirkt durch eine lokale Vergrößerung des Arbeitsspaltes eine positive Beeinflussung der hydraulischen Dämpfung.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1
einen axialen Schnitt durch ein Brennstoffeinspritzventil gemäß dem Stand der Technik,
Fig. 2
einen schematisierten, vergrößerten Schnitt durch ein erstes Ausführungsbeispiel eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils,
Fig. 3
eine Draufsicht auf die Ankeranschlagfläche des Ankers in Fig. 2,
Fig. 4
einen schematisierten, vergrößerten Schnitt durch ein zweites Ausführungsbeispiel eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils,
Fig. 5
einen schematisierten, vergrößerten Schnitt durch ein drittes Ausführungsbeispiel eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils,
Fig. 6
einen schematisierten, vergrößerten Schnitt durch ein viertes Ausführungsbeispiel eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils und
Fig. 7
eine Draufsicht auf die Ankeranschlagfläche eines fünften Ausführungsbeispiels eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils.
Beschreibung der Ausführungsbeispiele
Bevor anhand der Fig. 2 bis 7 mehrere Ausführungsbeispiele eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils näher beschrieben werden, soll zum besseren Verständnis der Erfindung zunächst anhand von Fig. 1 ein bereits bekanntes Brennstoffeinspritzventil bezüglich seiner wesentlichen Bauteile kurz erläutert werden.
Das Brennstoffeinspritzventil 1 ist in der Form eines Einspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen ausgeführt. Das Brennstoffeinspritzventil 1 eignet sich insbesondere zum Einspritzen von Brennstoff in ein Saugrohr 7 einer Brennkraftmaschine. Die im folgenden näher beschriebenen Maßnahmen zur Reduzierung der hydraulischen Ankerdämpfung eignen sich jedoch ebenso bei direkt in einen Brennraum einspritzenden Hochdruckeinspritzventilen.
Das Brennstoffeinspritzventil 1 umfaßt einen Kern 25, welcher mit einer Kunststoffummantelung 16 umspritzt ist. Eine Ventilnadel 3 steht mit einem Ventilschließkörper 4 in Verbindung, der mit einer an einem Ventilsitzkörper 5 angeordneten Ventilsitzfläche 6 zu einem Dichtsitz zusammenwirkt. Bei dem Brennstoffeinspritzventil 1 handelt es sich im Ausführungsbeispiel um ein nach innen öffnendes Brennstoffeinspritzventil 1, welches in ein Saugrohr 7 einspritzt. Der Kern 25 bildet einen Innenpol 11 eines magnetischen Flußkreises. Eine Magnetspule 8 ist in der Kunststoffummantelung 16 gekapselt und auf einen Spulenträger 10 gewickelt, welcher am Kern 25 anliegt. Der Kern 25 und ein als Außenpol dienender Düsenkörper 2 sind durch einen Spalt 12 voneinander getrennt und stützen sich auf einem nichtmagnetischen Verbindungsbauteil 13 ab. Die Magnetspule 8 wird über eine elektrische Leitung 14 von einem über einen Steckkontakt 15 zuführbaren elektrischen Strom erregt. Der magnetische Flußkreis wird durch einen z. B. bügelförmigen Rückflußkörper 17 geschlossen.
An der Ventilnadel 3 stützt sich eine Rückstellfeder 18 ab, welche in der vorliegenden Bauform des Brennstoffeinspritzventils 1 durch eine Hülse 19 vorgespannt wird. Die Ventilnadel 3 ist über eine Schweißnaht 20 kraftschlüssig mit einem Anker 21 verbunden.
Der Brennstoff wird durch eine zentrale Brennstoffzufuhr 23 über einen Filter 24 zugeführt.
Im Ruhezustand des Brennstoffeinspritzventils 1 wird der Anker 21 von der Rückstellfeder 18 entgegen seiner Hubrichtung so beaufschlagt, daß der Ventilschließkörper 4 am Ventilsitz 6 in dichtender Anlage gehalten wird. Bei Erregung der Magnetspule 8 baut diese ein Magnetfeld auf, welches den Anker 21 entgegen der Federkraft der Rückstellfeder 18 in Hubrichtung bewegt. Der Anker 21 nimmt die Ventilnadel 3 ebenfalls in Hubrichtung mit. Der mit der Ventilnadel 3 in Verbindung stehende Ventilschließkörper 4 hebt von der Ventilsitzfläche 6 ab und Brennstoff wird über Radialbohrungen 22a in der Ventilnadel 3, eine Aussparung 22b im Ventilsitzkörper 5 und Abflachungen 22c am Ventilschließkörper 4 zum Dichtsitz geführt.
Wird der Spulenstrom abgeschaltet, fällt der Anker 21 nach genügendem Abbau des Magnetfeldes durch den Druck der Rückstellfeder 18 vom Innenpol 11 ab, wodurch sich die mit dem Anker 21 in Verbindung stehende Ventilnadel 3 entgegen der Hubrichtung bewegt, der Ventilschließkörper 4 auf der Ventilsitzfläche 6 aufsetzt und das Brennstoffeinspritzventil 1 geschlossen wird.
Fig. 2 zeigt in einer auszugsweisen axialen Schnittdarstellung ein erstes Ausführungsbeispiel der erfindungsgemäßen Ausgestaltung des Brennstoffeinspritzventils 1. Es werden in der vergrößerten Darstellung nur diejenigen Komponenten gezeigt, die in Bezug auf die Erfindung von wesentlicher Bedeutung sind. Die Ausgestaltung der übrigen Komponenten kann mit einem bekannten Brennstoffeinspritzventil 1, z. B. mit dem in Fig. 1 dargestellten Brennstoffeinspritzventil 1, identisch sein. Bereits beschriebene Elemente sind mit übereinstimmenden Bezugszeichen versehen, so daß sich eine wiederholende Beschreibung erübrigt.
Der bereits in Fig. 1 beschriebene Anker 21, welcher in Fig. 1 als sog. Tauchanker 21 ausgeführt ist, liegt in Fig. 2 bis 7 in Form eines Flachankers 21 vor. In den Fig. 2 bis 6 ist jeweils nur eine Hälfte des Ankers 21 rechts der symmetrischen Längsachse 30 dargestellt.
Der Anker 21 weist in Fig. 2 zwei Randzonen 31a, 31b auf, die sich durch gegeneinander geneigte Flächen 32 auszeichnen. Dabei ist die Fläche 32 der inneren Randzone 31a durch einen eine zentrale Ausnehmung 48 begrenzenden Innenrand 47 des Flachankers 21 begrenzt und zum Innenrand 47 geneigt, während die Fläche 32 der äußeren Randzone 31b durch einen Außenrand 46 begrenzt ist und zum Außenrand 46 geneigt ist.
Zwischen den Randzonen 31a, 31b sind zwei Vertiefungen 34 ausgebildet, die sich jeweils durch zwei nach innen geneigte Flächen 32 auszeichnen. Die Vertiefungen 34 stehen mit axialen Kanälen 35 in Verbindung, die parallel zur Längsachse 30 des Ankers 21 verlaufen und den Anker 21 durchdringen.
Im Bereich der Magnetspule 8 befindet sich eine Ausnehmung 36 an einer Magnetpolfläche 44 eines Magnetkörpers 43, welche ringförmig ausgebildet ist und einen Arbeitsspalt 37 zwischen der Ankeranschlagfläche 42 und der Magnetpolfläche 44 lokal vergrößert. Die Ausnehmung 36 kann sich dabei bis zur Magnetspule 8 erstrecken. Anstelle des Magnetkörpers 43 kann auch ein anderes die Magnetspule 8 vom Brennstoff abtrennendes Bauteil vorgesehen sein.
Wird der Magnetspule 8 ein Erregerstrom zugeführt, bewegt sich der Anker 21 in Richtung auf den Magnetkörper 43 und verdrängt dabei den im Arbeitsspalt 37 vorhandenen Brennstoff. Dieser wird über die geneigten Flächen 32 in die Kanäle 35 bzw. an den Innenrand 47 und den Außenrand 46 verdrängt und kann über den Anker 21 abfließen. Durch die Verteilung des Brennstoffs in die Kanäle 35 und in den Außen- bzw. Innenbereich des Ankers 21 entsteht ein rascher Abfluß der im Arbeitsspalt 37 befindlichen Flüssigkeit, welche den Öffnungsvorgang des Brennstoffeinspritzventils 1 nicht stört.
Fig. 3 zeigt in einer auszugsweisen Draufsicht den Anker 21 des Ausführungsbeispiels in Fig. 2 der erfindungsgemäßen Ausgestaltung des Brennstoffeinspritzventils 1.
Erhabene konzentrische Scheitelpunkte 33, an welchen die geneigten Flächen 32 aneinandergrenzen, bilden drei ringförmige Restankeranschlagflächen 38. Der Anker 21 schlägt somit am Ende des Öffnungsvorganges nicht mehr mit der ganzen Ankeranschlagfläche 42 am Magnetkörper 43 an, sondern mit den durch die Scheitelpunkte 33 gebildeten ringförmigen Restankeranschlagflächen 38. Dadurch wird der Schließvorgang beschleunigt, da die kleinere Restankeranschlagfläche 38 auch eine geringere hydraulische Adhäsionskraft erfährt und sich der Anker 21 somit leichter vom Magnetkörper 43 löst.
Vertiefte konzentrische Scheitelpunkte 39 liegen in den Vertiefungen 34. In regelmäßigen Abständen befinden sich in den Vertiefungen 34 Kanäle 35, die parallel zur Längsachse 30 des Ankers 21 den Anker 21 durchstoßen. Dabei ist auch der Durchmesser der Kanäle 35 variabel zu gestalten, so daß in jeder der Vertiefungen 34 unterschiedlich dimensionierte Kanäle 35 entsprechend des mit dem Durchmesser zunehmenden Einzugsbereichs angebracht sind.
Die Anzahl und die Abmessung der Kanäle 35 beeinflußt das Strömungsverhalten des Brennstoffs beträchtlich. In Fig. 3 sind deshalb in der dem Außenrand 46 des Ankers 21 näherliegenden Vertiefung 34 Kanäle 35 mit größerem Durchmesser, in der weiter innen liegenden Vertiefung 34 Kanäle 35 mit geringerem Durchmesser dargestellt. Eine besonders vorteilhafte Anordnung der Kanäle 35 liegt vor, wenn diese in radialer Richtung auf einer Linie liegen.
Fig. 4 zeigt in einer auszugsweisen axialen Schnittdarstellung ein zweites Ausführungsbeispiel einer erfindungsgemäßen Ausgestaltung des Brennstoffeinspritzventils 1.
Im Gegensatz zu Fig. 2 bestehen die Vertiefungen 34 hier nicht aus zwei aneinandergrenzenden, geneigten Flächen 32. Die beiden Vertiefungen 34 weisen jeweils eine geneigte Fläche 32 und eine parallel zur Längsachse 30 des Ankers 21 verlaufende Fläche 40 auf. Die Kanäle 35 sowie die im Bereich der Magnetspule 8 befindliche ringförmige Ausnehmung 36 des Magnetkörpers 43 sind wie im ersten Ausführungsbeispiel in Fig. 2 gestaltet. Die sägezahnförmige Gestaltung der Vertiefungen 34 ist eine besonders einfach herstellbare Ausführungsform des Ankers 21.
Fig. 5 zeigt in einer auszugsweisen axialen Schnittdarstellung ein drittes Ausführungsbeispiel einer erfindungsgemäßen Ausgestaltung des Brennstoffeinspritzventils 1.
Das hier beschriebene Ausführungsbeispiel ist eine vereinfachte Variante des Ausführungsbeispiels in Fig. 2. Die Ankeranschlagfläche 42 weist auch hier zwei Randzonen 31a, 31b auf, welche durch je zwei gegeneinander geneigte Flächen 32 begrenzt sind. In der einzigen dazwischenliegenden Vertiefung 34 befinden sich Kanäle 35.
Fig. 6 zeigt in einer auszugsweisen axialen Schnittdarstellung ein viertes Ausführungsbeispiel einer erfindungsgemäßen Ausgestaltung des Brennstoffeinspritzventils 1.
Gegenüber der Ausgestaltungsvariante in Fig. 5 zeichnet sich die in Fig. 6 beschriebene Form durch eine Absenkung eines der erhabenen Scheitelpunkte 33 aus. Dies resultiert in einer weiteren Verkleinerung der effektiven Ankeranschlagfläche 38, wodurch der Anker 21 nur an einem der Scheitelpunkte 33 anschlägt und die Adhäsion des Ankers 21 am Magnetkörper 43 weiter reduziert wird. Die Absenkung des einen erhabenen Scheitelpunkts 33 bewirkt dort zudem eine Vergrößerung des Arbeitsspalts 37, was sich günstig auf das Strömungsverhalten des im Arbeitsspalt 37 vorhandenen Brennstoffes auswirkt.
Fig. 7 zeigt in einer Draufsicht auf die Ankeranschlagfläche 42 ein fünftes Ausführungsbeispiel einer erfindungsgemäßen Ausgestaltung des Brennstoffeinspritzventils 1.
Zur besseren Verteilung und Abführung des im Arbeitsspalt 37 vorhandenen Brennstoffs sind am Außenrand 46 des Ankers 21 Aussparungen 41 vorgesehen. Dies führt ebenfalls zur Verkleinerung der effektiven Ankeranschlagfläche 38 sowie zu einer zügigen randseitigen Verdrängung des Brennstoffes über die geneigte Fläche 32 der Randzone 31b.
Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt und auch bei einer Vielzahl anderer Bauweisen von Brennstoffeinspritzventilen realisierbar. Insbesondere kann die Erfindung auch bei Tauchankern 21 zum Einsatz kommen.

Claims (8)

  1. Brennstoffeinspritzventil (1) für Brennstoffeinspritzanlagen von Brennkraftmaschinen, mit einer Magnetspule (8), einem in einer Schließrichtung von einer Rückstellfeder (18) beaufschlagten Anker (21) und einem mit dem Anker (21) kraftschlüssig in Verbindung stehenden Ventilschließkörper (4), der zusammen mit einer Ventilsitzfläche (6) einen Dichtsitz bildet, wobei der Anker (21) mit einer Ankeranschlagfläche (42) an einer Magnetpolfläche (44) anschlägt, und wobei der Anker (21) einen Außenrand (46) und einen eine zentrale Ausnehmung (48) begrenzenden Innenrand (47) aufweist und die Ankeranschlagfläche (42) eine an den Innenrand (47) angrenzende, innen liegende, ringförmige erste Randzone (31a), die bezüglich einer Ebene senkrecht zu einer Längsachse (30) des Ankers (21) nach innen geneigt ist, und eine an den Außenrand (46) angrenzende, außen liegende, ringförmige zweite Randzone (31b), die bezüglich einer Ebene senkrecht zu einer Längsachse (30) des Ankers (21) nach außen geneigt ist, aufweist,
    dadurch gekennzeichnet, dass zwischen den ringförmigen geneigten Randzonen (31a, 31 b) zumindest eine Vertiefung (34) ausgebildet ist.
  2. Brennstoffeinspritzventil nach Anspruch 1,
    dadurch gekennzeichnet, daß jede Vertiefung (34) durch zwei geneigte Flächen (32) begrenzt ist, die bezüglich der Ebene senkrecht zur Längsachse (30) des Ankers (21) entgegengesetzt geneigt sind.
  3. Brennstoffeinspritzventil nach Anspruch 1,
    dadurch gekennzeichnet, daß jede Vertiefung (34) zwischen den geneigten Randzonen (31a, 31b) durch eine erste geneigte Fläche (32), die bezüglich der Ebene senkrecht zur Längsachse (30) des Ankers (21) geneigt ist, und eine zweite Fläche (40), die zur Längsachse (30) des Ankers (21) parallel verläuft, begrenzt ist.
  4. Brennstoffeinspritzventil nach Anspruch 2 oder 3,
    dadurch gekennzeichnet, daß die Ankeranschlagfläche (42) erhabene Scheitelpunkte (33), an welchen der Abstand zwischen der Ankeranschlagfläche (42) und der Magnetpolfläche (44) minimal ist, und vertiefte Scheitelpunkte (39), an welchen der Abstand zwischen der Ankeranschlagfläche (42) und der Magnetpolfläche (44) maximal ist, aufweist.
  5. Brennstoffeinspritzventil nach Anspruch 4,
    dadurch gekennzeichnet, daß an den vertieften Scheitelpunkten (39) axiale Kanäle (35) ansetzen, die den Anker (21) durchdringen.
  6. Brennstoffeinspritzventil nach Anspruch 5,
    dadurch gekennzeichnet, daß der Abstand zwischen der Ankeranschlagfläche (42) und der Magnetpolfläche (44) an den erhabenen Scheitelpunkten (33) unterschiedlich ist.
  7. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß der Anker (21) an seinem Außenrand (46) mindestens eine Aussparung (41) aufweist.
  8. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die Magnetpolfläche (44) im Bereich der Magnetspule (8) eine ringförmige Ausnehmung (36) aufweist.
EP00993232A 1999-12-16 2000-12-14 Brennstoffeinspritzventil Expired - Lifetime EP1155231B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19960605 1999-12-16
DE19960605A DE19960605A1 (de) 1999-12-16 1999-12-16 Brennstoffeinspritzventil
PCT/DE2000/004450 WO2001044652A1 (de) 1999-12-16 2000-12-14 Brennstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP1155231A1 EP1155231A1 (de) 2001-11-21
EP1155231B1 true EP1155231B1 (de) 2005-10-26

Family

ID=7932826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00993232A Expired - Lifetime EP1155231B1 (de) 1999-12-16 2000-12-14 Brennstoffeinspritzventil

Country Status (9)

Country Link
US (1) US6758419B2 (de)
EP (1) EP1155231B1 (de)
JP (1) JP2003517141A (de)
CN (1) CN1186526C (de)
BR (1) BR0008230A (de)
CZ (1) CZ295771B6 (de)
DE (2) DE19960605A1 (de)
ES (1) ES2249327T3 (de)
WO (1) WO2001044652A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039083A1 (de) * 2000-08-10 2002-02-21 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10148592A1 (de) * 2001-10-02 2003-04-10 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10256662A1 (de) * 2002-12-04 2004-06-17 Robert Bosch Gmbh Brennstoffeinspritzventil
DE10325442A1 (de) * 2003-06-05 2004-12-23 Robert Bosch Gmbh Magnetventil mit reduzierten Schaltgeräuschen
US7156368B2 (en) * 2004-04-14 2007-01-02 Cummins Inc. Solenoid actuated flow controller valve
WO2006095706A1 (ja) * 2005-03-09 2006-09-14 Keihin Corporation 燃料噴射弁
DE102008042593A1 (de) * 2008-10-02 2010-04-08 Robert Bosch Gmbh Kraftstoff-Injektor sowie Oberflächenbehandlungsverfahren
US8316826B2 (en) * 2009-01-15 2012-11-27 Caterpillar Inc. Reducing variations in close coupled post injections in a fuel injector and fuel system using same
JP5689395B2 (ja) * 2011-09-28 2015-03-25 ナブテスコ株式会社 電磁弁
DE102014221586A1 (de) * 2014-10-23 2016-04-28 Robert Bosch Gmbh Kraftstoffinjektor
DE102017222951A1 (de) * 2017-12-15 2019-06-19 Robert Bosch Gmbh Elektromagnetisch betätigbares Einlassventil und Kraftstoff-Hochdruckpumpe
CN114635818A (zh) * 2022-03-09 2022-06-17 哈尔滨工程大学 一种利用柔性液压阻尼实现共轨喷油器稳定喷射的高速电磁阀

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683862B1 (de) * 1993-12-09 1998-06-10 Robert Bosch Gmbh Elektromagnetisch betätigbares ventil

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3143849A1 (de) 1981-11-05 1983-05-11 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil, insbesondere kraftstoffeinspritzventil
DE3207918A1 (de) * 1982-03-05 1983-09-15 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil
DE3305039A1 (de) * 1983-02-14 1984-08-16 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil
GB8519251D0 (en) * 1985-07-31 1985-09-04 Lucas Ind Plc Fuel injector
DE3535438A1 (de) 1985-10-04 1987-04-09 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE3704543A1 (de) * 1987-02-13 1988-08-25 Vdo Schindling Kraftstoff-einspritzventil
DE3714693A1 (de) * 1987-05-02 1988-11-10 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE3727342A1 (de) * 1987-08-17 1989-03-02 Bosch Gmbh Robert Elektromagnetisch betaetigbares kraftstoffeinspritzventil
GB8728628D0 (en) * 1987-12-08 1988-01-13 Lucas Ind Plc Fuel injection valve
US5372313A (en) * 1993-02-16 1994-12-13 Siemens Automotive L.P. Fuel injector
US5417373A (en) 1994-02-10 1995-05-23 Siemens Automotive L.P. Electromagnet for valves
DE19503821A1 (de) * 1995-02-06 1996-08-08 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
DE19712590A1 (de) * 1997-03-26 1998-10-01 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
DE19905721A1 (de) * 1998-02-24 1999-08-26 Hoerbiger Ventilwerke Gmbh Gasventil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683862B1 (de) * 1993-12-09 1998-06-10 Robert Bosch Gmbh Elektromagnetisch betätigbares ventil

Also Published As

Publication number Publication date
US20020125343A1 (en) 2002-09-12
JP2003517141A (ja) 2003-05-20
WO2001044652A1 (de) 2001-06-21
BR0008230A (pt) 2001-10-30
CN1340133A (zh) 2002-03-13
US6758419B2 (en) 2004-07-06
CN1186526C (zh) 2005-01-26
EP1155231A1 (de) 2001-11-21
CZ295771B6 (cs) 2005-11-16
ES2249327T3 (es) 2006-04-01
DE50011450D1 (de) 2005-12-01
DE19960605A1 (de) 2001-07-19

Similar Documents

Publication Publication Date Title
DE4018256A1 (de) Elektromagnetisch betaetigbares brennstoffeinspritzventil
DE102006052817A1 (de) Brennstoffeinspritzventil
EP1155231B1 (de) Brennstoffeinspritzventil
EP1309793A1 (de) Brennstoffeinspritzventil
EP1381771B1 (de) Brennstoffeinspritzventil
EP1576278A1 (de) Brennstoffeinspritzventil
DE10118162B9 (de) Brennstoffeinspritzventil
WO2011082916A1 (de) Brennstoffeinspritzventil
EP1262655B1 (de) Brennstoffeinspritzventil
DE102010064097A1 (de) Elektromagnetisch betätigbares Ventil
DE10049033B4 (de) Brennstoffeinspritzventil
DE10050751B4 (de) Brennstoffeinspritzventil
DE10256667A1 (de) Brennstoffeinspritzventil
EP1481157B1 (de) Brennstoffeinspritzventil
DE10049034B4 (de) Brennstoffeinspritzventil
DE10051016A1 (de) Brennstoffeinspritzventil
DE10063261B4 (de) Brennstoffeinspritzventil
DE60320235T2 (de) Einspritzdüse mit verbesserter Einspritzung und Verfahren zu deren Herstellung
DE102004048603A1 (de) Ventil zum Zuführen insbesondere gasförmiger Medien
EP1309790B1 (de) Brennstoffeinspritzventil
DE102021212790A1 (de) Elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung
EP1490593A1 (de) Brennstoffeinspritzventil
DE10354465B4 (de) Brennstoffeinspritzventil
EP1300583B1 (de) Brennstoffeinspritzventil
DE102021212791A1 (de) Elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20011221

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB

17Q First examination report despatched

Effective date: 20041119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50011450

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20051227

Year of fee payment: 6

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2249327

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061214

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20061215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090224

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701