EP1144708B1 - Method for coating hollow bodies - Google Patents

Method for coating hollow bodies Download PDF

Info

Publication number
EP1144708B1
EP1144708B1 EP99967878A EP99967878A EP1144708B1 EP 1144708 B1 EP1144708 B1 EP 1144708B1 EP 99967878 A EP99967878 A EP 99967878A EP 99967878 A EP99967878 A EP 99967878A EP 1144708 B1 EP1144708 B1 EP 1144708B1
Authority
EP
European Patent Office
Prior art keywords
powder
metal
dispenser
coating
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99967878A
Other languages
German (de)
French (fr)
Other versions
EP1144708A3 (en
EP1144708A2 (en
Inventor
Horst Pillhöfer
Andreas Fritsch
Thomas Dautl
Guido Schesny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1144708A2 publication Critical patent/EP1144708A2/en
Publication of EP1144708A3 publication Critical patent/EP1144708A3/en
Application granted granted Critical
Publication of EP1144708B1 publication Critical patent/EP1144708B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat

Definitions

  • the invention relates to a method for coating hollow bodies, in which a Powder mixture of a metal donor powder, an inert filler powder and a Activator powder is provided, the powder mixture with a to be coated inner surface of the body, e.g. from a Ni, Co or Fe base alloy, in Contact is brought and heated.
  • a Powder mixture of a metal donor powder, an inert filler powder and a Activator powder is provided, the powder mixture with a to be coated inner surface of the body, e.g. from a Ni, Co or Fe base alloy, in Contact is brought and heated.
  • the achievable inner layer thicknesses are also limited here, because the coating gas or the donor metal gas on its way through the cavities of the component is depleted and a Schichtdickengradient over the length of the cavity arises. Because the layer thickness of the outer coating is due to the process above that the inner coating is, the life of the components is due to the thinner Inner coating limited.
  • DE 30 33 074 A1 discloses a method for diffusion coating the inner surface of cavities, in which a metallic workpiece with an aluminizing diffusion powder mixture of 15% aluminum powder having a particle size of 40 microns and 85% alumina powder having a particle size of about 200 to 300 microns and a NH 4 CL powder can be coated.
  • US 5,208,071 discloses a method for aluminizing a ferritic component with an alumina slurry and subsequent heat treatment, wherein the slip of at least 10 wt .-% chromium, at least 10 wt .-% inert Filling material, at least 12 wt .-% water, a binder and a halogen activator and the coated ferritic component is finally heat treated becomes.
  • the use of a slurry differs procedurally clearly from a powder pack coating process.
  • the composition of the Coating powder may contain 10 to 60% chromium powder, 0.1 to 20% chromium halide and alumina.
  • the problem underlying the present invention is a powder packing method to improve the genus described above so that the Layer thicknesses of the inner coating even with cavities with relative complicated geometries are sufficiently large.
  • the inert filling powder with an average particle size approximately is equal to the average particle size of the metal donor powder provided will that the metal dispenser powder and the inert Grepulver be provided with an average particle size greater than 40 microns, and that a powder mixture with a proportion of the metal donor powder of 10 to 25 wt .-% is provided.
  • Such Powder mixture is good free flowing and has access in narrow edges of too coating internal cavities. It can be hollow body, such as guide and blades of gas turbines made of heat-resistant Ni, Co or Fe base alloys.
  • the layer thicknesses of the inner coating are also in narrow edges or gusset areas of the cavities in the range of 50 to 110 microns and ensure thus the function of the inner coating as an oxidation and corrosion protection layer.
  • the metal dispenser powder and the inert Filler powders are provided with an average particle size of greater than 40 microns, whereby a good permeation of the coating gas through the bed the powder mixture can be done.
  • the powder mixture is mixed with a portion of the metal donor powder of 10 to 25 wt .-% provided to prevent the clumping of the powder mixture and to ensure a good permeation through the bed.
  • the metal donor powder is an alloy with a proportion of the donor metal of 20 to 80 wt .-% is provided so ensures a sufficiently thick layer due to the high donor metal content is.
  • the metal dispenser powder is a mixture of an alloy with a donor metal content of 40 to 70 wt .-% and an alloy with a donor metal content of 30 to 50 wt .-% is provided so that the depletion of the metal dispenser in the two alloys stepwise, i. with temporal Delay, takes place.
  • the metal donor powder and the inert filler powder can with an average or average particle size of 150 microns are provided.
  • Such Powder mixture is easily pourable and fills the cavities with the to be coated Inside surfaces due to a favorable specific bulk density good. In addition, there is a good permeation of the coating gas through the bed the powder mixture.
  • the hollow body of a hollow turbine vane is a Gas turbine, which is provided with an oxidation and corrosion protection layer.
  • the cavity has a length of about 160 mm. Its inner surfaces are spaced between 2 and 6 mm and converge at two opposite end portions.
  • a powder mixture of about 20% by weight of metal donor powder and about 80% by weight of inert filler powder is provided.
  • AlCr is chosen as the metal donor powder and Al 2 O 3 as the inert filling powder.
  • the melting point of AlCr is at least about 100 ° C above the coating temperature of about 800 ° C-1200 ° C, so that diffusion bonding of the metal particles to each other or clogging does not occur.
  • the proportion of an activator powder is about 3 wt .-%, with AlF 3 , that is, a halide compound is selected.
  • a halide compound is selected.
  • CrCl 3 is also considered as a compound for the activator powder.
  • Such a compound must have a low vapor pressure at the coating temperature to be maintained throughout the coating process.
  • a halide compound of the donor metal here aluminum, is used to avoid agglomeration due to a chemical reaction of the halogen with the donor metal.
  • the proportion of aluminum, i. of the metal dispenser, on the metal dispenser powder is 50% by weight.
  • the thus prepared powder mixture is in the cavity of the vanes for Filled coating of the inner surfaces.
  • the subsequent coating takes place at 1080 ° C and a hold time of 6 hours, with the outer coating, i. the coating of the outer surfaces of the vane, simultaneously in one Einicinprozeß with a conventional powder packing method or by a Gas diffusion coating process can be done.
  • the Al content in the layer is in the thus deposited inner coating between 30 and 35% by weight.
  • an inert filling powder (Al 2 O 3 ) having an average particle size of about 100 ⁇ m is selected, which constitutes about 80% by weight of the powder mixture.
  • activator powder AlF 3 is selected and mixed with about 3 wt .-% of a powder mixture.
  • the metal donor powder which has a share of about 20% by weight of the powder mixture, of two fractions.
  • the first Fraction is an alloy of AlCr in which the proportion of aluminum is 50% by weight. is.
  • the second fraction the proportion of the donor metal, aluminum, is lower and is 30 wt .-%.
  • the Al content in the inner layers is 24 to 28 wt .-%.
  • the inner layer thicknesses lie between 65 and 105 microns and thus clearly over those with conventional (Powder Pack) method achievable layer thicknesses.
  • the hollow body is a hollow turbine nozzle of a gas turbine, which is provided with an oxidation and corrosion protection layer by a powder-pack coating method.
  • the elongated cavity is about 180 mm long.
  • the inner surfaces are spaced between 2 and 6 mm and converge at two opposite longitudinal side end portions.
  • a powder mixture of about 15 wt .-% metal donor powder and just below 85 wt .-% inert filler powder is provided to coat the inner surface of the vane.
  • the proportion of metal donor powder can be in the range from 10 to 25% by weight.
  • the metal donor powder is AlCr and the inert filler powder is Al 2 O 3 .
  • the activator powder used is a halogen compound such as AlF 3 , the proportion of which is about 3% by weight.
  • the activator powder is thus a halide compound of the donor metal Al.
  • the mean particle size of the inert filler powder is about the same as the mean particle size of the metal donor powder and is 150 microns.
  • the share of Donor metal Al on the metal donor powder which is an alloy is 50% by weight.
  • the specific gravity of such a powder pack mixture is not due to a high proportion of the metal donor powder, but due to the selected Particle size distribution high. In this bed of powder mixture there is sufficient permeation of the halide compound originating coating gases.
  • the coating of the inner surface of the turbine vane is the so provided powder mixture filled in the cavity.
  • the subsequent coating takes place at 1080 ° C and a holding time of 6 H. It can be used simultaneously with the outer coating, i. the coating of the outer Surface of the turbine vane, which according to a conventional powder packing method or by a gas diffusion coating process can be done. In general, the coating will be at multiple turbine vanes performed simultaneously.
  • the Al content in the inner coating deposited in this way is intermediate 30 and 35 wt .-% and thus in a very advantageous range, i. it occurs z. B. no embrittlement of the layer.
  • the layer thicknesses are also in narrow edges or gusset area of the cavities in the range of 60 to 110 microns, so that the function of the inner coating as oxidation and corrosion protection is guaranteed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Beschichten von Hohlkörpern, bei dem eine Pulvermischung aus einem Metallspenderpulver, einem inerten Füllpulver und einem Aktivatorpulver bereitgestellt wird, die Pulvermischung mit einer zu beschichtenden inneren Oberfläche des Körpers, z.B. aus einer Ni-, Co- oder Fe-Basislegierung, in Kontakt gebracht und erwärmt wird.The invention relates to a method for coating hollow bodies, in which a Powder mixture of a metal donor powder, an inert filler powder and a Activator powder is provided, the powder mixture with a to be coated inner surface of the body, e.g. from a Ni, Co or Fe base alloy, in Contact is brought and heated.

Zu den bekannten Verfahren zum Diffusionsbeschichten von Bauteilen aus warmfesten Legierungen, wie Ni-, Co- oder Fe-Basislegierungen, gehören die sog. Pulverpackverfahren. Ein derartiges Verfahren wird in der US 3,667,985 offenbart, bei dem die zu beschichtenden Bauteiloberflächen mit einem Spenderpulver aus Titan und Aluminium, dem ein inertes Füllmaterial sowie ein Halogensalz-Aktivator zugemischt wird, in Kontakt gebracht und erhitzt wird. Aus der US 3,958,047 ist ein Pulverpackverfahren bekannt, bei dem das metallische Bauteil mit einem Aluminium und Chrom enthaltenden Spenderpulver in Kontakt gebracht und unter Erhitzen diffusionsbeschichtet wird.Among the known methods for diffusion coating of components made of heat-resistant Alloys such as Ni, Co or Fe base alloys include the so-called powder packing methods. Such a method is disclosed in US 3,667,985, in which the component surfaces to be coated with a donor powder of titanium and Aluminum, which admixed with an inert filler material and a halogen salt activator is brought into contact and heated. From US 3,958,047 is a powder packing method known in which the metallic component with an aluminum and chrome containing donor powder in contact and diffusion-coated with heating becomes.

Diese Verfahren eignen sich insbesondere zur Beschichtung der Außenoberflächen metallischer Bauteile, wobei Schichtdicken zwischen 50 und 100 µm erzielt werden. Beim Beschichten von inneren Oberflächen treten jedoch verfahrensimmanente Nachteile auf, so daß die erreichbaren Innenschichtdicken bei relativ komplizierten Geometrien mit engen Spalten, Winkeln oder Hinterschneidungen begrenzt und unzureichend sind und im allgemeinen unter 30 µm liegen. Problematisch ist dabei, daß die Spenderpulver lediglich eine geringe Fließfähigkeit besitzen und die Hohlräume unvollständig füllen. Zudem läßt sich das Spenderpulver nach dem Beschichten nur schwer und nicht rückstandsfrei aus den Hohlräumen entfernen und sintert an den Oberflächen an.These methods are particularly suitable for coating the outer surfaces Metallic components, with layer thicknesses between 50 and 100 microns can be achieved. When coating of internal surfaces, however, process inherent occur Disadvantages, so that the achievable inner layer thicknesses in relatively complicated Geometries with narrow gaps, angles or undercuts limited and inadequate are and are generally below 30 microns. The problem is that the dispenser powders have only a low flowability and the cavities fill incomplete. In addition, the dispenser powder after coating can be difficult and not residue-free to remove from the cavities and sinters on the surfaces.

Die genannten Nachteile der Pulverpackverfahren lassen sich zum Teil durch sog. Gasdiffusionsbeschichtungsverfahren umgehen. Ein solches Verfahren ist aus der US 4,148,275 bekannt, bei dem eine z.B. Aluminium enthaltende Pulvermischung in einer ersten Kammer und die zu beschichtenden, metallischen Bauteile in einer zweiten Kammer eines Behälters angeordnet sind. Das Beschichtungsgas wird durch Erhitzen des Pulvers erzeugt und lagert sich unter Einsatz eines Trägergases an den äußeren und inneren Oberflächen der zu beschichtenden Bauteile ab. Die Gasdiffusionsbeschichtungsverfahren besitzen jedoch den Nachteil, daß die Vorrichtungen zur Durchführung des Verfahrens, wie z.B. zur Zwangsführung der Beschichtungsgase, im Vergleich zu jenen für die Pulverpackverfahren komplex und teuer sind. Darüber hinaus sind auch hier die erreichbaren Innenschichtdicken begrenzt, weil das Beschichtungsgas bzw. das Spendermetallgas auf seinem Weg durch die Hohlräume des Bauteils verarmt und ein Schichtdickengradient über die Länge des Hohlraums entsteht. Weil die Schichtdicke der Außenbeschichtung verfahrensbedingt über jener der Innenbeschichtung liegt, ist die Lebensdauer der Bauteile infolge der dünneren Innenbeschichtung begrenzt.The disadvantages of the powder packing method mentioned can be partly due to so-called. Bypass gas diffusion coating process. Such a method is known from the US 4,148,275, in which a e.g. Aluminum-containing powder mixture in a first chamber and to be coated, metallic components in a second Chamber of a container are arranged. The coating gas is heated The powder is generated and stored using a carrier gas to the outer and inner surfaces of the components to be coated. The gas diffusion coating method However, have the disadvantage that the devices for Implementation of the method, e.g. for positive guidance of the coating gases, Complex and expensive compared to those for powder packing. About that In addition, the achievable inner layer thicknesses are also limited here, because the coating gas or the donor metal gas on its way through the cavities of the component is depleted and a Schichtdickengradient over the length of the cavity arises. Because the layer thickness of the outer coating is due to the process above that the inner coating is, the life of the components is due to the thinner Inner coating limited.

Aus der US 4,208,453 ist ein Verfahren zum Diffusionsbeschichten der Innen- und Außenflächen von Bauteilen, wie Gasturbinenschaufeln, bekannt, bei dem eine Pulvermischung aus 10 % Chrom-Spenderpulver mit einer Partikelgröße von 10 bis 20 µm und 90 % Aluminiumoxid-Granulat mit einer Partikelgröße von 100 bis 300 µm besteht. Zudem wird ein Metallhalogenid als Aktivator hinzugefügt. Die Offenbarung beschäftigt sich nicht mit Maßnahmen zur Erhöhung der Schichtdicke in Hohlräumen mit komplizierten Geometrien.From US 4,208,453 a method for diffusion coating of the inner and Outside surfaces of components, such as gas turbine blades, known in which a powder mixture made of 10% chromium donor powder with a particle size of 10 to 20 μm and 90% alumina granules with a particle size of 100 to 300 μm exists. In addition, a metal halide is added as an activator. The revelation is not concerned with measures to increase the layer thickness in Cavities with complicated geometries.

Die DE 30 33 074 A1 offenbart ein Verfahren zur Diffusionsbeschichtung der Innenfläche von Hohlräumen, bei dem ein metallisches Werkstück mit einem aluminisierenden Diffusionspulvergemisch aus 15 % Aluminiumpulver mit einer Teilchengröße von 40 µm und 85 % Tonerdepulver mit einer Teilchengröße von etwa 200 bis 300 µm sowie einem NH4CL-Pulver beschichtet werden kann.DE 30 33 074 A1 discloses a method for diffusion coating the inner surface of cavities, in which a metallic workpiece with an aluminizing diffusion powder mixture of 15% aluminum powder having a particle size of 40 microns and 85% alumina powder having a particle size of about 200 to 300 microns and a NH 4 CL powder can be coated.

Die US 5,208,071 offenbart ein Verfahren zum Aluminisieren eines ferritischen Bauteils mit einem Aluminiumoxid-Schlicker und anschließender Wärmebehandlung, wobei der Schlicker aus wenigstens 10 Gew.-% Chrom, wenigstens 10 Gew.-% inertem Füllmaterial, wenigstens 12 Gew.-% Wasser, einem Binder sowie einem Halogenaktivator besteht und das beschichtete ferritische Bauteil abschließend wärmebehandelt wird. Die Verwendung eines Schlickers unterscheidet sich verfahrenstechnisch deutlich von einem Pulverpackbeschichtungsverfahren.US 5,208,071 discloses a method for aluminizing a ferritic component with an alumina slurry and subsequent heat treatment, wherein the slip of at least 10 wt .-% chromium, at least 10 wt .-% inert Filling material, at least 12 wt .-% water, a binder and a halogen activator and the coated ferritic component is finally heat treated becomes. The use of a slurry differs procedurally clearly from a powder pack coating process.

Aus der GB 2 109 822 A ist ein Metalldiffusionsverfahren bekannt, mit dem Diffusionsbeschichtungen schneller als beim Pulverpackverfahren hergestellt werden können, wobei das Beschichtungspulver locker vorliegt und mit mechanischen Mitteln während der Erwärmung mit dem zu beschichtenden Bauteil, insbesondere auch mit dessen innerer Oberfläche, in Kontakt gehalten wird. Die Zusammensetzung des Beschichtungspulvers kann 10 bis 60 % Chrompulver, 0,1 bis 20 % um Chromhalogenid und Aluminiumoxid umfassen.From GB 2 109 822 A a metal diffusion method is known with which diffusion coatings can be made faster than the powder packing process, wherein the coating powder is loosely present and by mechanical means during heating with the component to be coated, in particular with whose inner surface is kept in contact. The composition of the Coating powder may contain 10 to 60% chromium powder, 0.1 to 20% chromium halide and alumina.

Das der vorliegenden Erfindung zugrunde liegende Problem besteht darin, ein Pulverpackverfahren der eingangs beschriebenen Gattung so zu verbessern, daß die Schichtdicken der Innenbeschichtung auch bei Hohlräumen mit verhältnismäßig komplizierten Geometrien ausreichend groß sind.The problem underlying the present invention is a powder packing method to improve the genus described above so that the Layer thicknesses of the inner coating even with cavities with relative complicated geometries are sufficiently large.

Die Lösung dieses Problems ist erfindungsgemäß dadurch gekennzeichnet, daß das inerte Füllpulver mit einer mittleren Partikelgröße, die ungefähr gleich groß wie die mittlere Partikelgröße des Metallspenderpulvers ist, bereitgestellt wird, dass das Metallspenderpulver und das inerte Füllpulver mit einer durchschnittlichen Partikelgröße von größer als 40 µm bereitgestellt werden, und dass eine Pulvermischung mit einem Anteil des Metallspenderpulvers von 10 bis 25 Gew.-% bereitgestellt wird.The solution to this problem is inventively characterized in that the inert filling powder with an average particle size, approximately is equal to the average particle size of the metal donor powder provided will that the metal dispenser powder and the inert Füllpulver be provided with an average particle size greater than 40 microns, and that a powder mixture with a proportion of the metal donor powder of 10 to 25 wt .-% is provided.

Der Vorteil besteht darin, daß sich bei einer derartigen Wahl der Partikelgrößen die spezifische Dichte erhöhen läßt, ohne daß ein Verklumpen der Pulvermischung, z.B. aufgrund eines zu hohen Anteils des Metallspenderpulvers, auftritt. Ebenso ist gewährleistet, dass kein frühzeitiges Verarmen des Spendermetalls auftritt. Eine derartige Pulvermischung ist gut rieselfähig und findet Zugang in engen Kanten von zu beschichtenden inneren Hohlräumen. Es lassen sich Hohlkörper, wie Leit- und Laufschaufeln von Gasturbinen aus warmfesten Ni-, Co- oder Fe-Basislegierungen, beschichten. Die Schichtdicken der Innenbeschichtung liegen auch in engen Kanten oder Zwickelbereichen der Hohlräume im Bereich von 50 bis 110 µm und gewährleisten somit die Funktion der Innenbeschichtung als Oxidations- und Korrosionsschutzschicht. The advantage is that with such a choice of particle sizes the increase specific gravity without clumping of the powder mixture, e.g. due to a high proportion of the metal donor powder occurs. Likewise, it is ensured that no early depletion of the donor metal occurs. Such Powder mixture is good free flowing and has access in narrow edges of too coating internal cavities. It can be hollow body, such as guide and blades of gas turbines made of heat-resistant Ni, Co or Fe base alloys. The layer thicknesses of the inner coating are also in narrow edges or gusset areas of the cavities in the range of 50 to 110 microns and ensure thus the function of the inner coating as an oxidation and corrosion protection layer.

Das Metallspenderpulver und das inerte Füllpulver werden mit einer durchschnittlichen Partikelgröße von größer als 40 µm bereitgestellt, wodurch eine gute Permeation des Beschichtungsgases durch die Schüttung der Pulvermischung erfolgen kann.The metal dispenser powder and the inert Filler powders are provided with an average particle size of greater than 40 microns, whereby a good permeation of the coating gas through the bed the powder mixture can be done.

Die Pulvermischung wird mit einem Anteil des Metallspenderpulvers von 10 bis 25 Gew.-% bereitgestellt, um das Verklumpen der Pulvermischung zu vermeiden und eine gute Permeation durch die Schüttung zu gewährleisten.The powder mixture is mixed with a portion of the metal donor powder of 10 to 25 wt .-% provided to prevent the clumping of the powder mixture and to ensure a good permeation through the bed.

Es ist des weiteren zweckmäßig, daß als Metallspenderpulver eine Legierung mit einem Anteil des Spendermetalls von 20 bis 80 Gew.-% bereitgestellt wird, damit aufgrund des hohen Spendermetallanteils eine ausreichend starke Schichtdicke gewährleistet ist.It is also appropriate that the metal donor powder is an alloy with a proportion of the donor metal of 20 to 80 wt .-% is provided so ensures a sufficiently thick layer due to the high donor metal content is.

Es kann vorteilhaft sein, daß als Metallspenderpulver eine Mischung aus einer Legierung mit einem Spendermetallanteil von 40 bis 70 Gew.-% und einer Legierung mit einem Spendermetallanteil von 30 bis 50 Gew.-% bereitgestellt wird, so daß die Verarmung des Metallspenders in den beiden Legierungen schrittweise, d.h. mit zeitlicher Verzögerung, erfolgt.It may be advantageous that the metal dispenser powder is a mixture of an alloy with a donor metal content of 40 to 70 wt .-% and an alloy with a donor metal content of 30 to 50 wt .-% is provided so that the depletion of the metal dispenser in the two alloys stepwise, i. with temporal Delay, takes place.

Das Metallspenderpulver und das inerte Füllpulver können mit einer durchschnittlichen bzw. mittleren Partikelgröße von 150 µm bereitgestellt werden. Eine derartige Pulvermischung ist gut rieselfähig und füllt die Hohlräume mit den zu beschichtenden Innenoberflächen aufgrund einer vorteilhaften spezifischen Schüttdichte gut aus. Zudem erfolgt eine gute Permeation des Beschichtungsgases durch die Schüttung der Pulvermischung.The metal donor powder and the inert filler powder can with an average or average particle size of 150 microns are provided. Such Powder mixture is easily pourable and fills the cavities with the to be coated Inside surfaces due to a favorable specific bulk density good. In addition, there is a good permeation of the coating gas through the bed the powder mixture.

Weitere Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben.Further embodiments of the invention are described in the subclaims.

Im folgenden wird die Erfindung anhand von Beispielen näher erläutert.In the following the invention will be explained in more detail by means of examples.

In einem ersten Beispiel ist der Hohlkörper einer hohle Turbinen-Leitschaufel einer Gasturbine, die mit einer Oxidations- und Korrosionsschutzschicht versehen wird. In a first example, the hollow body of a hollow turbine vane is a Gas turbine, which is provided with an oxidation and corrosion protection layer.

Der Hohlraum besitzt eine Länge von etwa 160 mm. Seine inneren Oberflächen sind zwischen 2 und 6 mm beabstandet und laufen an zwei gegenüberliegenden Endabschnitten zusammen. Zur Beschichtung der inneren Oberflächen der Leitschaufeln wird eine Pulvermischung aus etwa 20 Gew.-% Metallspenderpulver und etwa 80-Gew.-% inertem Füllpulver bereitgestellt. Als Metallspenderpulver wird AlCr und als inertes Füllpulver Al2O3 gewählt. Der Schmelzpunkt von AlCr liegt wenigstens etwa 100 °C über der Beschichtungstemperatur von etwa 800 °C-1200 °C, so daß kein Diffusionsverbinden der Metallpartikel untereinander bzw. ein Verklumpen auftritt.The cavity has a length of about 160 mm. Its inner surfaces are spaced between 2 and 6 mm and converge at two opposite end portions. To coat the inner surfaces of the vanes, a powder mixture of about 20% by weight of metal donor powder and about 80% by weight of inert filler powder is provided. AlCr is chosen as the metal donor powder and Al 2 O 3 as the inert filling powder. The melting point of AlCr is at least about 100 ° C above the coating temperature of about 800 ° C-1200 ° C, so that diffusion bonding of the metal particles to each other or clogging does not occur.

Der Anteil eines Aktivatorpulvers beträgt etwa 3 Gew.-%, wobei AlF3, d.h. eine Halogenidverbindung, gewählt wird. Als Verbindung für das Aktivatorpulver kommt z.B. auch CrCl3 in Betracht. Eine solche Verbindung muß einen niedrigen Dampfdruck bei der Beschichtungstemperatur aufweisen, damit sie während des gesamten Beschichtungsprozesses erhalten bleibt. Zudem wird eine Halogenidverbindung des Spendermetalls, hier Aluminium, eingesetzt, um eine Agglomeration infolge einer chemischen Reaktion des Halogens mit dem Spendermetall zu vermeiden.The proportion of an activator powder is about 3 wt .-%, with AlF 3 , that is, a halide compound is selected. For example, CrCl 3 is also considered as a compound for the activator powder. Such a compound must have a low vapor pressure at the coating temperature to be maintained throughout the coating process. In addition, a halide compound of the donor metal, here aluminum, is used to avoid agglomeration due to a chemical reaction of the halogen with the donor metal.

Der Anteil von Aluminium, d.h. des Metallspenders, an dem Metallspenderpulver beträgt 50 Gew.-%.The proportion of aluminum, i. of the metal dispenser, on the metal dispenser powder is 50% by weight.

Die so bereitgestellte Pulvermischung wird in den Hohlraum der Leitschaufeln zur Beschichtung der inneren Oberflächen eingefüllt. Die anschließende Beschichtung erfolgt bei 1080 °C und einer Haltezeit von 6 h, wobei die Außenbeschichtung, d.h. die Beschichtung der äußeren Oberflächen der Leitschaufel, gleichzeitig in einem Einstufenprozeß mit einem herkömmlichen Pulverpackverfahren oder auch durch ein Gasdiffusionsbeschichtungsverfahren erfolgen kann.The thus prepared powder mixture is in the cavity of the vanes for Filled coating of the inner surfaces. The subsequent coating takes place at 1080 ° C and a hold time of 6 hours, with the outer coating, i. the coating of the outer surfaces of the vane, simultaneously in one Einstufenprozeß with a conventional powder packing method or by a Gas diffusion coating process can be done.

Der Al-Gehalt in der Schicht liegt bei der auf diese Weise abgeschiedenen Innenbeschichtung zwischen 30 und 35 Gew.-%. The Al content in the layer is in the thus deposited inner coating between 30 and 35% by weight.

Bei einem zweiten Beispiel wird wieder ein inertes Füllpulver (Al2O3) mit einer durschnittlichen Partikelgröße von etwa 100 µm gewählt, das etwa 80 Gew.-% der Pulvermischung ausmacht. Als Aktivatorpulver wird AlF3 mit etwa 3 Gew.-% eine Pulvermischung gewählt und zugemischt.In a second example, an inert filling powder (Al 2 O 3 ) having an average particle size of about 100 μm is selected, which constitutes about 80% by weight of the powder mixture. As activator powder AlF 3 is selected and mixed with about 3 wt .-% of a powder mixture.

Im Unterschied zu Beispiel 1 besteht das Metallspenderpulver, das einen Anteil von etwa 20 Gew.-% an der Pulvermischung ausmacht, aus zwei Fraktionen. Die erste Fraktion ist eine Legierung aus AlCr, bei der der Anteil von Aluminium 50 Gew.-% beträgt. In der zweiten Fraktion ist der Anteil des Spendermetalls, Aluminium, geringer und beträgt 30 Gew.-%. Mit dieser Maßnahme läßt sich der Beschichtungsprozeß in der Weise optimieren, daß zunächst die Fraktion mit dem geringeren Al-Gehalt verarmt, der Beschichtungsprozeß jedoch durch die Fraktion mit dem größeren Al-Gehalt fortgesetzt wird. Auf diese Weise läßt sich die Duktilität der Schichten auf den inneren Oberflächen der Leitschaufel vergrößern.In contrast to Example 1, the metal donor powder, which has a share of about 20% by weight of the powder mixture, of two fractions. The first Fraction is an alloy of AlCr in which the proportion of aluminum is 50% by weight. is. In the second fraction, the proportion of the donor metal, aluminum, is lower and is 30 wt .-%. With this measure, the coating process can be optimize in such a way that first the fraction with the lower Al content However, the coating process by the fraction with the greater Al content will continue. In this way, the ductility of the layers on the enlarge inner surfaces of the vane.

Der Al-Gehalt in den inneren Schichten beträgt 24 bis 28 Gew.-%. Die Innenschichtdicken liegen zwischen 65 und 105 µm und damit deutlich über den mit herkömmlichen (Pulverpack-)Verfahren erzielbaren Schichtdicken.The Al content in the inner layers is 24 to 28 wt .-%. The inner layer thicknesses lie between 65 and 105 microns and thus clearly over those with conventional (Powder Pack) method achievable layer thicknesses.

In einem dritten Beispiel ist der Hohlkörper eine hohle Turbinen-Leitschaufel einer Gasturbine, die mittels eines Pulverpackbeschichtungsverfahrens mit einer Oxidations- und Korrosionsschutzschicht versehen wird. Der längliche Hohlraum ist etwa 180 mm lang. Die inneren Oberflächen sind zwischen 2 und 6 mm beabstandet und laufen an zwei gegenüberliegenden, längsseitigen Endabschnitten zusammen. Zur Beschichtung der inneren Oberfläche der Leitschaufel wird eine Pulvermischung aus etwa 15 Gew.-% Metallspenderpulver und knapp unter 85 Gew.-% inertem Füllpulver bereitgestellt. Der Anteil des Metallspenderpulvers kann je nach Einsatzfall im Bereich von 10 bis 25 Gew.-% liegen. Das Metallspenderpulver ist AlCr und das inerte Füllpulver ist Al2O3. Als Aktivatorpulver wird eine Halogenverbindung wie AlF3 eingesetzt, dessen Anteil etwa 3 Gew.-% beträgt. Das Aktivatorpulver ist somit einer Halogenidverbindung des Spendermetalls Al. In a third example, the hollow body is a hollow turbine nozzle of a gas turbine, which is provided with an oxidation and corrosion protection layer by a powder-pack coating method. The elongated cavity is about 180 mm long. The inner surfaces are spaced between 2 and 6 mm and converge at two opposite longitudinal side end portions. To coat the inner surface of the vane, a powder mixture of about 15 wt .-% metal donor powder and just below 85 wt .-% inert filler powder is provided. Depending on the application, the proportion of metal donor powder can be in the range from 10 to 25% by weight. The metal donor powder is AlCr and the inert filler powder is Al 2 O 3 . The activator powder used is a halogen compound such as AlF 3 , the proportion of which is about 3% by weight. The activator powder is thus a halide compound of the donor metal Al.

Die mittlere Partikelgröße des inerten Füllpulvers ist ungefähr gleich groß wie die mittlere Partikelgröße des Metallspenderpulvers und beträgt 150 µm. Der Anteil des Spendermetalls Al an dem Metallspenderpulver, das eine Legierung ist, beträgt 50 Gew.-%. Die spezifische Dichte einer derartigen Pulverpackmischung ist nicht aufgrund eines hohen Anteils des Metallspenderpulvers, sondern aufgrund der gewählten Partikelgrößenverteilung hoch. Bei dieser Schüttung der Pulverpackmischung erfolgt eine ausreichend Permeation der aus der Halogenidverbindung stammenden Beschichtungsgase.The mean particle size of the inert filler powder is about the same as the mean particle size of the metal donor powder and is 150 microns. The share of Donor metal Al on the metal donor powder which is an alloy is 50% by weight. The specific gravity of such a powder pack mixture is not due to a high proportion of the metal donor powder, but due to the selected Particle size distribution high. In this bed of powder mixture there is sufficient permeation of the halide compound originating coating gases.

Für die Beschichtung der inneren Oberfläche der Turbinen-Leitschaufel wird die so bereitgestellte Pulvermischung in deren Hohlraum eingefüllt. Bei der gewählten Partikelgrößenverteilung des inerten Füllpulvers und des Metallspenderpulvers ist die Schüttung gut rieselfähig und findet auch Zugang zu den engen Kanten des Hohlraums. Die anschließende Beschichtung erfolgt bei 1080°C und einer Haltezeit von 6 h. Sie kann gleichzeitig mit der Außenbeschichtung, d.h. der Beschichtung der äußeren Oberfläche der Turbinen-Leitschaufel, die nach einem herkömmlichen Pulverpackverfahren oder auch durch ein Gasdiffusionsbeschichtungsverfahren erfolgen kann, durchgeführt werden. Im allgemeinen wird die Beschichtung bei mehreren Turbinen-Leitschaufeln gleichzeitig durchgeführt.For the coating of the inner surface of the turbine vane is the so provided powder mixture filled in the cavity. At the selected particle size distribution of the inert filling powder and the metal dispenser powder is the Fill well free-flowing and also finds access to the narrow edges of the cavity. The subsequent coating takes place at 1080 ° C and a holding time of 6 H. It can be used simultaneously with the outer coating, i. the coating of the outer Surface of the turbine vane, which according to a conventional powder packing method or by a gas diffusion coating process can be done. In general, the coating will be at multiple turbine vanes performed simultaneously.

Der Al-Gehalt in der auf diese Weise abgeschiedenen Innenbeschichtung liegt zwischen 30 und 35 Gew.-% und mithin in einem sehr vorteilhaften Bereich, d.h. es tritt z. B. keine Versprödung der Schicht auf.The Al content in the inner coating deposited in this way is intermediate 30 and 35 wt .-% and thus in a very advantageous range, i. it occurs z. B. no embrittlement of the layer.

Die Schichtdicken liegen auch in engen Kanten oder Zwickelbereich der Hohläume im Bereich von 60 bis 110 µm, so daß die Funktion der Innenbeschichtung als Oxidations- und Korrosionsschutz gewährleistet ist.The layer thicknesses are also in narrow edges or gusset area of the cavities in the range of 60 to 110 microns, so that the function of the inner coating as oxidation and corrosion protection is guaranteed.

Claims (7)

  1. Method of coating hollow bodies wherein a powder mixture of a metal dispenser power, an inert filling powder and an activator power made from a metal halogenide is provided, the powder mixture is brought into contact with an inner surface of the hollow body to be coated and is heated, characterised in that the inert filling powder is provided with a particle size which is approximately the same size as the average particle size of the metal dispenser powder, that the metal dispenser powder and the inert filling powder are provided with an average particle size of more than 40 µm and that a powder mixture is provided with a proportion of metal dispenser powder of 10 to 25% (weight).
  2. Method according to claim 1 characterised in that as a metal dispenser powder an alloy is provided with a proportion of the dispenser metal of 20 to 80% (weight).
  3. Method according to claim 1 or 2 characterised in that as a metal dispenser powder a mixture of an alloy with a dispenser metal proportion of 40 to 70% (weight) and an alloy with a dispenser metal proportion of 30 to 50% (weight) is provided.
  4. Method according to one or several of the preceding claims characterised in that a powder mixture is provided with an activator powder proportion of 2 to 5% (weight).
  5. Method according to one or several of the preceding claims characterised in that for the activator powder a metal halogenide of the dispenser metal is chosen.
  6. Method according to one or more of the preceding claims characterised is that AlCr is chosen as the dispenser metal powder.
  7. Method according to one or several of the preceding claims characterised in that the metal dispenser powder and the inert filling powder are provided with an average particle size of around 150 µm.
EP99967878A 1998-12-10 1999-12-09 Method for coating hollow bodies Expired - Lifetime EP1144708B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19856901 1998-12-10
DE19856901A DE19856901C2 (en) 1998-12-10 1998-12-10 Process for coating hollow bodies
PCT/DE1999/003942 WO2000034547A2 (en) 1998-12-10 1999-12-09 Method for coating hollow bodies

Publications (3)

Publication Number Publication Date
EP1144708A2 EP1144708A2 (en) 2001-10-17
EP1144708A3 EP1144708A3 (en) 2002-09-11
EP1144708B1 true EP1144708B1 (en) 2003-03-05

Family

ID=7890564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99967878A Expired - Lifetime EP1144708B1 (en) 1998-12-10 1999-12-09 Method for coating hollow bodies

Country Status (5)

Country Link
US (1) US6887519B1 (en)
EP (1) EP1144708B1 (en)
DE (2) DE19856901C2 (en)
ES (1) ES2192415T3 (en)
WO (1) WO2000034547A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094445B2 (en) 2002-05-07 2006-08-22 General Electric Company Dimensionally controlled pack aluminiding of internal surfaces of a hollow article
US7645485B2 (en) * 2004-04-30 2010-01-12 Honeywell International Inc. Chromiumm diffusion coatings
DE502004004360D1 (en) * 2004-05-03 2007-08-30 Siemens Ag Method for producing a hollow-cast component with internal coating
GB2414245B (en) * 2004-05-19 2007-10-10 Diffusion Alloys Ltd Metallising process
FR2888145B1 (en) * 2005-07-07 2008-08-29 Onera (Off Nat Aerospatiale) PROCESS FOR THE MANUFACTURE AND ASSEMBLY BY BRASURE OF SUPERALLIATION BALLS AND ARTICLES MADE THEREFROM
SG169243A1 (en) * 2009-08-21 2011-03-30 United Technologies Corp Applying vapour phase aluminide coating on airfoil internal cavities using improved method
FR3001976B1 (en) * 2013-02-13 2015-02-20 Air Liquide METHOD FOR DEPOSITING COATING AGAINST CORROSION
FR3011010B1 (en) * 2013-09-24 2020-03-06 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD FOR DEPOSITING A CORROSION PROTECTIVE COATING
DE102018103319A1 (en) * 2018-02-14 2019-08-14 Iwis Motorsysteme Gmbh & Co. Kg metal component
FR3084891B1 (en) * 2018-08-07 2022-06-24 Commissariat Energie Atomique COATING FOR REFRACTORY ALLOY PARTS

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667985A (en) 1967-12-14 1972-06-06 Gen Electric Metallic surface treatment method
US3958047A (en) 1969-06-30 1976-05-18 Alloy Surfaces Co., Inc. Diffusion treatment of metal
US4208453A (en) * 1969-06-30 1980-06-17 Alloy Surfaces Company, Inc. Modified diffusion coating of the interior of a steam boiler tube
US4156042A (en) * 1975-04-04 1979-05-22 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Coating articles having fine bores or narrow cavities in a pack-cementation process
US4132816A (en) 1976-02-25 1979-01-02 United Technologies Corporation Gas phase deposition of aluminum using a complex aluminum halide of an alkali metal or an alkaline earth metal as an activator
GB1586501A (en) * 1976-06-11 1981-03-18 Alloy Surfaces Co Inc Metal coating
DE3033074A1 (en) * 1979-09-07 1981-04-02 Alloy Surfaces Co., Inc., Wilmington, Del. METHOD FOR THE DIFFUSION COATING OF THE INSIDE SURFACE OF CAVITIES
GB2109822A (en) * 1981-11-19 1983-06-08 Diffusion Alloys Ltd Metal diffusion process
JPS59177360A (en) * 1983-03-28 1984-10-08 Nippon Karoraizu Kogyo Kk Granular diffusing agent for covering metallic surface and method for covering solid metal by diffusion using said agent
US5208071A (en) * 1990-02-28 1993-05-04 The Babcock & Wilcox Company Method for aluminizing a ferritic workpiece by coating it with an aqueous alumina slurry, adding a halide activator, and heating
DE4035790C1 (en) * 1990-11-10 1991-05-08 Mtu Muenchen Gmbh
US5989733A (en) * 1996-07-23 1999-11-23 Howmet Research Corporation Active element modified platinum aluminide diffusion coating and CVD coating method
US6022632A (en) 1996-10-18 2000-02-08 United Technologies Low activity localized aluminide coating

Also Published As

Publication number Publication date
US6887519B1 (en) 2005-05-03
EP1144708A3 (en) 2002-09-11
EP1144708A2 (en) 2001-10-17
DE59904502D1 (en) 2003-04-10
ES2192415T3 (en) 2003-10-01
WO2000034547A2 (en) 2000-06-15
DE19856901C2 (en) 2003-01-16
DE19856901A1 (en) 2000-06-15
WO2000034547A3 (en) 2000-08-17

Similar Documents

Publication Publication Date Title
DE60132740T2 (en) Method of applying an aluminum-containing coating using an inorganic sludge slurry
DE3011022C2 (en) Method for applying a metallic coating to a metal surface and apparatus for its implementation
DE69304397T2 (en) Improved diffusion coating process and products
DE1646683C3 (en) Flame spray material
EP1144708B1 (en) Method for coating hollow bodies
DE3329908A1 (en) METHOD FOR FORMING A PROTECTIVE DIFFUSION LAYER ON PARTS MADE OF A NICKEL, COBALT AND IRON ALLOY
DE3329907A1 (en) METHOD FOR FORMING A PROTECTIVE DIFFUSION LAYER ON PARTS MADE OF NICKEL, COBALT AND IRON ALLOY
EP2783076B1 (en) Method for hardfacing the z-notch of tial blades
DE1941637C3 (en) Vapor deposition process for applying a metallic coating to a surface of a metallic object
DE3030961A1 (en) COMPONENTS OF SUPER ALLOYS WITH AN OXIDATION AND / OR SULFIDATION RESISTANT COATING AND COMPOSITION OF SUCH A COATING.
DE2419145A1 (en) ITEM COVERED, MANUFACTURING PROCESS AND MATERIAL FOR THE COVER
CH648603A5 (en) METHOD FOR PRODUCING A CORROSION-RESISTANT COATING ON A METAL OBJECT.
DE2305202A1 (en) INTERMEDIATE FILM FOR DIFFUSION JOINT
DE3104581A1 (en) OBJECT OF A SUPER ALLOY PROVIDED WITH A COATING LAYER AND METHOD FOR PRODUCING THE SAME
DE10053432A1 (en) Self-binding MCrAlY powder
DE2830851C3 (en) Process for the formation of metal diffusion protection coatings on workpieces made of metal or metal alloys
WO2005035819A1 (en) Method for local alitising, siliconising and chroming of metal components
DE3036206A1 (en) WEAR-RESISTANT COATING, OXIDATION AND CORROSION PROTECTIVE COATING, CORROSION- AND WEAR-RESISTANT COATING ALLOY, ITEM PROVIDED WITH SUCH A COATING AND METHOD FOR PRODUCING SUCH A COATING
EP1097249B1 (en) Method for producing a plating for a metal component
DE2032418C3 (en) Process for the partial surface coating of workpieces made of superalloys by metal diffusion
DE3239383A1 (en) FLAME SPRAY ALLOY POWDER
DE1521570A1 (en) Method for protecting metal alloy objects against oxidation, corrosion and erosion
DE10036620C2 (en) Method and device for chroming an inner surface of a component
DE1939115C3 (en) Process for producing a metallic coating including oxide particles
DE19946650C2 (en) Process for the production of armor for a metallic component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010609

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59904502

Country of ref document: DE

Date of ref document: 20030410

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030509

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2192415

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1144708E

Country of ref document: IE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181218

Year of fee payment: 20

Ref country code: GB

Payment date: 20181219

Year of fee payment: 20

Ref country code: FR

Payment date: 20181218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190121

Year of fee payment: 20

Ref country code: DE

Payment date: 20181220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59904502

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191210