EP1147306B1 - Brennstoffeinspritzventil und verfahren zum betreiben eines brennstoffeinspritzventils - Google Patents

Brennstoffeinspritzventil und verfahren zum betreiben eines brennstoffeinspritzventils Download PDF

Info

Publication number
EP1147306B1
EP1147306B1 EP99955754A EP99955754A EP1147306B1 EP 1147306 B1 EP1147306 B1 EP 1147306B1 EP 99955754 A EP99955754 A EP 99955754A EP 99955754 A EP99955754 A EP 99955754A EP 1147306 B1 EP1147306 B1 EP 1147306B1
Authority
EP
European Patent Office
Prior art keywords
actuator
valve
fuel injection
gap
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99955754A
Other languages
English (en)
French (fr)
Other versions
EP1147306A1 (de
Inventor
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1147306A1 publication Critical patent/EP1147306A1/de
Application granted granted Critical
Publication of EP1147306B1 publication Critical patent/EP1147306B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2044Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using pre-magnetisation or post-magnetisation of the coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • F02M61/163Means being injection-valves with helically or spirally shaped grooves

Definitions

  • the invention is based on a fuel injector according to the preamble of claim 1 or by a method to operate a fuel injector after the Genus of claim 6.
  • a fuel injector is already known from DE 195 00 706 A1 known after the genus of the main claim.
  • Fuel injector is a piezoelectric actuator for actuating one with a valve closing body connected valve needle provided.
  • the valve closing body acts with a valve seat surface to a sealing seat together. It is both the design as a after externally opening fuel injection valve as well as a inward opening fuel injector possible.
  • the of several stacked piezoelectric Layered piezoelectric actuator does indeed produce relatively large lifting forces, but relatively short lifting distances. In the known document is therefore proposed to Enlargement of the stroke distance transferred to the valve needle between the valve needle and the piezoelectric actuator to provide a hydraulic translation device.
  • the hydraulic translation device works simultaneously temperature compensation of the piezoelectric actuator.
  • the piezoelectric actuator is not one insignificant temperature-dependent linear expansion subjected.
  • This temperature-dependent change in length of the piezoelectric actuator is however relatively slow in Comparison to that for opening the fuel injector leading actuation stroke of the actuator.
  • the temperature dependent Change in length of the actuator is therefore a quasi-static Process.
  • the associated displacement of the hydraulic Medium does not open the fuel injector, but the displaced hydraulic medium escapes quasi-statically through the leadership column of the hydraulic translation device.
  • DE 43 06 073 C1 describes a fuel injector with a piezoelectric actuator in a different design known. This fuel injector also takes place temperature compensation using a hydraulic Translator. From DE 35 33 085 A1 is a Fuel injector without hydraulic transmission device, but also without any temperature compensation, known.
  • the fuel injector according to the invention with the Features of claim 1 has the advantage that the piezoelectric or magnetostrictive actuator due to of the gap arranged in the actuating section is temperature-compensated without being complex hydraulic translation device required.
  • the Indian Actuating distance between the actuator and the Valve closing body arranged gap allows undisturbed thermal linear expansion of the actuator without the thermal linear expansion is an opening of the Fuel injector causes.
  • the gap is advantageous between one with the actuator connected actuator flange and one with the Valve closing body connected valve needle arranged.
  • a gaseous medium in particular air, which or when the Actuator can escape quickly.
  • the inventive method for operating a such fuel injector with the features of Claim 6 has the advantage that to open the Fuel injector in the actuation path intended gap does not have to be overcome. Rather it will the temperature-dependent linear expansion of the actuator continuously, before each actuation stroke of the actuator or in fixed predetermined intervals measured.
  • the actuator When actuated of the actuator is first with a first applied electrical actuation voltage, the one such expansion of the actuator causes the gap ideally disappears or at least as small as possible becomes. Subsequently, the actuator with a larger second electrical actuation voltage applied without Time delay for opening the fuel injector leads.
  • the gap is advantageously on the Valve closing body facing away from the actuator, while with an outward opening Fuel injector the gap advantageous on the Valve closing body facing side of the actuator.
  • Measuring the temperature-dependent linear expansion of the Actuator can, for example, by measuring the electrical capacity of the actuator. Because the actuator usually of several piezoelectric layers exists, which are provided with electrodes, leads one thermal expansion of the piezoelectric actuator to a Enlargement of the distance of the electrodes and thus one Reduction of electrical capacity. From the measured electrical capacity can therefore on the temperature-dependent linear expansion of the actuator be calculated back. Alternatively, it may be enough to Measure the temperature of the actuator when the thermal Thermal expansion coefficient of the actuator with sufficient accuracy is known. From the measurement of the The temperature of the actuator can then be reduced to temperature-dependent linear expansion of the actuator at Calculate the measured temperature. The measurement of electrical capacity of the actuator and the temperature of the Actuators can also improve accuracy can be combined with each other.
  • the gap width of the gap is advantageously such that over the entire while the fuel injector is operating occurring temperature range is ensured, that in the non-excited idle state of the actuator also maximum temperature expansion of the actuator the actuator none Active contact on the valve closing body to lift the Has valve closing body from the valve seat. This permits the operation of the fuel injector in a wide temperature range.
  • the fuel injector 1 shows an axial sectional view Embodiment of the fuel injector according to the invention 1.
  • the fuel injector 1 is suitable in particular for the direct injection of fuel, especially of gasoline, preferably in the combustion chamber mixture-compressing, spark-ignited internal combustion engine.
  • a piezoelectric actuator 3 is located in a housing body 2 integrated by a biasing element 4 sleeve-like is surrounded.
  • the piezoelectric actuator 3 is between one first actuator flange 5 and a second actuator flange 6 by means of that connected to the actuator flanges 5 and 6 Prestressing element 4 clamped.
  • the actuator 3, the Actuator flanges 5 and 6 and the biasing element 4 are in one cylindrical recess 7 of the housing body 2 used.
  • the actuator 3 is supported over the first one Actuator flange 5 on the housing body 2.
  • the actuator 3 is sleeve-shaped in the exemplary embodiment educated. Both the actuator 3 and the actuator flanges 5 and 6 have a central opening 8 through which a Valve needle 9 protrudes.
  • the valve needle 9 has one Valve needle flange 10, which acts as a stop for the second Actuator flange 6 is used.
  • valve closing body 12 With the concentric to the central axis 11th extending valve needle 9 is in the embodiment integrally formed a valve closing body 12, the together with one on a valve seat support 14 trained valve seat surface 13 forms a sealing seat.
  • the valve closing body 12 has a conical surface 15 which is adapted to the conical valve seat surface 13. In The direction of spraying adjoins the valve seat surface 13 a spray opening 16. For better distribution of the The valve closing body 12 has at least one fuel Swirl groove 17.
  • a Spring receiving space 18 provided for a return spring 19, on a flange 20 connected to the valve needle 9 the valve needle 9 attacks and the valve closing body 12 in presses its closed position.
  • the fuel is supplied via a in the Housing body 2 formed fuel line 21 to which one formed in the valve seat support 14 Fuel line 22 connects into an axial bore 23 of the valve seat body 14 opens out.
  • the invention is in the actuation distance between the piezoelectric actuator 3 and the valve closing body 12 Gap 24 provided.
  • the embodiment is the gap 24 between the second actuator flange 6 and valve needle flange 10.
  • the gap 24 can also be different Place in the actuation path between the actuator 3 and the valve closing body 12, for example between the Valve needle 9 and the valve closing body 12 are arranged his.
  • the gap 24 is used for temperature compensation of the piezoelectric actuator 3.
  • the actuator 3 constructed from piezoelectric ceramic layers is subjected to a not inconsiderable thermal linear expansion. If the actuator 3 were directly connected to the valve needle 9 by the second actuator flange 6 being in direct contact with the valve needle flange 10 when the actuator 3 was not in the excited state, not only would the actuator 3 be electrically excited, but also thermal expansion of the actuator 3 lead to opening of fuel injector 1. In the fuel injector 1 according to the invention, however, a thermal linear expansion of the actuator 3 only leads to a reduction in the gap width h v of the gap 24, but not to a lifting of the valve closing body 12 from the valve seat surface 13.
  • the gap width h v of the gap 24 is to be designed such that it is ensured over the entire temperature range occurring during the operation of the fuel injector 1 that the gap 24 is not bridged due to a temperature expansion of the actuator 3 when the actuator 3 is not energized.
  • a gaseous medium preferably the ambient air of the fuel injector 1.
  • the air in the gap 24 can escape quickly when the actuator 3 is actuated, for example via a vent hole.
  • the return spring 19 can alternatively on the actuator 3 facing end face 25 of the valve needle flange 10 attack what is shown in Fig. 1 with broken lines is indicated.
  • FIG. 1 the invention on an inward opening 2 illustrates fuel injector 1 an outwardly opening fuel injector according to the invention 1. Elements already described are included matching reference numerals so that as far as a repetitive description is unnecessary.
  • valve closing body 12 in the shown in Fig. 2 embodiment of the Valve needle 9 arranged so that the conical surface 15 of the Valve closing body 12 on the valve closing surface 13 lies on the outside.
  • the return spring 19 acts on the flange 20 and the valve needle 9 in FIG. 2 upwards and thus causes the valve closing body 12 to be reset in its closed position.
  • the first actuator flange 5 abuts the housing body 2 from, so that the second actuator flange 6 at a Actuation of the piezoelectric actuator 3 in Fig. 2 after moved below and after bridging the gap 24 with a projection 30 abuts the valve needle flange 10.
  • the gap 24 has the task of the temperature compensation of the actuator 3 already described.
  • the gap width h v is therefore also to be designed in the embodiment shown in FIG. 2 so that over the entire operation of the fuel injector 1 occurring temperature range is ensured that in the electrically non-excited idle state of the actuator 3, the gap 24 is not bridged due to a temperature expansion of the actuator 3.
  • Fig. 3 shows the stroke h of the actuator 3 as a function of Time t.
  • Measurement of thermal Linear expansion of the actuator 3 can either be continuous take place or at the beginning of each injection interval or in fixed predetermined intervals are repeated.
  • the Measurement of the thermal linear expansion takes place in the simplest case in that the temperature of the actuator 3 via a suitable sensor, for example a PTC resistor is detected. If the thermal Coefficient of linear expansion of the piezoelectric Material from which the actuator 3 is made with is known from the measured temperature of the actuator 3 on the temperature-dependent current length can be calculated back.
  • the temperature-dependent length of the actuator 3 can also by measuring the electrical capacitance of the actuator 3 be recorded.
  • the piezoelectric actuator 3 consists in generally of several piezoelectric ceramic layers, those for the application of the piezoelectric Ceramic layers with an axial electric field are arranged between electrodes. With a thermal Expansion of the piezoelectric layers increases Distance between the electrodes, which increases the capacity of the piezoelectric actuator 3 is reduced. By measuring the temperature-dependent capacity of the actuator 3 can therefore the current temperature-dependent length of the actuator 3 be calculated back. Measuring the temperature and the Capacity of the actuator 3 can also increase the Accuracy can be combined. The measurement of Capacity of the actuator 3 can be controlled by a charge electronic circuit or a bridge circuit take place in which the capacity of the actuator 3 with a Reference capacity is compared.
  • the temperature-dependent remaining gap width h v can be determined in the electrically non-excited idle state of the actuator 3.
  • the actuator 3 is acted upon according to the invention with a first actuation voltage such that the gap 24 ideally disappears, but at least becomes as small as possible.
  • This first electrical actuation voltage is adapted to the temperature-dependent gap width h v detected by the measurement, this first actuation voltage being greater the larger the gap width h v of the gap 24.
  • the actuator 3 illustrates the application of the first electrical actuation voltage in the time interval t 1 to t 2 .
  • the actuator 3 experiences an actuator stroke h v which corresponds to the previously determined gap width h v .
  • the gap width h v 'detected by the measurement may be smaller, which is indicated by dashed lines in FIG. 3. Accordingly, the actuator stroke h v 'caused by the first electrical actuation voltage is then smaller.
  • a second actuation voltage which is larger than the first actuation voltage is applied to the actuator 3, so that the actuator 3 expands even further and the valve closing body 12 opens from the valve seat surface 13 of fuel injector 1 lifts off. Fuel is therefore injected from the fuel injection valve 1 during this injection interval.
  • the second actuation voltage is switched off, so that the actuator 3 relaxes again into its retirement.
  • the injection timing of the column width is largely independent h v and in particular the time required for the actuator 3, the gap width h to overcome v, has no influence on the injection timing and the length of the injection interval.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Ein Brennstoffeinspritzventil (1), insbesondere ein Einspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen, weist einen piezoelektrischen oder magnetostriktiven Aktor (3) und einen von dem Aktor (3) über eine Betätigungsstrecke (6, 24, 10, 9) betätigbaren Ventilschliesskörper (12), der mit einer Ventilsitzfläche (13) zu einem Dichtsitz zusammenwirkt, auf. In einem nicht erregten Ruhezustand des Aktors (3) ist in der Betätigungsstrecke (6, 24, 10, 9) ein Spalt (24) ausgebildet.

Description

Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Anspruchs 1 bzw. von einem Verfahren zum Betreiben eines Brennstoffeinspritzventils nach der Gattung des Anspruchs 6.
Aus der DE 195 00 706 A1 ist bereits ein Brennstoffeinspritzventil nach der Gattung des Haupt anspruchs bekannt. Bei dem aus dieser Druckschrift hervorgehenden Brennstoffeinspritzventil ist ein piezoelektrischer Aktor zur Betätigung einer mit einem Ventilschließkörper verbundenen Ventilnadel vorgesehen. Der Ventilschließkörper wirkt mit einer Ventilsitzfläche zu einem Dichtsitz zusammen. Dabei ist sowohl die Ausgestaltung als ein nach außen öffnendes Brennstoffeinspritzvenitl als auch als ein nach innen öffnendes Brennstoffeinspritzventil möglich. Der aus mehreren gestapelt angeordneten piezoelektrischen Schichten aufgebaute piezoelektrische Aktor erzeugt zwar relativ große Hubkräfte, jedoch relativ geringe Hubwege. In der bekannten Druckschrift wird daher vorgeschlagen, zur Vergrößerung des auf die Ventilnadel übertragenen Hubweges zwischen der Ventilnadel und dem piezoelektrischen Aktor eine hydraulische Übersetzungseinrichtung vorzusehen. Die hydraulische Übersetzungseinrichtung bewirkt gleichzeitig eine Temperaturkompensation des piezoelektrischen Aktors.
Aus oben genannter Druckschrift ist ein Spalt zwischen einem an einem Aktor anliegenden Arbeitskolben und einem zur Betätigungsstrecke gehörenden Hubkolben bekannt, der flüssigkeitsgefüllt ist. Zur Vergrößerung des auf die Ventilnadel übertragenen Hubwegs zwischen der Ventilnadel und dem piezoelektrischen Aktor ist in dem Bereich der Arbeits- und Hubkolben diese hydraulische Übersetzungseinrichtung vorgesehen.
Der piezoelektrische Aktor ist bekanntermaßen einer nicht unerheblichen temperaturabhängigen Längenausdehnung unterworfen. Diese temperaturabhängige Längenänderung des piezoelektrischen Aktors ist jedoch relativ langsam im Vergleich zu dem zur Öffnung des Brennstoffeinspritzventils führenden Betätigungshub des Aktors. Die temperaturabhängige Längenänderung des Aktors ist daher ein quasistatischer Vorgang. Die damit verbundene Verdrängung des hydraulischen Mediums führt nicht zu einem Öffnen des Brennstoffeinspritzventils, sondern das verdrängte hydraulische Medium entweicht quasistatisch über die Führungsspalte der hydraulischen Übersetzungseinrichtung.
Es gibt Anwendungen, bei welchen eine hydraulische Übersetzugnseinrichtung zur Übersetzung des Betätigungshubs des Aktors nicht erforderlich ist, weil der Aktor bereits einen zum Öffnen des Brennstoffeinspritzventils ausreichenden Hub erzeugt. Für diese Anwendungen wäre die Anordnung einer hydraulischen Übersetzungseinrichtung nur zum Zwecke der Temperaturkompensation aufwendig und kostenintensiv. Ferner ist nachteilig, daß für die hydraulische Übersetzungseinrichtung ein spezielles hydraulisches Medium eingesetzt werden muß, daß aufgrund von Leckageverlusten im Laufe der Zeit entweichen kann. Dies kann die Funktionsweise der Übersetzungseinrichtung und die Lebensdauer des Brennstoffeinspritzventils beeinträchtigen.
Aus der DE 43 06 073 C1 ist ein Brennstoffeinspritzventil mit einem piezoelektrischen Aktor in einer anderen Bauform bekannt. Auch bei diesem Brennstoffeinspritzventil erfolgt die Temperaturkompensation mittels einer hydraulischen Übersetzungseinrichtung. Aus der DE 35 33 085 A1 ist ein Brennstoffeinspritzventil ohne hydraulische Übersetzungseinrichtung, jedoch auch ohne jegliche Temperaturkompensation, bekannt.
Aus den GB 2 094 940 A und JP 07-227091 A sind ebenfalls Brennstoffeinspritzventile bekannt, bei denen in der Betätigungsstrecke zwischen Aktor und Ventilschließkörper ein Spalt vorgesehen ist. Der Spalt befindet sich dabei jeweils in hydraulisch durchströmten Bereichen oder Kammern. Die aus der GB 2 094 940 A bekannte Kammer mit einem Spalt ist dabei mittels einer Membran hermetisch gegenüber dem Aktor bzw. dem Aktorgehäuse abgedichtet. Die Kammer ist flüssigkeitsgefüllt, da von ihr eine Rückflussleitung ausgeht. Bei Erregung des Aktors zur Betätigung der Ventilnadel muss erst das Hydraulikmedium im Spalt der Kammer verdrängt werden.
Das erfindungsgemäße Brennstoffeinspritzventil mit den Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß der piezoelektrische oder magnetostriktive Aktor aufgrund des in der Betätigungsstrecke angeordneten Spalts temperaturkompensiert ist, ohne daß es einer aufwendigen hydraulischen Übersetzungseinrichtung bedarf. Der in der Betätigungsstrecke zwischen dem Aktor und dem Ventilschließkörper angeordnete Spalt ermöglicht eine ungestörte thermische Längenausdehnung des Aktors ohne daß die thermische Längenausdehnung ein Öffnen des Brennstoffeinspritzventils bewirkt.
Der Spalt ist vorteilhaft zwischen einem mit dem Aktor verbundenen Aktorflansch und einer mit dem Ventilschließkörper verbundenen Ventilnadel angeordnet. In dem Spalt befindet sich vorteilhaft ein gasförmiges Medium, insbesondere Luft, das bzw. die bei einem Betätigen des Aktors rasch entweichen kann.
Das erfindungsgemäße Verfahren zum Betreiben eines derartigen Brennstoffeinspritzventils mit den Merkmalen des Anspruchs 6 hat den Vorteil, daß zum Öffnen des Brennstoffeinspritzventils der in der Betätigungsstrecke vorgesehene Spalt nicht überwunden werden muß. Vielmehr wird die temperaturabhängige Längenausdehnung des Aktors kontinuierlich, vor jedem Betätigungshub des Aktors oder in fest vorgegebenen Zeitabständen gemessen. Bei der Betätigung des Aktors wird dieser zunächst mit einer ersten elektrischen Betätigungsspannung beaufschlagt, die eine solche Dehnung des Aktors bewirkt, daß der Spalt idealerweise verschwindet oder zumindest möglichst klein wird. Nachfolgend wird der Aktor mit einer größeren zweiten elektrischen Betätigungsspannung beaufschlagt, die ohne Zeitverzöcerung zum Öffnen des Brennstoffeinspritzventils führt.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Brennstoffeinspritzventils und des im Anspruch 6 angegebenen Verfahrens zum Betreiben des Brennstoffeinspritzventils möglich.
Bei einem nach innen öffnenden Brennstoffeinspritzventil befindet sich der Spalt vorteilhaft auf der dem Ventilschließkörper abgewandten Seite des Aktors, während sich bei einem nach außen öffnenden Brennstoffeinspritzventil der Spalt vorteilhaft auf der dem Ventilschließkörper zugewandten Seite des Aktors befindet.
Das Messen der temperaturabhängigen Längenausdehnung des Aktors kann beispielsweise durch eine Messung der elektrischen Kapazität des Aktors erfolgen. Da der Aktor üblicherweise aus mehreren piezoelektrischen Schichten besteht, die mit Elektroden versehen sind, führt eine thermische Ausdehnung des piezoelektrischen Aktors zu einer Vergrößerung des Abstsnds der Elektroden und somit zu einer Verringerung der elektrischen Kapazität. Aus der gemessenen elektrischen Kapazität kann deshalb auf die temperaturabhängige Längenausdehnung des Aktors zurückgerechnet werden. Alternativ kann es genügen, die Temperatur des Aktors zu messen, wenn der thermische Temperaturausdehnungs-Koeffizient des Aktors mit hinreichender Genauigkeit bekannt ist. Aus der Messung der Temperatur des Aktors läßt sich dann auf die temperaturabhängige Längenausdehnung des Aktors bei der gemessenen Temperatur zurückrechnen. Die Messung der elektrischen Kapazität des Aktors und der Temperatur des Aktors können zur Verbesserung der Genauigkeit auch miteinander kombiniert werden.
Die Spaltbreite des Spalts ist vorteilhaft so bemessen, daß über den gesamten im Betrieb des Brennstoffeinspritzventils auftretenden Temperaturbereich hinweg sichergestellt ist, daß in dem nicht erregten Ruhezustand des Aktors auch bei maximaler Temperaturausdehnung des Aktors der Aktor keinen Wirkkontakt auf den Ventilschließkörper zum Abheben des Ventilschließkörpers von der Ventilsitzfläche hat. Dies gestattet den Betrieb des Brennstoffeinspritzventils in einem weiten Temperaturbereich.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1
einen Schnitt durch ein erstes Ausführungsbeispiel des erfindungsgemäßen Brennstoffeinspritzventils;
Fig. 2
einen Schnitt durch ein zweites Ausführungsbeispiel des erfindungsgemäßen Brennstoffeinspritzventils; und
Fig. 3
ein Zeitdiagramm zur Erläuterung des erfindungsgemäßen Verfahrens zum Betreiben des erfindungsgemäßen Brennstoffeinspritzventils.
Beschreibung der Ausführungsbeispiele
Fig. 1 zeigt in einer axialen Schnittdarstellung ein Ausführungsbeispiel des erfindungsgemäßen Brennstoffeinspritzventils 1. Das Brennstoffeinspritzventil 1 eignet sich insbesondere zum direkten Einspritzen von Brennstoff, insbesondere von Benzin, in den Brennraum einer vorzugsweise gemischverdichtenden, fremdgezündeten Brennkraftmaschine.
In einem Gehäusekörper 2 ist ein piezoelektrischer Aktor 3 integriert, der von einem Vorspannelement 4 hülsenartig umgeben ist. Der piezoelektrische Aktor 3 ist zwischen einem ersten Aktorflansch 5 und einem zweiten Aktorflansch 6 mittels des mit den Aktorflanschen 5 und 6 verbundenen Vorspannelements 4 eingespannt. Der Aktor 3, die Aktorflansche 5 und 6 und das Vorspannelement 4 sind in eine zylinderförmige Ausnehmung 7 des Gehäusekörpers 2 eingesetzt. Dabei stützt sich der Aktor 3 über den ersten Aktorflansch 5 an dem Gehäusekörper 2 ab.
Der Aktor 3 ist im Ausführungsbeispiel hülsenförmig ausgebildet. Sowohl der Aktor 3 als auch die Aktorflansche 5 und 6 weisen eine zentrale Öffnung 8 auf, durch welche eine Ventilnadel 9 hindurchragt. Die Ventilnadel 9 weist einen Ventilnadelflansch 10 auf, der als Anschlag für den zweiten Aktorflansch 6 dient.
Mit der sich konzentrisch zu der Mittelachse 11 erstreckenden Ventilnadel 9 ist im Ausführungsbeispiel einstückig ein Ventilschließkörper 12 ausgebildet, der zusammen mit einer an einem Ventilsitzträger 14 ausgebildeten Ventilsitzfläche 13 einen Dichtsitz bildet. Der Ventilschließkörper 12 hat eine konische Fläche 15, die an die konische Ventilsitzfläche 13 angepaßt ist. In Abspritzrichtung schließt sich an die Ventilsitzfläche 13 eine Abspritzöffnung 16 an. Zur besseren Verteilung des Brennstoffs weist der Ventilschließkörper 12 wenigstens eine Drallnut 17 auf.
An dem abspritzseitigen Ende des Gehäusekörpers 2 ist ein Federaufnahmeraum 18 für eine Rückstellfeder 19 vorgesehen, die an einem mit der Ventilnadel 9 verbundenen Flansch 20 an der Ventilnadel 9 angreift und den Ventilschließkörper 12 in seine Schließstellung drückt.
Die Zuleitung des Brennstoffs erfolgt über eine in dem Gehäusekörper 2 ausgebildete Brennstoffleitung 21, an welche sich eine in dem Ventilsitzträger 14 ausgebildete Brennstoffleitung 22 anschließt, die in eine Axialbohrung 23 des Ventilsitzkörpers 14 ausmündet.
Erfindungsgemäß ist in der Betätigungsstrecke zwischen dem piezoelektrischen Aktor 3 und dem Ventilschließkörper 12 ein Spalt 24 vorgesehen. Im in Fig. 1 dargestellten Ausführungsbeispiel befindet sich der Spalt 24 zwischen dem zweiten Aktorflansch 6 und dem Ventilnadelflansch 10. Grundsätzlich kann der Spalt 24 jedoch auch an anderer Stelle in der Betätigungsstrecke zwischen dem Aktor 3 und dem Ventilschließkörper 12, beispielsweise zwischen der Ventilnadel 9 und dem Ventilschließkörper 12, angeordnet sein.
Der Spalt 24 dient der Temperaturkompensation des piezoelektrischen Aktors 3. Bekanntermaßen ist der aus piezoelektrischen Keramikschichten aufgebaute Aktor 3 einer nicht unerheblichen thermischen Längenausdehnung unterworfen. Wäre der Aktor 3 unmittelbar mit der Ventilnadel 9 verbunden, indem der zweite Aktorflansch 6 in dem nicht erregten Ruhezustand des Aktors 3 unmittelbar an dem Ventilnadelflansch 10 anliegen würde, würde nicht nur eine elektrische Erregung des Aktors 3, sondern auch eine thermische Ausdehnung des Aktors 3 zu einem Öffnen des Brennstoffeinspritzventils 1 führen. Bei dem erfindungsgemäßen Brennstoffeinspritzventil 1 führt eine thermische Längenausdehnung des Aktors 3 hingegen lediglich zu einer Verringerung der Spaltbreite hv des Spalts 24, nicht jedoch zu einem Abheben des Ventilschließkörpers 12 von der Ventilsitzfläche 13.
Die Spaltbreite hv des Spalts 24 ist dabei so auszulegen, daß über den gesamten im Betrieb des Brennstoffeinspritzventils 1 auftretenden Temperaturbereich hinweg sichergestellt ist, daß in dem nicht erregten Ruhezustand des Aktors 3 der Spalt 24 nicht aufgrund einer Temperaturdehnung des Aktors 3 überbrückt wird. In dem Spalt 24 befindet sich ein gasförmiges Medium, vorzugsweise die Umgebungsluft des Brennstoffeinspritzventils 1. Die in dem Spalt 24 befindliche Luft kann bei einer Betätigung des Aktors 3 beispielsweise über eine Entlüftungsbohrung rasch entweichen.
Die Rückstellfeder 19 kann alternativ auch an der dem Aktor 3 abgewandten Stirnfläche 25 des Ventilnadelflansches 10 angreifen, was in Fig. 1 mit unterbrochener Linienführung angedeutet ist.
Während Fig. 1 die Erfindung an einem nach innen öffnenden Brennstoffeinspritzventil 1 veranschaulicht, zeigt Fig. 2 ein nach außen öffnendes erfindungsgemäßes Brennstoffeinspritzventil 1. Bereits beschriebene Elemente sind mit übereinstimmenden Bezugszeichen versehen, so daß sich insoweit eine wiederholende Beschreibung erübrigt.
Im Unterschied zu dem in Fig. 1 dargestellten Ausführungsbeispiel ist der Ventilschließkörper 12 bei dem in Fig. 2 dargestellten Ausführungsbeispiel an der Ventilnadel 9 so angeordnet, daß die konische Fläche 15 des Ventilschließkörpers 12 an der Ventilschließfläche 13 außenseitig anliegt. Die Rückstellfeder 19 beaufschlagt über den Flansch 20 die Ventilnadel 9 in Fig. 2 nach oben und bewirkt somit die Rückstellung des Ventilschließkörpers 12 in seine Schließstellung.
Der erste Aktorflansch 5 stößt sich an dem Gehäusekörper 2 ab, so daß sich der zweite Aktorflansch 6 bei einer Betätigung des piezoelektrischen Aktors 3 in Fig. 2 nach unten bewegt und nach einem Überbrücken des Spalts 24 mit einem Vorsprung 30 an dem Ventilnadelflansch 10 anstößt.
Auch bei dem in Fig. 2 dargestellten Ausführungsbeispiel hat der Spalt 24 die Aufgabe der bereits beschriebenen Temperaturkompensation des Aktors 3. Die Spaltbreite hv ist daher auch bei dem in Fig. 2 dargestellten Ausführungsbeispiel so auszulegen, daß über den gesamten im Betrieb des Brennstoffeinspritzventils 1 auftretenden Temperaturbereich hinweg sichergestellt ist, daß in dem elektrisch nicht erregten Ruhezustand des Aktors 3 der Spalt 24 nicht aufgrund einer Temperaturausdehnung des Aktors 3 überbrückt wird.
Ein erfindungsgemäßes Verfahren zum Betreiben des erfindungsgemäßen Brennstoffeinspritzventils 1 wird nachfolgend unter Bezugnahme auf Fig. 3 näher erläutert. Fig. 3 zeigt den Hub h des Aktors 3 als eine Funktion der Zeit t.
Erfindungsgemäß wird die thermische Längenausdehnung des Aktors 3 gemessen. Die Messung der thermischen Längenausdehnung des Aktors 3 kann entweder kontinuierlich erfolgen oder zu Beginn jedes Einspritzintervalls oder in fest vorgegebenen Zeitabständen wiederholt werden. Die Messung der thermischen Längenausdehnung erfolgt im einfachsten Fall dadurch, daß die Temperatur des Aktors 3 über einen geeigneten Sensor, beispielsweise einen PTC-Widerstand erfaßt wird. Wenn der thermische Längenausdehnungs-Koeffizient des piezoelektrischen Materials, aus welchem der Aktor 3 besteht, mit hinreichender Genauigkeit bekannt ist, kann aus der gemessenen Temperatur des Aktors 3 auf dessen temperaturabhängige aktuelle Länge zurückgerechnet werden.
Die temperaturabhängige Länge des Aktors 3 kann jedoch auch durch eine Messung der elektrischen Kapazität des Aktors 3 erfaßt werden. Der piezoelektrische Aktor 3 besteht im allgemeinen aus mehreren piezoelektrischen Keramikschichten, die zur Beaufschlagung der piezoelektrischen Keramikschichten mit einem axialen elektrischen Feld zwischen Elektroden angeordnet sind. Bei einer thermischen Ausdehnung der piezoelektrischen Schichten erhöht sich der Abstand zwischen den Elektroden, wodurch sich die Kapazität des piezoelektrischen Aktors 3 verringert. Durch Messung der temperaturabhängigen Kapazität des Aktors 3 kann deshalb auf die aktuelle temperaturabhängige Länge des Aktors 3 zurückgerechnet werden. Die Messung der Temperatur und der Kapazität des Aktors 3 können auch zur Erhöhung der Genauigkeit miteinander kombiniert werden. Die Messung der Kapazität des Aktors 3 kann mittels einer ladungsgesteuerten elektronischen Schaltung oder einer Brückenschaltung erfolgen, in welcher die Kapazität des Aktors 3 mit einer Referenzkapazität verglichen wird.
Aufgrund der indirekt gemessenen temperaturabhängigen Längenausdehnung des Aktors 3 läßt sich die temperaturabhängige verbleibende Spaltbreite hv im elektrisch nicht erregten Ruhezustand des Aktors 3 ermitteln. Vor dem eigentlichen Einspritzintervall wird der Aktor 3 erfindungsgemäß mit einer ersten Betätigungsspannung so beaufschlagt, daß der Spalt 24 im Idealfall verschwindet, zumindest jedoch- möglichst klein wird. Diese erste elektrische Betätigungsspannung ist an die durch die Messung erfaßte temperaturabhängige Spaltbreite hv angepaßt, wobei diese erste Betätigungsspannung umso größer ist, je größer die Spaltbreite hv des Spaltes 24 ist.
Fig. 3 veranschaulicht das Anlegen der ersten elektrischen Betätigungsspannung in dem Zeitintervall t1 bis t2. Der Aktor 3 erfährt dabei einen Aktorhub hv, der der vorher erfaßten Spaltbreite hv entspricht. Bei einer anderen Temperatur kann die durch die Messung erfaßte Spaltbreite hv' geringer sein, was in Fig. 3 gestrichelt angedeutet ist. Entsprechend ist dann auch der durch die erste elektrische Betätigungsspannung hervorgerufene Aktorhub hv' geringer.
In dem Zeitintervall t2 bis t3 bzw. t2' bis t3 wird an den Aktor 3 eine gegenüber der ersten Betätigungsspannung größere zweite Betätigungsspannung angelegt, so daß sich der Aktor 3 noch weiter ausdehnt und der Ventilschließkörper 12 von der Ventilsitzfläche 13 zum Öffnen des Brennstoffeinspritzventils 1 abhebt. Während diesem Einspritzintervall wird deshalb von dem Brennstoffeinspritzventil 1 Brennstoff abgespritzt. Im Zeitpunkt t3 wird die zweite Betätigungsspannung abgeschaltet, so daß der Aktor 3 wieder in seinen Ruhestand relaxiert.
Durch das erfindungsgemäße Verfahren wird erreicht, daß der Einspritzzeitpunkt von der Spaltenbreite hv weitgehend unabhängig ist und insbesondere die Zeit, die der Aktor 3 benötigt, um die Spaltbreite hv zu überwinden, keinen Einfluß auf den Einspritzzeitpunkt und auf die Länge des Einspritzintervalls hat.

Claims (8)

  1. Brennstoffeinspritzventil (1), insbesondere Einspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen, mit einem piezoelektrischen oder magnetostriktiven Aktor (3) und einem von dem Aktor (3) über eine Betätigungsstrecke (6, 24, 10, 9) betätigbaren Ventilschließkörper (12), der mit einer Ventilsitzfläche (13) zu einem Dichtsitz zusammenwirkt, wobei in einem nicht erregten Ruhezustand des Aktors (3) in der Betätigungsstrecke (6, 24, 10, 9) ein Spalt (24) ausgebildet ist, durch den der Aktor (3) keinen Wirkkontakt auf den Ventilschließkörper (12) zum Abheben des Ventilschließkörpers (12) von der Ventilsitzfläche (13) hat,
    dadurch gekennzeichnet, daß der Spalt (24) abseits der hydraulischen Bereiche und Leitungen (21, 22, 23) des Brennstoffeinspritzventils (1) ausgebildet ist und sich daher in dem Spalt (24) ausschließlich ein gasförmiges Medium, insbesondere Luft, befindet, das bei einem Betätigen des Aktors (3) rasch entweichen kann.
  2. Brennstoffeinspritzventil nach Anspruch 1,
    dadurch gekennzeichnet, daß die Betätigungsstrecke (6, 24, 10, 9) einen mit dem Aktor (3) verbundenen Aktorflansch (6) und eine mit dem Ventilschließkörper (12) verbundene Ventilnadel (9) umfaßt und der Spalt (24) zwischen dem Aktorflansch (6) und der Ventilnadel (9) angeordnet ist.
  3. Brennstoffeinspritzventil (1) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß der Spalt (24) mit einer Spaltbreite (hv) derart ausgebildet ist, daß über den gesamten im Betrieb des Brennstoffeinspritzventils (1) auftretenden Temperaturbereich hinweg sichergestellt ist, daß in dem nicht erregten Ruhezustand des Aktors (3) auch bei maximaler Temperaturausdehnung des Aktors (3) der Aktor (3) keinen Wirkkontakt auf den Ventilschließkörper (12) zum Abheben des Ventilschließkörpers (12) von der Ventilsitzfläche (13) hat.
  4. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß das Brennstoffeinspritzventil (1) ein nach innen öffnendes Brennstoffeinspritzventil (1) ist und sich der Spalt (24) auf der dem Ventilschließkörper (12) abgewandten Seite des Aktors (3) befindet.
  5. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß das Brennstoffeinspritzventil (1) ein nach außen öffnendes Brennstoffeinspritzventil (1) ist und sich der Spalt (24) auf der dem Ventilschließkörper (12) zugewandten Seite des Aktors (3) befindet.
  6. Verfahren zum Betreiben eines Brennstoffeinspritzventils (1) nach einem der Ansprüche 1 bis 5 mit folgenden Verfahrensschritten:
    Messen der temperaturabhängigen Längenausdehnung des Aktors (3) in dem nicht erregten Ruhezustand des Aktors (3),
    Beaufschlagen des Aktors (3) mit einer ersten elektrischen Betätigungsspannung in Abhängigkeit von der gemessenen temperaturabhängigen Längenausdehnung des Aktors (3), wobei die erste elektrische Betätigungsspannung so bemessen wird, daß der Spalt (24) verschwindet oder zumindest möglichst klein wird und
    Beaufschlagen des Aktors (3) mit einer zweiten elektrischen Betätigungsspannung zum Öffnen des Brennstoffeinspritzventils (1) während eines Einspritzintervalls.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet, daß das Messen der temperaturabhängigen Längenausdehnung des Aktors (3) eine Messung der elektrischen Kapazität des Aktors (3) umfaßt.
  8. Verfahren nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, daß das Messen der temperaturabhängigen Längenausdehnung des Aktors (3) eine Messung der Temperatur des Aktors (3) umfaßt.
EP99955754A 1999-01-18 1999-09-22 Brennstoffeinspritzventil und verfahren zum betreiben eines brennstoffeinspritzventils Expired - Lifetime EP1147306B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19901711A DE19901711A1 (de) 1999-01-18 1999-01-18 Brennstoffeinspritzventil und Verfahren zum Betreiben eines Brennstoffeinspritzventils
DE19901711 1999-01-18
PCT/DE1999/003020 WO2000042313A1 (de) 1999-01-18 1999-09-22 Brennstoffeinspritzventil und verfahren zum betreiben eines brennstoffeinspritzventils

Publications (2)

Publication Number Publication Date
EP1147306A1 EP1147306A1 (de) 2001-10-24
EP1147306B1 true EP1147306B1 (de) 2002-12-18

Family

ID=7894580

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99955754A Expired - Lifetime EP1147306B1 (de) 1999-01-18 1999-09-22 Brennstoffeinspritzventil und verfahren zum betreiben eines brennstoffeinspritzventils

Country Status (6)

Country Link
US (1) US6478013B1 (de)
EP (1) EP1147306B1 (de)
JP (1) JP2002535536A (de)
KR (1) KR20010113652A (de)
DE (2) DE19901711A1 (de)
WO (1) WO2000042313A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954802A1 (de) * 1999-11-13 2001-05-17 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10014737A1 (de) * 2000-03-24 2001-10-11 Bosch Gmbh Robert Verfahren zur Bestimmung des Raildrucks eines Einspritzventils mit einem piezoelektrischen Aktor
DE10101796A1 (de) * 2001-01-17 2002-07-18 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE10141136A1 (de) * 2001-04-07 2002-10-10 Continental Teves Ag & Co Ohg Ventil.insbesondere für hydraulische Kraftfahrzeugbremsen
DE10129375B4 (de) * 2001-06-20 2005-10-06 Mtu Friedrichshafen Gmbh Injektor mit Piezo-Aktuator
DE10162250A1 (de) * 2001-12-18 2003-07-03 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10213858A1 (de) * 2002-03-27 2003-10-30 Bosch Gmbh Robert Brennstoffeinspritzventil
WO2004085828A2 (de) * 2003-03-27 2004-10-07 Siemens Aktiengesellschaft Direkt-einspritzventil in einem zylinderkopf
DE10328573A1 (de) * 2003-06-25 2005-01-13 Robert Bosch Gmbh Brennstoffeinspritzventil
DE10341810B4 (de) 2003-09-10 2016-04-07 Robert Bosch Gmbh Brennstoffeinspritzventil und Verfahren zum Betrieb eines Brennstoffeinspritzventils
JP4002229B2 (ja) * 2003-10-03 2007-10-31 株式会社日立製作所 燃料噴射弁
DE10349824A1 (de) * 2003-10-24 2005-06-02 Robert Bosch Gmbh Verfahren zur Diagnose einer Kraftstoff-Einspritzvorrichtung, welche einen Piezoaktor aufweist
DE102004021920A1 (de) * 2004-05-04 2005-12-01 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102004022958A1 (de) * 2004-05-10 2005-12-22 Siemens Ag Kraftstoffinjektor mit einer korrigierbaren Einstellung eines Leerhubs einer Aktoreinheit
US7100577B2 (en) * 2004-06-14 2006-09-05 Westport Research Inc. Common rail directly actuated fuel injection valve with a pressurized hydraulic transmission device and a method of operating same
DE102004031790A1 (de) * 2004-07-01 2006-01-26 Robert Bosch Gmbh Common-Rail-Injektor
JP2006165193A (ja) * 2004-12-06 2006-06-22 Denso Corp 中空積層型圧電素子及びその製造方法
DE102005001498B4 (de) * 2005-01-12 2007-02-08 Siemens Ag Verfahren und Vorrichtung zum Steuern eines Injektors
EP1811166B1 (de) * 2006-01-24 2008-11-05 Continental Automotive GmbH Ventilanordnung für ein Einspritzventil und Einspritzventil
GB0616713D0 (en) * 2006-08-23 2006-10-04 Delphi Tech Inc Piezoelectric fuel injectors
DE102006039522B4 (de) * 2006-08-23 2009-01-29 Continental Automotive Gmbh Verfahren zur Leerhubsteuerung einer Kraftstoffeinspritzvorrichtung
DE102006058744A1 (de) * 2006-12-12 2008-06-19 Robert Bosch Gmbh Verfahren zum Betreiben eines Einspritzventils
KR100956258B1 (ko) * 2008-04-10 2010-05-06 성균관대학교산학협력단 볼-포핏밸브가 구비된 고압분사용 인젝터
DE102008045955A1 (de) * 2008-09-04 2010-03-11 Continental Automotive Gmbh Verfahren und Vorrichtung zur Korrektur einer temperaturbedingten Längenänderung einer Aktoreinheit, die im Gehäuse eines Kraftstoffinjektors angeordnet ist
JP5009263B2 (ja) * 2008-10-20 2012-08-22 本田技研工業株式会社 燃料噴射装置
US20130068200A1 (en) * 2011-09-15 2013-03-21 Paul Reynolds Injector Valve with Miniscule Actuator Displacement
US9605639B2 (en) * 2012-07-12 2017-03-28 Ford Global Technologies, Llc Fuel injector
DE102014200184A1 (de) * 2014-01-09 2015-07-09 Robert Bosch Gmbh Verfahren und Schaltungsanordnung zur Ansteuerung von Einspritzventilen, insbesondere einer fremdgezündeten Brennkraftmaschine
JP6172189B2 (ja) * 2015-03-23 2017-08-02 マツダ株式会社 直噴エンジンの燃料噴射制御装置
DE102015217193A1 (de) * 2015-09-09 2017-03-09 Continental Automotive Gmbh Erfassungsverfahren zum Erfassen einer Spaltgröße eines Spaltes zwischen einer Injektorventilbaugruppe und einem Piezostapel sowie Ansteuerungsverfahren zum Ansteuern einer Aktoreinheit in einem Piezostapel.
DE102015219568B4 (de) * 2015-10-09 2017-06-08 Continental Automotive Gmbh Aktuator mit Ventileinheit für piezoservobetriebenen Injektor
JP6731492B2 (ja) * 2016-10-03 2020-07-29 日立オートモティブシステムズ株式会社 燃料噴射弁
DE102020208273A1 (de) * 2020-07-02 2022-01-05 Robert Bosch Gesellschaft mit beschränkter Haftung Gasinjektor mit reduziertem Verschleiß

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136859U (de) 1981-02-18 1982-08-26
DE3533085A1 (de) 1985-09-17 1987-03-26 Bosch Gmbh Robert Zumessventil zur dosierung von fluessigkeiten oder gasen
JP3090569B2 (ja) * 1994-02-08 2000-09-25 株式会社ユニシアジェックス 超磁歪式アクチュエータ
DE19500706C2 (de) * 1995-01-12 2003-09-25 Bosch Gmbh Robert Zumeßventil zur Dosierung von Flüssigkeiten oder Gasen
US5875764A (en) * 1998-05-13 1999-03-02 Siemens Aktiengesellschaft Apparatus and method for valve control
DE19821768C2 (de) * 1998-05-14 2000-09-07 Siemens Ag Dosiervorrichtung und Dosierverfahren
US6079641A (en) * 1998-10-13 2000-06-27 Caterpillar Inc. Fuel injector with rate shaping control through piezoelectric nozzle lift
EP1081372B1 (de) * 1999-08-31 2004-10-13 Denso Corporation Kraftstoffeinspritzvorrichtung

Also Published As

Publication number Publication date
EP1147306A1 (de) 2001-10-24
DE59903885D1 (de) 2003-01-30
KR20010113652A (ko) 2001-12-28
US6478013B1 (en) 2002-11-12
DE19901711A1 (de) 2000-07-20
JP2002535536A (ja) 2002-10-22
WO2000042313A1 (de) 2000-07-20

Similar Documents

Publication Publication Date Title
EP1147306B1 (de) Brennstoffeinspritzventil und verfahren zum betreiben eines brennstoffeinspritzventils
EP1030969B1 (de) Brennstoffeinspritzventil-drucksensor-kombination
EP1149237B2 (de) Brennstoffeinspritzventil
EP1829128B1 (de) Vorrichtung mit formgedächtniselement
WO2002101228A1 (de) Ventil zum steuern von fluiden sowie verfahren zur bestimmung von drücken
EP1474603A1 (de) Brennstoffeinspritzventil
EP1307651B1 (de) Dosierventil mit einem hydraulischen übertragungselement
EP1135595A1 (de) Ventil zum steuern von flüssigkeiten
WO2001025613A1 (de) Brennstoffeinspritzventil
WO2005095789A1 (de) Einrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine mit einem nadelhubsensor
EP1378657B1 (de) Brennstoffeinspritzventil
EP1431568B1 (de) Brennstoffeinspritzventil
WO2006018399A1 (de) Stellantrieb für einen kraftstoffinjektor einer brennkraftmaschine sowie verwendung hierfür
EP1519036B1 (de) Brennstoffeinspritzventil
EP1664525B1 (de) Dosiervorrichtung
EP1488096B1 (de) Brennstoffeinspritzventil
EP1606509B1 (de) Brennstoffeinspritzventil
EP1144847A1 (de) Brennstoffeinspritzventil
EP1519034B1 (de) Brennstoffeinspritzventil
EP1450034B1 (de) Brennstoffeinspritzventil
EP1452729B1 (de) Brennstoffeinspritzventil
EP2642110B1 (de) Brennstoffeinspritzventil
DE10232194B4 (de) Brennstoffeinspritzventil
EP1121526A1 (de) Brennstoffeinspritzventil
WO2000017508A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020226

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59903885

Country of ref document: DE

Date of ref document: 20030130

Kind code of ref document: P

Ref document number: 59903885

Country of ref document: DE

Date of ref document: 20030130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1147306E

Country of ref document: IE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030919

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040910

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040917

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050922

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130926

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131121

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59903885

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59903885

Country of ref document: DE

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140922