EP1146395B1 - Lithographischer Apparat, Verfahren zur Herstellung einer Vorrichtung, sowie durch dieses Verfahren hergestellte Vorrichtung - Google Patents

Lithographischer Apparat, Verfahren zur Herstellung einer Vorrichtung, sowie durch dieses Verfahren hergestellte Vorrichtung Download PDF

Info

Publication number
EP1146395B1
EP1146395B1 EP20010303299 EP01303299A EP1146395B1 EP 1146395 B1 EP1146395 B1 EP 1146395B1 EP 20010303299 EP20010303299 EP 20010303299 EP 01303299 A EP01303299 A EP 01303299A EP 1146395 B1 EP1146395 B1 EP 1146395B1
Authority
EP
European Patent Office
Prior art keywords
substrate
support structure
substrate table
level sensor
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010303299
Other languages
English (en)
French (fr)
Other versions
EP1146395A2 (de
EP1146395A3 (de
Inventor
Arie Cornelis Scheiberlich
Menno Fien
Evert Hendrik Jan Draaijer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Priority to EP20010303299 priority Critical patent/EP1146395B1/de
Publication of EP1146395A2 publication Critical patent/EP1146395A2/de
Publication of EP1146395A3 publication Critical patent/EP1146395A3/de
Application granted granted Critical
Publication of EP1146395B1 publication Critical patent/EP1146395B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7034Leveling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Definitions

  • the present invention relates to the control of leveling, for example of the substrate and/or mask, during exposures in lithographic apparatus. More particularly, the invention relates to a system for leveling control in a lithographic projection apparatus comprising:
  • Lithographic projection apparatus can be used, for example, in the manufacture of integrated circuits (ICs).
  • the patterning means may generate a circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (e.g. comprising one or more dies) on a substrate (silicon wafer) that has been coated with a layer of radiation-sensitive material (resist).
  • a target portion e.g. comprising one or more dies
  • a substrate silicon wafer
  • a layer of radiation-sensitive material resist
  • a single wafer will contain a whole network of adjacent target portions that are successively irradiated via the projection system, one at a time.
  • employing patterning by a mask on a mask table a distinction can be made between two different types of machine.
  • each target portion is irradiated by exposing the entire mask pattern onto the target portion in one go; such an apparatus is commonly referred to as a wafer stepper.
  • a wafer stepper In an alternative apparatus ⁇ commonly referred to as a step-and-scan apparatus ⁇ each target portion is irradiated by progressively scanning the mask pattern under the projection beam in a given reference direction (the "scanning" direction) while synchronously scanning the substrate table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally ⁇ 1), the speed V at which the substrate table is scanned will be a factor M times that at which the mask table is scanned. More information with regard to lithographic devices as here described can be gleaned, for example, from US 6,046,792.
  • a pattern (e.g. in a mask) is imaged onto a substrate that is at least partially covered by a layer of radiation-sensitive material (resist).
  • the substrate Prior to this imaging step, the substrate may undergo various procedures, such as priming, resist coating and a soft bake. After exposure, the substrate may be subjected to other procedures, such as a post-exposure bake (PEB), development, a hard bake and measurement/inspection of the imaged features.
  • PEB post-exposure bake
  • This array of procedures is used as a basis to pattern an individual layer of a device, e.g. an IC.
  • Such a patterned layer may then undergo various processes such as etching, ion-implantation (doping), metallization, oxidation, chemo-mechanical polishing, etc., all intended to finish off an individual layer. If several layers are required, then the whole procedure, or a variant thereof, will have to be repeated for each new layer. Eventually, an array of devices will be present on the substrate (wafer). These devices are then separated from one another by a technique such as dicing or sawing, whence the individual devices can be mounted on a carrier, connected to pins, etc. Further information regarding such processes can be obtained, for example, from the book “Microchip Fabrication: A Practical Guide to Semiconductor Processing", Third Edition, by Peter van Zant, McGraw Hill Publishing Co., 1997, ISBN 0-07-067250-4.
  • the projection system may hereinafter be referred to as the "lens"; however, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example.
  • the radiation system may also include components operating according to any of these design types for directing, shaping or controlling the projection beam of radiation, and such components may also be referred to below, collectively or singularly, as a "lens".
  • the lithographic apparatus may be of a type having two or more substrate tables (and/or two or more mask tables). In such "multiple stage” devices the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposures. Twin stage lithographic apparatus are described, for example, in US 5,969,441 and WO 98/40791.
  • lithographic apparatus contained a single mask table and a single substrate table.
  • machines are now becoming available in which there are at least two independently movable substrate tables; see, for example, the multi-stage apparatus described in International Patent Applications WO98/28665 and WO98/40791.
  • the basic operating principle behind such multi-stage apparatus is that, while a first substrate table is at the exposure position underneath the projection system for exposure of a first substrate located on that table, a second substrate table can run to a loading position, discharge a previously exposed substrate, pick up a new substrate, perform some initial measurements on the new substrate and then stand ready to transfer the new substrate to the exposure position underneath the projection system as soon as exposure of the first substrate is completed; the cycle then repeats.
  • the same principle could be used with just one substrate table which is moved between exposure and measurement positions.
  • JP 07 086137A discloses a lithographic system according to the preamble off claim 1 and a method according to the preamble of claim 13.
  • An object of the present invention is to provide a control system capable of improved "on-the-fly" levelling (that is levelling based on position measurements made during the exposure rather than in advance) performed on a substrate or mask in a lithographic projection apparatus during exposure processes and in particular to reduce focussing errors, cross-talk between tilts and horizontal shifts and unnecessary object table movements.
  • a lithographic projection apparatus comprising:
  • the present invention by interposing a filter between the level sensor and the servo system for leveling, enables improvements in the leveling performance. In particular, undesirable movements to follow high spatial frequency (height) variations in the substrate surface can be avoided. Also, trade-offs between performance in different degrees of freedom can be made, especially to avoid cross-talk into horizontal displacements of the substrate which would result in overlay errors.
  • the level sensor in cooperation with a position sensor such as an interferometer or a Linear Variable Differential Transformer (LVDT) measurement system, generates a setpoint which the servo systems aims to follow. The filter then filters that setpoint.
  • LVDT Linear Variable Differential Transformer
  • UV radiation e.g. with a wavelength of 365, 248, 193, 157 or 126 nm
  • EUV or XUV radiation e.g. having a wavelength in the range 5-20 nm
  • particle beams such as ion beams or electron beams.
  • Embodiment 1 does not form part of the invention as claimed but represents background art useful for understanding the invention.
  • Figure 1 schematically depicts a lithographic projection apparatus according to a particular embodiment of the invention.
  • the apparatus comprises:
  • the apparatus is of a transmissive type (i.e. has a transmissive mask). However, in general, it may also be of a reflective type, for example (with a reflective mask). Alternatively, the apparatus may employ another kind of patterning means, such as a programmable mirror array of a type as referred to above.
  • the source LA e.g. a Hg lamp, excimer laser, an undulator provided around the path of an electron beam or storage ring or synchrotron, a laser-produced plasma source, a discharge source or an electron or ion beam source
  • the illuminator IL may comprise adjusting means AM for setting the outer and/or inner radial extent (commonly referred to as ⁇ -outer and ⁇ -inner, respectively) of the intensity distribution in the beam.
  • it will generally comprise various other components, such as an integrator IN and a condenser CO.
  • the beam PB impinging on the mask MA has a desired uniformity and intensity distribution in its cross-section.
  • the source LA may be within the housing of the lithographic projection apparatus (as is often the case when the source LA is a mercury lamp, for example), but that it may also be remote from the lithographic projection apparatus, the radiation beam which it produces being led into the apparatus (e.g. with the aid of suitable directing mirrors); this latter scenario is often the case when the source LA is an excimer laser.
  • the current invention and Claims encompass both of these scenarios.
  • the beam PB subsequently intercepts the mask MA, which is held on a mask table MT. Having traversed the mask MA, the beam PB passes through the lens PL, which focuses the beam PB onto a target portion C of the substrate W. With the aid of the second positioning means (and interferometric measuring means IF), the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the beam PB. Similarly, the first positioning means can be used to accurately position the mask MA with respect to the path of the beam PB, e.g. after mechanical retrieval of the mask MA from a mask library, or during a scan.
  • the mask table MT may just be connected to a short-stroke actuator, or may be fixed.
  • the depicted apparatus can be used in two different modes:
  • Unflatness may be caused, for example, by variations in wafer thickness, distortion of the shape of the wafer or contaminants on the wafer table. The presence of structures due to previous process steps also significantly affects the wafer height (flatness). In the present invention, the cause of unflatness is largely irrelevant; only the height of the top surface of the wafer is considered. Unless the context otherwise requires, references below to "the wafer surface” refer to the top surface of the wafer onto which will be projected the mask image.
  • the perpendicular, or vertical, position (Z) and parallel, or horizontal, tilts (Rx, Ry) of the wafer table WT are adjusted to keep the wafer surface at the optimal focus position.
  • the perpendicular, or vertical, position refers to the position along an axis substantially perpendicular to the plane of the wafer surface
  • the parallel, or horizontal, tilts refer to tilts along at least one axis parallel to the plane of the wafer surface.
  • the detector referred to herein as the level sensor, which may be used for this is shown in Figure 2.
  • It comprises a radiation source S which has two emitting areas S1, S2 and supplies two beams, a reference beam and a measurement beam having a wide wavelength band. Also shown are an object grating G1 and an image grating G2. Optical systems (depicted for clarity as simple lenses) L1 and L2 image the object grating G1 onto the image grating G2, the reference beam having been reflected by the outer surface RP of the projection optics PL and the measurement beam by the wafer surface.
  • Detectors DE2, DE1 behind the image grating G2 give, when irradiated, signals which can be measured by a meter ME or other suitable instrument, indicative of the relative positions of the points where the reference beam and measurement beam are reflected by the projection optics PL and wafer surface respectively.
  • a meter ME or other suitable instrument
  • the relative heights of a corresponding number of points on the wafer surface can be measured and local tilts of the wafer surface determined.
  • the level sensor is described in greater detail in EP-0 502 583-A and US 5,191,200, for example.
  • FIG. 3 A schematic of the leveling control system is shown in Figure 3.
  • the physical components of the system are the level sensor LS, wafer shape filter WSF and servo system SV.
  • the servo system SV is a closed-loop system, including necessary control circuitry, a mechanism for driving the wafer table and a positioning system.
  • the level sensor output ls is filtered by the wafer shape filter WSF to give a filtered signal ls' which forms the setpoint of the servo system.
  • the servo system drives the wafer table WT to a vertical position vp and may introduce a horizontal servo error hse in the horizontal position of the wafer.
  • Such an error can be caused by a non-zero Abbe arm for the Rx and Ry rotations carried out by the servo system, for example.
  • the servo system rotates the wafer table about axes not lying exactly on the wafer surface.
  • Any error vse in the vertical position signals output by the servo system SV can be measured by subtracting the filtered level sensor signal ls' from the measured vertical position vp ( vp is measured using an interferometer or LVDT, for example).
  • vp is measured using an interferometer or LVDT, for example.
  • Figure 3 shows general control architectures applicable for all three degrees of freedom Z, Rx and Ry.
  • signals such as ls , ls' , Zif , etc., include data of those three degrees of freedom.
  • H_sv d l e wafer .
  • H_sv h s e wafer .
  • H_ls . H_wsf . H_sv H_aa is the transfer function of element AA in the control system.
  • These various transfer functions will in general be functions of Z, Rx and Ry and may include terms representing cross-talk into other degrees of freedom. Of these errors, the first four are defined for Z, Rx, Ry and Ztotal, the last only for X and Y.
  • Ztotal is a combination of Z, Rx and Ry errors in such a way that it represents the maximal Z displacement in the radiation system's exposure slit, effectively the maximum Z error on one of the four corners of the slit.
  • Ztotal is calculated as Z ⁇ Rx.slitsizeY/2 ⁇ Ry.slitsizeX/2.
  • SlitsizeY is defined as the width of said projection beam in a scanning direction of one of the support structure and the wafer table, and slitsizeX refers to a width of said projection beam in a direction substantially perpendicular to the said scanning direction.
  • the transfer function H_wsf of the wafer shape filter is determined for each application to provide the desired improvements to the above errors.
  • the transfer function H_wsf may be empirically derived to compensate for the divergence of the transfer function H_ls of the actual level sensor LS and so reduces the dynamic measurement error dme to zero.
  • the ideal level sensor transfer function has a magnitude that decreases with spatial frequency, and a first zero-crossing at a spatial frequency equal to the inverse of the width of the exposure slit in the scan direction (in the case of a step-and-scan apparatus). This is advantageous as it prevents the wafer table attempting to follow variations in the wafer surface of wavelength shorter than the slit width and in particular reduces undesired horizontal movements due to high-frequency cross-talk.
  • the wafer shape filter transfer function can also be adjusted to compensate for or compromise between the other errors.
  • Appropriate forms for the wafer shape filter transfer function to achieve the desired effects can be derived empirically or by modeling the servo system. For example, in one servo system it was determined that Y errors were out of specification whilst Ztotal and Rx errors were comfortably within limits.
  • a notch filter in the Rx wafer shape filter transfer function with a center frequency equal to the peak frequency of the Y moving average error was found to improve Y accuracy at an acceptable cost to Rx and Ztotal.
  • the damping coefficients were selected to provide the desired improvement in Y whilst reducing the cost to Rx and Ztotal.
  • control system makes use of information indicating the position of the wafer table WT provided by an interferometric displacement measurement system IF.
  • interferometric displacement measurement system IF Suitable three, five and six-axis interferometric metrology systems are described in WO99/28790 and WO99/32940, for example.
  • An LVDT measurement system may also be used in place of the interferometer. In such a system, three LVDTs are located under the wafer table WT and their outputs transformed to give Z, Rx and Ry data.
  • the interferometer system IF measures the position Zif of the wafer table WT (sometimes referred to as the mirror block, as the interferometer system makes use of mirrors bonded to the sides of the wafer table) relative to the focal plane FP of the projection lens system PL whilst the level sensor measures the height ls of the upper surface of the wafer W.
  • the interferometer data though denoted simply Zif , includes information regarding the horizontal tilt, Rx and Ry, of the wafer table as well as vertical position, Z.
  • the wafer shape filter WSF provides the filtered wafer shape signal ws' which acts as setpoint data for an inner closed-loop control system (within the double dotted line in Figure 5) comprising controller CONT, the short-stroke table drive system MECH, the interferometer IF and a subtractor which subtracts the position of the wafer table as indicated by the interferometer data Zif from the filtered wafer shape data ws '.
  • the wafer shape filter WSF acts on the wafer shape data ws (which represents the actual shape of the wafer) rather than the level sensor data (which includes the instantaneous position of the wafer table).
  • the inner loop has a high bandwidth, e.g. 50 or 100 Hz or more, and is able to follow the wafer shape setpoint ws' accurately.
  • the outer loop determines the setpoint by filtering the wafer shape signal ws .
  • the wafer shape filter WSF will therefore not affect the performance of the inner loop.
  • the outer loop needs to be stable and to have limited closed-loop amplification.
  • the wafer shape filter is selected to correct measurement errors in the level sensor LS and to reduce vertical (tilt) to horizontal crossover.
  • a third embodiment of the invention is described with reference to Figures 6 and 7.
  • the third embodiment incorporates so-called "look-ahead" in the level sensor LS to compensate for delay which is caused in the wafer shape filter.
  • the level sensor including look-ahead is denoted LS' and utilizes a measurement spot pattern as depicted in Figure 6.
  • Measurement spots P1 and Q2 are positioned ahead of the center of the projection lens whilst Q1 and P2 are behind.
  • the corresponding signals are denoted as ZP1, ZQ2, ZQ1, ZP2, respectively.
  • sensor look-ahead for Z and Ry position is effected by weighting the advance spot measurements more heavily than the back spots.
  • control system shown in Figure 7 is then essentially the same as that of the second embodiment, shown in Figure 5, save that the level sensor LS' is adapted to provide the gradient signals, and a look-ahead multiplier y_l_a and adder are introduced to generate the sensor look-ahead data.
  • the fourth embodiment which is shown in Figure 8, is similar to the third but includes look-ahead in the interferometer IF, or LVDT measurement system, as well. This avoids errors in ls_frontZ which may occur in the third embodiment when there is a significant Rx tilt.
  • the Z level sensor front signal and the Z interferometer signal are not measured at exactly the same spot so that there will be an error in the Z wafer shape signal ws if there is a significant Rx tilt.
  • the interferometer gradients for Rx and Ry are defined as zero so that the corresponding look-ahead signals are equal to the center signals.
  • control system architecture of a fifth embodiment of the invention is shown in Figure 9. This arrangement is effectively the same as the fourth embodiment but, by subtracting the center and gradient signals before multiplication by y_l_a, one multiplier is saved.
  • a sixth embodiment of the invention is shown in Figure 10.
  • the sixth embodiment incorporates an additional correction AF_corr to compensate for changes in the position of the actual best focal plane.
  • Such changes may be effected deliberately or may be caused by temperature variations in the elements of the projection optical system PL and temperature or pressure variation in the gas or air filling the projection optical system PL.
  • a measured or predicted change of the actual focal plane in Z or Ry is automatically compensated for in the level sensor LS' which measures the position of the wafer surface relative to the optimum focal plane.
  • a change of the optimum focal plane in Rx will, with sensor look-ahead, result in an error in the Z position of the wafer surface.
  • the wafer shape Z value is corrected by - ⁇ Rx .
  • ⁇ Rx is the change in the position of the optimum focal plane, or the Z gradient is corrected by - ⁇ R x.
  • AF_corr is subtracted from the differential gradient signal if_grad - ls_gra d.
  • AF_corr is defined as ⁇ Rx for Z and zero for Rx and Ry.
  • Example 1 no Rx wafer shape filter was used and the wafer shape filter acts on a time series of values representing heights at positions spaced in the Y (scanning) direction.
  • Example 2 an Rx filter was added to the filter of example 1 to improve the Y performance at the expense of Rx performance.
  • Simulations were carried out using test data derived from a sample of six test wafers. In the simulations, moving averages (MA) and moving standard deviations (MSD) for servo errors in Ztotal, Z, Rz, Ry, X and Y, as well as dynamic leveling errors in Ztotal, Z, Rx and Ry, were calculated, i.e. a total of 120 values.
  • MA moving averages
  • MSD moving standard deviations
  • Example 1 reduced the number of out-of-spec results from 20 to 11 whilst Example 2 reduced this to 1.
  • the wafer shape filter settings of Examples 1 and 2 are based on a scanning speed of 250mm/s.
  • the look-ahead distances and filters can be adapted, e.g. so as to maintain a constant look-ahead time, rather than distance.
  • the frequency values of the wafer shape filter can be made proportional to scanning speed so that they represent constant spatial frequencies.
  • Figures 11 to 14 show test results obtained using the filter of Example 1 and a test wafer with a special (waved) step topology.
  • the surface has a step topology with decreasing wavelength in the Y direction.
  • the positive X half is flat.
  • Figures 11A and 11B show actual Z position movements (dashed) on this wafer compared to ideal (solid), without and with wafer shape filtering respectively.
  • Figures 12A and 12B show actual Ry movements (dashed) compared to ideal (solid), without and with wafer shape filtering respectively.
  • Figures 13A and 13B show actual Z level sensor transfer functions (dashed) compared to ideal (solid), without and with wafer shape filtering respectively.
  • Figures 14A and 14B show actual Ry level sensor transfer functions (dashed) compared to ideal (solid), without and with wafer shape filtering respectively. It can readily be seen that with the invention the transfer functions and wafer movements are considerably closer to the ideal. In particular, undesirable high-frequency movements of the wafer table are avoided.
  • the actual form of the filter will be determined according to the specific embodiment of the invention and the desired performance criteria.
  • One approach to selection of a suitable filter is to first find a level sensor look-ahead distance which ensures that the look-ahead transfer function of the level sensor lies above the ideal transfer function, at least up to the first zero-crossing at 1/slitsizeY. Using a two-notch filter, the first notch is then used to shape the transfer function up to the first zero-crossing. The second notch is used to filter off the frequencies higher than the first zero-crossing and to adjust the phase of the transfer function up to the first zero-crossing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Claims (13)

  1. Lithographischer Projektionsapparat, mit:
    - einem Strahlungssystem zur Bereitstellung eines Projektionsstrahls (PB) aus Strahlung;
    - einer Haltekonstruktion (MT) zum Halten von Musteraufbringungseinrichtungen (MA), wobei die Musteraufbringungseinrichtungen (MA) dazu dienen, den Projektionsstrahl (PB) gemäß einem gewünschten Muster zu mustern;
    - einem Substrattisch (WT) zum Halten eines Substrats (W); und
    - einem Projektionssystem (PL) zum Projizieren des gemusterten Strahls auf einen Zielabschnitt des Substrats (W);
    - einem Niveau-Sensor (LS) zum Messen von wenigstens einer von einer senkrechten Position und einer Neigung um wenigstens eine parallele Achse einer Oberfläche eines Objekts, das entweder von der Haltekonstruktion (MT) oder dem Substrattisch (WT) gehalten wird, wobei senkrecht sich auf eine Richtung bezieht, die im Wesentlichen senkrecht zu der Oberfläche ist und wobei parallel sich auf eine Richtung bezieht, die im Wesentlichen parallel zu der Oberfläche ist;
    - einem Servo-System (SV), das auf ein Positionssignal reagiert, um das Objekt zu einer gewünschten Position zu bewegen; und mit
    - einem Filter (WSF), der zwischen dem Niveau-Sensor (LS) und dem Servo-System (SV) angeordnet ist, um das Positionssignal zu filtern; gekennzeichnet durch:
    einen Positionssensor (IF) zum Erfassen einer Position von wenigstens einem von der Haltekonstruktikon (MT) und dem Substrattisch (WT), wobei ein Ausgang des Positionssensors von einem Ausgang des Niveau-Sensors (LS) subtrahiert wird, um das Positionssignal zu bilden; und dadurch, dass das Servo-System (SV) einen inneren Regelkreis umfasst, der den Positionssensor aufweist, um die Position von dem wenigstens einem von der Haltekonstruktion (MT) und dem Substrattisch (WT) zu regeln, und dass das gefilterte Positionssignal einen Einstellungspunkt für den inneren Regelkreis bildet.
  2. Apparat nach Anspruch 1, wobei das gefilterte Positionssignal einen Einstellungspunkt für das Servo-System (SV) bildet.
  3. Apparat nach Anspruch 2, wobei der Filter (WSF) ein Tiefpassfilter ist, der Anteile des Positionssignals durchlässt, deren Raumfrequenz niedriger ist als eine vorab bestimmte Raumfrequenz.
  4. Apparat nach Anspruch 3, wobei wenigstens einer von der Haltekonstruktion (MT) und dem Substrattisch (WT) bewegbar ist, um eine Scan-Belichtung eines Substrats (W), das auf dem Substrattisch (WT) gehalten wird, zu bewirken, und wobei die vorab bestimmte Raumfrequenz im Wesentlichen 1 durch die Breite des Projektionsstrahls (PB) in Abtastrichtung des Apparates gleich ist.
  5. Apparat nach Anspruch 1, 2, 3 oder 4, wobei der Filter (WSF) ein Übersprechen zwischen der Drehung des Objekts um eine parallele Achse und parallelen Verschiebungen des Objekts reduziert.
  6. Apparat nach einem der vorhergehenden Ansprüche, wobei der Positionssensor (IF) ein Interferenz-Verschiebungsmesssystem oder ein linear verstellbares Differentialtransformator-Messsystem (LVDT) umfasst.
  7. Apparat nach einem der vorhergehenden Ansprüche, wobei wenigstens einer von der Haltekonstruktion (MT) und dem Substrattisch (WT) bewegbar ist, um eine Scan-Belichtung eines Substrats (W), das auf dem Substrattisch (WT) gehalten wird, zu bewirken, und wobei der Niveau-Sensor (LS) wenigstens eine von der senkrechten Position und der Neigung um wenigstens eine parallele Achse eines Messpunktes auf der Oberfläche des Objekts vor dem Mittelpunkt des Projektionsstrahls (PB) in der Scan-Richtung misst.
  8. Apparat nach Anspruch 7, wobei der Positionssensor (IF) die Position von wenigstens einem von der Haltekonstruktion (MT) und dem Substrattisch (WT) an einem Punkt misst, der dem Messpunkt des Niveau-Sensors (LS) entspricht.
  9. Apparat nach Anspruch 7 oder 8, wobei der Abstand des Messpunktes vor dem Mittelpunkt des Projektionsstrahls (PB) von der Geschwindigkeit der Scan-Belichtung abhängt.
  10. Apparat nach Anspruch 7, 8 oder 9, wobei der Filter (WSF) eine Durchlassfunktion hat, die von der Geschwindigkeit der Scan-Belichtung abhängt.
  11. Apparat nach den vorhergehenden Ansprüchen, wobei das Objekt entweder eine der Musteraufbringungseinrichtungen (MA) oder das Substrat (W) ist, das jeweils entweder von der Haltekonstruktion (MT) oder dem Substrattisch (WT) gehalten wird.
  12. Apparat nach den vorhergehenden Ansprüchen, wobei die Haltekonstruktion (MT) einen Maskentisch (MT) zum Halten einer Maske (MA) umfasst.
  13. Verfahren zur Herstellung einer Vorrichtung, mit folgenden Schritten:
    - Bereitstellen eines Substrats (W), das zumindest teilweise von einer Schicht aus strahlungsempfindlichem Material bedeckt ist;
    - Bereitstellen eines Projektionsstrahls (PB) aus Strahlung unter Verwendung eines Strahlungssystems;
    - Verwenden von Musteraufbringungseinrichtungen (MA), um den Projektionsstrahl (PB) in seinem Querschnitt mit einem Muster zu versehen;
    - Messen, mittels eines Niveau-Sensors (LS), von wenigstens einer von einer senkrechten Position und einer Neigung um wenigstens eine parallel Achse einer Oberfläche eines Objekts, das entweder von der Haltekonstruktion (MT) oder dem Substrattisch (WT) gehalten wird, wobei senkrecht sich auf eine Richtung bezieht, die im Wesentlichen senkrecht zu der Oberfläche ist und wobei parallel sich auf eine Richtung bezieht, die im Wesentlichen parallel zu der Oberfläche ist;
    - Bereitstellen eines Servo-Systems (SV), das auf ein Positionssignal reagiert, um das Objekt in eine gewünschte Position zu bewegen;
    - Projizieren des gemusterten Strahls aus Strahlung auf einen Zielabschnitt der Schicht aus strahlungsempfindlichem Material, während das Servo-System (SV) bedient wird, um das Objekt in der gewünschten Position zu halten; und
    - Filtern des Positionssignals, bevor es vom Servo-System (SV) benutzt wird, um die Position des Objekts zu steuern, gekennzeichnet durch folgenden Schritt:
    Verwenden eines Positionssensors (IF) zum Erfassen einer Position von wenigstens einem von der Haltekonstruktikon (MT) und dem Substrattisch (WT), wobei ein Ausgang des Positionssensors von einem Ausgang des Niveau-Sensors (LS) subtrahiert wird, um das Positionssignal zu bilden; und dadurch, dass das Servo-System (SV) einen inneren Regelkreis umfasst, der den Positionssensor aufweist, um die Position von wenigstens einem von der Haltekonstruktion (MT) und dem Substrattisch (WT) zu regeln, und dass das gefilterte Positionssignal einen Einstellungspunkt für den inneren Regelkreis bildet.
EP20010303299 2000-04-10 2001-04-06 Lithographischer Apparat, Verfahren zur Herstellung einer Vorrichtung, sowie durch dieses Verfahren hergestellte Vorrichtung Expired - Lifetime EP1146395B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20010303299 EP1146395B1 (de) 2000-04-10 2001-04-06 Lithographischer Apparat, Verfahren zur Herstellung einer Vorrichtung, sowie durch dieses Verfahren hergestellte Vorrichtung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP00302996 2000-04-10
EP20010303299 EP1146395B1 (de) 2000-04-10 2001-04-06 Lithographischer Apparat, Verfahren zur Herstellung einer Vorrichtung, sowie durch dieses Verfahren hergestellte Vorrichtung
EP00302996 2001-04-10

Publications (3)

Publication Number Publication Date
EP1146395A2 EP1146395A2 (de) 2001-10-17
EP1146395A3 EP1146395A3 (de) 2004-10-06
EP1146395B1 true EP1146395B1 (de) 2006-06-21

Family

ID=26073102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010303299 Expired - Lifetime EP1146395B1 (de) 2000-04-10 2001-04-06 Lithographischer Apparat, Verfahren zur Herstellung einer Vorrichtung, sowie durch dieses Verfahren hergestellte Vorrichtung

Country Status (1)

Country Link
EP (1) EP1146395B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007037197A1 (de) 2007-08-07 2009-02-12 Wacker Chemie Ag Vernetzbare Massen auf der Basis von Organosiliciumverbindungen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548713B1 (ko) 2001-06-20 2006-02-02 에이에스엠엘 네델란즈 비.브이. 디바이스제조방법, 이것에 의하여 제조된 디바이스 및상기 방법에 사용하기 위한 마스크
CN114286967A (zh) * 2019-08-23 2022-04-05 Asml荷兰有限公司 控制第一物体相对于第二物体的位置的方法、控制单元、平台装置和光刻装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197221B1 (de) * 1985-03-15 1989-06-28 Kabushiki Kaisha Toshiba Vorrichtung zum Messen der Lage eines Objektes
KR100358422B1 (ko) * 1993-09-14 2003-01-24 가부시키가이샤 니콘 플래인위치결정장치,주사형노광장치,주사노광방법및소자제조방법
JP3303463B2 (ja) * 1993-09-14 2002-07-22 株式会社ニコン 面位置設定装置、及び露光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007037197A1 (de) 2007-08-07 2009-02-12 Wacker Chemie Ag Vernetzbare Massen auf der Basis von Organosiliciumverbindungen

Also Published As

Publication number Publication date
EP1146395A2 (de) 2001-10-17
EP1146395A3 (de) 2004-10-06

Similar Documents

Publication Publication Date Title
EP1566696B1 (de) Lithographischer Apparat und Verfahren zur Herstellung einer Vorrichtung mit vorwärtsgekoppelter Fokussteuerung.
US6721036B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7633600B2 (en) Lithographic apparatus and device manufacturing method
US20030168615A1 (en) Lithographic projection apparatus with positioning system for use with reflectors
EP1647861A1 (de) Lithographischer Apparat und Verfahren zur Herstellung einer Vorrichtung
TWI649637B (zh) 微影裝置、微影投影裝置及器件製造方法
KR100706934B1 (ko) Z오프셋 및 비-수직 조명으로 인한 마스크 대물시프트의 y에서의 위치보정
US7170580B2 (en) Lithographic apparatus, projection system, method of projecting and device manufacturing method
JP5422633B2 (ja) コントローラ、リソグラフィ装置、オブジェクト位置の制御方法及びデバイス製造方法
US20070262268A1 (en) Method for imaging a pattern onto a target portion of a substrate
US6798497B2 (en) Lithographic projection apparatus, device manufacturing method, device manufactured thereby, and measurement method
US7471373B2 (en) Lithographic apparatus with patterning device position determination
US7136148B2 (en) Lithographic apparatus and device manufacturing method
EP1146395B1 (de) Lithographischer Apparat, Verfahren zur Herstellung einer Vorrichtung, sowie durch dieses Verfahren hergestellte Vorrichtung
WO2008147175A1 (en) Lithographic apparatus and device manufacturing method
EP1267213B1 (de) Lithographischer Projektionsapparat
EP1357435A1 (de) Lithographischer Apparat und Verfahren zur Herstellung einer Vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASML NETHERLANDS B.V.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASML NETHERLANDS B.V.

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20050404

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060621

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60120825

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080418

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080423

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080415

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080412

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080421

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090406

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090406

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090406