EP1147183A1 - Nucleic acid and amino acid sequences - Google Patents

Nucleic acid and amino acid sequences

Info

Publication number
EP1147183A1
EP1147183A1 EP00900795A EP00900795A EP1147183A1 EP 1147183 A1 EP1147183 A1 EP 1147183A1 EP 00900795 A EP00900795 A EP 00900795A EP 00900795 A EP00900795 A EP 00900795A EP 1147183 A1 EP1147183 A1 EP 1147183A1
Authority
EP
European Patent Office
Prior art keywords
nucleic acid
acid sequence
srl
product
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00900795A
Other languages
German (de)
French (fr)
Inventor
Liat Mintz
Kinneret Savitzky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compugen Ltd
Original Assignee
Compugen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compugen Ltd filed Critical Compugen Ltd
Publication of EP1147183A1 publication Critical patent/EP1147183A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70571Receptors; Cell surface antigens; Cell surface determinants for neuromediators, e.g. serotonin receptor, dopamine receptor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70571Assays involving receptors, cell surface antigens or cell surface determinants for neuromediators, e.g. serotonin receptor, dopamine receptor

Definitions

  • the present invention concerns novel nucleic acid sequences, vectors and host cells containing them, amino acid sequences encoded by said sequences, and antibodies reactive with said amino acid sequences, as well as pharmaceutical compositions comprising any of the above.
  • the present invention further concerns methods for screening for candidate agonist or antagonists utilizing said amino acid sequences.
  • Serotonin (5-hy(koxytr ptamine, 5-HT) is widely distributed in animals and plants, occurring in vertebrates, fruits, nuts, and venoms. A number of congeners of serotonin are also found in nature and have been shown to possess a variety of peripheral and central nervous system activities.
  • 5-HT presents the most perplexing array of receptor interactions.
  • Gaddum suggested that 5-HT interacted with two different receptors in isolated tissues, one on smooth muscle and one on nervous tissue. Since dibenzyline selectively antagonized smooth muscle, and morphine was selective for nervous tissue, these receptors were named “D” and "M” receptors, respectively. Since that time, and especially in the past decade, there has been tremendous progress in 5-HT receptor identification. It now appears that there are at least four populations of receptors for serotonin:
  • 5-HT2 (one of which was formerly named the 5-HT1C receptor, a name that still appears in the literature) and three subtypes of the 5-HT3 receptors exist.
  • 5-HT3 receptor which is a ligand-gated ion channel related to NMD A, GABA and nicotinic receptors
  • all of the 5-HT receptor subtypes belong to the group of G-protein linked receptors.
  • the 5-HT4 receptor is a member of the seven transmembrane spanning G-protein-coupled family of receptors.
  • the receptor is positively coupled to adenylate cyclase and exists in two isoforms (5-HT4D and 5-HT4L) that differ in the length and sequence of their carboxy termini.
  • the 5-HT4 receptor is pharmacologically defined by selective agonists such as SC 53116 and RS 113808, SB 204070 and RS 39604.
  • the receptor is widely distributed in the central nervous system and peripheral tissues. In the periphery, the receptor plays an important role in the function of several organ responses including the alimentary tract, urinary bladder, heart and adrenal gland.
  • 5-HT4 receptors In the alimentary tract, stimulation of 5-HT4 receptors has a pronounced effect on smooth muscle tone, muscosal electrolyte secretion, and the peristaltic reflex. In the urinary bladder, activation of 5-HT4 receptors modulates cholinergic/purinergic transmission. In the heart, stimularion of atrial 5-HT4 receptors produces positive inotropy and tachycardia that can precipitate arrythmias. In the adrenal gland, agonism of 5-HT4 receptors stimulates release of cortisol, cortiscosterone, and aldosterone. Since its discovery in 1988, significant advances have been made in the understanding of the
  • 5-HT4 receptor agonists and antagonists that may have therapeutic utility in the treatment of peripheral disorders such as irritable bowel syndrome, gastroparesis, urinary incontinence and cardiac arrhythmias (Hegde and Eglen, The FASEB J.,
  • 5-HT4 have also been found in the CNS of their activators appears to involve activation of neurotransmitter release.
  • agonists of 5-HT4 can be used to enhance transmitter release in the CNS of antagonist can be used to inhibit such transmitted release.
  • SRL Serotonin-receptor like nucleic acid sequence
  • SRL product also referred at times as the "SRL protein” or SRL polypeptide” - an amino acid sequence coded by said SRL nucleic acid sequence.
  • the amino acid sequence may be a peptide, a protein, as well as peptides or proteins having chemically modified amino acids (see below) such as a glycopeptide or glycoprotein.
  • An example of an SRL product is shown in SEQ ID NO: 3 or SEQ ID NO. 4, and includes also analogues of said sequences in which one or more amino acids has been added, deleted, substituted (see below) or chemically modified (see below) as well as fragments of this sequence having at least 10 amino acids.
  • Nucleic acid sequence -a sequence composed of DNA nucleotides, RNA nucleotides or a combination of both types and may includes natural nucleotides, chemically modified nucleotides and synthetic nucleotides.
  • amino acid sequence a sequence composed of any one of the 20 naturally appearing amino acids, amino acids which have been chemically modified (see below), or composed of synthetic amino acids.
  • Frament of SRL product a polypeptide which has an amino acid sequence which is the same as part of but not all of the amino acid sequence of the SRL product.
  • “Fragments of SRL nucleic acid sequence” a continuous portion, preferably of about 20 nucleic acid sequences of the SRL nucleic acid sequence.
  • Constant substitution refers to the substitution of an amino acid in one class by an amino acid of the same class, where a class is defined by common physicochemical amino acid side chain properties and high substitution frequencies in homologous proteins found in nature, as determined, for example, by a standard Dayhoff frequency exchange matrix or BLOSUM matrix.
  • Class I Cys
  • Class II Ser, Thr, Pro, Ala, Gly
  • Class III Asn, Asp, Gin, Glu
  • Class IN His, Arg, Lys
  • Class V He, Leu, Nal, Met
  • Class VI Phe, Tyr, Trp
  • Non-conservative substitution refers to the substitution of an amino acid in one class with an amino acid from another class; for example, substitution of an Ala, a class II residue, with a class III residue such as Asp, Asn, Glu, or Gin.
  • “Chemically modified” - when referring to the product of the invention, means a product (protein) where at least one of its amino acid resides is modified either by natural processes, such as processing or other post-translational modifications, or by chemical modification techniques which are well known in the art.
  • modifications typical, but not exclusive examples include: acetylation, acylation, amidation, ADP-ribosylation, glycosylation, GPI anchor formation, covalent attachment of a lipid or lipid derivative, methylation, myristlyation, pegylation, prenylation, phosphorylation, ubiqutination, or any similar process.
  • Biologically active refers to the SRL product having structural, regulatory or biochemical functions of the naturally occurring SRL product, such as the ability to bind serotonin.
  • immunologically active defines the capability of a natural, recombinant or synthetic SRL product, or any fragment thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
  • a biologically active fragment of SRL product denotes a fragment which retains some or all of the biological properties of the SRL product, e.g the ability to bind to a specific ligand (serotonin), agonist or antagonist which binds to the SRL product;
  • an immunologically active fragment is a fragment which can bind specific anti-SRL product antibodies or which can elicit an immune response which will generate such antibodies or cause proliferation of SRL product-specific immune cells.
  • Optimal alignment is defined as an alignment giving the highest percent identity score. Such alignment can be performed using a variety of commercially available sequence analysis programs, such as the local alignment program LALIGN using a ktup of 1, default parameters and the default PAM. A preferred alignment is the one performed using the CLUSTAL-W program from Mac Vector (TM), operated with an open gap penalty of 10.0, an extended gap penalty of 0.1, and a BLOSUM similarity matrix. If a gap needs to be inserted into a first sequence to optimally align it with a second sequence, the percent identity is calculated using only the residues that are paired with a corresponding amino acid residue (i.e., the calculation does not consider residues in the second sequences that are in the "gap" of the first sequence).
  • TM Mac Vector
  • Having at least X% identity refers to the percentage of residues that are identical in the two sequences when the sequences are optimally aligned.
  • 70% amino acid sequence identity means that 70% of the amino acids in two or more optimally aligned polypeptide sequences are identical.
  • isolated nucleic acid molecule having an SRL nucleic acid sequence is a nucleic acid molecule that includes the coding SRL nucleic acid sequence.
  • Said isolated nucleic acid molecule may include the SRL nucleic acid sequence as an independent insert; may include the SRL nucleic acid sequence fused to an additional coding sequences, encoding together a fusion protein in which the SRL coding sequence is the dominant coding sequence (for example, the additional coding sequence may code for a signal peptide); the SRL nucleic acid sequence may be in combination with non-coding sequences, e.g., introns or control elements, such as promoter and terminator elements or 5' and/or 3' untranslated regions, effective for expression of the coding sequence in a suitable host; or may be a vector in which the SRL protein coding sequence is a heterologous.
  • “Expression vector” - refers to vectors that have the ability to incorporate and express heterologous DNA fragments in a foreign cell. Many prokaryotic and eukaryotic expression vectors are known and/or commercially available. Selection of appropriate expression vectors is within the knowledge of those having skill in the art. "Deletion” - is a change in either nucleotide or amino acid sequence in which one or more nucleotides or amino acid residues, respectively, are absent.
  • “Insertion” or “addition” - is that change in a nucleotide or amino acid sequence which has resulted in the addition of one or more nucleotides or amino acid residues, respectively, as compared to the naturally occurring sequence.
  • substitution - replacement of one or more nucleotides or amino acids by different nucleotides or amino acids, respectively. As regards amino acid sequences the substitution may be conservative or non- conservative.
  • Antibody refers to IgG, IgM, IgD, IgA, and IgG antibody.
  • the definition includes polyclonal antibodies or monoclonal antibodies. This term refers to whole antibodies or fragments of the antibodies comprising the antigen-binding domain of the anti-SRL product antibodies, e.g. antibodies without the Fc portion, single chain antibodies, fragments consisting of essentially only the variable, antigen-binding domain of the antibody, etc.
  • Ligand or activator an agent which binds to or activates the SRL protein to cause it to become active an exert its biological activity.
  • Agonist refers to a molecule which, when bound to the SRL product of the present invention, mimics the effect of binding of the natural ligand or activator of said product or at times even increases or prolongs the duration of the biological activity of said product, as compared to that induced by the natural ligand or activator.
  • Agonists may be polypeptides, nucleic acids, carbohydrates, lipids, or derivatives thereof, or any other molecules which can bind to and activate the SRL product.
  • Antagonist refers to a molecule which, when bound to the product of the present invention, modulates its activity in an opposite manner to that of the agonist, by decreasing or shortening the duration of the biological activity of the SLR product.
  • Antagonists may be polypeptides, nucleic acids, carbohydrates, lipids, or derivatives thereof, or any other molecules which bind to and modulate the activity of said product.
  • Treating a disease refers to administering a therapeutic substance effective to ameliorate symptoms associated with a disease, to lessen the severity or cure the disease, or to prevent the disease from occurring.
  • Probe the SRL nucleic acid sequence, or a sequence complementary therewith, when used to detect presence of other similar sequences in a sample.
  • the detection is carried out by identification of hybridization complexes between the probe and the assayed sequence.
  • the probe may be attached to a solid support or to a detectable label.
  • the present invention provides by its first aspect, a novel isolated nucleic acid molecule comprising or consisting of the coding sequence SEQ ID NO: 1 or SEQ ID NO: 2, fragments of said coding sequence having at least 25 20 nucleic acids, or a molecule comprising a sequence having at least 70%, preferably 80%, and most preferably 90% identity to SEQ ID No:l or SEQ ID NO: 2.
  • the present invention further provides a protein or polypeptide comprising or consisting of an amino acid sequence encoded by any of the above nucleic acid sequences, termed herein "SRL product", for example, an amino acid sequence having the sequence as depicted in SEQ ID No: 4 or SEQ ID NO: 4, fragments of the above amino acid sequence having a length of at least 10 amino acids, as well as homologs of the amino acid sequences SEQ ID No.:3 or SEQ ID NO: 4, in which one or more of the amino acid residues has been substituted (by conservative or non-conservative substitution) added, deleted, or chemically modified.
  • SRL product an amino acid sequence having the sequence as depicted in SEQ ID No: 4 or SEQ ID NO: 4, fragments of the above amino acid sequence having a length of at least 10 amino acids, as well as homologs of the amino acid sequences SEQ ID No.:3 or SEQ ID NO: 4, in which one or more of the amino acid residues has been substituted (by conservative or non-conservative substitution)
  • the present invention further provides nucleic acid molecule comprising or consisting of a sequence which encodes the above amino acid sequences, (including the fragments and analogs of the amino acid sequences). Due to the degenerative nature of the genetic code, a plurality of alternative nucleic acid sequences, beyond SEQ ID NO:l or SEQ ID NO: 2, can code for the amino acid sequence of the invention. Those alternative nucleic acid sequences which code for the amino acid sequences depicted by the sequence SEQ ID NO: 3 or SEQ ID NO:4 are also an aspect of the of the present invention.
  • the present invention further provides expression vectors and cloning vectors comprising any of the above nucleic acid sequences, as well as host cells transfected by said vectors.
  • the present invention still further provides pharmaceutical compositions comprising, as an active ingredient, said nucleic acid molecules, said expression vectors, or said protein or polypeptide.
  • These pharmaceutical compositions are suitable for the treatment of diseases and pathological conditions, which can be ameliorated or cured by raising the level of the SRL product. Examples of such diseases and conditions are enhancement of transmitter release in the CNS, treatment of incontinence, stimulation of corticosteroid secretion and others.
  • the present invention provides a nucleic acid molecule comprising or consisting of a non-coding sequence which is complementary to that of SEQ ID N0:1 or SEQ ID NO: 2, or complementary to a sequence having at least 70% identity to said sequence or a fragment of said two sequences.
  • the complementary sequence may be a DNA sequence which hybridizes with the SEQ of ID NO:l or SEQ ID NO: 2 or hybridizes to a portion of that sequence having a length sufficient to inhibit the transcription of the complementary sequence.
  • the complementary sequence may be a DNA sequence which can be transcribed into an mRNA being an antisense to the mRNA transcribed from SEQ ID NO:l or SEQ ID NO: 2 or into an mRNA which is an antisense to a fragment of the mRNA transcribed from SEQ ID No:l or SEQ ID NO: 2 which has a length sufficient to hybridize with the mRNA transcribed from SEQ ID NO: 1 or SEQ ID NO: 2, so as to inhibit its translation.
  • the complementary sequence may also be the mRNA or the fragment of the mRNA itself.
  • the present invention also provides expression vectors comprising any one of the above defined complementary nucleic acid sequences and host cells transfected with said nucleic acid sequences or vectors, being complementary to those specified in the first aspect of the invention.
  • the invention also provides anti-SRL product antibodies, namely antibodies directed against the SRL product which specifically bind to said SRL product. Said antibodies are useful both for diagnostic and therapeutic purposes.
  • the present invention also provides pharmaceutical compositions comprising, as an active ingredient, the nucleic acid molecules which comprise or consist of said complementary sequences, or of a vector comprising said complementary sequences.
  • the pharmaceutical composition thus provides pharmaceutical compositions comprising, as an active ingredient, said anti-SRL product antibodies.
  • the pharmaceutical compositions comprising said anti-SRL product antibodies or the nucleic acid molecule comprising said complementary sequence are suitable for the treatment of diseases and pathological conditions where a therapeutically beneficial effect may be achieved by neutralizing the serotonin-receptor like product achieved, for example, by the neutralizing effect of the antibodies, or by the decrease of the effect of the antisense mRNA in decreasing expression level of the SRL product.
  • pathological conditions are those in which it is desired to decrease the activity of 5-HT4 receptor, for example, pathological conditions manifested by excess secretion of neurofransmitters in the CNS, diseases manifested by an excess bowel activity, tachycardia and positive inotropy such as in atrial fibrillation and the like.
  • the present invention provides methods for detecting the level of the transcript (mRNA) of said SRL product in a body fluid sample, or in a specific tissue sample, for example by use of probes comprising or consisting of said coding sequences; as well as methods for detecting levels of expression of said product in tissue, e.g. by the use of antibodies capable of specifically reacting with the above amino acid sequences.
  • the method, according to this latter aspect, for detection of a nucleic acid sequence which encodes the serotonin-receptor like product in a biological sample comprises the steps of:
  • the probe is part of a nucleic acid chip used for detection purposes, i.e. the probe is a part of an array of probes each present in a known location on a solid support.
  • Said nucleic acid sequence used in the above method may be a DNA sequence an RNA sequence, etc; it may be a coding or a sequence or a sequence complementary thereto (for respective detection of RNA transcripts or coding-DNA sequences).
  • RNA transcripts for respective detection of RNA transcripts or coding-DNA sequences.
  • Methods for detecting mutations in the region coding for the serotonin- receptor like product are also provided, which may be methods carried-out in a binary fashion, namely merely detecting whether there is any mismatches between the normal serotonin-receptor like nucleic acid sequence and the one present in the sample, or carried-out by specifically detecting the nature and location of the mutation.
  • the present invention also concerns a method for detecting SRL product in a biological sample, comprising the steps of:
  • the invention also provides a method for identifying candidate compounds capable of binding to the SRL product and modulating its activity (being either agonists or antagonists).
  • the method includes: (i) providing a protein or polypeptide comprising an amino acid sequence substantially as depicted in SEQ ID NO: 3 or SEQ ID NO: 4 or a fragment of such a sequence;
  • the activity of the amino acid may be for example the binding of the amino acid (SRL product) to its native ligand-serotonin candidates which effect said binding to the product.
  • the activity may also be activation of a coupled adenylate cyclase.
  • Candidate compounds which increase the activity of adenylate cyclase have the potential of serving as agonist.
  • Candidate compounds which either decrease the binding or the activity of adenylate cyclase have a potential of serving as antagonist.
  • the present invention also concerns compounds identified by the above methods described above, which compound may either be an agonist of the serotonin-receptor like product or an antagonist thereof.
  • Fig. 1 shows TMpred of the amino acid sequence of SEQ ID NO:3 showing that the SRL product is a member of the 7 transmembrane-protein family.
  • the nucleic acid sequences of the invention according to the SRL aspect include nucleic acid sequences which encode SRL product and fragments and analogs thereof.
  • the nucleic acid sequences include sequences complementary to the above coding sequence, or to a region of said coding sequence. The length of the complementary sequence is sufficient to avoid the expression of the coding sequence.
  • the nucleic acid sequences may be in the form of RNA or in the form of DNA, and include messenger RNA, synthetic RNA and DNA, cDNA, and genomic DNA.
  • the DNA may be double-stranded or single-stranded, and if single-stranded may be the coding strand or the non-coding (anti-sense, complementary) strand.
  • the nucleic acid sequences may also both include dNTPs, rNTPs as well as non naturally occurring sequences.
  • the sequence may also be a part of a hybrid between an amino acid sequence and a nucleic acid sequence.
  • the nucleic acid sequence has at least 70%, preferably 80% or 90% sequence identity with the sequence identified as SEQ ID NO:l or SEQ ID NO: 2
  • the nucleic acid sequences may include the coding sequence by itself.
  • the coding region may be in combination with additional coding sequences, such as those coding for fusion protein or signal peptides, in combination with non-coding sequences, such as introns and control elements, promoter and terminator elements or 5' and/or 3' untranslated regions, effective for expression of the coding sequence in a suitable host, and/or in a vector or host environment in which the SRL nucleic acid sequence is introduced as a heterologous sequence.
  • the nucleic acid sequences of the present invention may also have the product coding sequence fused in-frame to a marker sequence which allows for purification of the SRL product.
  • the marker sequence may be, for example, a hexahistidine tag to provide for purification of the mature polypeptide fused to the marker in the case of a bacterial host, or, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host, e.g. COS-7 cells, is used.
  • the HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson, I., et al. Cell V.l ⁇ l (1984)).
  • fragments also referred to herein as oligonucleotides, typically having at least 15 bases, preferably 20-30 bases corresponding to a region of the coding-sequence nucleic acid sequence.
  • the fragments may be used as probes, primers, and when complementary also as antisense agents, and the like, according to known methods.
  • the nucleic acid sequence may be substantially as depicted in SEQ ID NO:l or SEQ ID NO: 2 or fragments thereof or sequences having at least 70%, preferably 70-80%, most preferably 90% identity to the above sequence.
  • the sequence may be a sequence coding the amino acid sequence of SEQ ID NO: 3 or SEQ ID NO: 4 or fragments or analogs of said amino acid sequence.
  • the nucleic acid sequences may be obtained by screening cDNA libraries using oligonucleotide probes which can hybridize to or PCR-amplify nucleic acid sequences which encode the SRL products disclosed above.
  • cDNA libraries prepared from a variety of tissues are commercially available and procedures for screening and isolating cDNA clones are well-known to those of skill in the art. Such techniques are described in, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2nd Edition), Cold Spring Harbor Press, Plainview, N.Y. and Ausubel FM et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y.
  • the nucleic acid sequences may be extended to obtain upstream and downstream sequences such as promoters, regulatory elements, and 5' and 3' untranslated regions (UTRs). Extension of the available transcript sequence may be performed by numerous methods known to those of skill in the art, such as PCR or primer extension (Sambrook et al, supra), or by the RACE method using, for example, the Marathon RACE kit (Clontech, Cat. # K1802-1).
  • genomic DNA is amplified in the presence of primer to a linker sequence and a primer specific to the known region.
  • the amplified sequences are subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one.
  • Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.
  • Inverse PCR can be used to amplify or extend sequences using divergent primers based on a known region (Triglia, T.
  • the primers may be designed using OLIGO(R) 4.06 Primer Analysis Software (1992; National Biosciences Inc, Madison, Minn.), or another appropriate program, to be 22-30 nucleotides in length, to have a GC content of 50%) or more, and to anneal to the target sequence at temperatures about 68-72°C.
  • the method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template. Capture PCR (Lagerstrom, M. et al, PCR Methods Applic.
  • flanking sequences Another method which may be used to retrieve flanking sequences is that of Parker, J.D., et al, Nucleic Acids Res., 19:3055-60, (1991)). Additionally, one can use PCR, nested primers and PromoterFinderTM libraries to "walk in" genomic DNA (PromoterFinderTM; Clontech, Palo Alto, CA). This process avoids the need to screen libraries and is useful in finding intron/exon junctions.
  • Preferred libraries for screening for full length cDNAs are ones that have been size-selected to include larger cDNAs.
  • random primed libraries are preferred in that they will contain more sequences which contain the 5' and upstream regions of genes. A randomly primed library may be particularly useful if an oligo d(T) library does not yield a full-length cDNA. Genomic libraries are useful for extension into the 5' nontranslated regulatory region.
  • nucleic acid sequences and oligonucleotides of the invention can also be prepared by solid-phase methods, according to known synthetic methods. Typically, fragments of up to about 100 bases are individually synthesized, then joined to form continuous sequences up to several hundred bases.
  • SRL nucleic acid sequence for the production of SRL products
  • nucleic acid sequences specified above may be used as recombinant DNA molecules that direct the expression of SRL products.
  • Nuc Acids Res., 17:477-508, (1989)) can be selected, for example, to increase the rate of SRL product expression or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, than transcripts produced from naturally occurring sequence.
  • the nucleic acid sequences of the present invention can be engineered in order to alter a SRL product coding sequence for a variety of reasons, including but not limited to, alterations which modify the cloning, processing and/or expression of the product.
  • alterations may be introduced using techniques which are well known in the art, e.g., site-directed mutagenesis, to insert new restriction sites, to alter glycosylation patterns, to change codon preference, to produce splice variants, etc.
  • the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above.
  • the constructs comprise a vector, such as a plasmid or viral vector, into which a nucleic acid sequence of the invention has been inserted, in a forward or reverse orientation.
  • the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence.
  • suitable vectors and promoters are known to those of skill in the art, and are commercially available. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are also described in Sambrook, et al, (supra).
  • the present invention also relates to host cells which are genetically engineered with vectors of the invention, and the production of the product of the invention by recombinant techniques.
  • Host cells are genetically engineered (i.e., transduced, transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector.
  • the vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc.
  • the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the expression of the SRL nucleic acid sequence.
  • the culture conditions such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art.
  • the nucleic acid sequences of the present invention may be included in any one of a variety of expression vectors for expressing a product.
  • Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies.
  • any other vector may be used as long as it is replicable and viable in the host.
  • the appropriate DNA sequence may be inserted into the vector by a variety of procedures.
  • the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and related sub-cloning procedures are deemed to be within the scope of those skilled in the art.
  • the DNA sequence in the expression vector is operatively linked to an appropriate transcription control sequence (promoter) to direct mRNA synthesis. Examples of such promoters include: LTR or SV40 promoter, the E.coli lac or trp promoter, the phage lambda PL promoter, and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses.
  • the expression vector also contains a ribosome binding site for translation initiation, and a transcription terminator.
  • the vector may also include appropriate sequences for amplifying expression.
  • the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E.coli.
  • the vector containing the appropriate DNA sequence as described above, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.
  • appropriate expression hosts include: bacterial cells, such as E.coli, Streptomyces, Salmonella typhimurium; fungal cells, such as yeast; insect cells such as Drosophila and Spodoptera Sf9; animal cells such as CHO, COS, HEK 293 or Bowes melanoma; adenoviruses; plant cells, etc.
  • the selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein. The invention is not limited by the host cells employed.
  • a number of expression vectors may be selected depending upon the use intended for the SRL product. For example, when large quantities of SRL product are needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be desirable.
  • Such vectors include, but are not limited to, multifunctional E.coli cloning and expression vectors such as Bluescript(R) (Stratagene), in which the SRL polypeptide coding sequence may be ligated into the vector in- frame with sequences for the amino-terminal Met and the subsequent 7 residues of beta-galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke & Schuster J. Biol Chem.
  • the expression of a sequence encoding SRL product may be driven by any of a number of promoters.
  • viral promoters such as the 35S and 19S promoters of CaMV (Brisson et al, Nature 310:511-514. (1984)) may be used alone or in combination with the omega leader sequence from TMV (Takamatsu et al, EMBO J., 3:17-311, (1987)).
  • plant promoters such as the small subunit of RUBISCO (Coruzzi et al, EMBO J.
  • SRL product may also be expressed in an insect system.
  • Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae.
  • the SRL product coding sequence may be cloned into a nonessential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of SRL coding sequence will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein coat. •
  • the recombinant viruses are then used to infect S. frugiperda cells or Trichoplusia larvae in which SRL protein is expressed (Smith et al, J. Virol. 46:584, (1983); Engelhard, E.K. et al, Proc. Nat. Acad. Sci. 91:3224-7, (1994)).
  • a number of viral-based expression systems may be utilized.
  • a SRL product coding sequence may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a nonessential El or E3 region of the viral genome will result in a viable virus capable of expressing SRL protein in infected host cells (Logan and Shenk, Proc. Natl Acad. Sci. 81:3655-59, (1984)).
  • transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
  • RSV Rous sarcoma virus
  • Specific initiation signals may also be required for efficient translation of a SRL protein coding sequence. These signals include the ATG initiation codon and adjacent sequences. In cases where SRL product coding sequence, its initiation codon and upstream sequences are inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous transcriptional control signals including the ATG initiation codon must be provided. Furthermore, the initiation codon must be in the correct reading frame to ensure transcription of the entire insert. Exogenous transcriptional elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate to the cell system in use (Scharf, D. et al, (1994) Results Probl Cell Differ.,
  • the present invention relates to host cells containing the above-described constructs.
  • the host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell.
  • Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (Davis, L., Dibner, M., and Battey, I. (1986) Basic Methods in Molecular Biology).
  • Cell-free translation systems can also be employed to produce polypeptides using RNAs derived from the DNA constructs of the present invention.
  • a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion.
  • modifications of the protein include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.
  • Post-translational processing which cleaves a "pre-pro " form of the protein may also be important for correct insertion, folding and/or function.
  • Different host cells such as CHO, HeLa, MDCK, 293, WI38, etc. have specific cellular machinery and characteristic mechanisms for such post-translational activities and may be chosen to ensure the correct modification and processing of the introduced, foreign protein. For long-term, high-yield production of recombinant proteins, stable expression is preferred.
  • cell lines which stably express SRL product may be transformed using expression vectors which contain viral origins of replication or endogenous expression elements and a selectable marker gene. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media.
  • the purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clumps of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type.
  • any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler M., et al, Cell 11:223-32, (1977)) and adenine phosphoribosylfransferase (Lowy I., et al, Cell 22:817-23, (1980)) genes which can be employed in tk- or aprt- cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler M., et al, Proc. Natl Acad. Sci.
  • npt which confers resistance to the aminoglycosides neomycin and G-418 (Colbere-Garapin, F. et al, J. Mol Biol, 150:1-14, (1981)) and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman S.C. and R.C. Mulligan, Proc. Natl. Acad. Sci.
  • Host cells transformed with a nucleotide sequence encoding SRL product may be cultured under conditions suitable for the expression and recovery of the encoded protein from cell culture.
  • the product produced by a recombinant cell may be secreted or contained intracellularly depending on the sequence and/or the vector used.
  • expression vectors containing nucleic acid sequences encoding SRL product can be designed with signal sequences which direct secretion of SRL product through a prokaryotic or eukaryotic cell membrane.
  • SRL product may also be expressed as a recombinant protein with one or more additional polypeptide domains added to facilitate protein purification.
  • purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp, Seattle, Wash.).
  • the inclusion of a protease-cleavable polypeptide linker sequence between the purification domain and SRL protein is useful to facilitate purification.
  • One such expression vector provides for expression of a fusion protein compromising a SRL polypeptide fused to a polyhistidine region separated by an enterokinase cleavage site.
  • the histidine residues facilitate purification on IMIAC (immobilized metal ion affinity chromatography, as described in Porath, et al., Protein Expression and Purification, 3:263-281, (1992)) while the enterokinase cleavage site provides a means for isolating SRL polypeptide from the fusion protein.
  • pGEX vectors Promega, Madison, Wis.
  • GST glutathione S-transferase
  • fusion proteins are soluble and can easily be purified from lysed cells by adsorption to ligand-agarose beads (e.g., glutathione-agarose in the case of GST-fusions) followed by elution in the presence of free ligand.
  • ligand-agarose beads e.g., glutathione-agarose in the case of GST-fusions
  • the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.
  • Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
  • Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, or other methods, which are well know to those skilled in the art.
  • the SRL products can be recovered and purified from recombinant cell cultures by any of a number of methods well known in the art, including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.
  • HPLC high performance liquid chromatography
  • the nucleic acid sequences of the present invention may be used for a variety of diagnostic purposes.
  • the nucleic acid sequences may be used to detect and quantitate expression of SRL in patient's cells, e.g. biopsied tissues, by detecting the presence of mRNA coding for SRL product.
  • This assay typically involves obtaining total mRNA from the tissue and contacting the mRNA with a nucleic acid probe.
  • the probe is a nucleic acid molecule of at least 20 nucleotides, preferably 20-30 nucleotides, capable of specifically hybridizing with a sequence included within the sequence of a nucleic acid molecule encoding SRL under hybridizing conditions, detecting the presence of mRNA hybridized to the probe, and thereby detecting the expression of SRL.
  • This assay can be used to distinguish between absence, presence, and excess expression of SRL product and to monitor levels of SRL expression during therapeutic intervention.
  • the invention also contemplates the use of the nucleic acid sequences as a diagnostic for diseases resulting from inherited defective SRL sequences. These sequences can be detected by comparing the sequences of the defective (i.e., mutant) SRL coding region with that of a normal coding region. Association of the sequence coding for mutant SRL product with abnormal SRL product activity may be verified.
  • sequences encoding mutant SRL products can be inserted into a suitable vector for expression in a functional assay system (e.g., colorimetric assay, complementation experiments in a SRL protein deficient strain of HEK293 cells) as yet another means to verify or identify mutations. Once mutant genes have been identified, one can then screen populations of interest for carriers of the mutant gene.
  • Nucleic acids used for diagnosis may be obtained from a patient's cells, including but not limited to such as from blood, urine, saliva, placenta, tissue biopsy and autopsy material.
  • Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR (Saiki, et al, Nature 324:163-166, (1986)) prior to analysis.
  • RNA or cDNA may also be used for the same purpose.
  • PCR primers complementary to the nucleic acid of the present invention can be used to identify and analyze mutations in the gene of the present invention. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype.
  • Point mutations can be identified by hybridizing amplified DNA to radiolabeled RNA of the invention or alternatively, radiolabeled antisense DNA sequences of the invention. Sequence changes at specific locations may also be revealed by nuclease protection assays, such RNase and SI protection or the chemical cleavage method (e.g. Cotton, et alProc. Natl. Acad. Sci. USA, 85:4397-4401, (1985)), or by differences in melting temperatures. "Molecular beacons" (Kostrikis L.G.
  • hai ⁇ in-shaped, single-stranded synthetic oligo- nucleotides containing probe sequences which are complementary to the nucleic acid of the present invention may also be used to detect point mutations or other sequence changes as well as monitor expression levels of SRL product. Such diagnostics would be particularly useful for prenatal testing.
  • Another method for detecting mutations uses two DNA probes which are designed to hybridize to adjacent regions of a target, with abutting bases, where the region of known or suspected mutation(s) is at or near the abutting bases.
  • the two probes may be joined at the abutting bases, e.g., in the presence of a ligase enzyme, but only if both probes are correctly base paired in the region of probe junction.
  • the presence or absence of mutations is then detectable by the presence or absence of ligated probe.
  • oligonucleotide array methods based on sequencing by hybridization (SBH), as described, for example, in U.S. Patent No. 5,547,839.
  • SBH sequencing by hybridization
  • the DNA target analyte is hybridized with an array of oligonucleotides formed on a microchip.
  • the sequence of the target can then be "read" from the pattern of target binding to the array.
  • the nucleic acid sequences of the present invention are also valuable for chromosome identification.
  • the sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome.
  • Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location.
  • the mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.
  • sequences can be mapped to chromosomes by preparing PCR primers (preferably 20-30 bp) from the SRL cDNA. Computer analysis of the 3' untranslated region is used to rapidly select primers that do not span more than one exon in the genomic DNA, which would complicate the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment. PCR mapping of somatic cell hybrids or using instead radiation hybrids are rapid procedures for assigning a particular DNA to a particular chromosome.
  • mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries.
  • Fluorescence in situ hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step.
  • FISH Fluorescence in situ hybridization
  • This technique can be used with cDNA as short as 50 or 60 bases.
  • Verma et al Human Chromosomes: a Manual of Basic Techniques, (1988) Pergamon Press, New York.
  • the OMIM gene map presents the cytogenetic map location of disease genes and other expressed genes.
  • the OMIM database provides information on diseases associated with the chromosomal location. Such associations include the results of linkage analysis mapped to this interval, and the correlation of translocations and other chromosomal aberrations in this area with the advent of polygenic diseases, such as cancer.
  • SRL aspect or the anti-SRL aspect may also be used for therapeutic purposes.
  • expression of SRL product may be modulated through antisense technology, which controls gene expression through hybridization of complementary nucleic acid sequences, i.e. antisense DNA or RNA, to the control, 5' or regulatory regions of the gene encoding SRL protein.
  • the 5' coding portion of the nucleic acid sequence sequence which codes for the protein of the present invention is used to design an antisense oligonucleotide of from about 10 to 40 base pairs in length. Oligonucleotides derived from the transcription start site, e.g. between positions -10 and +10 from the start site, are preferred.
  • An antisense DNA oligonucleotide is designed to be complementary to a region of the nucleic acid sequence involved in transcription (Lee et al, Nucl Acids, Res., 6:3073, (1979); Cooney et al., Science 241:456, (1988); and Dervan et al, Science 251:1360, (1991)), thereby preventing transcription and the production of the SRL products.
  • An antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the SRL products (Okano J. Neurochem. 56:560, (1991)).
  • the antisense constructs can be delivered to cells by procedures known in the art such that the antisense RNA or DNA may be expressed in vivo.
  • the antisense may be antisense mRNA or DNA sequence capable of coding such antisense mRNA.
  • the antisense mRNA or the DNA coding thereof can be complementary to the full sequence of nucleic acid sequences coding to the SRL protein or to a fragment of such a sequence which is sufficient to inhibit production of a protein product.
  • compositions comprise a therapeutically effective amount of the compound, and a pharmaceutically acceptable carrier or excipient.
  • a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.
  • the formulation should suit the mode of administration.
  • polypeptides, and agonist and antagonist compounds which are polypeptides, may also be employed in accordance with the present invention by expression of such polypeptides in vivo, which is often referred to as "gene therapy.
  • Cells from a patient may be engineered with a nucleic acid sequence (DNA or RNA) encoding a polypeptide ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide.
  • DNA or RNA nucleic acid sequence
  • Such methods are well-known in the art.
  • cells may be engineered by procedures known in the art by use of a retroviral particle containing RNA encoding a polypeptide of the present invention.
  • cells may be engineered in vivo for expression of a polypeptide in vivo by procedures known in the art.
  • a producer cell for producing a retroviral particle containing RNA encoding the polypeptide of the present invention may be administered to a patient for engineering cells in vivo and expression of the polypeptide in vivo.
  • the expression vehicle for engineering cells may be other than a retrovirus, for example, an adenovirus which may be used to engineer cells in vivo after combination with a suitable delivery vehicle.
  • Retroviruses from which the retroviral plasmid vectors mentioned above may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, adenovirus, Myeloproliferative Sarcoma Virus, and mammary tumor virus.
  • the retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines.
  • packaging cells which may be transfected include, but are not limited to, the PE501, PA317, psi-2, psi-AM, PA12, T19-14X, VT-19-17-H2, psi-CRE, psi-CRIP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller (Human Gene Therapy, Vol. 1, pg. 5-14, (1990)).
  • the vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaP0 precipitation.
  • the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
  • the producer cell line generates infectious retroviral vector particles which include the nucleic acid sequence(s) encoding the polypeptides.
  • retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express the nucleic acid sequence(s) encoding the polypeptide.
  • Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myoblasts, keratinocytes, endothelial cells, and bronchial epithelial cells.
  • the genes introduced into cells may be placed under the control of inducible promoters, such as the radiation-inducible Egr-1 promoter, (Maceri, H.J., et al, Cancer Res., 56(19):4311 (1996)), to stimulate SRL production or antisense inhibition in response to radiation, eg., radiation therapy for treating tumors.
  • the substantially purified SRL product of the invention has been defined above as the product coded from the nucleic acid sequence of the invention.
  • the amino acid sequence is an amino acid sequence having at least 70%, preferably at least 80%> or 90%> identity to the sequence identified as SEQ ID NO:3 or SEQ ID NO:4.
  • the protein may be in mature and/or modified form, also as defined above. Also contemplated are protein fragments having at least 10 contiguous amino acid residues, preferably at least 10-20 residues, derived from the SRL protein.
  • Fig. 1 shows that the product has 7 transmembrane regions as calculated by the Tmpred program.
  • sequence variations are preferably those that are considered conserved substitutions, as defined above.
  • a protein with a sequence having at least 80%) sequence identity with the protein identified as SEQ ID NO:3 or SEQ ID NO:4, from residue 1 to 240 contains up to 48 amino acid substitutions, preferably conserved substitutions as defined above.
  • the protein has or contains the sequence identified SEQ ID NO:3 or SEQ ID NO:4.
  • the SRL product may be (i) one in which one or more of the amino acid residues in a sequence listed above are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue), or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the SRL product is fused with another compound, such as a compound to increase the half-life of the protein (for example, polyethylene glycol (PEG)), or a moiety which serves as targeting means to direct the protein to its target tissue or target cell population (such as an antibody), or (iv) one in which additional amino acids are fused to the SRL product, or (v) an isolated fragment of the full-length product which is soluble, i.e. not membrane bound, yet still binds its natural ligands (serotonin). Such fragments, variants and derivatives are deemed to be within the scope of those skilled in the art from the teachings herein.
  • fragments and portions of SRL product may be produced by direct peptide synthesis using solid-phase techniques (cf. Stewart et al, (1969) Solid-Phase Peptide Synthesis, WH Freeman Co, San Francisco; Merrifield J., J. Am. Chem. Soc, 85:2149-2154, (1963)).
  • In vitro peptide synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using Applied Biosystems 431 A Peptide Synthesizer (Perkin Elmer, Foster City, Calif.) in accordance with the instructions provided by the manufacturer.
  • Fragments of SRL product may be chemically synthesized separately and combined using chemical methods to produce the full length molecule.
  • the SRL product of the invention is generally useful in treating diseases and disorders which are characterized by an excess of 5-HT4 receptor ligand.
  • the SRL product can decrease the amount of the ligand available for the 5-HT4 receptor by competitively binding thereto.
  • SRL products or fragments may be administered by any of a number of routes and methods designed to provide a consistent and predictable concentration of compound at the target organ or tissue.
  • the product-containing compositions may be administered alone or in combination with other agents, such as stabilizing compounds, and/or in combination with other pharmaceutical agents such as drugs or hormones.
  • SRL product-containing compositions may be administered by a number of routes including, but not limited to oral, intravenous, intramuscular, transdermal, subcutaneous, topical, sublingual, or rectal means as well as by nasal application by positioning and intracerebral pump and other means which are able to enter the blood brain barrier, as well as by use of vectors such as viruses which can penetrate the CNS.
  • SRL product- containing compositions may also be administered via liposomes. Such administration routes and appropriate formulations are generally known to those of skill in the art.
  • the product can be given via intravenous or intraperitoneal injection. Similarly, the product may be injected to other localized regions of the body. The product may also be administered via nasal insufflation. Enteral administration is also possible.
  • the product should be formulated into an appropriate capsule or elixir for oral administration, or into a suppository for rectal administration.
  • an appropriate carrier including ointments, gels, suppositories. Appropriate formulations are well known to persons skilled in the art. Dosage of the product will vary, depending upon the potency and therapeutic index of the particular polypeptide selected.
  • a therapeutic composition for use in the treatment method can include the product in a sterile injectable solution, the polypeptide in an oral delivery vehicle, the product in an aerosol suitable for nasal administration, or the product in a nebulized form, all prepared according to well known methods.
  • Such compositions comprise a therapeutically effective amount of the compound, and a pharmaceutically acceptable carrier or excipient.
  • a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.
  • Example III Screening methods for agonists and antagonists
  • the present invention also includes an assay for identifying molecules, such as synthetic drugs, antibodies, peptides, or other molecules, which have a modulating effect on the activity of the SRL product, e.g. agonists or antagonists of the SRL product of the present invention.
  • identifying molecules such as synthetic drugs, antibodies, peptides, or other molecules, which have a modulating effect on the activity of the SRL product, e.g. agonists or antagonists of the SRL product of the present invention.
  • Such an assay comprises the steps of providing an SRL product encoded by the nucleic acid sequences of the present invention, contacting the SRL protein with one or more candidate molecules to determine the candidate molecules modulating effect on the activity of the SRL product, and selecting from the molecules a candidate's molecule capable of modulating SRL product physiological activity.
  • SRL product, its catalytic or immunogenic fragments or oligopeptides thereof can be used for screening therapeutic compounds in any of a variety of drug screening techniques.
  • the fragment employed in such a test may be free in solution, affixed to a solid support, borne on a cell membrane (as in its native state), or located intracellularly.
  • the formation of binding complexes, between SRL product and the agent being tested may be measured.
  • Therapeutic compounds which inhibit binding between the SRL product and its ligand may also be measured, as they are likely to serve as antagonists competing for binding with the native ligand of the receptor.
  • the screening system includes the binding ligand of the SRL product or an analog thereof, and the compounds screened are tested for their ability to block or enhance binding of said ligand to the SRL product.
  • Another technique for drug screening which may be used provides for high throughput screening of compounds having suitable binding affinity to the SRL product is described in detail by Geysen in PCT Application WO 84/03564, published on Sep. 13, 1984.
  • large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface.
  • the peptide test compounds are reacted with the full SRL product or with fragments of SRL product and washed. Bound SRL product is then detected by methods well known in the art.
  • Substantially purified SRL product can also be coated directly onto plates for use in the aforementioned drug screening techniques.
  • non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
  • Antibodies to the SRL product may also be used in screening assays according to methods well known in the art. For example, a "sandwich" assay may be performed, in which an anti-SRL antibody is affixed to a solid surface such as a microtiter plate and SRL product is added. Such an assay can be used to capture compounds which bind to the SRL product. Alternatively, such an assay may be used to measure the ability of compounds to interfere with the binding of serotonin to the SRL receptor, when the solubilized serotonin (or its analog) is included as an assay component.
  • Example IV Anti-SRL antibodies A. Synthesis
  • the purified SRL product is used to produce anti-SRL antibodies which have diagnostic and therapeutic uses related to the activity, distribution, and expression of the SRL product.
  • Antibodies to SRL product may be generated by methods well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, humanized, single chain, Fab fragments and fragments produced by an Fab expression library. Antibodies, i.e., those which inhibit dimer formation, are especially preferred for therapeutic use.
  • SRL product for antibody induction does not require biological activity; however, the protein fragment or oligopeptide must be antigenic.
  • Peptides used to induce specific antibodies may have an amino acid sequence consisting of at least five amino acids, preferably at least 10 amino acids of the sequences specified in SEQ ID NO: 3 or SEQ ID NO:4. Preferably from the extracellular domain of the receptor. Preferably they should mimic a portion of the amino acid sequence of the natural protein and may contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of SRL protein amino acids may be fused with those of another protein such as keyhole limpet hemocyanin and antibody produced against the chimeric molecule. Procedures well known in the art can be used for the production of antibodies to SRL product.
  • various hosts including goats, rabbits, rats, mice, etc may be immunized by injection with SRL product or any portion, fragment or oligopeptide which retains immunogenic properties.
  • various adjuvants may be used to increase immunological response.
  • adjuvants include but are not limited to Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol.
  • BCG Bacilli Calmette-Guerin
  • Corynebacterium parvum are potentially useful human adjuvants.
  • Monoclonal antibodies to SRL protein may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include but are not limited to the hybridoma technique originally described by Koehler and Milstein (Nature 256:495-497, (1975)), the human B-cell hybridoma technique (Kosbor et al, Immunol. Today 4:72, (1983); Cote et al, Proc. Natl. Acad. Sci. 80:2026-2030, (1983)) and the EBV-hybridoma technique (Cole, et al, Mol Cell Biol 62:109-120, (1984)).
  • Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening recombinant immunoglobulin libraries or panels of highly specific binding reagents as disclosed in Orlandi et al. (Proc. Natl Acad. Sci. 86:3833-3837, 1989)), and Winter G and Milstein C, (Nature 349:293-299, (1991)).
  • Antibody fragments which contain specific binding sites for SRL protein may also be generated.
  • fragments include, but are not limited to, the F(ab')2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')2 fragments.
  • Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse W.D. et al, Science 256:1275-1281, (1989)).
  • Antibodies which specifically bind SRL product are useful for the diagnosis of conditions or diseases characterized by expression of SRL protein. Alternatively, such antibodies may be used in assays to monitor patients being treated with SRL product, its agonists, or its antagonists. Diagnostic assays for SRL protein include methods utilizing the antibody and a label to detect SRL product in human body fluids or extracts of cells or tissues.
  • the products and antibodies of the present invention may be used with or without modification. Frequently, the proteins and antibodies will be labeled by joining them, either covalently or noncovalently, with a reporter molecule. A wide variety of reporter molecules are known in the art.
  • a variety of protocols for measuring SRL product, using either polyclonal or monoclonal antibodies specific for the respective protein are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescent activated cell sorting (FACS). As noted above, a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on SRL product is preferred, but a competitive binding assay may be employed. These assays are described, among other places, in Maddox, et al. (supra). Such protocols provide a basis for diagnosing altered or abnormal levels of SRL product expression.
  • ELISA enzyme-linked immunosorbent assay
  • RIA radioimmunoassay
  • FACS fluorescent activated cell sorting
  • Normal or standard values for SRL product expression are established by combining body fluids or cell extracts taken from normal subjects, preferably human, with antibody to SRL product under conditions suitable for complex formation which are well known in the art.
  • the amount of standard complex formation may be quantified by various methods, preferably by photometric methods.
  • standard values obtained from normal samples may be compared with values obtained from samples from subjects potentially affected by disease. Deviation between standard and subject values establishes the presence of disease state.
  • the antibody assays are useful to determine the level of SRL present in a body fluid sample, or in a particular tissue, e.g., biopsied tumor tissue or arthritic tissue, as an indication of whether SRL is being overexpressed or underexpressed in the tissue, or as an indication of how SRL levels are responding to drug treatment.
  • tissue e.g., biopsied tumor tissue or arthritic tissue
  • the antibodies may have a therapeutical utility in blocking or decreasing the activity of 5-HT4 receptor in pathological conditions where its activity is too high such as in excess secretion of antibodies, in excess vomiting, excess bowel movement and in various cardiovascular disorders such as atrial fibrillation.
  • the antibody employed is preferably a humanized monoclonal antibody, or a human Mab produced by known globulin-gene library methods.
  • the antibody is administered typically as a sterile solution by IV injection, although other parenteral routes may be suitable.
  • the antibody is administered in an amount between about 1-15 mg/kg body weight of the subject. Treatment is continued, e.g., with dosing every 1-7 days, until a therapeutic improvement is seen.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Neurology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention concerns novel nucleic acid sequences which have homology to the serotonin receptor. The invention also concerns amino acid sequences encoded by the nucleic acid sequence.

Description

NOVEL NUCLEIC ACID AND AMINO ACD3 SEQUENCES
FIELD OF THE INVENTION
The present invention concerns novel nucleic acid sequences, vectors and host cells containing them, amino acid sequences encoded by said sequences, and antibodies reactive with said amino acid sequences, as well as pharmaceutical compositions comprising any of the above. The present invention further concerns methods for screening for candidate agonist or antagonists utilizing said amino acid sequences.
BACKGROUND OF THE INVENTION
Serotonin (5-hy(koxytr ptamine, 5-HT) is widely distributed in animals and plants, occurring in vertebrates, fruits, nuts, and venoms. A number of congeners of serotonin are also found in nature and have been shown to possess a variety of peripheral and central nervous system activities.
Of all the CNTs, 5-HT presents the most perplexing array of receptor interactions. In 1957, Gaddum suggested that 5-HT interacted with two different receptors in isolated tissues, one on smooth muscle and one on nervous tissue. Since dibenzyline selectively antagonized smooth muscle, and morphine was selective for nervous tissue, these receptors were named "D" and "M" receptors, respectively. Since that time, and especially in the past decade, there has been tremendous progress in 5-HT receptor identification. It now appears that there are at least four populations of receptors for serotonin:
5-HT1, 5-HT2, 5-HT3 and 5-HT4. Recent cloning studies suggest the existence of 5-HT5, 5-HT6 and 5-HT7 subtypes as well. To complicate matters further, evidence has been presented that five distinct subtypes of the
5-HT2 (one of which was formerly named the 5-HT1C receptor, a name that still appears in the literature) and three subtypes of the 5-HT3 receptors exist.
The physiological function of each receptor subtype has not been established and is currently the subject of intensive investigation. With the exception of the 5-HT3 receptor, which is a ligand-gated ion channel related to NMD A, GABA and nicotinic receptors, all of the 5-HT receptor subtypes belong to the group of G-protein linked receptors.
The design of specific agonists and antagonists for each receptor system offers much promise for new drug development. The greatest current interest involves the modulation of 5-HT at receptors in the CNS.
The 5-HT4 receptor is a member of the seven transmembrane spanning G-protein-coupled family of receptors. The receptor is positively coupled to adenylate cyclase and exists in two isoforms (5-HT4D and 5-HT4L) that differ in the length and sequence of their carboxy termini. The 5-HT4 receptor is pharmacologically defined by selective agonists such as SC 53116 and RS 113808, SB 204070 and RS 39604. The receptor is widely distributed in the central nervous system and peripheral tissues. In the periphery, the receptor plays an important role in the function of several organ responses including the alimentary tract, urinary bladder, heart and adrenal gland. In the alimentary tract, stimulation of 5-HT4 receptors has a pronounced effect on smooth muscle tone, muscosal electrolyte secretion, and the peristaltic reflex. In the urinary bladder, activation of 5-HT4 receptors modulates cholinergic/purinergic transmission. In the heart, stimularion of atrial 5-HT4 receptors produces positive inotropy and tachycardia that can precipitate arrythmias. In the adrenal gland, agonism of 5-HT4 receptors stimulates release of cortisol, cortiscosterone, and aldosterone. Since its discovery in 1988, significant advances have been made in the understanding of the
5 physiology and pharmacology of the 5-HT4 receptor. These advances have led to the development of several selective 5-HT4 receptor agonists and antagonists that may have therapeutic utility in the treatment of peripheral disorders such as irritable bowel syndrome, gastroparesis, urinary incontinence and cardiac arrhythmias (Hegde and Eglen, The FASEB J.,
10 10:1398-1407 (1996).
Several clinical assays of agonists and antagonists have been postulated and include treatment of diarrhea - predominant irritable bowel syndrome (IBS) by 5-HT4 antagonists; enhancement of emetic response by 5-HT4 agonists and decreation of said response by 5-HT4 antagonist (for
15 example for amelioration of side effects of chemotherapy); treatment of distrusion hypomotil as a syndrome of overflow of the lower urinary tract incontinence by 5-HT4 receptor agonists; treatment of atrial fibrillation by 5-HT4 receptor antagonists; as well as stimulation of cortiscosteroid secretion by 5-HT4 agonists.
20 The 5-HT4 have also been found in the CNS of their activators appears to involve activation of neurotransmitter release. Thus agonists of 5-HT4 can be used to enhance transmitter release in the CNS of antagonist can be used to inhibit such transmitted release.
The sequence of LOCUS HSY EMBL Accession No. Y 12507 having
25 1208 b.p. of mRNA was published in 14 July 1998 and is a sequence of mRNA for serotonin receptor 5-HT4D splice variant ACCESSION Y 12507 NID g3326990 (J. Neurochem. 70:2252-2261, (1998)). GLOSSARY
In the following description and claims use will be made, at times, with a variety of terms, and the meaning of such terms as they should be construed in accordance with the invention is as follows: "Serotonin-receptor like (SRL) nucleic acid sequence" - the sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 sequences having at least 70% identity to said sequence and fragments of the above sequences of least 20 b.p. long. The above sequence shows some homology to the serotonin receptor 5-HT4D, and thus is named after said serotonin receptor. However, the name is arbitrary and does not state to signify that the SRL is identical to said serotonin receptor.
"Serotonin-receptor like product (SRL product) - also referred at times as the "SRL protein" or SRL polypeptide" - an amino acid sequence coded by said SRL nucleic acid sequence. The amino acid sequence may be a peptide, a protein, as well as peptides or proteins having chemically modified amino acids (see below) such as a glycopeptide or glycoprotein. An example of an SRL product is shown in SEQ ID NO: 3 or SEQ ID NO. 4, and includes also analogues of said sequences in which one or more amino acids has been added, deleted, substituted (see below) or chemically modified (see below) as well as fragments of this sequence having at least 10 amino acids.
"Nucleic acid sequence" -a sequence composed of DNA nucleotides, RNA nucleotides or a combination of both types and may includes natural nucleotides, chemically modified nucleotides and synthetic nucleotides.
"Amino acid sequence" — a sequence composed of any one of the 20 naturally appearing amino acids, amino acids which have been chemically modified (see below), or composed of synthetic amino acids. "Fragment of SRL product" - a polypeptide which has an amino acid sequence which is the same as part of but not all of the amino acid sequence of the SRL product.
"Fragments of SRL nucleic acid sequence" a continuous portion, preferably of about 20 nucleic acid sequences of the SRL nucleic acid sequence.
"Conservative substitution " - refers to the substitution of an amino acid in one class by an amino acid of the same class, where a class is defined by common physicochemical amino acid side chain properties and high substitution frequencies in homologous proteins found in nature, as determined, for example, by a standard Dayhoff frequency exchange matrix or BLOSUM matrix. [Six general classes of amino acid side chains have been categorized and include: Class I (Cys); Class II (Ser, Thr, Pro, Ala, Gly); Class III (Asn, Asp, Gin, Glu); Class IN (His, Arg, Lys); Class V (He, Leu, Nal, Met); and Class VI (Phe, Tyr, Trp). For example, substitution of an Asp for another class III residue such as Asn, Gin, or Glu, is a conservative substitution].
"Non-conservative substitution" - refers to the substitution of an amino acid in one class with an amino acid from another class; for example, substitution of an Ala, a class II residue, with a class III residue such as Asp, Asn, Glu, or Gin.
"Chemically modified" - when referring to the product of the invention, means a product (protein) where at least one of its amino acid resides is modified either by natural processes, such as processing or other post-translational modifications, or by chemical modification techniques which are well known in the art. Among the numerous known modifications typical, but not exclusive examples include: acetylation, acylation, amidation, ADP-ribosylation, glycosylation, GPI anchor formation, covalent attachment of a lipid or lipid derivative, methylation, myristlyation, pegylation, prenylation, phosphorylation, ubiqutination, or any similar process.
"Biologically active" - refers to the SRL product having structural, regulatory or biochemical functions of the naturally occurring SRL product, such as the ability to bind serotonin. Likewise, "immunologically active" defines the capability of a natural, recombinant or synthetic SRL product, or any fragment thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies. Thus, for example, a biologically active fragment of SRL product denotes a fragment which retains some or all of the biological properties of the SRL product, e.g the ability to bind to a specific ligand (serotonin), agonist or antagonist which binds to the SRL product; an immunologically active fragment is a fragment which can bind specific anti-SRL product antibodies or which can elicit an immune response which will generate such antibodies or cause proliferation of SRL product-specific immune cells.
"Optimal alignment" - is defined as an alignment giving the highest percent identity score. Such alignment can be performed using a variety of commercially available sequence analysis programs, such as the local alignment program LALIGN using a ktup of 1, default parameters and the default PAM. A preferred alignment is the one performed using the CLUSTAL-W program from Mac Vector (TM), operated with an open gap penalty of 10.0, an extended gap penalty of 0.1, and a BLOSUM similarity matrix. If a gap needs to be inserted into a first sequence to optimally align it with a second sequence, the percent identity is calculated using only the residues that are paired with a corresponding amino acid residue (i.e., the calculation does not consider residues in the second sequences that are in the "gap" of the first sequence).
"Having at least X% identity" - with respect to two amino acid or nucleic acid sequence sequences, refers to the percentage of residues that are identical in the two sequences when the sequences are optimally aligned. Thus, 70% amino acid sequence identity means that 70% of the amino acids in two or more optimally aligned polypeptide sequences are identical.
"Isolated nucleic acid molecule having an SRL nucleic acid sequence " - is a nucleic acid molecule that includes the coding SRL nucleic acid sequence. Said isolated nucleic acid molecule may include the SRL nucleic acid sequence as an independent insert; may include the SRL nucleic acid sequence fused to an additional coding sequences, encoding together a fusion protein in which the SRL coding sequence is the dominant coding sequence (for example, the additional coding sequence may code for a signal peptide); the SRL nucleic acid sequence may be in combination with non-coding sequences, e.g., introns or control elements, such as promoter and terminator elements or 5' and/or 3' untranslated regions, effective for expression of the coding sequence in a suitable host; or may be a vector in which the SRL protein coding sequence is a heterologous.
"Expression vector" - refers to vectors that have the ability to incorporate and express heterologous DNA fragments in a foreign cell. Many prokaryotic and eukaryotic expression vectors are known and/or commercially available. Selection of appropriate expression vectors is within the knowledge of those having skill in the art. "Deletion" - is a change in either nucleotide or amino acid sequence in which one or more nucleotides or amino acid residues, respectively, are absent.
"Insertion " or "addition " - is that change in a nucleotide or amino acid sequence which has resulted in the addition of one or more nucleotides or amino acid residues, respectively, as compared to the naturally occurring sequence.
"Substitution " - replacement of one or more nucleotides or amino acids by different nucleotides or amino acids, respectively. As regards amino acid sequences the substitution may be conservative or non- conservative.
"Antibody" - refers to IgG, IgM, IgD, IgA, and IgG antibody. The definition includes polyclonal antibodies or monoclonal antibodies. This term refers to whole antibodies or fragments of the antibodies comprising the antigen-binding domain of the anti-SRL product antibodies, e.g. antibodies without the Fc portion, single chain antibodies, fragments consisting of essentially only the variable, antigen-binding domain of the antibody, etc.
"Ligand or activator" - an agent which binds to or activates the SRL protein to cause it to become active an exert its biological activity.
"Agonist" - as used herein, refers to a molecule which, when bound to the SRL product of the present invention, mimics the effect of binding of the natural ligand or activator of said product or at times even increases or prolongs the duration of the biological activity of said product, as compared to that induced by the natural ligand or activator. Agonists may be polypeptides, nucleic acids, carbohydrates, lipids, or derivatives thereof, or any other molecules which can bind to and activate the SRL product.
"Antagonist" - refers to a molecule which, when bound to the product of the present invention, modulates its activity in an opposite manner to that of the agonist, by decreasing or shortening the duration of the biological activity of the SLR product. Antagonists may be polypeptides, nucleic acids, carbohydrates, lipids, or derivatives thereof, or any other molecules which bind to and modulate the activity of said product. 0
"Treating a disease" - refers to administering a therapeutic substance effective to ameliorate symptoms associated with a disease, to lessen the severity or cure the disease, or to prevent the disease from occurring.
5 "Probe" - the SRL nucleic acid sequence, or a sequence complementary therewith, when used to detect presence of other similar sequences in a sample. The detection is carried out by identification of hybridization complexes between the probe and the assayed sequence. The probe may be attached to a solid support or to a detectable label. 0
SUMMARY OF THE INVENTION
The present invention provides by its first aspect, a novel isolated nucleic acid molecule comprising or consisting of the coding sequence SEQ ID NO: 1 or SEQ ID NO: 2, fragments of said coding sequence having at least 25 20 nucleic acids, or a molecule comprising a sequence having at least 70%, preferably 80%, and most preferably 90% identity to SEQ ID No:l or SEQ ID NO: 2. The present invention further provides a protein or polypeptide comprising or consisting of an amino acid sequence encoded by any of the above nucleic acid sequences, termed herein "SRL product", for example, an amino acid sequence having the sequence as depicted in SEQ ID No: 4 or SEQ ID NO: 4, fragments of the above amino acid sequence having a length of at least 10 amino acids, as well as homologs of the amino acid sequences SEQ ID No.:3 or SEQ ID NO: 4, in which one or more of the amino acid residues has been substituted (by conservative or non-conservative substitution) added, deleted, or chemically modified. The present invention further provides nucleic acid molecule comprising or consisting of a sequence which encodes the above amino acid sequences, (including the fragments and analogs of the amino acid sequences). Due to the degenerative nature of the genetic code, a plurality of alternative nucleic acid sequences, beyond SEQ ID NO:l or SEQ ID NO: 2, can code for the amino acid sequence of the invention. Those alternative nucleic acid sequences which code for the amino acid sequences depicted by the sequence SEQ ID NO: 3 or SEQ ID NO:4 are also an aspect of the of the present invention.
The present invention further provides expression vectors and cloning vectors comprising any of the above nucleic acid sequences, as well as host cells transfected by said vectors.
The present invention still further provides pharmaceutical compositions comprising, as an active ingredient, said nucleic acid molecules, said expression vectors, or said protein or polypeptide. These pharmaceutical compositions are suitable for the treatment of diseases and pathological conditions, which can be ameliorated or cured by raising the level of the SRL product. Examples of such diseases and conditions are enhancement of transmitter release in the CNS, treatment of incontinence, stimulation of corticosteroid secretion and others. By another aspect, the present invention provides a nucleic acid molecule comprising or consisting of a non-coding sequence which is complementary to that of SEQ ID N0:1 or SEQ ID NO: 2, or complementary to a sequence having at least 70% identity to said sequence or a fragment of said two sequences. The complementary sequence may be a DNA sequence which hybridizes with the SEQ of ID NO:l or SEQ ID NO: 2 or hybridizes to a portion of that sequence having a length sufficient to inhibit the transcription of the complementary sequence. The complementary sequence may be a DNA sequence which can be transcribed into an mRNA being an antisense to the mRNA transcribed from SEQ ID NO:l or SEQ ID NO: 2 or into an mRNA which is an antisense to a fragment of the mRNA transcribed from SEQ ID No:l or SEQ ID NO: 2 which has a length sufficient to hybridize with the mRNA transcribed from SEQ ID NO: 1 or SEQ ID NO: 2, so as to inhibit its translation. The complementary sequence may also be the mRNA or the fragment of the mRNA itself.
The present invention also provides expression vectors comprising any one of the above defined complementary nucleic acid sequences and host cells transfected with said nucleic acid sequences or vectors, being complementary to those specified in the first aspect of the invention. The invention also provides anti-SRL product antibodies, namely antibodies directed against the SRL product which specifically bind to said SRL product. Said antibodies are useful both for diagnostic and therapeutic purposes.
The present invention also provides pharmaceutical compositions comprising, as an active ingredient, the nucleic acid molecules which comprise or consist of said complementary sequences, or of a vector comprising said complementary sequences. The pharmaceutical composition thus provides pharmaceutical compositions comprising, as an active ingredient, said anti-SRL product antibodies. The pharmaceutical compositions comprising said anti-SRL product antibodies or the nucleic acid molecule comprising said complementary sequence, are suitable for the treatment of diseases and pathological conditions where a therapeutically beneficial effect may be achieved by neutralizing the serotonin-receptor like product achieved, for example, by the neutralizing effect of the antibodies, or by the decrease of the effect of the antisense mRNA in decreasing expression level of the SRL product.
Examples of such a pathological conditions are those in which it is desired to decrease the activity of 5-HT4 receptor, for example, pathological conditions manifested by excess secretion of neurofransmitters in the CNS, diseases manifested by an excess bowel activity, tachycardia and positive inotropy such as in atrial fibrillation and the like.
According to the third aspect of the inventionthe present invention provides methods for detecting the level of the transcript (mRNA) of said SRL product in a body fluid sample, or in a specific tissue sample, for example by use of probes comprising or consisting of said coding sequences; as well as methods for detecting levels of expression of said product in tissue, e.g. by the use of antibodies capable of specifically reacting with the above amino acid sequences. The method, according to this latter aspect, for detection of a nucleic acid sequence which encodes the serotonin-receptor like product in a biological sample, comprises the steps of:
(a) providing a probe comprising at least one of the nucleic acid sequence defined above; (b) contacting the biological sample with said probe under conditions allowing hybridization of nucleic acid sequences thereby enabling formation of hybridization complexes; (c) detecting hybridization complexes, wherein the presence of the complex indicates the presence of nucleic acid sequence encoding the serotonin-receptor like product in the biological sample.
By a preferred embodiment the probe is part of a nucleic acid chip used for detection purposes, i.e. the probe is a part of an array of probes each present in a known location on a solid support.
Said nucleic acid sequence used in the above method may be a DNA sequence an RNA sequence, etc; it may be a coding or a sequence or a sequence complementary thereto (for respective detection of RNA transcripts or coding-DNA sequences). By quantization of the level of hybridization complexes and calibrating the quantified results it is possible also to detect the level of the transcript in the sample.
Methods for detecting mutations in the region coding for the serotonin- receptor like product are also provided, which may be methods carried-out in a binary fashion, namely merely detecting whether there is any mismatches between the normal serotonin-receptor like nucleic acid sequence and the one present in the sample, or carried-out by specifically detecting the nature and location of the mutation.
The present invention also concerns a method for detecting SRL product in a biological sample, comprising the steps of:
(a) contacting with said biological sample the antibody of the invention, thereby forming an antibody-antigen complex; and
(b) detecting said antibody-antigen complex wherein the presence of said antibody-antigen complex correlates with the presence of SRL product in said biological sample.
By yet another aspect the invention also provides a method for identifying candidate compounds capable of binding to the SRL product and modulating its activity (being either agonists or antagonists). The method includes: (i) providing a protein or polypeptide comprising an amino acid sequence substantially as depicted in SEQ ID NO: 3 or SEQ ID NO: 4 or a fragment of such a sequence;
(ii) contacting a candidate compound with said amino acid sequence;
(iii) measuring the physiological effect of said candidate compound on the activity of the amino acid sequences and selecting those compounds which show a significant effect on said physiological activity.
The activity of the amino acid may be for example the binding of the amino acid (SRL product) to its native ligand-serotonin candidates which effect said binding to the product. The activity may also be activation of a coupled adenylate cyclase. Candidate compounds which increase the activity of adenylate cyclase have the potential of serving as agonist. Candidate compounds which either decrease the binding or the activity of adenylate cyclase have a potential of serving as antagonist.
The present invention also concerns compounds identified by the above methods described above, which compound may either be an agonist of the serotonin-receptor like product or an antagonist thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which: Fig. 1 shows TMpred of the amino acid sequence of SEQ ID NO:3 showing that the SRL product is a member of the 7 transmembrane-protein family. DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Example I: SRL - nucleic acid sequence
The nucleic acid sequences of the invention according to the SRL aspect, include nucleic acid sequences which encode SRL product and fragments and analogs thereof. According to the anti-SRL aspect, the nucleic acid sequences include sequences complementary to the above coding sequence, or to a region of said coding sequence. The length of the complementary sequence is sufficient to avoid the expression of the coding sequence. The nucleic acid sequences may be in the form of RNA or in the form of DNA, and include messenger RNA, synthetic RNA and DNA, cDNA, and genomic DNA. The DNA may be double-stranded or single-stranded, and if single-stranded may be the coding strand or the non-coding (anti-sense, complementary) strand. The nucleic acid sequences may also both include dNTPs, rNTPs as well as non naturally occurring sequences. The sequence may also be a part of a hybrid between an amino acid sequence and a nucleic acid sequence.
In a general embodiment, the nucleic acid sequence has at least 70%, preferably 80% or 90% sequence identity with the sequence identified as SEQ ID NO:l or SEQ ID NO: 2 The nucleic acid sequences may include the coding sequence by itself. By another alternative the coding region may be in combination with additional coding sequences, such as those coding for fusion protein or signal peptides, in combination with non-coding sequences, such as introns and control elements, promoter and terminator elements or 5' and/or 3' untranslated regions, effective for expression of the coding sequence in a suitable host, and/or in a vector or host environment in which the SRL nucleic acid sequence is introduced as a heterologous sequence.
The nucleic acid sequences of the present invention may also have the product coding sequence fused in-frame to a marker sequence which allows for purification of the SRL product. The marker sequence may be, for example, a hexahistidine tag to provide for purification of the mature polypeptide fused to the marker in the case of a bacterial host, or, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host, e.g. COS-7 cells, is used. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson, I., et al. Cell V.lβl (1984)).
Also included in the scope of the invention are fragments also referred to herein as oligonucleotides, typically having at least 15 bases, preferably 20-30 bases corresponding to a region of the coding-sequence nucleic acid sequence. The fragments may be used as probes, primers, and when complementary also as antisense agents, and the like, according to known methods.
As indicated above, the nucleic acid sequence may be substantially as depicted in SEQ ID NO:l or SEQ ID NO: 2 or fragments thereof or sequences having at least 70%, preferably 70-80%, most preferably 90% identity to the above sequence. Alternatively, due to the degenerative nature of the genetic code, the sequence may be a sequence coding the amino acid sequence of SEQ ID NO: 3 or SEQ ID NO: 4 or fragments or analogs of said amino acid sequence.
A. Preparation of nucleic acid sequences
The nucleic acid sequences may be obtained by screening cDNA libraries using oligonucleotide probes which can hybridize to or PCR-amplify nucleic acid sequences which encode the SRL products disclosed above. cDNA libraries prepared from a variety of tissues are commercially available and procedures for screening and isolating cDNA clones are well-known to those of skill in the art. Such techniques are described in, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2nd Edition), Cold Spring Harbor Press, Plainview, N.Y. and Ausubel FM et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y.
The nucleic acid sequences may be extended to obtain upstream and downstream sequences such as promoters, regulatory elements, and 5' and 3' untranslated regions (UTRs). Extension of the available transcript sequence may be performed by numerous methods known to those of skill in the art, such as PCR or primer extension (Sambrook et al, supra), or by the RACE method using, for example, the Marathon RACE kit (Clontech, Cat. # K1802-1).
Alternatively, the technique of "restriction-site" PCR (Gobinda et al. PCR Methods Applic. 2:318-22, (1993)), which uses universal primers to retrieve flanking sequence adjacent a known locus, may be employed. First, genomic DNA is amplified in the presence of primer to a linker sequence and a primer specific to the known region. The amplified sequences are subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase. Inverse PCR can be used to amplify or extend sequences using divergent primers based on a known region (Triglia, T. et al, Nucleic Acids Res. 16:8186, (1988)). The primers may be designed using OLIGO(R) 4.06 Primer Analysis Software (1992; National Biosciences Inc, Plymouth, Minn.), or another appropriate program, to be 22-30 nucleotides in length, to have a GC content of 50%) or more, and to anneal to the target sequence at temperatures about 68-72°C. The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template. Capture PCR (Lagerstrom, M. et al, PCR Methods Applic. 1:111-19, (1991)) is a method for PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA. Capture PCR also requires multiple restriction enzyme digestions and ligations to place an engineered double-stranded sequence into a flanking part of the DNA molecule before PCR.
Another method which may be used to retrieve flanking sequences is that of Parker, J.D., et al, Nucleic Acids Res., 19:3055-60, (1991)). Additionally, one can use PCR, nested primers and PromoterFinder™ libraries to "walk in" genomic DNA (PromoterFinder™; Clontech, Palo Alto, CA). This process avoids the need to screen libraries and is useful in finding intron/exon junctions. Preferred libraries for screening for full length cDNAs are ones that have been size-selected to include larger cDNAs. Also, random primed libraries are preferred in that they will contain more sequences which contain the 5' and upstream regions of genes. A randomly primed library may be particularly useful if an oligo d(T) library does not yield a full-length cDNA. Genomic libraries are useful for extension into the 5' nontranslated regulatory region.
The nucleic acid sequences and oligonucleotides of the invention can also be prepared by solid-phase methods, according to known synthetic methods. Typically, fragments of up to about 100 bases are individually synthesized, then joined to form continuous sequences up to several hundred bases.
Use of SRL nucleic acid sequence for the production of SRL products
In accordance with the present invention, nucleic acid sequences specified above may be used as recombinant DNA molecules that direct the expression of SRL products. As will be understood by those of skill in the art, it may be advantageous to produce SRL product-encoding nucleotide sequences possessing codons other than those which appear in SEQ ID NO: l or SEQ ID NO: 2which are those which naturally occur in the human genome. Codons preferred by a particular prokaryotic or eukaryotic host (Murray, E. et al. Nuc Acids Res., 17:477-508, (1989)) can be selected, for example, to increase the rate of SRL product expression or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, than transcripts produced from naturally occurring sequence. The nucleic acid sequences of the present invention can be engineered in order to alter a SRL product coding sequence for a variety of reasons, including but not limited to, alterations which modify the cloning, processing and/or expression of the product. For example, alterations may be introduced using techniques which are well known in the art, e.g., site-directed mutagenesis, to insert new restriction sites, to alter glycosylation patterns, to change codon preference, to produce splice variants, etc.
The present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs comprise a vector, such as a plasmid or viral vector, into which a nucleic acid sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are also described in Sambrook, et al, (supra). The present invention also relates to host cells which are genetically engineered with vectors of the invention, and the production of the product of the invention by recombinant techniques. Host cells are genetically engineered (i.e., transduced, transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the expression of the SRL nucleic acid sequence. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art.
The nucleic acid sequences of the present invention may be included in any one of a variety of expression vectors for expressing a product. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used as long as it is replicable and viable in the host. The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and related sub-cloning procedures are deemed to be within the scope of those skilled in the art. The DNA sequence in the expression vector is operatively linked to an appropriate transcription control sequence (promoter) to direct mRNA synthesis. Examples of such promoters include: LTR or SV40 promoter, the E.coli lac or trp promoter, the phage lambda PL promoter, and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation, and a transcription terminator. The vector may also include appropriate sequences for amplifying expression. In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E.coli.
The vector containing the appropriate DNA sequence as described above, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein. Examples of appropriate expression hosts include: bacterial cells, such as E.coli, Streptomyces, Salmonella typhimurium; fungal cells, such as yeast; insect cells such as Drosophila and Spodoptera Sf9; animal cells such as CHO, COS, HEK 293 or Bowes melanoma; adenoviruses; plant cells, etc. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein. The invention is not limited by the host cells employed.
In bacterial systems, a number of expression vectors may be selected depending upon the use intended for the SRL product. For example, when large quantities of SRL product are needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be desirable. Such vectors include, but are not limited to, multifunctional E.coli cloning and expression vectors such as Bluescript(R) (Stratagene), in which the SRL polypeptide coding sequence may be ligated into the vector in- frame with sequences for the amino-terminal Met and the subsequent 7 residues of beta-galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke & Schuster J. Biol Chem. 264:5503-5509, (1989)); pET vectors (Novagen, Madison WI); and the like. In the yeast Saccharomyces cerevisiae a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase and PGH may be used. For reviews, see Ausubel et al (supra) and
Grant et al, (Methods in Enzymology 153:516-544, (1987)). In cases where plant expression vectors are used, the expression of a sequence encoding SRL product may be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV (Brisson et al, Nature 310:511-514. (1984)) may be used alone or in combination with the omega leader sequence from TMV (Takamatsu et al, EMBO J., 6:307-311, (1987)). Alternatively, plant promoters such as the small subunit of RUBISCO (Coruzzi et al, EMBO J.
3:1671-1680, (1984); Broglie et al, Science 224:838-843, (1984)); or heat shock promoters (Winter J and Sinibaldi R.M., Results Probl Cell Differ.,
17:85-105, (1991)) may be used. These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. For reviews of such techniques, see Hobbs S. or Murry L.E.
(1992) in McGraw Hill Yearbook of Science and Technology, McGraw
Hill, New York, N.Y., pp 191-196; or Weissbach and Weissbach (1988)
Methods for Plant Molecular Biology, Academic Press, New York, N.Y., pp 421-463.
SRL product may also be expressed in an insect system. In one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The SRL product coding sequence may be cloned into a nonessential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of SRL coding sequence will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein coat. The recombinant viruses are then used to infect S. frugiperda cells or Trichoplusia larvae in which SRL protein is expressed (Smith et al, J. Virol. 46:584, (1983); Engelhard, E.K. et al, Proc. Nat. Acad. Sci. 91:3224-7, (1994)).
In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, a SRL product coding sequence may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a nonessential El or E3 region of the viral genome will result in a viable virus capable of expressing SRL protein in infected host cells (Logan and Shenk, Proc. Natl Acad. Sci. 81:3655-59, (1984)). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
Specific initiation signals may also be required for efficient translation of a SRL protein coding sequence. These signals include the ATG initiation codon and adjacent sequences. In cases where SRL product coding sequence, its initiation codon and upstream sequences are inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous transcriptional control signals including the ATG initiation codon must be provided. Furthermore, the initiation codon must be in the correct reading frame to ensure transcription of the entire insert. Exogenous transcriptional elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate to the cell system in use (Scharf, D. et al, (1994) Results Probl Cell Differ.,
20:125-62, (1994); Bittner et al., Methods in Enzymol 153:516-544,
(1987)).
In a further embodiment, the present invention relates to host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (Davis, L., Dibner, M., and Battey, I. (1986) Basic Methods in Molecular Biology). Cell-free translation systems can also be employed to produce polypeptides using RNAs derived from the DNA constructs of the present invention.
A host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the protein include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation. Post-translational processing which cleaves a "pre-pro " form of the protein may also be important for correct insertion, folding and/or function. Different host cells such as CHO, HeLa, MDCK, 293, WI38, etc. have specific cellular machinery and characteristic mechanisms for such post-translational activities and may be chosen to ensure the correct modification and processing of the introduced, foreign protein. For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express SRL product may be transformed using expression vectors which contain viral origins of replication or endogenous expression elements and a selectable marker gene. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clumps of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type.
Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler M., et al, Cell 11:223-32, (1977)) and adenine phosphoribosylfransferase (Lowy I., et al, Cell 22:817-23, (1980)) genes which can be employed in tk- or aprt- cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler M., et al, Proc. Natl Acad. Sci. 77:3567-70, (1980)); npt, which confers resistance to the aminoglycosides neomycin and G-418 (Colbere-Garapin, F. et al, J. Mol Biol, 150:1-14, (1981)) and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman S.C. and R.C. Mulligan, Proc. Natl. Acad. Sci. 85:8047-51, (1988)). The use of visible markers has gained popularity with such markers as anthocyanins, beta-glucuronidase and its substrate, GUS, and luciferase and its substrates, luciferin and ATP, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, CA. et. al, Methods Mol Biol, 55:121-131, (1995)).
Host cells transformed with a nucleotide sequence encoding SRL product may be cultured under conditions suitable for the expression and recovery of the encoded protein from cell culture. The product produced by a recombinant cell may be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing nucleic acid sequences encoding SRL product can be designed with signal sequences which direct secretion of SRL product through a prokaryotic or eukaryotic cell membrane.
SRL product may also be expressed as a recombinant protein with one or more additional polypeptide domains added to facilitate protein purification. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp, Seattle, Wash.). The inclusion of a protease-cleavable polypeptide linker sequence between the purification domain and SRL protein is useful to facilitate purification. One such expression vector provides for expression of a fusion protein compromising a SRL polypeptide fused to a polyhistidine region separated by an enterokinase cleavage site. The histidine residues facilitate purification on IMIAC (immobilized metal ion affinity chromatography, as described in Porath, et al., Protein Expression and Purification, 3:263-281, (1992)) while the enterokinase cleavage site provides a means for isolating SRL polypeptide from the fusion protein. pGEX vectors (Promega, Madison, Wis.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to ligand-agarose beads (e.g., glutathione-agarose in the case of GST-fusions) followed by elution in the presence of free ligand.
Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, or other methods, which are well know to those skilled in the art.
The SRL products can be recovered and purified from recombinant cell cultures by any of a number of methods well known in the art, including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.
C. Diagnostic applications utilizing nucleic acid sequences
The nucleic acid sequences of the present invention may be used for a variety of diagnostic purposes. The nucleic acid sequences may be used to detect and quantitate expression of SRL in patient's cells, e.g. biopsied tissues, by detecting the presence of mRNA coding for SRL product. This assay typically involves obtaining total mRNA from the tissue and contacting the mRNA with a nucleic acid probe. The probe is a nucleic acid molecule of at least 20 nucleotides, preferably 20-30 nucleotides, capable of specifically hybridizing with a sequence included within the sequence of a nucleic acid molecule encoding SRL under hybridizing conditions, detecting the presence of mRNA hybridized to the probe, and thereby detecting the expression of SRL. This assay can be used to distinguish between absence, presence, and excess expression of SRL product and to monitor levels of SRL expression during therapeutic intervention.
The invention also contemplates the use of the nucleic acid sequences as a diagnostic for diseases resulting from inherited defective SRL sequences. These sequences can be detected by comparing the sequences of the defective (i.e., mutant) SRL coding region with that of a normal coding region. Association of the sequence coding for mutant SRL product with abnormal SRL product activity may be verified. In addition, sequences encoding mutant SRL products can be inserted into a suitable vector for expression in a functional assay system (e.g., colorimetric assay, complementation experiments in a SRL protein deficient strain of HEK293 cells) as yet another means to verify or identify mutations. Once mutant genes have been identified, one can then screen populations of interest for carriers of the mutant gene. Individuals carrying mutations in the nucleic acid sequence of the present invention may be detected at the DNA level by a variety of techniques. Nucleic acids used for diagnosis may be obtained from a patient's cells, including but not limited to such as from blood, urine, saliva, placenta, tissue biopsy and autopsy material. Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR (Saiki, et al, Nature 324:163-166, (1986)) prior to analysis. RNA or cDNA may also be used for the same purpose. As an example, PCR primers complementary to the nucleic acid of the present invention can be used to identify and analyze mutations in the gene of the present invention. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype.
Point mutations can be identified by hybridizing amplified DNA to radiolabeled RNA of the invention or alternatively, radiolabeled antisense DNA sequences of the invention. Sequence changes at specific locations may also be revealed by nuclease protection assays, such RNase and SI protection or the chemical cleavage method (e.g. Cotton, et alProc. Natl. Acad. Sci. USA, 85:4397-4401, (1985)), or by differences in melting temperatures. "Molecular beacons" (Kostrikis L.G. et al, Science 279: 1228-1229, (1998)), haiφin-shaped, single-stranded synthetic oligo- nucleotides containing probe sequences which are complementary to the nucleic acid of the present invention, may also be used to detect point mutations or other sequence changes as well as monitor expression levels of SRL product. Such diagnostics would be particularly useful for prenatal testing.
Another method for detecting mutations uses two DNA probes which are designed to hybridize to adjacent regions of a target, with abutting bases, where the region of known or suspected mutation(s) is at or near the abutting bases. The two probes may be joined at the abutting bases, e.g., in the presence of a ligase enzyme, but only if both probes are correctly base paired in the region of probe junction. The presence or absence of mutations is then detectable by the presence or absence of ligated probe.
Also suitable for detecting mutations in the SRL product coding sequence are oligonucleotide array methods based on sequencing by hybridization (SBH), as described, for example, in U.S. Patent No. 5,547,839. In a typical method, the DNA target analyte is hybridized with an array of oligonucleotides formed on a microchip. The sequence of the target can then be "read" from the pattern of target binding to the array.
D. Gene mapping utilizing nucleic acid sequences
The nucleic acid sequences of the present invention are also valuable for chromosome identification. The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. Moreover, there is a current need for identifying particular sites on the chromosome. Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location. The mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.
Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 20-30 bp) from the SRL cDNA. Computer analysis of the 3' untranslated region is used to rapidly select primers that do not span more than one exon in the genomic DNA, which would complicate the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment. PCR mapping of somatic cell hybrids or using instead radiation hybrids are rapid procedures for assigning a particular DNA to a particular chromosome. Using the present invention with the same oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner. Other mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries.
Fluorescence in situ hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. This technique can be used with cDNA as short as 50 or 60 bases. For a review of this technique, see Verma et al, Human Chromosomes: a Manual of Basic Techniques, (1988) Pergamon Press, New York. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in the OMIM database (Center for Medical Genetics, Johns Hopkins University, Baltimore, MD and National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD). The OMIM gene map presents the cytogenetic map location of disease genes and other expressed genes. The OMIM database provides information on diseases associated with the chromosomal location. Such associations include the results of linkage analysis mapped to this interval, and the correlation of translocations and other chromosomal aberrations in this area with the advent of polygenic diseases, such as cancer.
E. Therapeutic applications of nucleic acid sequences Nucleic acid sequences of the invention whether according to the
SRL aspect or the anti-SRL aspect, may also be used for therapeutic purposes. Turning first to the anti-SRL aspect, expression of SRL product may be modulated through antisense technology, which controls gene expression through hybridization of complementary nucleic acid sequences, i.e. antisense DNA or RNA, to the control, 5' or regulatory regions of the gene encoding SRL protein. For example, the 5' coding portion of the nucleic acid sequence sequence which codes for the protein of the present invention is used to design an antisense oligonucleotide of from about 10 to 40 base pairs in length. Oligonucleotides derived from the transcription start site, e.g. between positions -10 and +10 from the start site, are preferred. An antisense DNA oligonucleotide is designed to be complementary to a region of the nucleic acid sequence involved in transcription (Lee et al, Nucl Acids, Res., 6:3073, (1979); Cooney et al., Science 241:456, (1988); and Dervan et al, Science 251:1360, (1991)), thereby preventing transcription and the production of the SRL products. An antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the SRL products (Okano J. Neurochem. 56:560, (1991)). The antisense constructs can be delivered to cells by procedures known in the art such that the antisense RNA or DNA may be expressed in vivo. The antisense may be antisense mRNA or DNA sequence capable of coding such antisense mRNA. The antisense mRNA or the DNA coding thereof can be complementary to the full sequence of nucleic acid sequences coding to the SRL protein or to a fragment of such a sequence which is sufficient to inhibit production of a protein product.
Turning now to the SRL aspect, expression of SRL product may be increased by providing coding sequences for coding for said product under the control of suitable control elements ending its expression in the desired host. The nucleic acid sequences of the invention may be employed in combination with a suitable pharmaceutical carrier. Such compositions comprise a therapeutically effective amount of the compound, and a pharmaceutically acceptable carrier or excipient. Such a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The formulation should suit the mode of administration.
The polypeptides, and agonist and antagonist compounds (see below) which are polypeptides, may also be employed in accordance with the present invention by expression of such polypeptides in vivo, which is often referred to as "gene therapy. " Cells from a patient may be engineered with a nucleic acid sequence (DNA or RNA) encoding a polypeptide ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide. Such methods are well-known in the art. For example, cells may be engineered by procedures known in the art by use of a retroviral particle containing RNA encoding a polypeptide of the present invention.
Similarly, cells may be engineered in vivo for expression of a polypeptide in vivo by procedures known in the art. As known in the art, a producer cell for producing a retroviral particle containing RNA encoding the polypeptide of the present invention may be administered to a patient for engineering cells in vivo and expression of the polypeptide in vivo. These and other methods for administering a product of the present invention by such method should be apparent to those skilled in the art from the teachings of the present invention. For example, the expression vehicle for engineering cells may be other than a retrovirus, for example, an adenovirus which may be used to engineer cells in vivo after combination with a suitable delivery vehicle.
Retroviruses from which the retroviral plasmid vectors mentioned above may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, adenovirus, Myeloproliferative Sarcoma Virus, and mammary tumor virus. The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, psi-2, psi-AM, PA12, T19-14X, VT-19-17-H2, psi-CRE, psi-CRIP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller (Human Gene Therapy, Vol. 1, pg. 5-14, (1990)). The vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaP0 precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host. The producer cell line generates infectious retroviral vector particles which include the nucleic acid sequence(s) encoding the polypeptides. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express the nucleic acid sequence(s) encoding the polypeptide. Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myoblasts, keratinocytes, endothelial cells, and bronchial epithelial cells. The genes introduced into cells may be placed under the control of inducible promoters, such as the radiation-inducible Egr-1 promoter, (Maceri, H.J., et al, Cancer Res., 56(19):4311 (1996)), to stimulate SRL production or antisense inhibition in response to radiation, eg., radiation therapy for treating tumors.
Example II. SRL product
The substantially purified SRL product of the invention has been defined above as the product coded from the nucleic acid sequence of the invention. Preferably the amino acid sequence is an amino acid sequence having at least 70%, preferably at least 80%> or 90%> identity to the sequence identified as SEQ ID NO:3 or SEQ ID NO:4. The protein may be in mature and/or modified form, also as defined above. Also contemplated are protein fragments having at least 10 contiguous amino acid residues, preferably at least 10-20 residues, derived from the SRL protein. Fig. 1 shows that the product has 7 transmembrane regions as calculated by the Tmpred program.
The sequence variations are preferably those that are considered conserved substitutions, as defined above. Thus, for example, a protein with a sequence having at least 80%) sequence identity with the protein identified as SEQ ID NO:3 or SEQ ID NO:4, from residue 1 to 240 contains up to 48 amino acid substitutions, preferably conserved substitutions as defined above. In a more specific embodiment, the protein has or contains the sequence identified SEQ ID NO:3 or SEQ ID NO:4. The SRL product may be (i) one in which one or more of the amino acid residues in a sequence listed above are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue), or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the SRL product is fused with another compound, such as a compound to increase the half-life of the protein (for example, polyethylene glycol (PEG)), or a moiety which serves as targeting means to direct the protein to its target tissue or target cell population (such as an antibody), or (iv) one in which additional amino acids are fused to the SRL product, or (v) an isolated fragment of the full-length product which is soluble, i.e. not membrane bound, yet still binds its natural ligands (serotonin). Such fragments, variants and derivatives are deemed to be within the scope of those skilled in the art from the teachings herein.
A. Preparation of SRL product
Recombinant methods for producing and isolating the SRL product, and fragments of the protein are described above.
In addition to recombinant production, fragments and portions of SRL product may be produced by direct peptide synthesis using solid-phase techniques (cf. Stewart et al, (1969) Solid-Phase Peptide Synthesis, WH Freeman Co, San Francisco; Merrifield J., J. Am. Chem. Soc, 85:2149-2154, (1963)). In vitro peptide synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using Applied Biosystems 431 A Peptide Synthesizer (Perkin Elmer, Foster City, Calif.) in accordance with the instructions provided by the manufacturer. Fragments of SRL product may be chemically synthesized separately and combined using chemical methods to produce the full length molecule.
B. Therapeutic uses and compositions utilizing the SRL product The SRL product of the invention is generally useful in treating diseases and disorders which are characterized by an excess of 5-HT4 receptor ligand. The SRL product can decrease the amount of the ligand available for the 5-HT4 receptor by competitively binding thereto.
SRL products or fragments may be administered by any of a number of routes and methods designed to provide a consistent and predictable concentration of compound at the target organ or tissue. The product-containing compositions may be administered alone or in combination with other agents, such as stabilizing compounds, and/or in combination with other pharmaceutical agents such as drugs or hormones. SRL product-containing compositions may be administered by a number of routes including, but not limited to oral, intravenous, intramuscular, transdermal, subcutaneous, topical, sublingual, or rectal means as well as by nasal application by positioning and intracerebral pump and other means which are able to enter the blood brain barrier, as well as by use of vectors such as viruses which can penetrate the CNS. SRL product- containing compositions may also be administered via liposomes. Such administration routes and appropriate formulations are generally known to those of skill in the art.
The product can be given via intravenous or intraperitoneal injection. Similarly, the product may be injected to other localized regions of the body. The product may also be administered via nasal insufflation. Enteral administration is also possible. For such administration, the product should be formulated into an appropriate capsule or elixir for oral administration, or into a suppository for rectal administration. The foregoing exemplary administration modes will likely require that the product be formulated into an appropriate carrier, including ointments, gels, suppositories. Appropriate formulations are well known to persons skilled in the art. Dosage of the product will vary, depending upon the potency and therapeutic index of the particular polypeptide selected.
A therapeutic composition for use in the treatment method can include the product in a sterile injectable solution, the polypeptide in an oral delivery vehicle, the product in an aerosol suitable for nasal administration, or the product in a nebulized form, all prepared according to well known methods. Such compositions comprise a therapeutically effective amount of the compound, and a pharmaceutically acceptable carrier or excipient. Such a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.
Example III. Screening methods for agonists and antagonists
The present invention also includes an assay for identifying molecules, such as synthetic drugs, antibodies, peptides, or other molecules, which have a modulating effect on the activity of the SRL product, e.g. agonists or antagonists of the SRL product of the present invention. It is well known today that serotonin plays a prominent role in modulation and control of various functions both in the CNS and in the periphery and new agonists and antagonists for the serotonin receptor particularly the 5-HT4 receptor are highly desired. Such an assay comprises the steps of providing an SRL product encoded by the nucleic acid sequences of the present invention, contacting the SRL protein with one or more candidate molecules to determine the candidate molecules modulating effect on the activity of the SRL product, and selecting from the molecules a candidate's molecule capable of modulating SRL product physiological activity. SRL product, its catalytic or immunogenic fragments or oligopeptides thereof, can be used for screening therapeutic compounds in any of a variety of drug screening techniques. The fragment employed in such a test may be free in solution, affixed to a solid support, borne on a cell membrane (as in its native state), or located intracellularly. The formation of binding complexes, between SRL product and the agent being tested, may be measured. Therapeutic compounds which inhibit binding between the SRL product and its ligand (serotonin) may also be measured, as they are likely to serve as antagonists competing for binding with the native ligand of the receptor.
In one embodiment, the screening system includes the binding ligand of the SRL product or an analog thereof, and the compounds screened are tested for their ability to block or enhance binding of said ligand to the SRL product. Another technique for drug screening which may be used provides for high throughput screening of compounds having suitable binding affinity to the SRL product is described in detail by Geysen in PCT Application WO 84/03564, published on Sep. 13, 1984. In summary, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds are reacted with the full SRL product or with fragments of SRL product and washed. Bound SRL product is then detected by methods well known in the art. Substantially purified SRL product can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
Antibodies to the SRL product, as described in Example IV below, may also be used in screening assays according to methods well known in the art. For example, a "sandwich" assay may be performed, in which an anti-SRL antibody is affixed to a solid surface such as a microtiter plate and SRL product is added. Such an assay can be used to capture compounds which bind to the SRL product. Alternatively, such an assay may be used to measure the ability of compounds to interfere with the binding of serotonin to the SRL receptor, when the solubilized serotonin (or its analog) is included as an assay component.
Example IV. Anti-SRL antibodies A. Synthesis In still another aspect of the invention, the purified SRL product is used to produce anti-SRL antibodies which have diagnostic and therapeutic uses related to the activity, distribution, and expression of the SRL product.
Antibodies to SRL product may be generated by methods well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, humanized, single chain, Fab fragments and fragments produced by an Fab expression library. Antibodies, i.e., those which inhibit dimer formation, are especially preferred for therapeutic use.
SRL product for antibody induction does not require biological activity; however, the protein fragment or oligopeptide must be antigenic. Peptides used to induce specific antibodies may have an amino acid sequence consisting of at least five amino acids, preferably at least 10 amino acids of the sequences specified in SEQ ID NO: 3 or SEQ ID NO:4. Preferably from the extracellular domain of the receptor. Preferably they should mimic a portion of the amino acid sequence of the natural protein and may contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of SRL protein amino acids may be fused with those of another protein such as keyhole limpet hemocyanin and antibody produced against the chimeric molecule. Procedures well known in the art can be used for the production of antibodies to SRL product.
For the production of antibodies, various hosts including goats, rabbits, rats, mice, etc may be immunized by injection with SRL product or any portion, fragment or oligopeptide which retains immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include but are not limited to Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are potentially useful human adjuvants.
Monoclonal antibodies to SRL protein may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include but are not limited to the hybridoma technique originally described by Koehler and Milstein (Nature 256:495-497, (1975)), the human B-cell hybridoma technique (Kosbor et al, Immunol. Today 4:72, (1983); Cote et al, Proc. Natl. Acad. Sci. 80:2026-2030, (1983)) and the EBV-hybridoma technique (Cole, et al, Mol Cell Biol 62:109-120, (1984)).
Techniques developed for the production of "chimeric antibodies", the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity can also be used (Morrison et al, Proc. Natl. Acad. Sci. 81:6851-6855, (1984); Neuberger et al, Nature 312:604-608, (1984); Takeda et al, Nature 314:452-454, (1985)). Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce single-chain antibodies specific for SRL protein. Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening recombinant immunoglobulin libraries or panels of highly specific binding reagents as disclosed in Orlandi et al. (Proc. Natl Acad. Sci. 86:3833-3837, 1989)), and Winter G and Milstein C, (Nature 349:293-299, (1991)).
Antibody fragments which contain specific binding sites for SRL protein may also be generated. For example, such fragments include, but are not limited to, the F(ab')2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse W.D. et al, Science 256:1275-1281, (1989)).
B. Diagnostic applications of antibodies
A variety of protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the formation of complexes between SRL product and its specific antibody and the measurement of complex formation. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two noninterfering epitopes on a specific SRL product is preferred, but a competitive binding assay may also be employed. These assays are described in Maddox D.E., et al, (J. Exp. Med. 158:1211, (1983)).
Antibodies which specifically bind SRL product are useful for the diagnosis of conditions or diseases characterized by expression of SRL protein. Alternatively, such antibodies may be used in assays to monitor patients being treated with SRL product, its agonists, or its antagonists. Diagnostic assays for SRL protein include methods utilizing the antibody and a label to detect SRL product in human body fluids or extracts of cells or tissues. The products and antibodies of the present invention may be used with or without modification. Frequently, the proteins and antibodies will be labeled by joining them, either covalently or noncovalently, with a reporter molecule. A wide variety of reporter molecules are known in the art.
A variety of protocols for measuring SRL product, using either polyclonal or monoclonal antibodies specific for the respective protein are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescent activated cell sorting (FACS). As noted above, a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on SRL product is preferred, but a competitive binding assay may be employed. These assays are described, among other places, in Maddox, et al. (supra). Such protocols provide a basis for diagnosing altered or abnormal levels of SRL product expression. Normal or standard values for SRL product expression are established by combining body fluids or cell extracts taken from normal subjects, preferably human, with antibody to SRL product under conditions suitable for complex formation which are well known in the art. The amount of standard complex formation may be quantified by various methods, preferably by photometric methods. Then, standard values obtained from normal samples may be compared with values obtained from samples from subjects potentially affected by disease. Deviation between standard and subject values establishes the presence of disease state.
The antibody assays are useful to determine the level of SRL present in a body fluid sample, or in a particular tissue, e.g., biopsied tumor tissue or arthritic tissue, as an indication of whether SRL is being overexpressed or underexpressed in the tissue, or as an indication of how SRL levels are responding to drug treatment.
C. Therapeutic uses of antibodies In addition to their diagnostic use the antibodies may have a therapeutical utility in blocking or decreasing the activity of 5-HT4 receptor in pathological conditions where its activity is too high such as in excess secretion of antibodies, in excess vomiting, excess bowel movement and in various cardiovascular disorders such as atrial fibrillation. The antibody employed is preferably a humanized monoclonal antibody, or a human Mab produced by known globulin-gene library methods. The antibody is administered typically as a sterile solution by IV injection, although other parenteral routes may be suitable. Typically, the antibody is administered in an amount between about 1-15 mg/kg body weight of the subject. Treatment is continued, e.g., with dosing every 1-7 days, until a therapeutic improvement is seen.
Although the invention has been described with reference to specific methods and embodiments, it is appreciated that various modifications and changes may be made without departing from the invention.

Claims

CLAIMS:
1. An isolated nucleic acid sequence selected from the group consisting of:
(i) the nucleic acid sequence depicted in SEQ ID NO: 1 or SEQ ID NO:2,
(ii) nucleic acid sequences having at least 10% identity with the sequence of (i); and
(iii) fragments of (i) or (ii) of at least 20 b.p.
2. A nucleic acid sequence according to Claim l(ii) wherein the nucleic acid sequences have at least 80% identity with the sequence of Claim l(i).
3. A nucleic acid sequence according to Claim 2, wherein the nucleic acid sequences have at least 90%) identity.
4. An isolated nucleic acid sequence complementary to the nucleic acid sequence of Claim 1.
5. An amino acid sequence selected from the group consisting of:
(i) an amino acid sequence coded by the isolated nucleic acid sequence of Claim 1;
(ii) fragments of the amino acid squence of (i) having at least 10 amino acids; (iii) analogues of the amino acid sequences of (i) or (ii) in which one or more amino acids has been added, deleted, replaced or chemically modified without substantially altering the biological activity of the parent amino acid sequence.
6. An amino acid sequence according to Claim 5, as depicted in SEQ ID NO:3 or SEQ ID NO:4.
7. An isolated nucleic acid sequence coding for the amino acid sequence of Claim 5 or 6.
8. A purified antibody which binds specifically to the amino acid sequence of Claim 5 or 6.
9. An expression vector comprising the nucleic acid sequences of Claim 1 or 7 and control elements for the expression of the nucleic acid sequence in a suitable host.
10. An expression vector comprising the nucleic acid sequence of Claim 4, and control elements for the expression of the nucleic acid sequence in a suitable host.
11. A host cell transfected by the expression vector of Claim 9 or 10.
5 12. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as an active ingredient an agent selected from the group consisting of:
(i) the expression vector of Claim 9; and (ii) the amino acid sequence of Claim 5 or 6. 10 13. A pharmaceutical composition according to Claim 12, for treatment of diseases which can be ameliorated or cured by raising the level of the SRL product.
14. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as an active ingredient an agent selected from the group
15 consisting of:
(i) the nucleic acid sequence of Claim 4; (ii) the expression vector of Claim 10; and (iii) the purified antibody of Claim 8.
15. A pharmaceutical composition according to Claim 14, for treatment of 20 diseases which can be ameliorated or cured by decreasing the level of the SRL product.
16. A method for detecting an SRL nucleic acid sequence in a biological sample, comprising the steps of:
(a) hybridizing to nucleic acid material of said biological sample a 25 nucleic acid sequence of Claim 1 or 4; and
(b) detecting said hybridization complex; wherein the presence of said hybridization complex correlates with the presence of an SRL nucleic acid sequence in the said biological sample.
17. A method according to Claim 16, wherein the nucleic acid material of 30 said biological sample are mRNA transcripts.
18. A method according to Claim 16, where the nucleic acid sequence is present in a nucleic acid chip.
19. A method for identifying candidate compounds capable of binding to the SRL product and modulating its activity the method comprising:
(i) providing a protein or polypeptide comprising an amino acid sequence substantially as depicted in SEQ ID NO: 3 or SEQ ID NO:4, or a 5 fragment of such a sequence;
(ii) contacting a candidate compound with said amino acid sequence;
(iii) determining the effect of said candidate compound on the biological activity of said protein or polypeptide and selecting those 10 compounds which show a significant effect on said biological activity.
20. A method according to Claim 19, wherein the compound is an agonist and the measured effect is increase in the biological activity.
21. A method according to Claim 19, wherein the compound is an antagonist and the effect is decrease in the biological activity.
15 22. An agonist of the amino acid sequence of Claim 5 or 6.
23. An antagonist of the amino acid sequence of Claims 5 or 6.
24. A method for detecting SRL-product in a biological sample, comprising the steps of:
(a) contacting with said biological sample the antibody of Claim 8, 20 thereby forming an antibody-antigen complex; and
(b) detecting said antibody-antigen complex wherein the presence of said antibody-antigen complex correlates with the presence of SRL product in said biological sample.
EP00900795A 1999-01-19 2000-01-19 Nucleic acid and amino acid sequences Withdrawn EP1147183A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IL12813199 1999-01-19
IL12813199A IL128131A0 (en) 1999-01-19 1999-01-19 Novel nucleic acid and amino acid sequences
PCT/IL2000/000035 WO2000043506A1 (en) 1999-01-19 2000-01-19 Novel nucleic acid and amino acid sequences

Publications (1)

Publication Number Publication Date
EP1147183A1 true EP1147183A1 (en) 2001-10-24

Family

ID=11072392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00900795A Withdrawn EP1147183A1 (en) 1999-01-19 2000-01-19 Nucleic acid and amino acid sequences

Country Status (4)

Country Link
EP (1) EP1147183A1 (en)
AU (1) AU3072200A (en)
IL (1) IL128131A0 (en)
WO (1) WO2000043506A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329729B1 (en) 2000-06-21 2008-02-12 Amgen Inc. Secreted epithelial colon stromal-1 molecules and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057270A2 (en) * 1998-05-01 1999-11-11 Incyte Pharmaceuticals, Inc. Human receptor molecules
FR2865152B1 (en) * 2004-01-21 2007-02-02 Air Liquide ARC-LASER HYBRID WELDING PROCESS OF FERRITIC STEELS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0043506A1 *

Also Published As

Publication number Publication date
WO2000043506A1 (en) 2000-07-27
AU3072200A (en) 2000-08-07
IL128131A0 (en) 1999-11-30

Similar Documents

Publication Publication Date Title
US8088730B2 (en) Ghrelin variant protein
WO1999067382A2 (en) Angiopoietin-like growth factor sequences
US20020061525A1 (en) Sequences of trail variants
US20040170975A1 (en) Variant of TNF-receptor
US20050244877A1 (en) Splice variants of CD40-receptor
US6783954B2 (en) VEGF nucleic acid and amino acid sequences
WO2002006315A2 (en) Novel nucleic acid and amino acid sequences
US6506884B1 (en) Variant of vascular endothelial growth factor
US20040258681A1 (en) Alternative splice variants
EP1175492A1 (en) Star homologues
US20050281810A1 (en) Variants of alternative splicing
WO2000043506A1 (en) Novel nucleic acid and amino acid sequences
US20020081655A1 (en) Splice variant of mGluR
EP1097166A2 (en) Potassium channel polypeptide and polynucleotide compositions
WO2000044784A1 (en) Nucleic acid and amino acid sequences
US20030105049A1 (en) StAR homologues
WO2002102848A2 (en) Nucleic acid and amino acid sequences of a vegf variant
EP1230359A1 (en) Chordin-like homologs
EP1230358A2 (en) N-cam homolog and splice variants thereof
US20030125288A1 (en) PI3K - regulatory subunit homology
CA2339406A1 (en) Novel esk potassium channel polypeptide and polynucleotide compositions
WO1999060121A1 (en) Metabotropic glutamate receptor-like protein and encoding cdna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20021011