EP1133587B1 - Membrane electrolytic cell with active gas/liquid separation - Google Patents

Membrane electrolytic cell with active gas/liquid separation Download PDF

Info

Publication number
EP1133587B1
EP1133587B1 EP99953890A EP99953890A EP1133587B1 EP 1133587 B1 EP1133587 B1 EP 1133587B1 EP 99953890 A EP99953890 A EP 99953890A EP 99953890 A EP99953890 A EP 99953890A EP 1133587 B1 EP1133587 B1 EP 1133587B1
Authority
EP
European Patent Office
Prior art keywords
electrode
channels
cell
cell according
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99953890A
Other languages
German (de)
French (fr)
Other versions
EP1133587A1 (en
Inventor
Fritz Gestermann
Peter Fabian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Uhdenora Technologies SRL
Original Assignee
Bayer AG
Uhdenora Technologies SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG, Uhdenora Technologies SRL filed Critical Bayer AG
Publication of EP1133587A1 publication Critical patent/EP1133587A1/en
Application granted granted Critical
Publication of EP1133587B1 publication Critical patent/EP1133587B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type

Definitions

  • the invention relates to an electrochemical half cell at least consisting of a Membrane, a gas-generating electrode as anode or cathode, an outlet for the gas and a supporting structure which the electrode with the half-cell back wall connects, wherein the support structure is a folded, electrically conductive sheet, which divides the interior of the half-cell in vertically arranged channels, wherein the Electrolyte flows upward in the electrode channels facing the electrode and in the down the electrode facing away from the electrode, the electrode channels and the Electrode facing away from each other channels at their upper and at their lower end are connected and arranged alternately side by side or in succession and the electrode channels have a cross-sectional constriction at their upper end.
  • Another problem is the electrolysis cell with as homogeneous as possible and horizontal temperature and concentration distribution (salt concentration or pH of the electrolyte) in the region of the electrolyte space in front of the membrane surface to operate, also to avoid premature aging of the membrane.
  • This is generally desirable for the operation of all gas-producing electrolysers, but especially for the use of gas diffusion electrodes in which the Heat dissipation (removal of heat loss) predominantly or completely over the Electrolyte circuit on the other, gas-generating side must be made, depending on whether beyond the membrane with finite gap or with overlying membrane Gas diffusion electrode is worked. This may cause a reduction in the Temperature of the incoming fresh electrolyte for the gas generating side, the Do not cause local overcooling here.
  • EP 0599363 A1 is based on various methods the treatment of process-related gas bubbles received without the decisive Elements that are called complete separation of gas and electrolyte completely pulsation-free, also common process of the separated phases from the cell and a homogenization of temperature and concentration to the corners of the Enable cell.
  • EP-A-0 412 600 describes an electrochemical half-cell with vertically arranged Channels in which no chlorine evolution takes place, as the electrolyte from the electrodes is shielded. These channels are formed from vertical profiles that are paired with Help from vertically arranged plates are connected. The channels are additional with Help of horizontal struts electrically conductive with the housing of the half-cell connected.
  • the invention is an electrochemical half-cell at least consisting of a membrane, a gas evolving electrode as an anode or cathode, a Outlet for the gas and a support structure which the electrode with the half-cell back wall connects, wherein the support structure is a folded, electrically conductive sheet, which divides the interior of the half-cell into vertically arranged channels, wherein the Electrolyte flows upward in the electrode channels facing the electrode and in the down the electrode facing away from the electrode, the electrode channels and the Electrode facing away from each other channels at their upper and at their lower end are connected and arranged alternately side by side or in succession and the electrode channels have a cross-sectional constriction at their upper end.
  • Another object of the invention is an electrochemical half cell at least consisting of a membrane, a gas-evolving electrode as anode or cathode, an outlet for the gas and a support structure which the electrode with the half-cell back wall connects, with the support structure from perpendicular to the half-cell built-in structural elements which electrically connect the electrode to the half-cell backplane Contact and hold, as well as flow guide, which between the Structural elements are used, is formed, wherein the support structure of the interior of the Half cell is divided into vertically arranged channels, wherein the electrolyte in the Electrode facing electrode channels flows upwards and facing away from the electrode Channels flows down, the electrode channels and the electrode remote from each other at their upper and at their lower end connected are and are arranged adjacent to each other or in succession and the Have electrode channels at its upper end a cross-sectional constriction.
  • the channels with a downward flow and the electrode channels can be trapezoidal Have cross-section.
  • a vertically oriented parallel support structure separates in a particular arrangement the open to the electrode channels in which the lighter electrolyte-gas mixture ascends, from channels open to the back wall, in which the degassed heavier Electrolyte flows down again.
  • Essential for the improvement of gas separation herein a constriction located at the top of the electrolyte channels through a wing-like flow deflection profile is generated, which is bent towards the electrode is.
  • the two-phase flow is in the constriction between the electrode and profile accelerates, relaxes over the rearward bent edge of the profile and on the Rear of the profile with separation of the phases degassed.
  • the cross-sectional area of the electrode channels is the narrowest Range of constriction in relation to the cross-sectional area of the electrode channels below the narrowing of 1 to 2.5 to 1 to 4.5.
  • the constriction of the electrode channels for example, by an angled Lead structure are formed.
  • the constriction of the electrode channels has in particular an area with constant cross-section, the height of this area being at most 1: 100 in relation to the height of the active membrane area.
  • the production of the half-cell is possible in a particularly simplified manner if the conductive structure is formed integrally with the support structure.
  • Electrode channels above the constriction have a widening of its cross-section.
  • the excess electrolyte leaving the cell may be behind the flow diverter either at the top on the side or via a vertical standpipe downwards be dissipated.
  • a half-cell which degas an outlet for the Electrolytes and the optionally formed during the electrolysis of gas, in particular a standpipe with implementation in the cell bottom or one on a side wall of Cell disposed outlet, which is just above the top of the Electrode channels is arranged.
  • the support structure assumes the function of mechanical retention of the electrode and beyond the function of low impedance Connection of the electrode to the cell back wall.
  • the support structure with the electrode channels and the outflow channels fills the Interior of the half-cell in a preferred variant of at least 90%.
  • the support structure is electrically conductive and is electrically conductive with the Electrode and in particular connected to the rear wall of the half-cell.
  • the electrode is then electrically conductive with the support structure of the half-cell connected and fastened to the support structure.
  • the electrolyte reacted in the anode chamber is, for example, an aqueous one Sodium chloride solution or a hydrochloric acid solution and as an anode gas drops here Chlorine on.
  • the counter electrode is an oxygen-consuming cathode.
  • the cathode-side heat dissipation can only via a plug flow without turbulence, which shifts the heat balance more to the anode side, If you do not want to work with too high cathode-side warm-up spans, the well-known the membrane are not beneficial. So here must be either with chilled Electrolytes in a simple feed or optionally with a likewise cooled anolyte circuit to be driven to the cell internal temperature distributions to keep at the optimum level.
  • the cathode-side heat dissipation is marginal; the heat must be discharged almost completely through the anolyte. This requires i.a. an external anolyte circuit with cooling.
  • the half-cell according to the invention is generally in all gas-producing electrolysis applicable. It gets a special significance in electrolysis, in which itself Separate electrolyte and gas more difficult.
  • a flow and daily structure 12 is electrically conductively welded (Fig. 1). It carries the electrode structure 3, on which in turn the Membrane 4 either rests or with a smaller distance from the electrode structure 3 is positioned.
  • the support structure 12 is constructed of trapezoidal shaped sheets, the vertical Form channels which are alternately open towards the electrode or as outflow channels 5 are directed to the rear wall 15.
  • the fresh electrolyte 17 flows through an inlet pipe 10 and through openings 11 in the half-cell interior 13, wherein the openings 11 are distributed so that they supply each of the channels 9 open to the electrode with fresh electrolyte.
  • the openings 11 can also be arranged below the outflow channels 5 be to mix between the fresh electrolyte and the in the Outflow channels 5 flowing electrolyte to improve (see Fig. 2).
  • the gas evolution at the electrode 3 leads to a buoyancy of the electrolyte in the open to the electrode channels 9.
  • the interspersed with gas bubbles electrolyte 14th flows up here, is on a profile structure 2, which emerges from the trapezoidal sheet, deflected towards the electrode. He is in gap 7 between the electrode 3 and Profile structure 2 accelerates and widening again above the profile structure Cross-section of the channel 9 relaxed. By switching between acceleration and relaxation, a very effective bubble separation is achieved so that on the back of the tread structure already a most extensive separation between electrolyte and electrode gas is done.
  • the profile structure 2 protrudes only in the Aufströmkanäle 9, however, is open in the direction of the outflow 5.
  • the excess electrolyte 18 leaves the half-cell 1 together with the behind the Profile 2 separated gas either via a standpipe 8, as shown in Fig. 1 and 3 or via a lateral outlet 16, as in FIG. 2 and in FIG. 3 alternatively drawn.
  • the following variants can also be used with comparable success (compare Fig. 4).
  • the gas-evolving electrodes 3, whether anodes or cathodes, via vertically inserted structural elements 29 with the rear wall of the half-shells 1 can be connected between these structural elements flow guide in semi-circular shape 28 with the bubbles Aufström Suite 20 and the outflow area 21, as a diagonal element 27 with the bubble Aufström Society 24 and the outflow area 25 or as parallel to the rear wall running partition 26 with the Bubble Aufström Society 22 and the outflow region 23 are used.
  • the separating element 26 can also be used as a continuous plate, the structural elements 29 suitably penetrate and over the entire element width extend. It can also prove to be advantageous if this Separating elements are each used individually between the structural elements 29, before the electrodes 3 are welded in and fix the separating elements.
  • the respective flow channels are analogous to the trapezoidal structures extend over the entire height of the element and in the upper part of the Bubble Aufström Symposiume - not shown here - analogue of the profile structure 2 narrow, to cause degassing of the electrolyte after passing the constriction.
  • the separating elements 26, 27, 28 have no electrical function, they can not only metallic, but also non-conductive from suitable plastic moldings, have the appropriate chemical stability and temperature resistance carried out become.
  • Halar® or Telene® e.g. Halar® or Telene®.
  • the bent-back part 6 of the profile 2 leaves an 8 mm gap to the upper edge of the half-cell 1 for the passage of the two-phase flow to the rear freely (see Fig. 2).
  • At the lower end remains about 20 mm wide gap through which the downwardly flowing degassed brine 14 together with the fed from the openings 11 of the line 10 fresh brine 16 again can flow into the rise channels 9, where it is enriched again with anode gas.
  • the excess anolyte brine is taken up via a standpipe 8, which ends slightly below the upper edge of the profile 2, and discharged downwards out of the cell 1.
  • oxygen-consuming cathodes are in finite gap mode at a Katholytspalt of 3 mm in use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Hybrid Cells (AREA)

Description

Die Erfindung betrifft eine elektrochemische Halbzelle wenigstens bestehend aus einer Membran, einer Gas entwickelnden Elektrode als Anode oder Kathode, einem Auslass für das Gas und einer Tragstruktur, welche die Elektrode mit der Halbzellenrückwand verbindet, wobei die Tragstruktur ein gefaltetes, elektrisch leitfähiges Blech ist, welches den Innenraum der Halbzelle in senkrecht angeordnete Kanäle aufteilt, wobei der Elektrolyt in den der Elektrode zugewandten Elektrodenkanälen aufwärts strömt und in den der Elektrode abgewandten Kanälen abwärts strömt, die Elektrodenkanäle und die der Elektrode abgewandten Kanäle an ihrem oberen und an ihrem unteren Ende miteinander verbunden sind und alternierend nebeneinander oder hintereinander angeordnet sind und die Elektrodenkanäle an ihrem oberen Ende eine Querschnittsverengung aufweisen.The invention relates to an electrochemical half cell at least consisting of a Membrane, a gas-generating electrode as anode or cathode, an outlet for the gas and a supporting structure which the electrode with the half-cell back wall connects, wherein the support structure is a folded, electrically conductive sheet, which divides the interior of the half-cell in vertically arranged channels, wherein the Electrolyte flows upward in the electrode channels facing the electrode and in the down the electrode facing away from the electrode, the electrode channels and the Electrode facing away from each other channels at their upper and at their lower end are connected and arranged alternately side by side or in succession and the electrode channels have a cross-sectional constriction at their upper end.

Die unvollständige bzw. falsch durchgeführte Gastrennung im oberen Bereich aus dem Stand der Technik bekannter Elektrolysezellen führt an dieser Stelle zu unzureichender Benetzung der Membran mit Erhöhung des elektrischen Widerstands der Membran. Dies bewirkt eine Erhöhung der integralen Zellspannung und birgt darüber hinaus die Gefahr lokaler Membranschäden infolge sog. "Verblisterung". Die Schädigung der Membran geht bis hin zum Durchtritt von Elektrodengas und unter Umständen zur Bildung explosiver Gasgemische. Darüber hinaus können durch fehlerhafte Gastrennung pulsierende Druckstöße im Elektrolytraum ausgelöst werden, die Membranbewegungen mit der Gefahr von vorzeitiger Alterung durch mechanische Beschädigung zur Folge haben.The incomplete or incorrect gas separation in the upper area of the Prior art known electrolytic cells leads to insufficient at this point Wetting of the membrane with increase of the electrical resistance of the membrane. This causes an increase in the integral cell voltage and also carries the danger local membrane damage due to so-called "blistering". The damage to the membrane goes up to the passage of electrode gas and possibly explosive to the formation Gas mixtures. In addition, due to faulty gas separation pulsating Pressure surges are triggered in the electrolyte space, the membrane movements with the risk of premature aging due to mechanical damage.

Ein weiteres Problem besteht darin, die Elektrolysezelle mit möglichst homogener vertikaler und horizontaler Temperatur- sowie Konzentrationsverteilung (Salzkonzentration oder pH-Wert des Elektrolyten) im Bereich des Elektrolytraumes vor der Membranfläche zu betreiben, ebenfalls um eine vorzeitige Membranalterung zu vermeiden. Dies ist allgemein wünschenswert für den Betrieb aller gasentwickelnden Elektrolyseure, insbesondere jedoch für den Einsatz von Gasdiffusionselektroden, bei denen die Wärmeabfuhr (Abfuhr der Verlustwärme) überwiegend oder vollständig über den Elektrolytkreislauf auf der anderen, gaserzeugenden Seite erfolgen muss, je nachdem, ob jenseits der Membran mit endlichem Elektrolytspalt (finite gap) oder mit aufliegender Gasdiffusionselektrode gearbeitet wird. Dies bedingt unter Umständen eine Absenkung der Temperatur des einströmenden frischen Elektrolyten für die gaserzeugende Seite, die hier nicht zu lokaler Überkühlung führen darf.Another problem is the electrolysis cell with as homogeneous as possible and horizontal temperature and concentration distribution (salt concentration or pH of the electrolyte) in the region of the electrolyte space in front of the membrane surface to operate, also to avoid premature aging of the membrane. This is generally desirable for the operation of all gas-producing electrolysers, but especially for the use of gas diffusion electrodes in which the Heat dissipation (removal of heat loss) predominantly or completely over the Electrolyte circuit on the other, gas-generating side must be made, depending on whether beyond the membrane with finite gap or with overlying membrane Gas diffusion electrode is worked. This may cause a reduction in the Temperature of the incoming fresh electrolyte for the gas generating side, the Do not cause local overcooling here.

Es hat in der Vergangenheit einige Vorschläge zur Minderung dieser Probleme, allerdings nur für die klassische Wasserstoff-entwickelnde NaCl-Elektrolyse gegeben. So wird in der Europäischen Offenlegungsschrift EP 0579910 A1 ein System zur Anregung eines internen Naturumlaufes beschrieben, insbesondere, um eine Ansäuerung von Sole für die NaCl-Elektrolyse wirksamer zu machen und zu starke Schaumbildung im oberen Bereich der Elektrolysezelle zu verringern.There have been some suggestions in the past to alleviate these problems, however given only for the classic hydrogen-evolving NaCl electrolysis. So will in the European patent application EP 0579910 A1 a system for exciting an internal Natural circulation described, in particular, to acidification of brine for NaCl electrolysis To make more effective and excessive foaming at the top of the To reduce electrolytic cell.

In der Europäischen Offenlegungsschrift EP 0599363 A1 wird auf verschiedene Methoden der Behandlung prozessbedingter Gasblasen eingegangen, ohne dass die entscheidenden Elemente genannt werden, die eine vollständige Trennung von Gas und Elektrolyt bei völlig pulsationsfreiem, auch gemeinsamem Ablauf der getrennten Phasen aus der Zelle sowie eine Vergleichmäßigung von Temperatur und Konzentration bis in die Ecken der Zelle ermöglichen.In the European patent application EP 0599363 A1 is based on various methods the treatment of process-related gas bubbles received without the decisive Elements that are called complete separation of gas and electrolyte completely pulsation-free, also common process of the separated phases from the cell and a homogenization of temperature and concentration to the corners of the Enable cell.

EP-A-0 412 600 beschreibt eine elektrochemische Halbzelle mit senkrecht angeordneten Kanälen, in denen keine Chlorentwicklung stattfindet, da der Elekrolyt von den Elektroden abgeschirmt ist. Diese Kanäle werden aus vertikalen Profilen gebildet, die paarweise mit Hilfe von vertikal angeordneten Platten verbunden sind. Die Kanäle sind zusätzlich mit Hilfe von horizontalen Verstrebungen elektrisch leitend mit dem Gehäuse der Halbzelle verbunden.EP-A-0 412 600 describes an electrochemical half-cell with vertically arranged Channels in which no chlorine evolution takes place, as the electrolyte from the electrodes is shielded. These channels are formed from vertical profiles that are paired with Help from vertically arranged plates are connected. The channels are additional with Help of horizontal struts electrically conductive with the housing of the half-cell connected.

Die Lösung dieser Probleme der bekannten Elektrolysehalbzellenanordnungen wird durch eine Halbzelle gemäß Oberbegriff mit den kennzeichnenden Merkmalen des unabhängigen Anspruches erreicht.The solution to these problems of the known electrolysis half-cell arrangements is by a half-cell according to the preamble with the characterizing features of the independent Claim achieved.

Gegenstand der Erfindung ist eine elektrochemische Halbzelle wenigstens bestehend aus einer Membran, einer Gas entwickelnden Elektrode als Anode oder Kathode, einem Auslass für das Gas und einer Tragstruktur, welche die Elektrode mit der Halbzellenrückwand verbindet, wobei die Tragstruktur ein gefaltetes, elektrisch leitfähiges Blech ist, welches den Innenraum der Halbzelle in senkrecht angeordnete Kanäle aufteilt, wobei der Elektrolyt in den der Elektrode zugewandten Elektrodenkanälen aufwärts strömt und in den der Elektrode abgewandten Kanälen abwärts strömt, die Elektrodenkanäle und die der Elektrode abgewandten Kanäle an ihrem oberen und an ihrem unteren Ende miteinander verbunden sind und alternierend nebeneinander oder hintereinander angeordnet sind und die Elektrodenkanäle an ihrem oberen Ende eine Querschnittsverengung aufweisen.The invention is an electrochemical half-cell at least consisting of a membrane, a gas evolving electrode as an anode or cathode, a Outlet for the gas and a support structure which the electrode with the half-cell back wall connects, wherein the support structure is a folded, electrically conductive sheet, which divides the interior of the half-cell into vertically arranged channels, wherein the Electrolyte flows upward in the electrode channels facing the electrode and in the down the electrode facing away from the electrode, the electrode channels and the Electrode facing away from each other channels at their upper and at their lower end are connected and arranged alternately side by side or in succession and the electrode channels have a cross-sectional constriction at their upper end.

Ein weiterer Gegenstand der Erfindung ist eine elektrochemische Halbzelle wenigstens bestehend aus einer Membran, einer Gas entwickelnden Elektrode als Anode oder Kathode, einem Auslass für das Gas und einer Tragstruktur, welche die Elektrode mit der Halbzellenrückwand verbindet, wobei die Tragstruktur aus senkrecht in die Halbzelle eingebaute Strukturelementen, welche die Elektrode elektrisch mit der Halbzellenrückwand kontaktieren und halten, sowie aus Strömungsleitstrukturen, welche zwischen die Strukturelemente eingesetzt sind, gebildet wird, wobei die Tragstruktur den Innenraum der Halbzelle in senkrecht angeordnete Kanäle aufteilt, wobei der Elektrolyt in den der Elektrode zugewandten Elektrodenkanälen aufwärts strömt und in den der Elektrode abgewandten Kanälen abwärts strömt, die Elektrodenkanäle und die der Elektrode abgewandten Kanäle an ihrem oberen und an ihrem unteren Ende miteinander verbunden sind und alternierend nebeneinander oder hintereinander angeordnet sind und die Elektrodenkanäle an ihrem oberen Ende eine Querschnittsverengung aufweisen.Another object of the invention is an electrochemical half cell at least consisting of a membrane, a gas-evolving electrode as anode or cathode, an outlet for the gas and a support structure which the electrode with the half-cell back wall connects, with the support structure from perpendicular to the half-cell built-in structural elements which electrically connect the electrode to the half-cell backplane Contact and hold, as well as flow guide, which between the Structural elements are used, is formed, wherein the support structure of the interior of the Half cell is divided into vertically arranged channels, wherein the electrolyte in the Electrode facing electrode channels flows upwards and facing away from the electrode Channels flows down, the electrode channels and the electrode remote from each other at their upper and at their lower end connected are and are arranged adjacent to each other or in succession and the Have electrode channels at its upper end a cross-sectional constriction.

Dabei können die Kanäle mit Abwärtsströmung und die Elektrodenkanäle einen trapezförmigen Querschnitt aufweisen.In this case, the channels with a downward flow and the electrode channels can be trapezoidal Have cross-section.

Eine vertikal ausgerichtete parallele Tragestruktur trennt in einer besonderen Anordnung die zur Elektrode hin offenen Kanäle, in denen das leichtere Elektrolyt-Gasgemisch aufsteigt, von zur Rückwand hin offenen Kanälen, in denen der entgaste schwerere Elektrolyt wieder abwärts fließt. Wesentlich für die Verbesserung der Gastrennung ist hierin eine oben an den Elektrolytkanälen befindliche Verengung, die durch ein tragflügelähnliches Strömungs-Umlenkprofil erzeugt wird, das zur Elektrode hin gebogen ist. Die Zweiphasenströmung wird in der Verengung zwischen Elektrode und Profil beschleunigt, über der nach hinten gebogenen Oberkante des Profils entspannt und auf der Rückseite des Profils unter Trennung der Phasen entgast. Auf seiner Rückseite gibt das Profil Öffnungen in die Abwärtskanäle frei, so dass der schwerere, weil entgaste Elektrolyt abwärts fließt und am Halbzellenboden über Verbindungsöffnungen gemeinsam mit frisch zugespeistem Elektrolyten wieder als Gas aufnehmende Fraktion in die zur Elektrode offenen Kanäle einfließt und so den internen Naturumlauf des Elektrolyten bewirkt. A vertically oriented parallel support structure separates in a particular arrangement the open to the electrode channels in which the lighter electrolyte-gas mixture ascends, from channels open to the back wall, in which the degassed heavier Electrolyte flows down again. Essential for the improvement of gas separation herein a constriction located at the top of the electrolyte channels through a wing-like flow deflection profile is generated, which is bent towards the electrode is. The two-phase flow is in the constriction between the electrode and profile accelerates, relaxes over the rearward bent edge of the profile and on the Rear of the profile with separation of the phases degassed. On his back there is Profile openings in the downstream channels free, leaving the heavier, because degassed electrolyte flows downwards and at the half cell bottom via connecting openings together with fresh supplied electrolyte again as a gas-absorbing fraction in the to the electrode flows open channels and thus causes the internal natural circulation of the electrolyte.

Vorzugsweise beträgt die Querschnittsfläche der Elektrodenkanäle im schmalsten Bereich der Verengung im Verhältnis zur Querschnittsfläche der Elektrodenkanäle unterhalb der Verengung von 1 zu 2,5 bis 1 zu 4,5.Preferably, the cross-sectional area of the electrode channels is the narrowest Range of constriction in relation to the cross-sectional area of the electrode channels below the narrowing of 1 to 2.5 to 1 to 4.5.

Die Verengung der Elektrodenkanäle kann beispielsweise durch eine gewinkelte Leitstruktur gebildet werden.The constriction of the electrode channels, for example, by an angled Lead structure are formed.

Die Verengung der Elektrodenkanäle weist insbesondere einen Bereich mit gleichbleibendem Querschnitt auf, wobei die Höhe dieses Bereiches höchstens 1 : 100 im Verhältnis zur Höhe der aktiven Membranfläche beträgt.The constriction of the electrode channels has in particular an area with constant cross-section, the height of this area being at most 1: 100 in relation to the height of the active membrane area.

Die Herstellung der Halbzelle ist besonders vereinfacht möglich, wenn die Leitstruktur mit der Tragstruktur einstückig ausgebildet ist.The production of the half-cell is possible in a particularly simplified manner if the conductive structure is formed integrally with the support structure.

Ebenso vorteilhaft ist eine Ausführung der Halbzelle, bei der die Tragstruktur über die ganze Höhe der Elektrodenkanäle und der Kanäle mit Abwärtsströmung einstückig ausgebildet ist.Also advantageous is an embodiment of the half-cell, in which the support structure via the whole height of the electrode channels and the channels with the downward flow in one piece is trained.

Vorteilhaft für die Gastrennung vom Elektrolyten ist eine Ausführung, bei der die Elektrodenkanäle oberhalb der Verengung eine Aufweitung ihres Querschnitts aufweisen.Advantageous for the gas separation from the electrolyte is an embodiment in which the Electrode channels above the constriction have a widening of its cross-section.

Der die Zelle verlassende überschüssige Elektrolyt kann hinter dem Strömungs-Umlenkprofil entweder oben seitlich oder aber über ein vertikales Standrohr nach unten abgeführt werden.The excess electrolyte leaving the cell may be behind the flow diverter either at the top on the side or via a vertical standpipe downwards be dissipated.

Besonders vorteilhaft ist also eine Halbzelle, die einen Auslass für den entgasten Elektrolyten und das bei der Elektrolyse gegebenenfalls gebildete Gas, insbesondere ein Standrohr mit Durchführung im Zellenboden oder einen an einer Seitenwand der Zelle angeordneten Auslass, aufweist, der knapp oberhalb des oberen Endes der Elektrodenkanäle angeordnet ist.So particularly advantageous is a half-cell, which degas an outlet for the Electrolytes and the optionally formed during the electrolysis of gas, in particular a standpipe with implementation in the cell bottom or one on a side wall of Cell disposed outlet, which is just above the top of the Electrode channels is arranged.

Wie die experimentelle Erfahrung zeigt, ist es ganz besonders vorteilhaft, wenn die Gesamtstruktur - bis auf die Verbindungsöffnungen ganz unten und den wenige mm breiten Verbindungsspalt über dem Profil ganz oben - aus einer funktionalen Einheit besteht, um folgende Funktionen zu erfüllen:

  • Trennung der Gasblasen vom Elektrolyten über den sog. "bubble jet" oben, um eine Abfuhr von Elektrolyt und Produktgas getrennt oder aber phasengetrennt gemeinsam, vor allem aber ohne jegliche Druckpulsationen zu ermöglichen
  • Vergleichmäßigung des vertikalen Temperaturprofils durch einen lebhaften Naturumlauf über die volle Höhe zur Optimierung der Membranfunktion
  • Vergleichmäßigung des vertikalen Konzentrationsprofils über den gleichen Mechanismus zur Optimierung der Membranfunktion
  • Vergleichmäßigung des vertikalen pH-Profils z.B. bei der gezielten Ansäuerung der Sole bei der NaCl-Elektrolyse zur Verbesserung von Chlorausbeute und -qualität. Lokale Übersäuerung der Sole wäre schädlich für die Membran
As experimental experience has shown, it is particularly advantageous if, with the exception of the connection openings at the very bottom and the few mm wide connecting gap above the profile at the top, the entire structure consists of a functional unit to fulfill the following functions:
  • Separation of the gas bubbles from the electrolyte via the so-called "bubble jet" above, to allow a separation of electrolyte and product gas separately or phase-separated together, but above all without any pressure pulsations
  • Balancing of the vertical temperature profile by a lively natural circulation over the full height to optimize the membrane function
  • Homogenization of the vertical concentration profile using the same mechanism to optimize membrane function
  • Homogenization of the vertical pH profile, for example, in the targeted acidification of the brine in the NaCl electrolysis to improve the chlorine yield and quality. Local acidification of the brine would be detrimental to the membrane

Neben der hydraulischen Funktion übernimmt die Tragestrukur die Funktion der mechanischen Halterung der Elektrode und darüber hinaus die Funktion der niederohmigen Verbindung der Elektrode mit der Zellrückwand.In addition to the hydraulic function, the support structure assumes the function of mechanical retention of the electrode and beyond the function of low impedance Connection of the electrode to the cell back wall.

Die Tragstruktur mit den Elektrodenkanälen und den Abströmkanälen füllt den Innenraum der Halbzelle in einer bevorzugten Variante zu mindestens 90 % aus. The support structure with the electrode channels and the outflow channels fills the Interior of the half-cell in a preferred variant of at least 90%.

Vorzugsweise ist die Tragstruktur elektrisch leitend und ist elektrisch leitend mit der Elektrode und mit insbesondere mit der Rückwand der Halbzelle verbunden.Preferably, the support structure is electrically conductive and is electrically conductive with the Electrode and in particular connected to the rear wall of the half-cell.

Bevorzugt ist dann die Elektrode elektrisch leitend mit der Tragstruktur der Halbzelle verbunden und auf der Tragstruktur befestigt.Preferably, the electrode is then electrically conductive with the support structure of the half-cell connected and fastened to the support structure.

Zur Temperierung des Elektrolyten wird vorzugsweise dem Einlass des Elektrolyten ein Wärmetauscher vorgeschaltet, durch den frischer Elektrolyt und gegebenenfalls vom Auslass rückgeführter entgaster Elektrolyt in die Halbzelle eingeleitet wird, so dass gegebenenfalls ein temperatursteuernder Elektrolytkreislauf gebildet wird.For the temperature control of the electrolyte is preferably the inlet of the electrolyte upstream of a heat exchanger, through the fresh electrolyte and optionally discharged from the outlet degassed electrolyte is introduced into the half-cell, so if appropriate, a temperature-controlling electrolyte circuit is formed.

Die druckstoßfreie und vollständige Abtrennung der Gasblasen, verbunden mit der Vergleichmäßigung von Temperatur-, Konzentrations- und pH-Profil bekommt eine besondere Bedeutung beim Einsatz von Gasdiffusionselektroden in einer der Halbzellen, sei es anoden- oder kathodenseitig, bei gasentwickelndem Prozess auf der anderen Seite der Membran. In diesen Fällen muss die Abfuhr der ohmschen Verlustwärme zu einem großen Teil oder vollständig über den Elektrolyten aus der gaserzeugenden Seite des Elektrolyseurs erfolgen, je nach Art des Betriebs der Gasdiffusionselektrode.The pressure shock-free and complete separation of the gas bubbles, associated with the Uniformity of temperature, concentration and pH profile gets one particular importance when using gas diffusion electrodes in one of the half cells, be it on the anode or cathode side, in gas-developing process on the other side of the membrane. In these cases, the dissipation of ohmic heat loss must to a large extent or completely over the electrolyte from the gas-producing Side of the electrolyzer, depending on the nature of the operation of the gas diffusion electrode.

Der in der Anodenkammer umgesetzte Elektrolyt ist beispielsweise eine wässrige Natriumchloridlösung oder eine Salzsäurelösung und als Anodengas fällt hierbei Chlor an. Die Gegenelektrode ist eine Sauerstoffverzehrkathode.The electrolyte reacted in the anode chamber is, for example, an aqueous one Sodium chloride solution or a hydrochloric acid solution and as an anode gas drops here Chlorine on. The counter electrode is an oxygen-consuming cathode.

Wird z.B. bei der NaCl-Elektrolyse kathodenseitig eine Sauerstoffverzehrkathode mit schmalem Katholytspalt betrieben, wie in EP 0717130 B1 und Folgepatenten beschrieben, kann die kathodenseitige Wärmeabfuhr nur über eine Pfropfenströmung ohne Turbulenz erfolgen, was die Wärmebilanz mehr auf die Anodenseite verlagert, will man nicht mit zu hohen kathodenseitigen Aufwärmspannen arbeiten, die bekanntlich der Membran nicht zuträglich sind. Hier muss also entweder mit gekühltem Elektrolyten in einfacher Bespeisung oder aber gegebenenfalls mit einem ebenfalls gekühlten Anolytkreislauf gefahren werden, um die zellinternen Temperaturverteilungen auf dem optimalen Niveau zu halten.If e.g. in the NaCl electrolysis on the cathode side with a Sauerstoffverzehrkathode operated narrow Katholytspalt, as in EP 0717130 B1 and subsequent patents described, the cathode-side heat dissipation can only via a plug flow without turbulence, which shifts the heat balance more to the anode side, If you do not want to work with too high cathode-side warm-up spans, the well-known the membrane are not beneficial. So here must be either with chilled Electrolytes in a simple feed or optionally with a likewise cooled anolyte circuit to be driven to the cell internal temperature distributions to keep at the optimum level.

Wird z.B. eine NaCl- oder aber HCl-Elektrolyse mit aufliegender Sauerstoffverzehrkathode betrieben, ist die kathodenseitige Wärmeabfuhr marginal; die Wärme muss praktisch vollständig über den Anolyten abgeführt werden. Dies bedingt i.a. einen externen Anolytkreislauf mit Kühlung.If e.g. a NaCl or HCl electrolysis with resting oxygen-consuming cathode operated, the cathode-side heat dissipation is marginal; the heat must be discharged almost completely through the anolyte. This requires i.a. an external anolyte circuit with cooling.

In all diesen Fällen kommt einer internen Vergleichmäßigung von Temperatur, Konzentration und gegebenenfalls pH-Wert besondere Bedeutung zu, weil die in die Zelle eingespeiste Elektrolytmenge im Vergleich zur internen Zirkulation zunimmt, so dass letztere besonders intensiv sein muss, um eine auch nur lokale Schieflage zu vermeiden. Dies gilt insbesondere auch für ein durchaus wünschenswertes kräftiges Ansäuern der Sole im Falle der NaCl-Elektrolyse, das sich normalerweise nach dem niedrigsten lokalen pH-Wert richten muss.In all these cases, an internal equalization of temperature, Concentration and optionally pH value of particular importance, because in the Cell supplied electrolyte quantity increases in comparison to the internal circulation, so the latter needs to be extra intense to even a local imbalance avoid. This is especially true for a thoroughly desirable strong Acidification of the brine in the case of NaCl electrolysis, which is usually after the must be the lowest local pH.

Wird also die Halbzelle mit endlichem Katholytspalt (finite gap) vor einer Sauerstoffverzehrkathode betrieben, kann ein Teil der Verlustwärme kathodenseitig über die Durchströmung dieses Katholytspaltes und externe Kühlung abgeführt werden, während der überwiegende Teil der Verlustwärme mit dem Anolytstrom abgeführt wirdSo if the half-cell with finite gap gap before a Oxygen consumption cathode operated, a part of the heat loss on the cathode side discharged via the flow through this Katholytspaltes and external cooling while most of the waste heat is with the anolyte stream is dissipated

Wird dagegen die Halbzelle mit einer auf der Membran aufliegenden Sauerstoffverzehrkathode (zero gap) betrieben, wird die gesamte Verlustwärme über den Anolytstrom abgeführt.If, however, the half-cell with an oxygen-consuming cathode resting on the membrane (zero gap), the total heat loss through the Anolytstrom dissipated.

Weitere Vorteile der erfindungsgemäßen Halbzelle sind also die vertikale Vergleichmäßigung der Temperatur des Elektrolyten und die vertikale Vergleichmäßigung der Elektrolytkonzentration. Further advantages of the half cell according to the invention are thus the vertical equalization the temperature of the electrolyte and the vertical homogenization of the Electrolyte concentration.

Die erfindungsgemäße Halbzelle ist generell bei allen gasentwickelnden Elektrolysen anwendbar. Sie bekommt eine besondere Bedeutung bei Elektrolysen, bei denen sich Elektrolyt und Gas schwerer voneinander trennen lassen.The half-cell according to the invention is generally in all gas-producing electrolysis applicable. It gets a special significance in electrolysis, in which itself Separate electrolyte and gas more difficult.

Die Erfindung wird nachstehend anhand der Figuren beispielhaft näher erläutert ohne dass dadurch die Erfindung im einzelnen eingeschränkt ist.The invention will be explained in more detail below by way of example with reference to the figures that thereby the invention is limited in detail.

Es zeigen:

Fig. 1
einen schematischen Querschnitt durch eine erfindungsgemäße Halbzelle ohne Stromzuleitung entsprechend der Linie B-B' in Fig. 3
Fig. 2
einen schematischen Längsschnitt durch eine erfindungsgemäße Halbzelle entsprechend der Linie A-A' in Fig. 3
Fig. 3
Die Vorderansicht der erfindungsgemäßen Halbzelle mit abgenommener Elektrode
Fig. 4
Alternativstrukturen zur Strömungsführung in der erfindungsgemäßen Halbzelle
Show it:
Fig. 1
a schematic cross section through a half cell according to the invention without power supply line corresponding to the line BB 'in Fig. 3rd
Fig. 2
a schematic longitudinal section through a half cell according to the invention according to the line AA 'in Fig. 3rd
Fig. 3
The front view of the half-cell according to the invention with the electrode removed
Fig. 4
Alternative structures for flow guidance in the half-cell according to the invention

BeispieleExamples

In einer Halbzelle 1 ist eine Strömungs- und Tagesstruktur 12 elektrisch leitend eingeschweißt (Fig. 1). Sie trägt die Elektrodenstruktur 3, auf der wiederum die Membran 4 entweder aufliegt oder mit einem kleineren Abstand von der Elektrodenstruktur 3 positioniert ist.In a half-cell 1, a flow and daily structure 12 is electrically conductively welded (Fig. 1). It carries the electrode structure 3, on which in turn the Membrane 4 either rests or with a smaller distance from the electrode structure 3 is positioned.

Die Tragestruktur 12 ist aus trapezförmig geformten Blechen aufgebaut, die senkrechte Kanäle formen, die abwechselnd zur Elektrode hin offen sind oder als Abströmkanäle 5 zur Rückwand 15 gerichtet sind.The support structure 12 is constructed of trapezoidal shaped sheets, the vertical Form channels which are alternately open towards the electrode or as outflow channels 5 are directed to the rear wall 15.

Der Frischelektrolyt 17 strömt über ein Eintrittsrohr 10 und durch Öffnungen 11 in den Halbzelleninnenraum 13 ein, wobei die Öffnungen 11 so verteilt sind, dass sie jeden der zur Elektrode hin offenen Kanäle 9 mit Frischelektrolyt versorgen. Je nach Anwendungen können die Öffnungen 11 auch unter den Abströmkanälen 5 angeordnet sein, um eine Vermischung zwischen dem Frischelektrolyten und dem in den Abströmkanälen 5 abströmenden Elektrolyten zu verbessern (siehe Fig. 2).The fresh electrolyte 17 flows through an inlet pipe 10 and through openings 11 in the half-cell interior 13, wherein the openings 11 are distributed so that they supply each of the channels 9 open to the electrode with fresh electrolyte. Depending on Applications, the openings 11 can also be arranged below the outflow channels 5 be to mix between the fresh electrolyte and the in the Outflow channels 5 flowing electrolyte to improve (see Fig. 2).

Die Gasentwicklung an der Elektrode 3 führt zu einem Auftrieb des Elektrolyten in den zur Elektrode offenen Kanälen 9. Der mit Gasblasen durchsetzte Elektrolyt 14 strömt hier aufwärts, wird an einer Profilstruktur 2, die aus dem Trapezblech hervorgeht, zur Elektrode hin umgelenkt. Er wird im Spalt 7 zwischen Elektrode 3 und Profilstruktur 2 beschleunigt und im sich oberhalb der Profilstruktur wieder aufweitenden Querschnitt des Kanals 9 entspannt. Durch den Wechsel zwischen Beschleunigung und Entspannung wird eine sehr wirkungsvolle Blasentrennung erreicht, so dass auf der Rückseite der Profilstruktur bereits eine weitestgehende Trennung zwischen Elektrolyt und Elektrodengas erfolgt ist. Die Profilstruktur 2 ragt nur in die Aufströmkanäle 9, ist jedoch offen in Richtung der Abströmkanäle 5. So kann der entgaste schwerere Elektrolyt in den Abströmkanälen 5 abwärtsfließen, sich mit dem unten einfließenden Frischelektrolyten vermischen und durch die Gasentwicklung an der Elektrodenstruktur wieder in eine Aufwärtsströmung umwandeln, so dass sich eine intensive Naturkonvektion ergibt (siehe Fig. 3).The gas evolution at the electrode 3 leads to a buoyancy of the electrolyte in the open to the electrode channels 9. The interspersed with gas bubbles electrolyte 14th flows up here, is on a profile structure 2, which emerges from the trapezoidal sheet, deflected towards the electrode. He is in gap 7 between the electrode 3 and Profile structure 2 accelerates and widening again above the profile structure Cross-section of the channel 9 relaxed. By switching between acceleration and relaxation, a very effective bubble separation is achieved so that on the back of the tread structure already a most extensive separation between electrolyte and electrode gas is done. The profile structure 2 protrudes only in the Aufströmkanäle 9, however, is open in the direction of the outflow 5. So can the degassed heavier electrolyte in the outflow 5 flow downwards, with mix the incoming fresh electrolyte below and by the evolution of gas at the electrode structure again convert into an upward flow, so that an intensive natural convection results (see Fig. 3).

Der Überschusselektrolyt 18 verlässt die Halbzelle 1 gemeinsam mit dem hinter dem Profil 2 abgetrennten Gas entweder über ein Standrohr 8, wie in Fig. 1 und 3 dargestellt ist oder aber über einen seitlichen Auslass 16, wie in Fig. 2 sowie in Fig. 3 alternativ eingezeichnet ist.The excess electrolyte 18 leaves the half-cell 1 together with the behind the Profile 2 separated gas either via a standpipe 8, as shown in Fig. 1 and 3 or via a lateral outlet 16, as in FIG. 2 and in FIG. 3 alternatively drawn.

Alternativ zu der aus trapezförmig gestalteten Blechen gestalteten Strömungsstruktur sind mit vergleichbarem Erfolg auch folgende Varianten einsetzbar (vgl. Fig. 4). Für den Fall, dass die gasentwickelnden Elektroden 3, seien es Anoden oder Kathoden, über senkrecht eingesetzte Strukturelemente 29 mit der Rückwand der Halbschalen 1 verbunden sind, können zwischen diese Strukturelemente Strömungsleitstrukturen in halbrunder Form 28 mit dem Blasen-Aufströmbereich 20 und dem Abströmbereich 21, als Diagonalelement 27 mit dem Blasen-Aufströmbereich 24 und dem Abströmbereich 25 oder als parallel zur Rückwand laufendes Trennelement 26 mit dem Blasen-Aufströmbereich 22 und dem Abströmbereich 23 eingesetzt werden. Insbesondere das Trennelement 26 kann auch als eine durchgehende Platte die Strukturelemente 29 in geeigneter Weise durchdringen und sich über die gesamte Elementbreite erstrecken. Es kann sich aber auch als vorteilhaft erweisen, wenn diese Trennelemente jeweils einzeln zwischen die Strukturelemente 29 eingesetzt werden, bevor die Elektroden 3 eingeschweißt werden und die Trennelemente fixieren.As an alternative to the trapezoidal shaped sheet designed flow structure the following variants can also be used with comparable success (compare Fig. 4). For the case that the gas-evolving electrodes 3, whether anodes or cathodes, via vertically inserted structural elements 29 with the rear wall of the half-shells 1 can be connected between these structural elements flow guide in semi-circular shape 28 with the bubbles Aufströmbereich 20 and the outflow area 21, as a diagonal element 27 with the bubble Aufströmbereich 24 and the outflow area 25 or as parallel to the rear wall running partition 26 with the Bubble Aufströmbereich 22 and the outflow region 23 are used. Especially The separating element 26 can also be used as a continuous plate, the structural elements 29 suitably penetrate and over the entire element width extend. It can also prove to be advantageous if this Separating elements are each used individually between the structural elements 29, before the electrodes 3 are welded in and fix the separating elements.

Wesentlich ist, dass sich die jeweiligen Strömungskanäle analog der Trapezstrukturen über die gesamte Höhe des Elementes erstrecken und im oberen Bereich die Blasen-Aufströmbereiche - hier nicht dargestellt - analog der Profilstruktur 2 verengen, um eine Entgasung des Elektrolyten nach Passieren der Verengung auszulösen. Da die Trennelemente 26, 27, 28 keine elektrische Funktion haben, können sie nicht nur metallisch, sondern auch nichtleitend aus geeigneten Kunststoff-Formteilen, die geeignete chemische Stabilität und Temperaturfestigkeit aufweisen, ausgeführt werden. Hier bietet sich je nach Anwendung z.B. Halar® oder Telene® an.It is essential that the respective flow channels are analogous to the trapezoidal structures extend over the entire height of the element and in the upper part of the Bubble Aufströmbereiche - not shown here - analogue of the profile structure 2 narrow, to cause degassing of the electrolyte after passing the constriction. Since the separating elements 26, 27, 28 have no electrical function, they can not only metallic, but also non-conductive from suitable plastic moldings, have the appropriate chemical stability and temperature resistance carried out become. Here, depending on the application, e.g. Halar® or Telene®.

Beispiel 1example 1

In einer NaCl-Elektrolyse-Pilotzelle mit 4 bipolaren Elementen mit einer Fläche von jeweils 1224 × 254 mm2, wobei die Höhe der vollen technischen Höhe entspricht, sind bei einer Tiefe der Anodenhalbzelle 1 von 31 nun zwei volle und zwei halbe Aufwärtskanäle 9 sowie drei Abwärtskanäle 5 mit einem gefalteten Blech 12 als Tragstruktur, das den Halbzelleninnenraum 13 teilt, verwirklicht worden (Figur 1 zeigt eine Anordnung mit einem halben und vier vollen Aufwärtskanälen 9 und einem halben und vier vollen Abwärtskanälen 5). Der Stromkontakt zur Anode 3 erfolgte von der Halbzellenrückwand 15 über die Tragstruktur 12. Die Profilstruktur 2 deckt die Aufwärtskanäle 9 am oberen Ende unter ca. 60° ab und verengt den Strömungsquerschnitt bis auf einen 6 mm breiten Spalt 7 zur Anode 3 hin. Der zurückgebogene Teil 6 des Profils 2 lässt einen 8 mm Spalt zur Oberkante der Halbzelle 1 für den Durchtritt der Zweiphasenströmung nach hinten frei (siehe Fig. 2). Die Durchtrittsöffnungen zu den Abwärtskanälen 5 sind offen für ein ungehindertes Abströmen des entgasten Elektrolyten 14. Am unteren Ende bleibt ein ca 20 mm breiter Spalt, durch den die abwärts strömende entgaste Sole 14 gemeinsam mit der aus den Öffnungen 11 der Leitung 10 zugespeisten Frischsole 16 wieder in die Aufstiegskanäle 9 einfließen kann, wo sie erneut mit Anodengas angereichert wird. Die überschüssige Anolytsole wird über ein Standrohr 8, das etwas unterhalb der Oberkante des Profils 2 endet, aufgenommen und nach unten aus der Zelle 1 abgeführt. In der nicht dargestellten Kathoden-Halbschale sind Sauerstoffverzehrkathoden im finite gap modus bei einem Katholytspalt von 3 mm im Einsatz.In a NaCl electrolysis pilot cell with 4 bipolar elements each having an area of 1224 × 254 mm 2 , the height corresponding to the full technical height, at a depth of the anode half cell 1 of 31, there are now two full and two half up channels 9 and three Downstream channels 5 with a folded sheet metal 12 as a support structure that divides the half-cell interior 13, realized (Figure 1 shows an arrangement with a half and four full up channels 9 and a half and four full down channels 5). The current contact to the anode 3 was made by the half-cell rear wall 15 via the support structure 12. The profile structure 2 covers the upward channels 9 at the upper end below about 60 ° and narrows the flow cross-section to a 6 mm wide gap 7 to the anode 3 out. The bent-back part 6 of the profile 2 leaves an 8 mm gap to the upper edge of the half-cell 1 for the passage of the two-phase flow to the rear freely (see Fig. 2). At the lower end remains about 20 mm wide gap through which the downwardly flowing degassed brine 14 together with the fed from the openings 11 of the line 10 fresh brine 16 again can flow into the rise channels 9, where it is enriched again with anode gas. The excess anolyte brine is taken up via a standpipe 8, which ends slightly below the upper edge of the profile 2, and discharged downwards out of the cell 1. In the cathode half-shell, not shown, oxygen-consuming cathodes are in finite gap mode at a Katholytspalt of 3 mm in use.

In einem Dauertest wurde untersucht, inwieweit die Phasentrennung erfolgt und ob Zelle frei von Druckpulsationen betrieben werden kann. Es zeigte sich, dass die Halbzellen im Arbeitsbereich zwischen 3 und 7 kA/m2 mit vollständiger Trennung von Gas und Elektrolyt betrieben werden können, d. h. der ablaufende Anolyt war vollständig blasenfrei und lief völlig gleichmäßig und ohne jede fühlbare oder sichtbare Pulsation ab.In a long-term test, it was examined to what extent the phase separation takes place and whether the cell can be operated free of pressure pulsations. It was found that the half-cells in the working range between 3 and 7 kA / m 2 can be operated with complete separation of gas and electrolyte, ie the effluent anolyte was completely bubble-free and ran off completely evenly and without any tangible or visible pulsation.

Beispiel 2:Example 2:

Es wurde eine Betriebsweise getestet, bei der mit angepasstem Katholytkreislauf die Wärmebilanz über vorgekühlte Sole dergestalt eingestellt wurde, dass die Austrittstemperatur auf 85°C begrenzt wurde. In Abhängigkeit von der eingestellten Stromdichte ergaben sich folgende Aufwärmspannen: Stromdichte (kA/m2) Sole (°C) Lauge (°C) Umpump Lauge (l/h) Umpump Sole (l/h) 3 77 - 85 77 - 85 250 - 4,5 68 - 85 75 - 85 250 - 6 44 - 85 77 - 86 400 50 A mode of operation was tested in which, with a fitted catholyte circuit, the heat balance was adjusted via pre-cooled brine in such a way that the outlet temperature was limited to 85 ° C. Depending on the set current density, the following warm-up margins resulted: Current density (kA / m 2 ) Brine (° C) Lye (° C) Pumping liquor (l / h) Pumping brine (l / h) 3 77 - 85 77 - 85 250 - 4.5 68 - 85 75 - 85 250 - 6 44 - 85 77 - 86 400 50

Es zeigte sich, dass bei den sehr hohen Stromdichten für die Wärmeabfuhr zusätzlich ein moderater Anolytkreislauf mit entsprechender Vorkühlung angebracht ist. Nur so und mit technisch realistischen Sole-Einlauftemperaturen lässt sich die katholytseitige Aufwärmspanne auf <10 K drücken.It was found that in addition to the very high current densities for heat dissipation a moderate anolyte circuit with appropriate precooling is attached. Only like that and with technically realistic brine inlet temperatures can be the Press the heating side of the catholyte to <10 K.

Claims (16)

  1. Electrochemical half-cell (1) at least comprising a membrane (4), an electrode (3), which generates gas, as anode or cathode, an outlet (8; 16) for the gas, and a supporting structure (12) which connects the electrode (3) to the half-cell rear wall (15), characterized in that the supporting structure (12) is a folded, electrically conductive metal sheet which divides the interior (13) of the half-cell (1) into vertically arranged channels (5, 9), the electrolyte (14) flowing upwards in the electrode channels (9) facing the electrode (3) and flowing downwards in the channels (5) facing away from the electrode (3), the electrode channels (9) and the channels (5) facing away from the electrode (3) being connected to one another at their top ends and at their bottom ends and being arranged alternately next to one another or one behind the other, and the electrode channels having a cross-sectional constriction (7) at their top ends.
  2. Electrochemical half-cell (1) at least comprising a membrane (4), an electrode (3), which generates gas, as anode or cathode, an outlet (8; 16) for the gas, and a supporting structure (12) which connects the electrode (3) to the half-cell rear wall (15), characterized in that the supporting structure (12) comprises structural elements (29) installed perpendicularly in the half-cell (1) which make contact electrically between the electrode (3) and the half-cell rear wall (15) and hold the electrode (3), and comprises flow guide structures (26; 27; 28) which are inserted between the structural elements (29), the supporting structure (12) dividing the interior (13) of the half-cell (1) into vertically arranged channels (5, 9), the electrolyte (14) flowing upwards in the electrode channels (9) facing the electrode (3) and flowing downwards in the channels (5) facing away from the electrode (3), the electrode channels (9) and the channels (5) facing away from the electrode (3) being connected to one another at their top ends and at their bottom ends and being arranged alternately next to one another or one behind the other, and the electrode channels having a cross-sectional constriction (7) at their top ends.
  3. Electrochemical half-cell according to either of Claims 1 and 2, characterized in that the channels (5) carrying a downward flow and the electrode channels (9) have a trapezoidal cross section.
  4. Electrochemical half-cell according to any one of Claims 1 to 3, characterized in that the cross-sectional area of the electrode channels (9) in the region of the constriction (7) in proportion to the cross-sectional area of the electrode channels (9) below the constriction (7) is from 1:2.5 to 1:4.5.
  5. Electrochemical half-cell according to any one of Claims 1 to 4, characterized in that the constriction (7) of the electrode channels (9) has a region of constant cross section and in that the height of this region is at most 1:100 in proportion to the height of the active membrane surface.
  6. Electrochemical half-cell according to any one of Claims 1 to 5, characterized in that the constriction (7) of the electrode channels (9) is formed by an angled guide structure (2).
  7. Electrochemical half-cell according to Claim 6, characterized in that the angled guide structure (2) is designed in the form of a deflector profile.
  8. Electrochemical half-cell according to either of Claims 6 and 7, characterized in that the guide structure (2) and the supporting structure (12) form one piece.
  9. Electrochemical half-cell according to any one of Claims 1 to 8, characterized in that the electrode channels (9) above the constriction (7) have an expansion (6) of their cross sections.
  10. Electrochemical half-cell according to any one of Claims 1 to 9, characterized in that the supporting structure (12) is in the form of one piece over the entire height of the electrode channels (9) and the channels (5) carrying a downward flow.
  11. Electrochemical half-cell according to any one of Claims 1 to 10, characterized in that the half-cell has an outlet (8; 16) for the degassed electrolyte and the gas formed during the electrolysis, in particular a vertical pipe (8) or an outlet (16) disposed on a side wall of the cell, said outlet being disposed just above the top ends of the electrode channels (9).
  12. Electrochemical half-cell according to any one of Claims 1 to 11, characterized in that the supporting structure (12) together with the electrode channels (9) and the downflow channels (5) fills the interior (13) of the half-cell (1) to at least 90%.
  13. Electrochemical half-cell according to any one of Claims 1 to 12, characterized in that the electrolyte (14) is an aqueous sodium chloride solution or a hydrochloric acid solution and the electrode (3) is a chlorine-generating anode, while the corresponding cathode is operated as an oxygen-consuming cathode.
  14. Electrochemical half-cell according to any one of Claims 1 to 13, characterized in that upstream of the inlet (10, 11) of the electrolyte (14) there is a heat exchanger via which fresh electrolyte and optionally degassed electrolyte recirculated from the outlet (8; 16) are introduced into the half-cell (1).
  15. Electrochemical half-cell according to Claim 2, characterized in that the flow guide structures (26; 27; 28) are made of metal or plastic.
  16. Electrochemical half-cell according to Claim 2 or 15, characterized in that the flow guide structure (26) including the profile structure is in the form of one piece covering the entire element area.
EP99953890A 1998-10-30 1999-10-20 Membrane electrolytic cell with active gas/liquid separation Expired - Lifetime EP1133587B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19850071A DE19850071A1 (en) 1998-10-30 1998-10-30 Membrane electrolysis cell with active gas / liquid separation
DE19850071 1998-10-30
PCT/EP1999/007949 WO2000026442A1 (en) 1998-10-30 1999-10-20 Membrane electrolytic cell with active gas/liquid separation

Publications (2)

Publication Number Publication Date
EP1133587A1 EP1133587A1 (en) 2001-09-19
EP1133587B1 true EP1133587B1 (en) 2004-01-14

Family

ID=7886164

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99953890A Expired - Lifetime EP1133587B1 (en) 1998-10-30 1999-10-20 Membrane electrolytic cell with active gas/liquid separation

Country Status (20)

Country Link
US (1) US6596136B1 (en)
EP (1) EP1133587B1 (en)
JP (1) JP2002528648A (en)
KR (1) KR100607632B1 (en)
CN (1) CN1208501C (en)
AR (1) AR018966A1 (en)
AT (1) ATE257868T1 (en)
AU (1) AU763013B2 (en)
BR (1) BR9914956A (en)
CA (1) CA2348394A1 (en)
CZ (1) CZ20011503A3 (en)
DE (2) DE19850071A1 (en)
ES (1) ES2211188T3 (en)
HU (1) HUP0104430A3 (en)
ID (1) ID29184A (en)
NO (1) NO20012056D0 (en)
PL (1) PL190638B1 (en)
PT (1) PT1133587E (en)
TW (1) TW466279B (en)
WO (1) WO2000026442A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954247C2 (en) * 1999-11-11 2002-11-14 Wolfgang Strewe Electrolysis cell with gas diffusion electrode for large-scale plants and uses of the electrolysis cell
IT1319259B1 (en) * 2000-10-31 2003-09-26 Nora Impianti S P A Ora De Nor ELECTROLYTIC CELL WITH RENEWABLE ELECTRODIC STRUCTURES AND METHOD FOR THE REPLACEMENT OF THE SAME.
DE10152276A1 (en) * 2001-10-23 2003-04-30 Bayer Ag Electrolytic cell half element for the operation of gas diffusion electrodes with separation of the functional rooms
DE102004014696A1 (en) * 2004-03-25 2005-10-13 De Nora Deutschland Gmbh Hydrodynamic devices for electrochemical cells
US8945358B2 (en) * 2006-09-29 2015-02-03 Uhdenora S.P.A. Electrolysis cell
EP2115445B1 (en) * 2006-12-23 2012-03-21 MIOX Corporation Internal flow control in electrolytic cells
DE102010030600A1 (en) * 2010-06-28 2011-12-29 Robert Bosch Gmbh Minimization of the Ankerschließprellens by a delay element in the residual air gap
JP5917108B2 (en) * 2011-11-29 2016-05-11 地方独立行政法人東京都立産業技術研究センター Electrolytic cell
WO2013125954A1 (en) * 2012-02-23 2013-08-29 Paques I.P. B.V. Membrane spacer for liquids containing suspended solids
IT202200001544A1 (en) * 2022-01-31 2023-07-31 Eos Energetics S R L S ELECTROLYTIC CELL FOR THE PRODUCTION OF H2

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217684A (en) 1982-06-09 1983-12-17 Tokuyama Soda Co Ltd Electrode body
BE1004364A3 (en) 1989-08-11 1992-11-10 Solvay Chassis for electrolyser type filter press and electrolyser monopolar type of filter press.
DE4224492C1 (en) 1992-07-24 1993-12-09 Uhde Gmbh Apparatus for the electrolytic treatment of liquids with an anode and a cathode chamber and their use
SE9203514L (en) 1992-11-23 1994-05-24 Permascand Ab Cell
AU8212298A (en) * 1997-06-03 1998-12-21 De Nora S.P.A. Ion exchange membrane bipolar electrolyzer
JPH11106977A (en) 1997-09-30 1999-04-20 Asahi Glass Co Ltd Bipolar type ion exchange membrane electrolytic cell
JP4007565B2 (en) 1998-05-11 2007-11-14 クロリンエンジニアズ株式会社 Ion exchange membrane electrolytic cell

Also Published As

Publication number Publication date
ES2211188T3 (en) 2004-07-01
ID29184A (en) 2001-08-09
DE19850071A1 (en) 2000-05-04
AR018966A1 (en) 2001-12-12
HUP0104430A2 (en) 2002-03-28
HUP0104430A3 (en) 2002-05-28
DE59908322D1 (en) 2004-02-19
AU1041100A (en) 2000-05-22
ATE257868T1 (en) 2004-01-15
PL347424A1 (en) 2002-04-08
KR100607632B1 (en) 2006-08-02
BR9914956A (en) 2001-07-24
TW466279B (en) 2001-12-01
CN1324413A (en) 2001-11-28
PL190638B1 (en) 2005-12-30
CN1208501C (en) 2005-06-29
AU763013B2 (en) 2003-07-10
PT1133587E (en) 2004-05-31
CZ20011503A3 (en) 2001-12-12
NO20012056L (en) 2001-04-26
EP1133587A1 (en) 2001-09-19
US6596136B1 (en) 2003-07-22
CA2348394A1 (en) 2000-05-11
WO2000026442A1 (en) 2000-05-11
NO20012056D0 (en) 2001-04-26
KR20010080352A (en) 2001-08-22
JP2002528648A (en) 2002-09-03

Similar Documents

Publication Publication Date Title
EP0717130B1 (en) Pressure compensated electrochemical cell
EP0902847B1 (en) Electrochemical half-cell with pressure compensation
DE3030324A1 (en) DEVICE FOR PRODUCING SODIUM HYPOCHLORITE
EP1133587B1 (en) Membrane electrolytic cell with active gas/liquid separation
EP0872578B1 (en) Electrochemical half-cell
DE2430444A1 (en) BIPOLAR ELECTROLYSIS CELLS WITH PERFORATED METAL LANODES
DE102006028168A1 (en) Apparatus for electrochemical water treatment
DE2059868B2 (en) Electrode plate to be arranged vertically for gas-forming electrolysis
EP3688206B1 (en) Electrolysis device
DD297191A5 (en) FRAME FOR FILTER PRESSURE TYPE ELECTROLYSIS AND MONOPOLAR ELECTROLYSIS TYPE FILTER PRESSURE TYPE
EP0051764B1 (en) Hydrochloric-acid electrolytic cell for the manufacture of chlorine and hydrogen
DE2845832A1 (en) DEVICE FOR DIAPHRAGMA ELECTROLYSIS
DE3434328A1 (en) METHOD FOR GALVANICALLY SEPARATING THE ELECTROLYTE LEADING CABLES FROM THE ELECTROLYE DREAMS OF AN ELECTROCHEMICAL CELL PACKAGE
DE2255741C3 (en) Diaphragm series electrolyzer
DE2430915C3 (en) Electrolysis cell and electrolysis process
DE4224492C1 (en) Apparatus for the electrolytic treatment of liquids with an anode and a cathode chamber and their use
DE953161C (en) Processes and devices for the electrolysis of aqueous alkali chloride solutions
DE1671460A1 (en) Electrolizer with hard electrodes
DE1956441A1 (en) Chlorine cell
DE1467215C (en) Electrolysis cell for the electrolysis of alkali salts according to the amalgam process
AT85070B (en) Improvement in electrolytic cells.
DD279274A1 (en) PARTICULAR BIPOLAR MULTIPLE CELL FOR CARRYING OUT GAS DEVELOPMENT OF ELECTROCHEMICAL PROCESSES
DE2533739A1 (en) ELECTROLYSIS PROCESS, IN PARTICULAR ELECTROLYSIS OF A CHLORINE-ALKALINE SOLUTION, AND ELECTROLYSIS CELL FOR CARRYING OUT THE PROCESS
DE2624553A1 (en) ELECTROLYSIS CELL AND ELECTROLYSIS PROCEDURE
DE1467215A1 (en) Process for the electrolysis of alkali chlorides using the mercury process and an electrolysis cell for this process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20011015

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CFE S.P.A.

Owner name: BAYER AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UHDENORA TECHNOLOGIES S.R.L

Owner name: BAYER AKTIENGESELLSCHAFT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UHDENORA TECHNOLOGIES S.R.L

Owner name: BAYER AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: RO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040114

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040114

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59908322

Country of ref document: DE

Date of ref document: 20040219

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20040400869

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040408

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2211188

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20041027

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041015

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20081013

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20081002

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20110928

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111020

Year of fee payment: 13

Ref country code: BE

Payment date: 20111012

Year of fee payment: 13

Ref country code: ES

Payment date: 20111021

Year of fee payment: 13

BERE Be: lapsed

Owner name: *BAYER A.G.

Effective date: 20121031

Owner name: *UHDENORA TECHNOLOGIES S.R.L

Effective date: 20121031

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20130422

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130422

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59908322

Country of ref document: DE

Representative=s name: FELDHUES, MICHAEL, DIPL.-CHEM. DR.RER.NAT., DE

REG Reference to a national code

Ref legal event code: R082

Ref document number: 59908322

Country of ref document: DE

Representative=s name: LEVPAT, DE

Ref country code: DE

Effective date: 20140318

Ref country code: DE

Ref legal event code: R082

Ref document number: 59908322

Country of ref document: DE

Representative=s name: FELDHUES, MICHAEL, DIPL.-CHEM. DR.RER.NAT., DE

Effective date: 20140318

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908322

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNERS: PHENOLCHEMIE GMBH & CO. KG, 45966 GLADBECK, DE; BAYER MATERIALSCIENCE AKTIENGESELLSCHAFT, 51373 LEVERKUSEN, DE

Effective date: 20140318

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908322

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNERS: PHENOLCHEMIE GMBH & CO. KG, 45966 GLADBECK, DE; BAYER MATERIALSCIENCE AKTIENGESELLSCHAFT, 51373 LEVERKUSEN, DE

Effective date: 20140318

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908322

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNER: PHENOLCHEMIE GMBH & CO. KG, BAYER MATERIALSCIENCE AKTIENGES, , DE

Effective date: 20140318

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908322

Country of ref document: DE

Owner name: PHENOLCHEMIE GMBH & CO. KG, DE

Free format text: FORMER OWNER: PHENOLCHEMIE GMBH & CO. KG, BAYER MATERIALSCIENCE AKTIENGES, , DE

Effective date: 20140318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121021

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150604 AND 20150610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59908322

Country of ref document: DE

Representative=s name: LEVPAT, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59908322

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908322

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNERS: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE; PHENOLCHEMIE GMBH & CO. KG, 45966 GLADBECK, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908322

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNERS: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE; PHENOLCHEMIE GMBH & CO. KG, 45966 GLADBECK, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908322

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMB, PHENOLCHEMIE GMBH & CO. KG, , DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908322

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151014

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20151013

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171018

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171024

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59908322

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020