EP1142063B1 - Dispositif de telecommunication a reseaux a balayage electronique conforme et terminal de telecommunication associe - Google Patents

Dispositif de telecommunication a reseaux a balayage electronique conforme et terminal de telecommunication associe Download PDF

Info

Publication number
EP1142063B1
EP1142063B1 EP99964743A EP99964743A EP1142063B1 EP 1142063 B1 EP1142063 B1 EP 1142063B1 EP 99964743 A EP99964743 A EP 99964743A EP 99964743 A EP99964743 A EP 99964743A EP 1142063 B1 EP1142063 B1 EP 1142063B1
Authority
EP
European Patent Office
Prior art keywords
alignments
sources
radiating
phase
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99964743A
Other languages
German (de)
English (en)
Other versions
EP1142063A1 (fr
Inventor
Ali Thomson Multimedia LOUZIR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technicolor SA
Original Assignee
Thomson Multimedia SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Multimedia SA filed Critical Thomson Multimedia SA
Publication of EP1142063A1 publication Critical patent/EP1142063A1/fr
Application granted granted Critical
Publication of EP1142063B1 publication Critical patent/EP1142063B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/242Circumferential scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the present invention relates to the field of telecommunications, especially microwave, and concerns more particularly a telecommunications device with scanning networks conformed electronics. It also relates to a telecommunications in a satellite constellation system and a wireless communication terminal for communicating with domestic equipment.
  • geostationary satellites So far, commercial satellite communications were almost entirely carried out by geostationary satellites, particularly interesting because of their unchanging relative positions in the sky.
  • the geostationary satellite has major drawbacks such as significant attenuations of transmitted signals related to distance separating the user antennas of the geostationary satellite (of the order of 36,000 kilometers, the corresponding losses then amounting to around 205 dB in the Ku band) and transmission delays (typically of the order of 250 ms to 280 ms) thus becoming clearly noticeable and annoying especially for real-time applications such as telephony, videoconferencing, etc.
  • the geostationary orbit located in the equatorial plane, poses a visibility problem for high latitudes, angles of elevation becoming very low for regions close to the poles.
  • a telecommunications device with scanning networks electronics comprising M alignments of radiating sources (13) arranged according to a generator (12) of a surface of revolution and a switch coupling said M alignments to N lines of a network of combiners / dividers (NLM), said switch being able to supply N adjacent alignments at a given time; a single phase shifter being connected to each generator of radiant elements.
  • seconds phase shifters (190, 191, 192, 193) each control a phase shift additional of the N alignments supplied, said phase shift varying according to a phase gradient so that each source of N supplied alignments is supplied in an equiphase manner.
  • it further includes M 'second alignments of second sources radiant arranged on a second substrate superimposed on the first substrate, said first and second sources being arranged so as to not to be facing each other, the second alignments of second radiating sources operating at a central frequency different from that of early alignments from early sources radiating.
  • each position of the satellite at a given time, in the radio radiation space of the device, corresponds a pair of values (N, ⁇ ), N corresponding to N adjacent alignments supplied by said switch and ⁇ representing the value of the phase shift introduced by said first phase shifters to the sources of N alignments.
  • Figure 1 shows a perspective diagram of a device 1 according to the invention.
  • This comprises a conical substrate 2 with vertex O, of half-angle at the top ⁇ and radius R on its circular base 3.
  • the substrate itself rests on a conical support, not shown.
  • a plurality of generators 4 has been illustrated connecting the vertex O with the base 3 according to a plan normal to this base.
  • lozenges radiant 5 are only illustrated on one of the generators 4, all of the radiating pellets in a network on a generator forming an alignment, but all the alignments are arranged on the envelope of the cone to cover a 360 ° radiation field.
  • the device 1 receives the signals from a satellite 6 according to a diagram 7.
  • the device 1 receives the satellite without distortion in elevation of sound radiation diagram 7.
  • the depointing is illustrated in dotted lines maximum of this diagram defined by the characteristics of the device for that this has an angle of reception of the satellites in elevation going from 0 ° at 90 °.
  • the depointing in elevation is defined by a phase shift of the radiation pattern for a given group of powered alignments.
  • Figure 2.a shows schematically an embodiment of the device according to the invention.
  • the device must cover a radiation field by relative to the horizontal from 0 ° to 90 ° in elevation.
  • the angle ⁇ is determined equal to 45 °.
  • center networks of phase 80, 81 undergo a phase shift allowing a depointing going from -45 ° 45 ° to optimal viewing axes without offset respective 800, 810.
  • Figures 2.b and 2.c show variants of the Figure 2.a according to different system specifications of scrolling satellites.
  • the angle ⁇ is 50 °
  • the angle of minimum capture relative to the local horizon can be set at 40 °, which determines the angle ⁇ to a value of 65 °.
  • FIG. 3 represents a plurality of alignments 90, 91, ... 97 in a network of circular radiating pads 5, two adjacent pads 5 being separated by an adjustable phase shifter 10.
  • the network to be described will be the one used for receiving signals.
  • the second network used for transmitting signals will not be described but its constitution remains the same as that of the receiving network (tablets radiant, phase shifters, connections to a switch by terminals 110, ... 117 described below).
  • 97 has each two ends, one with a radiating patch and the other comprising a radiating patch connected respectively to terminals 110, 111, ... 117 of a switch 12.
  • the selection of these four alignments 90 to 93 is carried out according to a pre-established selection method from a table contained in a read-only memory 41 and comprising a ephemeris of the positions of the satellites over time and / or taking account of the level of the signals received on the reception circuit.
  • the microcontroller has in a read-only memory a threshold value. When receiving signals whose level drops in below the threshold value, the microcontroller controls the supply of four adjacent alignments, for example 91 to 94. In any event, three of the selected alignments must be among the alignments previously fed to allow regular monitoring and smoothly.
  • the fourth supplied alignments are connected to the four lines 130 to 133 of the combiner / divider whose output / input is connected by a link 15 with a transmission / reception circuit described below.
  • Each alignment 90 to 97 is arranged on the surface of the cone 2 according to a generator 4 thereof.
  • the pellets are excited by feed lines 50, the pellets and the lines 50 being etched on the upper surface of the oriented substrate towards the radiation area of the device.
  • pellets and excitation lines can be engraved on opposite sides.
  • FIG. 4a and 4.b show variants of the embodiment of FIG. 3.
  • the same phase shifter 10 is common to two alignments 900, 901 whereas in FIG. 4.b, the same phase shifter 10 is common to four alignments 902, 903, 904, 905.
  • the supply of the alignments 90, 91, ... 97 can be done, according to the figure 4.a, in groups of two alignments or, according to Figure 4.b, in groups of four, or more. This reduces the total number of phase shifters for the network (typically this number is divided by two, four, ... and generally divided by i), since two, four (generally i) pellets belonging to adjacent alignments have their phase adjusted by the same phase shifter.
  • Figure 5.b represents a succession of pad alignments 18 according to the variant of FIG. 5.a. This estate is arranged on a plane before being shaped into a cone.
  • FIG. 6 represents a variant of FIG. 3.
  • a phase shifter 190, 191, 192, 193 allowing additional adjustment of the phases corresponding to each alignment or group of alignments to which it is associated. This adjustment is controlled by the microcontroller 40.
  • the device -1 has a frustoconical shape. This configuration is interesting for low elevation angles. It is also more suitable for keep almost constant distances between pads belonging to two adjacent alignments. Indeed, in the case of a conical device, the radiating pellets close to the top 0 suffer from being close to them of each other compared to those near the base.
  • FIG. 8 represents an embodiment of a circuit transmission / reception 20 connected to the combiner / divider 14 of FIG. 3.
  • the latter includes a circulator 21, an input of which is connected to a circuit transmission 22 of signals, an output is connected to a reception circuit 23 signals and an input / output is connected to the combiner / divider 14 via the line 15.
  • the reception circuit 23 successively comprises in the direction signal reception filter, 24 bandpass filter around the central reception frequency, a weak amplifier 25 noise, a mixer 26 receiving on a first input the signal filtered by the filter 24 and amplified by the amplifier 25 and on a second input a output signal from a local oscillator 27.
  • the output of the mixer provides a intermediate frequency signal for an indoor unit of a dwelling not shown on which the transmission / reception device is placed according to the invention.
  • the transmission circuit 22 comprises in the transmission direction signals a mixer 28 whose first input receives a signal in indoor unit intermediate frequency, a second input from a local oscillator 29 transposing the signal into transmission frequency mixer inlet. The latter's output signal attacks the input a power amplifier 30.
  • the amplifier output is connected to the input of a bandpass emission filter 31 filtering said signal around the transmission frequency to deliver it to the input of circulator 21.
  • the circuit 23 is an intermediate frequency conversion circuit while circuit 22 is a transmission frequency conversion circuit, usually at microwave frequencies.
  • the outlet of the mixer 26 delivering the signal in intermediate frequency for the indoor unit is also connected to the microcontroller 40 which uses the received signal to detect its level as previously explained.
  • the circuit 20 makes it possible to receive the reception signals from the first reception network described above and to transmit the signals to be transmitted to the second network.
  • each network on each network (respectively first and second network) said main network is associated an auxiliary network also comprising radiating pads.
  • Each network of pads of the upper substrate resonates around a center frequency slightly offset from that of the opposite network from which it is located, to allow a widening of the band of operating frequency of the network torque composed of the two main and auxiliary networks opposite.
  • Figure 10.b is an embodiment of this phase shifter.
  • This one includes variable capacity diodes 341, 342 ("variable identical capacitor “or” varactors "placed in ports 3, 4 of a 3dB / 90 ° hybrid coupler.
  • the microcontroller varies the voltage from polarization of these diodes, which modifies the junction capacity of these last and therefore the reflection coefficient of these diodes.
  • the phase shift between ports 1 and 2 is modified. So the microcontroller continuously controls phase variations of phase shifters.
  • FIG.c shows another embodiment of the phase shifter: it has two varactor diodes 351, 352 placed on the line transmission between ports 1 and 2 and the phase shift between ports 1 and 2 is controlled by the bias voltage of these diodes.
  • the device according to the invention can be advantageously used, but not exclusively, for reception and / or transmission in a system communication via satellites, especially scrolling, or in a home automation system for the connection between different equipment servants.
  • the invention is not limited to the modes of realization and variants as described.
  • the device 1 according to the invention has been described around a conical surface 2. Any other symmetrical surface of revolution perhaps envisaged.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Description

La présente invention se rapporte au domaine des télécommunications, notamment hyperfréquences, et concerne plus particulièrement un dispositif de télécommunications à réseaux à balayage électronique conformé. Elle concerne également un terminal de télécommunications dans un système de constellation par satellites et un terminal de communication sans fil pour communiquer avec des équipements domestiques.
Jusqu'à présent, les télécommunications commerciales par satellite ont été réalisées en quasi-totalité par les satellites géostationnaires, particulièrement intéressants en raison de leurs positions relatives immuables dans le ciel. Or, le satellite géostationnaire présente des inconvénients majeurs tel que des atténuations importantes des signaux transmis liées à la distance séparant les antennes usagers du satellite géostationnaire (de l'ordre de 36000 kilomètres, les pertes correspondantes s'élevant alors à environ 205 dB dans la bande Ku) et des délais de transmission (typiquement de l'ordre de 250 ms à 280 ms) devenant ainsi nettement perceptibles et gênants notamment pour des applications en temps réel telles que la téléphonie, la vidéoconférence, etc... Par ailleurs, l'orbite géostationnaire, située dans le plan équatorial, pose un problème de visibilité pour les régions à latitudes élevées, les angles d'élévation devenant très faibles pour les régions proches des pôles.
Les alternatives à l'emploi du satellite géostationnaire sont :
  • l'utilisation de satellites sur des orbites elliptiques inclinées, le satellite étant alors quasi stationnaire au-dessus de la région située à la latitude de son apogée pendant une durée pouvant atteindre plusieurs heures,
  • la mise en oeuvre de constellations de satellites en orbites circulaires, notamment en orbite basse ("Low Earth Orbit" ou LEO en langue anglaise) ou en orbite moyenne ("Mid Earth Orbit" ou MEO en langue anglaise), les satellites de la constellation défilant à tour de rôle en visibilité du terminal usager pendant une durée allant d'une dizaine de minutes à environ une heure.
Dans les deux cas, le service ne peut être assuré en permanence par un seul satellite, la continuité du service imposant le défilement au-dessus de la zone de service de plusieurs satellites se succédant les uns aux autres.
On connaít déjà, notamment par la demande EP-A-0512487 (Alcatel Space), un dispositif de télécommunications à réseaux de balayage électronique comportant M alignements de sources rayonnantes (13) agencés selon une génératrice (12) d'une surface de révolution et un commutateur couplant lesdits M alignements à N lignes d'un réseau de combineurs/diviseurs (NLM), ledit commutateur étant apte à alimenter N alignements adjacents à un instant donné ; un unique déphaseur étant relié à chaque génératrice d'éléments rayonnants.
D'autre part, le brevet US 4,605,932 décrit une structure rayonnante à réseaux de balayage comprenant des premier et second réseaux de sources agencés selon des surfaces à symétrie de révolution superposées pour fonctionner autour d'une première et d'une deuxième fréquence centrale :
  • La présente invention concerne un perfectionnement aux structures ci-dessus.
  • La présente invention a pour objet un dispositif de télécommunication à réseaux à balayage électronique du type comportant M premiers alignements (90, ...97) de premières sources rayonnantes (5) en réseaux, lesdites sources étant alignées selon une génératrice d'une surface de révolution, et un commutateur (12) couplant lesdits M alignements à N lignes d'un réseau (14) de combineurs / diviseurs, avec N<M, ledit commutateur étant apte à alimenter N alignements adjacents à un instant donné de manière à contrôler la direction en azimuth, caractérisé en ce qu'il comporte de plus des déphaseurs (10) intercalés entre les sources rayonnantes d'une même génératrice et un contrôleur (40) pour contrôler le commutateur et les déphaseurs (10) de manière à ajuster le diagramme de rayonnement résultant desdits N alignements selon la direction en élévation.
  • Selon une caractéristique supplémentaire, des seconds déphaseurs (190, 191, 192, 193) commandent chacun un déphasage supplémentaire des N alignements alimentés, ledit déphasage variant selon un gradient de phase de sorte que chaque source des N alignements alimentés soit alimentée de manière équiphase.
    Selon encore une autre caractéristique supplémentaire, il comporte de plus M' seconds alignements de secondes sources rayonnantes disposés sur un second substrat superposé au premier substrat, lesdites première et seconde sources étant disposées de manière à ne pas être en regard les unes avec les autres, les seconds alignements de secondes sources rayonnantes fonctionnant à une fréquence centrale différente de celle des premiers alignements de premières sources rayonnantes.
    Selon un mode de réalisation préférentiel, à chaque position du satellite, à un instant donné, dans l'espace de rayonnement radioélectrique du dispositif, correspond un couple de valeurs (N, ΔΦ), N correspondant à N alignements adjacents alimentés par ledit commutateur et ΔΦ représentant la valeur du déphasage introduit par lesdits premiers déphaseurs aux sources des N alignements.
    D'autres caractéristiques et avantages de la présente invention ressortiront de la description des exemples de réalisation et des variantes qui vont suivre, pris à titre d'exemples non limitatifs, en référence aux figures annexées dans lesquelles :
    • la figure 1 représente un schéma en perspective d'un dispositif selon l'invention,
    • la figure 2.a représente un mode de réalisation du dispositif selon l'invention alors que les figures 2.b et 2.c représentent des variantes du mode de réalisation de la figure 2.a selon des spécifications différentes du système de satellites,
    • la figure 3 représente une pluralité d'alignements selon un mode de réalisation de l'invention,
    • les figures 4.a et 4.b représentent des variantes schématiques du mode de réalisation de la figure 3,
    • la figure 5.a représente une variante de réalisation d'un alignement selon l'invention alors que la figure 5.b représente une succession d'alignements selon cette variante,
    • la figure 6 représente une variante du mode de réalisation de la figure 3,
    • la figure 7 représente une variante du dispositif selon l'invention,
    • la figure 8 représente un mode de réalisation d'un circuit d'émission/réception de signaux selon l'invention,
    • la figure 9 représente une variante du dispositif selon l'invention,
    • la figure 10.a représente schématiquement les premiers déphaseurs selon l'invention alors que les figures 10.b et 10.c représentent des modes de réalisation de ces déphaseurs.
    Pour simplifier la description, les mêmes références seront utilisées dans ces dernières figures pour désigner les éléments remplissant des fonctions identiques.
    La figure 1 représente un schéma en perspective d'un dispositif 1 selon l'invention. Celui-ci comprend un substrat conique 2 de sommet O, de demi-angle au sommet α et de rayon R sur sa base circulaire 3. Le substrat repose lui-même sur un support conique non représenté. Sur cette figure, il a été illustré une pluralité de génératrices 4 reliant le sommet O avec la base 3 selon un plan normal à cette base. Pour des raisons de clarté, des pastilles rayonnantes 5 ne sont illustrées que sur l'une des génératrices 4, l'ensemble des pastilles rayonnantes en réseau sur un génératrice formant un alignement, mais l'ensemble des alignements sont agencés sur l'enveloppe du cône pour couvrir un champ de rayonnement de 360°. Pour de plus amples détails sur les alignements, on pourra se référer à l'ouvrage "Techniques de l'ingénieur" E3280 Antennes, Chapitre 3 : Alignements. Sur la figure 1, le dispositif 1 capte les signaux provenant d'un satellite 6 selon un diagramme 7. Dans la configuration telle que représentée, le dispositif 1 capte le satellite sans dépointage en élévation de son diagramme de rayonnement 7. Il est illustré en pointillés le dépointage maximal de ce diagramme défini par les caractéristiques du dispositif pour que celui-ci ait un angle de captation des satellites en élévation allant de 0° à 90°. Le dépointage en élévation est défini par un déphasage du diagramme de rayonnement pour un groupe d'alignements alimentés donné.
    La figure 2.a représente schématiquement un mode de réalisation du dispositif selon l'invention. Selon les spécifications de ce premier mode de réalisation, le dispositif doit couvrir un champ de rayonnement par rapport à l'horizontale de 0° à 90° en élévation. Dans ce contexte, l'angle α est déterminé égal à 45°. De cette manière, des réseaux de centre de phase 80, 81 subissent un déphasage permettant un dépointage allant de-45° à 45° par rapport à des axes de visée optimaux sans dépointage respectifs 800, 810.
    Les figures 2.b et 2.c représentent des variantes du mode de réalisation de la figure 2.a selon des spécifications différentes du système de satellites à défilement. Dans le cas de la figure 2.b, où la spécification du système permet un angle de captation des satellites à l'horizon local de 10°, l'angle α est de 50° alors que, sur la figure 2.c, dans le cas où le système de satellites comporte un nombre important de satellites défilant selon des trajectoires prédéfinies, assurant ainsi l'existence de plusieurs satellites dans l'espace de rayonnement en un instant donné, l'angle de captation minimal par rapport à l'horizon local peut être fixé à 40°, ce qui détermine l'angle α à une valeur de 65°.
    La figure 3 représente une pluralité d'alignements 90, 91, ...97 en réseau de pastilles rayonnantes 5 circulaires, deux pastilles 5 adjacentes étant séparées par un déphaseur 10 ajustable. On notera que, dans la suite, on ne décrira que les éléments d'un réseau correspondant à une même surface 45, 46 (voir figure 9), la description du second réseau étant identique quant à sa constitution, seul le positionnement des pastilles en regard de chaque réseau est explicité dans la suite. En l'occurrence, le réseau qui sera décrit sera celui utilisé pour la réception des signaux. Le second réseau utlisé pour l'émission de signaux ne sera pas décrit mais sa constitution demeure la même que celle du réseau de réception (pastilles rayonnantes, déphaseurs, connexions à un commutateur par des bornes 110, ...117 décrits ci-après). Chaque alignement 90, 91, ...97 possède chacun deux extrémités, l'une comportant une pastille rayonnante et l'autre comportant une pastille rayonnante reliée respectivement à des bornes 110, 111, ... 117 d'un commutateur 12. Le commutateur est relié à un combineur/diviseur 14 par quatre lignes (N=4) d'alimentation 130, 131, 132, 133. Le commutateur 12 permet grâce à un signal de commande Sc provenant d'un microcontrôleur 40 d'alimenter quatre alignements, par exemple 90 à 93, parmi les sept (M=7) alignements du réseau. Il est à souligner qu'il n'a été figuré qu'un nombre limité de pastilles et d'alignements dans un but de clarté des dessins mais le nombre d'alignements est de l'ordre d'une centaine. La sélection de ces quatre alignements 90 à 93 est réalisée selon une méthode de sélection préétablie à partir d'une table contenue dans une mémoire morte 41 et comprenant un éphéméride des positions des satellites au cours du temps et/ou en tenant compte du niveau des signaux reçus sur le circuit de réception. Dans ce dernier cas, le microcontrôleur comporte dans une mémoire morte une valeur seuil. Lors de la réception de signaux dont le niveau descend en dessous de la valeur seuil, le microcontrôleur commande l'alimentation de quatre alignements adjacents, par exemple 91 à 94. En tout état de cause, il faut que trois des alignements sélectionnés se retrouvent parmi les alignements précédemment alimentés pour permettre un suivi régulier et sans à-coups. Si le diagramme de rayonnement généré par ces quatre alignements ne permet pas une réception avec un niveau adéquat, le microcontrôleur continue sa commutation de manière circulaire vers quatre autres alignements adjacents jusqu'à ce que la condition requise de niveau supérieur à la valeur seuil soit remplie. Bien entendu, la méthode de sélection des N alignements n'est pas limitée aux méthodes décrites ci-dessus et pourra être étendue à toute autre méthode. Les quatre alignements alimentés sont reliés aux quatre lignes 130 à 133 du combineur/diviseur dont la sortie/entrée est reliée par une liaison 15 avec un circuit d'émission/réception décrit dans la suite. Chaque alignement 90 à 97 est disposée sur la surface du cône 2 selon une génératrice 4 de celui-ci. Les pastilles sont excitées par des lignes d'alimentation 50, les pastilles et les lignes 50 étant gravées sur la surface supérieure du substrat orientée vers l'espace de rayonnement du dispositif. Bien entendu, en utilisant deux couches de substrat, les pastilles et les lignes d'excitation peuvent être gravées sur des faces opposées.
    Les figures 4.a et 4.b représentent des variantes du mode de réalisation de la figure 3. Sur la figure 2, un même déphaseur 10 est commun à deux alignements 900, 901 alors que sur la figure 4.b, un même déphaseur 10 est commun à quatre alignements 902, 903, 904, 905. L'alimentation des alignements 90, 91, ...97 peut se faire, selon la figure 4.a, par groupes de deux alignements ou, selon la figure 4.b, par groupes de quatre, ou plus. Ceci permet de réduire le nombre total de déphaseurs pour le réseau (typiquement ce nombre est divisé par deux, quatre, ... et de façon générale divisé par i), puisque deux, quatre (de façon générale i) pastilles appartenant à des alignements adjacents ont leur phase ajustées par un même déphaseur. Ce regroupement des alignements permet aussi de réduire le nombre de ports 110 à 117, ce qui réduit la complexité et à fortiori le coût du commutateur. Le commutateur comportant initialement M ports pour le réseau de réception pour les M alignements des sources du réseau de réception (M autres ports étant destinés aux connexions des M alignements des sources du réseau d'émission) et N ports pour les lignes reliées au combineur/diviseur, peut, grâce à l'invention, arborer uniquement m ports pour les M alignements et n ports pour les lignes reliées au combineur / diviseur avec m et n tels que : m < M, m = M/k, et n < N, et n = N/k avec k = 2, 4, ...i.
    La figure 5.a représente une autre variante d'un alignement de pastilles 18. Chaque pastille 18 est rectangulaire, de hauteur L constante selon la hauteur du cône 2 et de largeur W augmentant, selon une loi prédéfinie, par exemple linéairement, en fonction inverse de la distance de la pastille à la base 3 du cône. La constance de la hauteur L pour une même surface permet pour les patchs de fonctionner à une même fréquence. D'autre part, la réduction de la largeur W telle que mentionnée ci-dessus permet :
    • aux pastilles d'un même réseau qui sont proches du sommet de ne pas être trop proches les uns des autres, minimisant ainsi les interférences,
    • d'espacer suffisamment les pastilles d'un même réseau proches du sommet pour ne pas être en regard de pastilles du second réseau selon une coupe normale des surfaces comprenant les sources.
    La figure 5.b représente une succession d'alignements de pastilles 18 selon la variante de la figure 5.a. Cette succession est disposée sur un plan avant d'être conformée en un cône.
    La figure 6 représente une variante de la figure 3. Sur la figure 6, entre chaque ligne 130, 131, 1.32, 133 et chaque borne d'entrée/sortie correspondante du combineur/diviseur 14 se trouve un déphaseur 190, 191, 192, 193 permettant un ajustement supplémentaire des phases correspondantes à chaque alignement ou groupe d'alignements auquel il est associé. Cet ajustement est contrôlé par le microcontrôleur 40.
    Selon une variante de l'invention illustrée sur la figure 7, le dispositif -1 a une forme tronconique. Cette configuration est intéressante pour des angles d'élévation faibles. Elle est également plus adaptée pour conserver des distances quasi-constantes entre pastilles appartenant à deux alignements adjacents. En effet, dans le cas d'un dispositif conique, les pastilles rayonnantes proches du sommet 0 souffrent d'être proches les unes des autres comparativement à celles proches de la base.
    La figure 8 représente un mode de réalisation d'un circuit d'émission/réception 20 relié au combineur/diviseur 14 de la figure 3. Celui-ci comprend un circulateur 21 dont une entrée est reliée à un circuit d'émission 22 de signaux, une sortie est reliée à un circuit de réception 23 de signaux et une entrée/sortie est reliée au combineur/diviseur 14 via la ligne 15. Le circuit de réception 23 comprend successivement dans le sens de réception des signaux, un filtre de réception 24 passe-bande filtrant autour de la fréquence centrale de réception, un amplificateur 25 faible bruit, un mélangeur 26 recevant sur une première entrée le signal filtré par le filtre 24 et amplifié par l'amplificateur 25 et sur une seconde entrée un signal de sortie d'un oscillateur local 27. La sortie du mélangeur fournit un signal de fréquence intermédiaire pour une unité intérieure d'une habitation non représentées sur laquelle est placé le dispositif d'émission/réception selon l'invention. Le circuit d'émission 22 comprend dans le sens d'émission de signaux un mélangeur 28 dont une première entrée reçoit un signal en fréquence intermédiaire de l'unité intérieure, une seconde entrée provenant d'un oscillateur local 29 transposant en fréquence d'émission le signal d'entrée du mélangeur. Le signal de sortie de ce dernier attaque l'entrée d'un amplificateur 30 de puissance. La sortie de l'amplificateur est reliée à l'entrée d'un filtre d'émission 31 passe-bande filtrant ledit signal autour de la fréquence d'émission pour le délivrer à l'entrée du circulateur 21. Ainsi, le circuit 23 est un circuit de conversion en fréquence intermédiaire alors que le circuit 22 est un circuit de conversion en fréquence d'émission, généralement en hyperfréquences. La sortie du mélangeur 26 délivrant le signal en fréquence intermédiaire pour l'unité intérieure est également reliée au microcontrôleur 40 qui utilise le signal reçu pour détecter son niveau comme précédemment expliqué. Ainsi, le circuit 20 permet de recevoir les signaux de réception provenant du premier réseau de réception décrit ci-dessus et de transmettre au second réseau les signaux à émettre.
    Cette superposition de plusieurs couches de substrats est mise en oeuvre dans plusieurs buts :
    • en vue de pouvoir recevoir deux satellites simultanément. Selon cette variante, un réseau peut être dédié à la réception/émission de signaux relatif à un premier satellite alors que la seconde est dédiée à la réception/émission de signaux relatif à un second satellite. Comme précédemment mentionné, il est nécessaire que les pastilles de chacune des surfaces ne se superposent pas, de sorte que les pastilles de la surface supérieure ne perturbent pas l'émission/ réception de signaux des pastilles de la surface inférieure,
    • une surface peut être dédiée à l'émission et la seconde pour la réception, comme précédemment envisagé. On n'utilise alors pas de circulateur mais on a deux accès directs : un à l'emission et un à la réception. Cela permet d'optimiser séparément chaque réseau (fréquence centrale de fonctionnement, largeur de bande, diagramme de rayonnement, etc...). Dans ce cas également, afin de réduire le couplage entre émission et réception, les pastilles ne se superposent pas.
    Selon une variante décrite sur la figure 9, dans le but d'élargir la bande passante du dispositif selon l'invention, à chaque réseau (respectivement premier et second réseau) dit réseau principal est associé un réseau auxiliaire comportant également des pastilles rayonnantes. Il a été représenté un couple de couches pour un même réseau principal. Sur la couche (dite surface) de substrat supérieure 45 ( sans plan de masse ) sont gravées des pastilles superposées aux pastilles de la couche inférieure 46. Chaque réseau de pastilles du substrat supérieur résonne autour d'une fréquence centrale légèrement décalée avec celle du réseau en regard duquel il se trouve, pour permettre un élargissement de la bande de fréquence de fonctionnement du couple de réseau composé des deux réseaux principal et auxiliaire en regard.
    La figure 10.a illustre, encadré de pointillés, un déphaseur 10 de bornes 1, 2, à diodes, pour le contrôle du déphasage ΔΦ entre les pastilles d'un alignement, ce qui fixe le dépointage du faisceau en élévation  tel que : ΔΦ = 2Πd * sin /λ.
    La figure 10.b est un mode de réalisation de ce déphaseur. Celui-ci comprend des diodes à capacités variables 341, 342 ("variable capacitor" ou "varactors" en langue anglaise) identiques placées aux ports 3, 4 d'un coupleur hybride 3dB/90°. Le microcontrôleur varie la tension de polarisation de ces diodes, ce qui modifie la capacité de jonction de ces dernières et donc le coefficient de réflexion de ces diodes. Le déphasage entre les ports 1 et 2 s'en trouve modifié. Ainsi, le microcontrôleur commande de manière continue les variations de phase des déphaseurs.
    La figure 10.c représente un autre mode de réalisation du déphaseur : il comporte deux diodes varactor 351, 352 placées sur la ligne de transmission entre les ports 1 et 2 et le déphasage entre les ports 1 et 2 est contrôlé par la tension de polarisation de ces diodes.
    Le dispositif selon l'invention peut être avantageusement utilisé, mais non exclusivement, pour la réception et/ou l'émission dans un système de communication par satellites, notamment à défilement, ou dans un système domotique pour la liaison entre différents équipements domestiques.
    Bien entendu, l'invention n'est pas limitée aux modes de réalisation et variantes tels que décrits. Ainsi le dispositif 1 selon l'invention a été décrit autour d'une surface 2 conique. Toute autre surface à symétrie de révolution peut-être envisagée. En outre, il est également envisageable une surface 2 à symétrie de révolution tronquée selon au moins une coupe normale de la surface passant par l'axe central de surface. Dans ce cas de figure, la révolution n'est donc plus totale à 360° mais sera partielle.

    Claims (9)

    1. Dispositif de télécommunication à réseaux à balayage électronique du type comportant M premiers alignements (90, ...97) de premières sources rayonnantes (5) en réseaux, lesdites sources étant alignées selon une génératrice d'une surface de révolution, et un commutateur (12) couplant lesdits M alignements à N lignes d'un réseau (14) de combineurs / diviseurs, avec N<M, ledit commutateur, étant apte à alimenter N alignements adjacents à un instant donné de manière à contrôler la direction en azimut, caracterisé en ce qu'il comporte de plus des déphaseurs (10) intercalés entre les sources rayonnantes d'une même génératrice et un contrôleur (40) pour contrôler le commutateur et les déphaseurs (10) de manière à ajuster le diagramme de rayonnement résultant desdits N alignements selon la direction en élévation.
    2. Dispositif selon la revendication 1, caractérisé en ce que les sources rayonnantes sont formées par des pastilles gravées sur un substrat formant ladite surface de révolution et directement excitées par des lignes imprimées se trouvant dans le même plan que lesdites pastilles.
    3. Dispositif selon la revendication 1, caractérisé en ce que la surface de rayonnement de chaque source rayonnante est fonction croissante de la distance séparant ladite source avec le point de couplage (110, ...117) de l'alignement (90, ...97) auquel appartient ladite source avec ledit commutateur.
    4. Dispositif selon les revendications 1 et 2, caractérisé en ce que les dimensions de chaque source rayonnante sont déterminées pour que, selon un alignement, elle fonctionne à une même fréquence centrale déterminée.
    5. Dispositif selon les revendications 1 à 4, caractérisé en ce qu'un même déphaseur (10) est commun à plusieurs alignements de manière à pouvoir ajuster la phase de plusieurs sources.
    6. Dispositif selon les revendications 1 à 5, caractérisé en ce que des seconds déphaseurs (190, 191, 192, 193) commandent chacun un déphasage supplémentaire des N alignements alimentés, ledit déphasage variant selon un gradient de phase de sorte que chaque source des N alignements alimentés soit alimentés de manière équiphase.
    7. Dispositif selon les revendications 1 à 6, caractérisé en ce que la surface de révolution est constituée par un cône ou un tronc de cône.
    8. Dispositif selon les revendications 1 à 7, caractérisé en ce qu'il comporte de plus M' seconds alignements de secondes sources rayonnantes disposés sur un second substrat superposé au premier substrat, lesdites première et seconde sources étant disposées de manière à ne pas être en regard les unes avec les autres, les seconds alignements de secondes sources rayonnantes fonctionnant à une fréquence centrale différente de celle des premiers alignements de premières sources rayonnantes.
    9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce qu'à chaque position du satellite, à un instant donné, dans l'espace de rayonnement radioélectrique du dispositif correspond un couple de valeurs (N, ΔΦ), N correspondant à N alignements adjacents alimentés par ledit commutateur et ΔΦ représentant la valeur du déphasage introduit par lesdits premiers déphaseurs aux sources des N alignements.
    EP99964743A 1998-12-31 1999-12-30 Dispositif de telecommunication a reseaux a balayage electronique conforme et terminal de telecommunication associe Expired - Lifetime EP1142063B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9816741 1998-12-31
    FR9816741A FR2788171A1 (fr) 1998-12-31 1998-12-31 Dispositif de reception de signaux a reseaux a balayage electronique dans un systeme de communication par satellites a defilement
    PCT/FR1999/003319 WO2000041265A1 (fr) 1998-12-31 1999-12-30 Dispositif de telecommunication a reseaux a balayage electronique conforme et terminal de telecommunication associe

    Publications (2)

    Publication Number Publication Date
    EP1142063A1 EP1142063A1 (fr) 2001-10-10
    EP1142063B1 true EP1142063B1 (fr) 2004-02-18

    Family

    ID=9534772

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99964743A Expired - Lifetime EP1142063B1 (fr) 1998-12-31 1999-12-30 Dispositif de telecommunication a reseaux a balayage electronique conforme et terminal de telecommunication associe

    Country Status (8)

    Country Link
    US (1) US6608595B1 (fr)
    EP (1) EP1142063B1 (fr)
    JP (1) JP2002534881A (fr)
    AU (1) AU3049500A (fr)
    DE (1) DE69914945T2 (fr)
    ES (1) ES2216626T3 (fr)
    FR (1) FR2788171A1 (fr)
    WO (1) WO2000041265A1 (fr)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10131283A1 (de) * 2001-06-28 2003-01-09 Philips Corp Intellectual Pty Phased Array Antenne
    US20060273973A1 (en) * 2005-06-02 2006-12-07 Chandler Cole A Millimeter wave passive electronically scanned antenna
    WO2006130795A2 (fr) * 2005-06-02 2006-12-07 Lockheed Martin Corporation Antenne balayee electroniquement a ondes millimetriques
    KR100968368B1 (ko) * 2006-10-27 2010-07-06 삼성전자주식회사 시분할복신 무선통신시스템에서 송수신 안테나 스위칭 장치
    US8400356B2 (en) * 2006-12-27 2013-03-19 Lockheed Martin Corp. Directive spatial interference beam control
    RU2534940C2 (ru) * 2013-02-05 2014-12-10 Открытое акционерное общество "Концерн радиостроения "Вега" Устройство формирования мощных импульсных сигналов на основе метода пространственно-временного преобразования многочастотного сигнала
    US9183424B2 (en) 2013-11-05 2015-11-10 Symbol Technologies, Llc Antenna array with asymmetric elements
    US10965039B1 (en) 2018-05-11 2021-03-30 Lockheed Martin Corporation System and method for fleet command and control communications with secondary radar functionality using 360° multi-beam hemispherical array
    US11569587B1 (en) 2021-09-14 2023-01-31 Micro-Ant, LLC Hemispherical array antenna

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3940770A (en) * 1974-04-24 1976-02-24 Raytheon Company Cylindrical array antenna with radial line power divider
    US4101895A (en) 1977-02-14 1978-07-18 The United States Of America As Represented By The Secretary Of The Army Multifrequency antenna system integrated into a radome
    US4605932A (en) * 1984-06-06 1986-08-12 The United States Of America As Represented By The Secretary Of The Navy Nested microstrip arrays
    US4859972A (en) * 1988-11-01 1989-08-22 The Board Of Trustees Of The University Of Illinois Continuous phase shifter for a phased array hyperthermia system
    US4980692A (en) * 1989-11-29 1990-12-25 Ail Systems, Inc. Frequency independent circular array
    US5216430A (en) 1990-12-27 1993-06-01 General Electric Company Low impedance printed circuit radiating element
    FR2676310B1 (fr) * 1991-05-06 1993-11-05 Alcatel Espace Antenne a lobe forme et grand gain.
    WO1993009577A1 (fr) 1991-11-08 1993-05-13 Calling Communications Corporation Antennes terrestres pour systeme de telecommunication par satellites
    FR2698212B1 (fr) * 1992-11-16 1994-12-30 Alcatel Espace Source élémentaire rayonnante pour antenne réseau et sous-ensemble rayonnant comportant de telles sources.
    GB9402942D0 (en) * 1994-02-16 1994-04-06 Northern Telecom Ltd Base station antenna arrangement
    FR2729025B1 (fr) * 1995-01-02 1997-03-21 Europ Agence Spatiale Procede et systeme de transmission de signaux radioelectriques via un reseau de satellites entre une station terrestre fixe et des terminaux mobiles d'usagers
    EP0762541A3 (fr) * 1995-08-29 2000-01-12 DaimlerChrysler AG Dispositif pour calibrer et éprouver des modules émetteurs/récepteurs dans un réseau d'antennes actives à commande électroniqe de phase
    FR2764140B1 (fr) * 1997-05-28 1999-08-06 Armand Levy Procede de communication entre une station de base a n antennes et un mobile et station de base permettant de mettre en oeuvre ce procede

    Also Published As

    Publication number Publication date
    US6608595B1 (en) 2003-08-19
    EP1142063A1 (fr) 2001-10-10
    FR2788171A1 (fr) 2000-07-07
    JP2002534881A (ja) 2002-10-15
    DE69914945D1 (de) 2004-03-25
    WO2000041265A1 (fr) 2000-07-13
    ES2216626T3 (es) 2004-10-16
    AU3049500A (en) 2000-07-24
    DE69914945T2 (de) 2005-07-07

    Similar Documents

    Publication Publication Date Title
    EP2532050B1 (fr) Antenne plane directive embarquée, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
    EP1074065B1 (fr) Systemes d&#39;antennes de poursuite de satellites a defilement
    WO1991000646A1 (fr) Systeme de reception de signaux t.v. retransmis par satellites
    FR3065329A1 (fr) Cellule elementaire d&#39;un reseau transmetteur pour une antenne reconfigurable
    EP1142063B1 (fr) Dispositif de telecommunication a reseaux a balayage electronique conforme et terminal de telecommunication associe
    EP1175741B1 (fr) Terminal de communication bidirectionnel multimedia
    FR2690010A1 (fr) Procédé de commande d&#39;une antenne à balayage.
    WO1999060661A1 (fr) Dispositif d&#39;emission et de reception d&#39;ondes hyperfrequences polarisees circulairement
    WO1999000868A1 (fr) Antenne pour systeme de telecommunication et procede d&#39;emission ou reception a l&#39;aide d&#39;une telle antenne
    EP0992128B1 (fr) Systeme de telecommunication
    EP1074064B1 (fr) Appareil de poursuite de satellites a defilement
    FR2567685A1 (fr) Antenne plane pour micro-ondes
    EP1170823A1 (fr) Antenne de télécommunication destinée à couvrir une large zone terrestre
    FR2751494A1 (fr) Systeme de satellite de telecommunications geosynchrone dont l&#39;aire de desserte peut etre reconfiguree
    FR2783378A1 (fr) Systeme de communications par satellite ameliore utilisant un partage de la puissance hf pour des sources primaires ou des faisceaux multiples dans des liaisons
    FR2685833A1 (fr) Reseau de satellites de communication.
    FR2922861A1 (fr) Procede d&#39;optimisation de la charge utile d&#39;un satellite de telecommunication multifaisceaux.
    EP1291962A1 (fr) Réseau formateur de faisceaux pour véhicule spatial
    EP2446507B1 (fr) Procédé d&#39;aide au pointage d&#39;une antenne, antenne à pointage assisté mettant en oeuvre ce procédé et terminal nomade comportant une telle antenne
    FR2778803A1 (fr) Circuit et procede de reception ou d&#39;emission d&#39;ondes hyperfrequences
    EP4165727A1 (fr) Antenne multimode, multiport et multistandard pour systeme de communication adaptable
    EP0561675A1 (fr) Antenne de réception à pointage unique pour plusieurs satellites de positions orbitales différentes

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010605

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 20011108

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 69914945

    Country of ref document: DE

    Date of ref document: 20040325

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040407

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2216626

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041119

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20081224

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20090120

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20081222

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20081201

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20081219

    Year of fee payment: 10

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20091230

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091230

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20110310

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110309

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091231