EP1134399B1 - Verfahren und Vorrichtung zur Druckregelung - Google Patents

Verfahren und Vorrichtung zur Druckregelung Download PDF

Info

Publication number
EP1134399B1
EP1134399B1 EP20000125558 EP00125558A EP1134399B1 EP 1134399 B1 EP1134399 B1 EP 1134399B1 EP 20000125558 EP20000125558 EP 20000125558 EP 00125558 A EP00125558 A EP 00125558A EP 1134399 B1 EP1134399 B1 EP 1134399B1
Authority
EP
European Patent Office
Prior art keywords
pressure
model
control
leakage
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20000125558
Other languages
English (en)
French (fr)
Other versions
EP1134399A3 (de
EP1134399A2 (de
Inventor
Christof Hammel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1134399A2 publication Critical patent/EP1134399A2/de
Publication of EP1134399A3 publication Critical patent/EP1134399A3/de
Application granted granted Critical
Publication of EP1134399B1 publication Critical patent/EP1134399B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • the invention relates to a method and a device for pressure regulation, in particular for a common rail system, according to the preamble of claim 1 or 9.
  • a system for controlling and regulating the injection pressure of an internal combustion engine in which a pump delivers fuel under a high pressure in a rail.
  • the rail has a number of outlets connected to respective injectors.
  • the system consists of a pressure regulator, arranged between the output of the pump and the input of the rail and which is acted upon by a drive signal, which can be predetermined by a controller.
  • this control device With this control device, a leakage amount can not or only difficult to determine. In addition, this control device has only a low accuracy without further disturbance variable processing.
  • the pressure control according to the invention for a common rail system has the advantage that with a model for the rail pressure control, the hydraulic disturbance dQs / dt can be detected. This is on the one hand a fast response monitoring on a leak in the high pressure region of a common rail system over the entire operating range possible. On the other hand, one can Improved dynamics of the rail pressure control can be achieved by switching the disturbance on the manipulated variable.
  • this is achieved in that by means of a model, a pressure regulator and / or an actuator of a pressure control loop is modeled, and that the model provides at least one signal that characterizes the disturbances of the pressure control loop.
  • the procedure according to the invention is particularly advantageous in systems in which an injection quantity QK, a leakage quantity QL, a control amount QS and a pressure drop amount act as disturbance variables on the pressure control loop.
  • the model includes at least one model for the actuator, which is preferably designed as a volume-controlled high-pressure pump.
  • a high-pressure pump the compressed amount of fuel and thus in the pressure accumulator, which is also referred to as a rail, conveyed amount of fuel can be controlled.
  • the model includes at least one model for the controlled system, which is also referred to as a route model.
  • the rail is considered.
  • an integrator is used to model the rail.
  • the determined by the model disturbance is used to detect a leak and / or to form a Aufschalty for the control loop.
  • the injected amount of fuel may be included in the disturbance. But it can also be provided that the disturbance does not include the injected fuel amount.
  • FIG. 1 is a system overview of a common rail system
  • FIG. 2 is a block diagram of a pressure regulator
  • FIG. 3 is a block diagram of a model of the pressure regulator circuit
  • FIGS. 4 to 6 are block diagrams of different variants of the model
  • FIG. 7 is a block diagram of a
  • FIG. 8 shows a block diagram of an improved pressure regulator with monitoring of the observed disturbance variable.
  • 1 shows by reference numeral 1 a controllable high-pressure pump.
  • 2 is a valve which is in operative connection with the suction line of the tank 4 via the filter 5.
  • 3 is a fuel filter.
  • 6 is a gear pump.
  • 7 is the metering unit.
  • 8 is the pressure reduction valve
  • 9 is the rail
  • 10 is a rail pressure sensor
  • 11 is a flow restrictor
  • 12 are injectors
  • 13 is the accelerator pedal
  • 14 the crankshaft revolution
  • 16 is the injection or / and Ignition.
  • 17 are further actuators, for example, for exhaust gas recirculation and 18 are other sensors.
  • the fuel passes through the fuel filter 3 to Zumeßech 7.
  • an adjustable Fuel quantity in the high pressure pump Depending on the applied to the metering control variable reaches an adjustable Fuel quantity in the high pressure pump. From there, the fuel is conveyed under high pressure into the rail 9. About the injectors 12 of the fuel enters the internal combustion engine.
  • the control unit 16 controls the metering unit 7, the injectors 12, further actuators 17 and optionally the pressure reduction valve 8 depending on the signals of the sensors 13 to 15.
  • Fig. 2 shows a block diagram of a pressure regulator.
  • 20 denotes a regulator. This is fed via a node the difference between an actual value Pist and a setpoint Psoll for the rail pressure.
  • the controller 20 supplies a manipulated variable PRail, soll, to a node, at the second input of the node is a precontrol value dQvs / dt.
  • the output signal of the node is fed to a controller 21.
  • the controller is preferably an element of the control unit 16.
  • the desired value Psoll and the precontrol value dQvs / dt are specified as a function of different operating parameters, preferably depending on the rotational speed of the internal combustion engine and a variable characterizing the fuel quantity to be injected.
  • the actuator 21 is preferably the controllable high pressure pump 1, wherein the Zumeßech 7 is acted upon by the manipulated variable.
  • the metering unit 7 is preferably designed as a solenoid valve which supplies a specific amount of fuel to the high pressure pump depending on the signal applied to it.
  • the high pressure pump delivers the actual value of the flow rate dQ HDP, / dt is the high pressure pump in the rail. This quantity is reduced by the disturbances dQ L / dt, dQ S / dt, dQ DAV / dt and the injection quantity dQ I / dt. This results in the amount dQ rail actually conveyed into the rail, is / dt. This is by a downstream of the actuator Link point clarifies. With this size dQrail, / dt is the rail, which is also referred to as distance 22, applied. At the end of the controlled system, the actual value Pist of the rail pressure is displayed. This is detected by the rail pressure sensor 10.
  • the block diagram of Fig. 2 is intended to illustrate that behind the actuator 21 attack several disturbances. These are the injection amount dQ I / dt, the leakage amount dQ L / dt, the control amount of the injectors dQ S / dt, and the pressure decrease amount dQ DAV / dt flowing through the depressurizing valve. Apart from the injection quantity, these variables are initially unknown in the engine control unit. With the knowledge of these disturbing variables, on the one hand, the dynamic behavior of the pressure regulator could be improved and, on the other hand, leakage monitoring of the high-pressure region could be carried out.
  • the disturbance dQ K / dt corresponds to the injection quantity.
  • the procedure according to the invention makes it possible, in the previously described common rail system with pressure control via a quantity-controlled high-pressure pump and optionally an additional pressure reduction valve, to control the disturbances in the pressure control loop (Leakage amount, control amount, injection quantity, pressure drop amount) to be determined constantly.
  • the disturbance variables are known at each operating point and it can thus on the one hand, the dynamics of the pressure control can be improved and on the other a permanent leakage monitoring of the high pressure area done.
  • Fig. 3 shows the structure of an embodiment of the model.
  • This structure essentially consists of a series connection of a system model 21.0 of the controller 21 and a system model 22.0 of the controlled system.
  • the modifier model 21.0 is the input signal dQ HDP, Soll / dt of the actuator 21 is supplied as input.
  • the modifier 21.0 acts on a node with its output signal.
  • the output signal of the connection point 30 reaches the system model 22.0.
  • the modeled controlled variable P B At the output of the distance model 22.0 is the modeled controlled variable P B. This is compared in a node 31 with the real controlled variable P ist .
  • the difference between the modeled and the real controlled variable reaches different factor specifications 29.1, 29.2, 29.n, 29.10 and 29.11.
  • the factor specifications 29.1, 29.2 and 29.n are applied to the modifier model and the factor specifications 29.10 and 29.11 apply signals to node 30.
  • At the output of the factor specification 29.11 is the modeled disturbance QB.
  • the factor specifications 29.1, 29.2 and 29.n specify quantities g1, g2, gn which influence the transmission behavior of the modifier model, depending on the deviation between the modeled and the real controlled variable. This means that the modifier model is adapted depending on the deviation between the modeled and the real controlled variable.
  • 29.10 denotes a proportional factor
  • 29.11 represents an integrator with T ⁇ as the integrator time constant.
  • 29.10 represents a P element and 29.11 represents an I element.
  • the track model 22.0 simulates the rail 9 and has essentially an integrating behavior.
  • GA (s) represents the transfer function of the actuator.
  • the actuator model 21.0 essentially contains delay elements which characterize the behavior of the electrical output stage, the solenoid valve 7 and the time-delayed delivery flow of the high-pressure pump.
  • FIG. 4 shows a second variant proposal for a pressure control loop with observer structure.
  • This model differs from the embodiment of Fig. 3 essentially only in that the total disturbance is not the output of the element 29.11 but the sum of the outputs of the elements 29.10 and 29.11 is used asylonstörsted QB.
  • FIG. 5 shows another alternative possibility of the observer structure.
  • Figure 5 differs from the previous embodiment in that the actuator 21 is divided into a current regulator 21a and the actual actuator 21b.
  • the signal dQ HDP, target / dt is the Regulator 21a fed as a setpoint
  • the current IMPROP actually flowing through the solenoid valve 7 is fed back as an actual value to the regulator 21a from the actuator 21b.
  • the controller 21a Based on the comparison between the actual value and the setpoint value for the current through the solenoid valve, the controller 21a forms a manipulated variable UMPROP for acting on the actuator 21b.
  • Fig. 6 shows a further alternative of the observer structure.
  • the modifier model with the actual value UMPROP of the current controller 32 is applied. By doing so, the order of the observer can be further reduced.
  • dQ L / dt + DQ S / dt - dQ B / dt - dQ I / dt
  • a block 34 specifies a maximum value b for the sum a of control and leakage quantity.
  • the sum a of control and leakage quantity calculated by a connection point is then compared with this maximum value b in a comparator 35 according to FIG.
  • an error is detected in block 36 if the sum of the leakage amount and the control amount exceeds the maximum value.
  • it can also be provided that errors are detected if the modeled disturbance dQ B / dt exceeds a threshold value.
  • this variable is taken into account in the control loop at a suitable location. This offers the advantage that the disturbance does not have to be compensated by the controller.
  • the disturbance variable is compensated dynamically by the observer size.
  • FIG. 8 A corresponding embodiment is shown in FIG. 8.
  • the pressure regulator is shown as shown in Fig. 2 as a block diagram.
  • Corresponding elements are designated by corresponding reference numerals.
  • the individual disturbances are flat rate denoted by dQo / dt.
  • the precontrol value dQ VS / dt is specified as a function of the injection quantity dQ K / dt.
  • a connection size dQ Auf / dt in another Joining point added to the output signal of the pressure regulator 20.
  • the disturbance is taken into account in the formation of the pilot control quantity dQ VS / dt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Control Of Fluid Pressure (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Druckregelung, insbesondere für ein Common-Rail-System, nach dem Oberbegriff des Anspruchs 1 bzw. 9.
  • (Siehe : YANG W C ET AL: "DYNAMIC MODELING AND ANALYSIS OF AUTOMOTIVE MULTI-PORT ELECTRONIC FUEL DELIVERY SYSTEM" TRANSACTIONS OF THE ASME. JOURNAL DYNAMIC SYSTEMS MEASUREMENT, XX, XX, Bd. 113, 1. März 1991 (1991-03-01), Seiten 143-151)
  • Aus der WO 96/03577 ist ein System zum Steuern und Regeln des Einspritzdrucks einer Brennkraftmaschine bekannt, bei dem eine Pumpe Kraftstoff unter einem hohen Druck in ein Rail fördert. Das Rail weist eine Anzahl von Auslässen auf, die mit entsprechenden Injektoren verbunden sind. Das System besteht aus einem Druckregler, angeordnet zwischen dem Ausgang der Pumpe und dem Eingang des Rails und der mit einem Ansteuersignal beaufschlagt wird, welches von einem Regler vorgebbar ist.
  • Mit dieser Regeleinrichtung läßt sich eine Leckagemenge nicht oder nur schwer ermitteln. Außerdem besitzt diese Regeleinrichtung ohne weitere Störgrößenverarbeitung nur eine geringe Genauigkeit.
  • Die erfindungsgemäße Druckregelung für ein Common-Rail-System hat den Vorteil, daß mit einem Modell für die Raildruckregelung die hydraulische Störgröße dQs/dt erfaßt werden kann. Damit ist zum einen eine schnell ansprechende Überwachung auf eine Leckage im Hochdruckbereich eines Common-Rail-Systems über den gesamten Betriebsbereich möglich. Zum anderen kann eine verbesserte Dynamik der Raildruckregelung durch Aufschalten der Störgröße auf die Stellgröße erzielt werden.
  • Erfindungsgemäß wird dies dadurch erreicht, daß mittels eines Modells ein Druckregler und/oder ein Stellelement eines Druckregelkreises nachgebildet wird, und daß das Modell wenigstens ein Signal liefert, das die Störgrößen des Druckregelkreises charakterisiert.
  • Die erfindungsgemäße Vorgehensweise ist besonders vorteilhaft, bei Systemen, bei denen eine Einspritzmenge QK, eine Leckagemenge QL, eine Steuermenge QS und eine Druckabbaumenge als Störgrößen auf den Druckregelkreis einwirken.
  • Das Modell beinhaltet wenigstens ein Modell für den Steller, der vorzugsweise als mengengesteuerte Hochdruckpumpe ausgebildet ist. Bei einer solchen Hochdruckpumpe, läßt sich die verdichtete Kraftstoffmenge und damit die in den Druckspeicher, der auch als Rail bezeichnet wird, geförderte Kraftstoffmenge steuern.
  • Das Modell beinhaltet wenigstens ein Modell für die Regelstrecke, das auch als Streckenmodell bezeichnet ist. Als Regelstrecke wird das Rail betrachtet. In der einfachsten Ausgestaltung dient zur Modellierung des Rails ein Integrator.
  • Die mittels des Modells bestimmte Störgröße dient zur Erkennung einer Leckage und/oder zur Bildung einer Aufschaltgröße für den Regelkreis. Die eingespritzte Kraftstoffmenge kann in der Störgröße enthalten sein. Es kann aber auch vorgesehen sein, daß die Störgröße die eingespritzte Kraftstoffmenge nicht umfaßt.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt.
  • Es zeigen Fig. 1 eine Systemübersicht eines Common-Rail-Systems, Fig. 2 ein Blockschaltbild eines Druckreglers, Fig. 3 ein Blockschaltbild eines Modells des Druckreglerkreises, Fig. 4 bis 6 Blockschaltbilder von verschiedenen Varianten des Modells, Fig. 7 ein Blockschaltbild einer Leckageüberwachung mittels einer beobachteten Störgröße und Fig. 8 ein Blockdiagramm eines verbesserten Druckreglers mit Aufschaltung der beobachteten Störgröße.
  • Die Fig. 1 zeigt mit dem Bezugszeichen 1 eine steuerbare Hochdruckpumpe. 2 ist ein Ventil, das mit der Ansaugleitung des Tanks 4 über den Filter 5 in Wirkverbindung steht. 3 ist ein Kraftstoffilter. 6 ist eine Zahnradpumpe. 7 ist die Zumeßeinheit. 8 ist das Druckabbauventil, 9 ist das Rail, 10 ist ein Raildrucksensor, 11 ist ein Durchflußbegrenzer, 12 sind Injektoren, 13 ist das Gaspedal, 14 der Aufnehmer der Kurbelwellenumdrehung, 15 der Aufnehmer der Nockenwellenumdrehung, 16 ist das Steuergerät für Einspritzung oder/und Zündung. 17 sind weitere Steller, beispielsweise für die Abgasrückführung und 18 sind weitere Sensoren.
  • Das in Fig. 1 dargestellte Übersichtsschaubild zeigt ein Common-Rail-System mit Druckregelung über eine mengengesteuerte Hochdruckpumpe 1 und wahlweise einem zusätzlichen Druckabbauventil 8. Die Druckregelung erfolgt dabei über das magnetventilgesteuerte Proportionalventil, das auch als Zumeßeinheit 7 bezeichnet wird, welches die Zulaufmenge zur Hochdruckpumpe 1 entsprechend der Stellgröße des Reglers einstellt.
  • Der Kraftstoff gelangt über das Kraftstoffilter 3 zur Zumeßeinheit 7. Abhängig von dem an der Zumeßeinheit anliegenden Stellgröße gelangt eine einstellbare Kraftstoffmenge in die Hochdruckpupe. Von dort wird der Kraftstoff unter hohem Druck in das Rail 9 gefördert. Über die Injektoren 12 gelangt der Kraftstoff in die Brennkraftmaschine. Das Steuergerät 16 steuert die Zumeßeinheit 7, die Injektoren 12, weitere Steller 17 und gegebenenfalls das Druckabbauventil 8 abhängig von den Signalen der Sensoren 13 bis 15 an.
  • Fig. 2 zeigt ein Blockschaltbild eines Druckreglers. Mit 20 ist ein Regler bezeichnet. Diesem wird über ein Verknüpfungspunkt die Differenz zwischen einem Istwert Pist und einem Sollwert Psoll für den Raildruck zugeführt. Der Regler 20 liefert eine Stellgröße PRail,soll, an einen Verknüpfungspunkt, an dem zweiten Eingang des Verknüpfungspunkt liegt ein Vorsteuerwert dQvs/dt an. Das Ausgangssignal des Verknüpfungspunktes wird einem Steller 21 zugeleitet.
  • Der Regler ist vorzugsweise ein Element des Steuergeräts 16. Der Sollwert Psoll und der Vorsteuerwert dQvs/dt werden abhängig von verschieden Betriebsparametern, vorzugsweise abhängig von der Drehzahl der Brennkraftmaschine und einer die einzuspritzenden Kraftstoffmenge charakterisierenden Größe, vorgegeben.
  • Bei dem Steller 21 handelt es sich vorzugsweise um die steuerbare Hochdruckpumpe 1, wobei die Zumeßeinheit 7 mit der Stellgröße beaufschlagt wird. Die Zumeßeinheit 7 ist vorzugsweise als Magnetventil ausgebildet, die abhängig von dem an ihr anliegenden Signal eine bestimmte Kraftstoffmenge der Hochdruckpumpe zuführt. Die Hochdruckpumpe fördert den Istwert der Fördermenge dQHDP,ist/dt der Hochdruckpumpe in das Rail. Diese Menge wird um die Störgrößen dQL/dt, dQS/dt, dQDAV/dt und die Einspritzmenge dQI/dt vermindert. Daraus resultiert die tatsächlich in das Rail geförderte Menge dQrail,ist/dt. Dies ist durch einen dem Steller nachgeschalteten Verknüpfungspunkt verdeutlicht. Mit dieser Größe dQrail,ist/dt wird das Rail, das auch als Strecke 22 bezeichnet ist, beaufschlagt. Am Ende der Regelstrecke steht der Istwert Pist des Raildrucks an. Diese wird mit dem Raildrucksensor 10 erfaßt.
  • Das Blockdiagramm der Fig. 2 soll verdeutlichen, daß hinter dem Steller 21 mehrere Störgrößen angreifen. Dies sind die Einspritzmenge dQI/dt, die Leckagemenge dQL/dt, die Steuermenge der Injektoren dQS/dt und die Druckabbaumenge dQDAV/dt, die durch das Druckabbauventil fließt. Außer der Einspritzmenge sind diese Größen im Motorsteuergerät zunächst nicht bekannt. Mit der Kenntnis dieser Störgrößen könnte zum einen das dynamische Verhalten des Druckreglers verbessert werden, und zum anderen eine Leckageüberwachung des Hochdruckbereichs durchgeführt werden.
  • Die Störgröße dQK/dt entspricht der Einspritzmenge. Für die Bestimmung der Leckage- und Steuermenge gibt es zwei bekannte Methoden:
  • Die Ermittlung der Leckagemenge erfolgt im Schubbetrieb des Fahrzeugs (Einspritzmenge = 0). Die Leckagemenge wird durch Berechnung des Raildruckgradienten (dp/dt) abgeschätzt, solange die Stellgröße dQHDP,Soll/dt = 0 ist.
  • Ist die Stellgröße des Druckreglers dQHDP,Soll > 0, so kann die Summe der Störgrößen durch diese Stellgröße abgeschätzt werden. Hierbei besteht der Nachteil, daß die abgeschätzte Störgröße an die Dynamik der Druckregelung gekoppelt ist.
  • Die erfindungsgemäße Vorgehensweise gestattet es, bei dem zuvor beschriiebenen Common-Rail-System mit Druckregelung über eine mengengesteuerte Hochdruckpumpe und wahlweise einem zusätzlichen Druckabbauventil die Störgrößen im Druckregelkreis (Leckagemenge, Steuermenge, Einspritzmenge, Druckabbaumenge) ständig zu bestimmen. Damit sind in jedem Betriebspunkt die Störgrößen bekannt und es kann damit zum einen die Dynamik der Druckregelung verbessert werden und zum anderen eine permanente Leckageüberwachung des Hochdruckbereichs erfolgen.
  • Fig. 3 zeigt die Struktur einer Ausführungsform des Modells. Diese Struktur besteht im wesentlichen aus einer Reihenschaltung eines Streckenmodells 21.0 des Stellers 21 und eines Streckenmodells 22.0 der Regelstrecke. Am Ausgang dieses Modells liegt die Nachbildung PB der Regelgröße P an. Dem Stellermodell 21.0 wird als Eingangsgröße das Eingangssignal dQHDP,Soll/dt des Stellers 21 zugeführt. Das Stellermodell 21.0 beaufschlagt einen Verknüpfungspunkt mit seinem Ausgangssignal. Das Ausgangssignal des Verknüpfungspunktes 30 gelangt zu dem Streckenmodell 22.0. Am Ausgang des Streckenmodells 22.0 steht die modellierte Regelgröße PB an. Diese wird in einem Verknüpfungspunkt 31 mit der realen Regelgröße Pist verglichen. Die Differenz zwischen der modellierten und der realen Regelgröße gelangt zu verschiedenen Faktorvorgaben 29.1, 29.2, 29.n, 29.10 und 29.11. Die Faktorvorgaben 29.1, 29.2 und 29.n beaufschlagen das Stellermodell und die Faktorvorgaben 29.10 und 29.11 beaufschlagen den Verknüpfungspunkt 30 mit Signalen. Am Ausgang der Faktorvorgabe 29.11 liegt die modellierte Störgröße QB an.
  • Die Faktorvorgaben 29.1, 29.2 und 29.n geben Größen g1, g2, gn vor, die das Übertragungsverhalten des Stellermodells beeinflussen, abhängig von der Abweichung zwischen der modellierten und der realen Regelgröße vor. Dies bedeutet das Stellermodel wird abhängig von der Abweichung zwischen der modellierten und der realen Regelgröße angepaßt. Mit 29.10 ist ein proportionaler Faktor gekennzeichnet, 29.11 stellt einen Integrierer mit Tσ als Integratorzeitkonstante dar.
  • In der Fachsprache der Regelungstechnik stellt 29.10 ein P-Glied und 29.11 ein I-Glied dar.
  • Das Streckenmodell 22.0 bildet das Rail 9 nach und weist im wesentlichen ein integrierendes Verhalten auf.
  • Es folgt eine gewichtete Aufschaltung der Differenz zwischen realem Istwert und nachgebildeter Regelgröße auf die einzelnen Zeitglieder des Stellermodells. Hierbei stellt GA(s) die Übertragungsfunktion des Stellers dar. Das Stellermodell 21.0 beinhaltet im wesentlichen Verzögerungsglieder, die das Verhalten der elektrischen Endstufe, des Magnetventils 7 und dem zeitverzögerten Förderstrom der Hochdruckpumpe kennzeichnen.
  • Am Eingang des Streckenmodells 22.0 liegen sämtliche Störgrößen an. Am Eingang dieses Modells erfolgt die proportionale Aufschaltung der Beobachterdifferenz (Pist - pB) mit dem Faktor go gewichtet. Sämtliche Größen, die am Eingang der Teilstrecke GB(s) außer der Stellgröße dQHDP,ist/dt angreifen, werden zur allgemeinen Störgröße zusammengefaßt.
  • Fig. 4 zeigt einen zweiten Variantenvorschlag für einen Druckregelkreis mit Beobachterstruktur. Dieses Modell unterscheidet sich von der Ausführungsform der Fig. 3 im wesentlichen nur darin, daß als gesamte Störgröße nicht das Ausgangssignal des Gliedes 29.11 sondern die Summe der Ausgangssignale der Glieder 29.10 und 29.11 als Gesamtstörgröße QB verwendet wird.
  • Fig. 5zeigt eine weitere alternative Möglichkeit der Beobachterstruktur. Im wesentlichen unterscheidet sich die Figur 5 von der vorherigen Ausführungsform darin, daß der Steller 21 in einen Stromregler 21a und den eigentlichen Steller 21b aufgeteilt ist. Das Signal dQHDP,Soll/dt wird dem Regler 21a als Sollwert zugeführt, der tatsächlich durch das Magnetventil 7 fließende Strom IMPROP wird als Istwert dem Regler 21a von dem Steller 21b zurückgeführt. Ausgehend von dem Vergleich zwischen dem Istwert und dem Sollwert für den Strom durch das Magnetventil bildet der Regler 21a eine Stellgröße UMPROP zur Beaufschlagung des Stellers 21b.
  • Da ein Beobachtersystem um so hochwertiger ist, je geringer seine Ordnungszahl ist, wird im folgenden eine Möglichkeit angegeben, wie die Ordnung des Beobachters verringert werden kann, indem die die Streckennachbildung mit der letzten bekannten Systemgrößen gespeist wird. Dies ist die Stellgröße des Stromreglers 32. Damit ist die Streckennachbildung um die Ordungszahl des Stromreglers reduziert.
  • Fig. 6 zeigt eine weitere Alternative der Beobachterstruktur. Bei dieser Ausführungsform wird das Stellermodell mit dem Istwert UMPROP des Stromreglers 32 beaufschlagt. Durch diese Vorgehensweise kann die Ordnung des Beobachters weiter verringert werden.
  • Mit der beobachteten Störgröße dQB/dt bieten sich in dem bestehenden System folgende Möglichkeiten:
  • Es ist eine Leckageüberwachung des Hochdruckbereichs der Einspritzanlage möglich. Durch eine Leckage in Leitungen bzw. im Rail oder durch hängende Düsennadeln an Einspritzventilen kann es zu unerwünschtem Austreten von Kraftstoff in die Umgebung oder in den Motorzylinder kommen. Die Einspritzmenge dQK/dt ist eine im System bekannte Größe, ebenso liegt der Zustand des Druckabbauventils im Motorsteuergerät vor. Im Normalbetrieb des Druckreglers ist das DAV (Druckabbauventil) nicht angesteuert, d.h. dQDAV/dt = 0. Die Summe aus Leckagemenge dQL/dt und Steuermenge dQS/dt kann daher folgendermaßen bestimmt werden: dQ L / dt + DQ S / dt = - dQ B / dt - dQ I / dt
    Figure imgb0001
  • Aufgrund von weiteren Betriebsbedingungen, wie beispielsweise dem Raildruck P, der Drehzahl N und der Einspritzmenge dQK/dt gibt ein Block 34 einen Maximalwert b für die Summe a aus Steuer- und Leckagemenge vor. Die von einem Verknüpfungspunkt berechnete Summe a aus Steuer- und Leckagemenge wird in einem Vergleicher 35 gemäß Fig. 7 dann mit diesem Maximalwert b verglichen. Abhängig von dem Vergleichsergebnis wird in Block 36 auf Fehler erkannt, wenn die Summe aus Leckagemenge und Steuermenge den Maximalwert übersteigt. Alternativ kann auch vorgesehen sein, daß auf Fehler erkannt wird, wenn die modellierte Störgröße dQB/dt einen Schwellwert übersteigt.
  • Mittels dieser Vorgehensweise können Leckagen im System sicher und einfach erkannt werden.
  • Ferner ist mit der modellierten Störgröße dQB/dt eine Verbesserung der Dynamik des Druckreglers möglich. Hierzu wird diese Größe im Regelkreis an geeigneter Stelle berücksichtigt. Dies bietet den Vorteil, daß die Störgröße nicht durch den Regler ausgeregelt werden muß. Die Störgröße wird dynamisch durch die Beobachtergröße kompensiert.
  • Eine entsprechende Ausführungsform ist in Fig. 8 dargestellt. Dort ist der Druckregler entsprechend wie in Fig. 2 als Blockdiagramm dargestellt. Entsprechende Elemente sind dabei mit entsprechenden Bezugszeichen bezeichnet. Die einzelnen Störgrößen sind pauschal mit dQo/dt bezeichnet.
  • Bei der dargestellten Ausführungsform wird der Vorsteuerwert dQVS/dt abhängig von der Einspritzmenge dQK/dt vorgegeben. Zusätzlich wird eine Aufschaltgröße dQAuf/dt in einem weiteren Verknüpfungspunkt zum Ausgangssignal des Druckreglers 20 hinzuaddiert.
  • Da die Einspritzmenge bereits durch den Vorsteuerwert dQVS/dt kompensiert wird, wird nicht die gesamte Störgröße aufgeschaltet, sondern lediglich die Differenz aus Störgröße und Einspritzmenge. Die zusätzliche Aufschaltgröße dQAuf/dt ergibt sich daher zu dQ Auf / dt = - dQ B / dt - dQ I / dt
    Figure imgb0002
  • Alternativ kann auch vorgesehen sein, daß die Störgröße bei der Bildung der Vorsteuergröße dQVS/dt berücksichtigt wird.

Claims (9)

  1. Verfahren zur Druckregelung, insbesondere bei einem Common-Rail-System, mit einer mengengesteuerten Hochdruckpumpe und/oder einem Druckabbauventil, wobei mittels eines Modells ein Druckregler und/oder ein Stellelement eines Druckregelkreises nachgebildet wird, dadurch gekennzeichnet, daß das Modell wenigstens ein Signal liefert, das die Störgrößen des Druckregelkreises charakterisiert.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Einspritzmenge, eine Leckagemenge, eine Steuermenge und eine Druckabbaumenge als Störgrößen auf den Druckregelkreis einwirken.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mittels des Modells die Summe der einzelnen Störgrößen wie Einspritzmenge, Leckagemenge, Steuermenge und/oder Menge des Druckabbauventils bestimmbar ist und aus der Kenntnis dieser Größen die Leckagemenge bestimmbar ist.
  4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Modell wenigstens ein Stellermodell und ein Streckenmodell beinhaltet.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Stellermodell wenigstens einen Steller und das Streckenmodel wenigstens einen Druckspeicher nachbildet.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Streckenmodell wenigstens integrierendes Verhalten aufweist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Störgröße zur Erkennung einer Leckage verwendbar ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Störgröße zur Bildung einer Aufschaltgröße für den Regelkreis verwendbar ist.
  9. Vorrichtung zur Druckregelung, insbesondere bei einem Common-Rail-System, mit einer mengengesteuerten Hochdruckpumpe und/oder einem Druckabbauventil, wobei als ein Modell ein Druckregler und/oder ein Stellelement eines Druckregelkreises nachgebildet wird, dadurch gekennzeichnet, daß das Modell wenigstens ein Signal liefert, das die Störgrößen des Druckregelkreises charakterisiert.
EP20000125558 2000-01-27 2000-11-22 Verfahren und Vorrichtung zur Druckregelung Expired - Lifetime EP1134399B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000103298 DE10003298A1 (de) 2000-01-27 2000-01-27 Verfahren und Vorrichtung zur Druckregelung
DE10003298 2000-01-27

Publications (3)

Publication Number Publication Date
EP1134399A2 EP1134399A2 (de) 2001-09-19
EP1134399A3 EP1134399A3 (de) 2002-06-19
EP1134399B1 true EP1134399B1 (de) 2006-02-08

Family

ID=7628771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000125558 Expired - Lifetime EP1134399B1 (de) 2000-01-27 2000-11-22 Verfahren und Vorrichtung zur Druckregelung

Country Status (2)

Country Link
EP (1) EP1134399B1 (de)
DE (2) DE10003298A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484696B2 (en) * 2001-04-03 2002-11-26 Caterpillar Inc. Model based rail pressure control for variable displacement pumps
US6715468B2 (en) * 2001-11-07 2004-04-06 Denso Corporation Fuel injection system
DE10157641C2 (de) 2001-11-24 2003-09-25 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
JP2004353487A (ja) * 2003-05-27 2004-12-16 Mitsubishi Electric Corp 内燃機関の燃料供給装置
DE10326557A1 (de) * 2003-06-12 2005-01-05 Robert Bosch Gmbh Fehlerdiagnoseverfahren und -vorrichtung
EP1790844A1 (de) * 2005-11-25 2007-05-30 Delphi Technologies, Inc. Verfahren zur Identifizierung vom abnormalen Verhalten eines Dynamischen Systems
DE102008048193B4 (de) * 2008-09-20 2023-05-04 Volkswagen Ag Verfahren zum Bestimmen eines Vorsteuerwertes für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE102009050467B4 (de) 2009-10-23 2017-04-06 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009050468B4 (de) 2009-10-23 2017-03-16 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102011083628A1 (de) * 2011-09-28 2013-03-28 Continental Automotive Gmbh Speichereinspritzsystem und Verfahren zur Druckregelung eines Speichereinspritzsystems
DE102014206717B4 (de) 2014-04-08 2022-10-20 Vitesco Technologies GmbH Druckspeichereinrichtung für ein Kraftfahrzeug-Kraftstoff-Einspritzsystem, sowie Verfahren zum Betrieb einer derartigen Druckspeichereinrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609136A (en) * 1994-06-28 1997-03-11 Cummins Engine Company, Inc. Model predictive control for HPI closed-loop fuel pressure control system
IT1266892B1 (it) 1994-07-22 1997-01-21 Fiat Ricerche Sistema elettronico di controllo dinamico della pressione di iniezione in un impianto di iniezione a collettore comune.
US5992229A (en) * 1996-02-05 1999-11-30 Neles-Jamesbury Oy Method and equipment for determining the performance of control valve
DE19757655C2 (de) * 1997-12-23 2002-09-26 Siemens Ag Verfahren und Vorrichtung zur Funktionsüberwachung eines Drucksensors

Also Published As

Publication number Publication date
EP1134399A3 (de) 2002-06-19
DE50012187D1 (de) 2006-04-20
DE10003298A1 (de) 2001-08-02
EP1134399A2 (de) 2001-09-19

Similar Documents

Publication Publication Date Title
EP1303693B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE102005020686B4 (de) Verfahren und Vorrichung zum Steuern einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
DE19618932A1 (de) Vorrichtung und Verfahren zur Regelung des Kraftstoffes in einem Hochdruckspeicher
DE102011052138A1 (de) Steuervorrichtung für Druckreduzierventile
EP1134399B1 (de) Verfahren und Vorrichtung zur Druckregelung
DE10316391A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
WO2006040212A1 (de) Verfahren zum betreiben einer kraftstoffeinspritzanlage insbesondere eines kraftfahrzeugs
DE102007050026B4 (de) Verfahren und Vorrichtung zum Überwachen von Steuer- und Regelkreisen in einem Motorsystem
DE102009028650B4 (de) Verfahren zum Betreiben eines Kraftstoff-Einspritzventils einer Brennkraftmaschine
DE102009007365A1 (de) Fehleranalyseverfahren und Fehleranalysevorrichtung für einen Verbrennungsmotor
DE102008042819B4 (de) Verfahren und Vorrichtung zum Bestimmen einer gesamten Zylinderfüllung und/oder der aktuellen Restgasrate bei einem Verbrennungsmotor mit Abgasrückführung
DE10123035A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10303573B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
EP1672206B1 (de) Verfahren und Vorrichtung zur Motorsteuerung bei einem Kraftfahrzeug
WO2012143187A1 (de) Verfahren und vorrichtung zur kalibrierung eines kraftstoffzumesssystems eines kraftfahrzeugs
EP2080885A2 (de) Verfahren und Vorrichtung zur Überwachung einer Motorsteuereinheit
EP3234328B1 (de) Verfahren und vorrichtung zur diagnose eines kraftstofffördersystems
EP3763933B1 (de) Verfahren zur volumenstrombasierten pumpensynchronen, insbesondere zylinderselektiven raildruckregelung für ein kraftstoffversorgungssystem einer brennkraftmaschine mit stromerfassung und stromregelung der stellglieder der raildruckregelung
DE102014220274B4 (de) Bestimmen und Gleichstellen der Einspritzmenge von Kraftstoffinjektoren in einem Kraftstoffeinspritzsystem
DE102007048667B4 (de) Vorrichtung zur Ansteuerung von elektrischen Aktoren
DE10049907B4 (de) Verfahren, Computerprogramm und Steuer- und/oder Regeleinrichtung zum Betreiben einer Brennkraftmaschine
DE10335399B4 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit mit einem Verbrennungsmotor
EP2520788A2 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
EP1317611B1 (de) Verfahren zur bildung der verzugszeit eines elektromagnetischen tankentlüftungsventils
DE10220141B4 (de) Verfahren zum Steuern der Verbrennung einer Brennkraftmaschine mit mindestens zwei Zylinderbänken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021219

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060208

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50012187

Country of ref document: DE

Date of ref document: 20060420

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060524

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131122

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160126

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012187

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161122

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601