EP1132700A1 - Process and apparatus for air separation by cryogenic distillation - Google Patents

Process and apparatus for air separation by cryogenic distillation Download PDF

Info

Publication number
EP1132700A1
EP1132700A1 EP01400413A EP01400413A EP1132700A1 EP 1132700 A1 EP1132700 A1 EP 1132700A1 EP 01400413 A EP01400413 A EP 01400413A EP 01400413 A EP01400413 A EP 01400413A EP 1132700 A1 EP1132700 A1 EP 1132700A1
Authority
EP
European Patent Office
Prior art keywords
column
air
fraction
oxygen
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01400413A
Other languages
German (de)
French (fr)
Other versions
EP1132700B1 (en
Inventor
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1132700A1 publication Critical patent/EP1132700A1/en
Application granted granted Critical
Publication of EP1132700B1 publication Critical patent/EP1132700B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/0466Producing crude argon in a crude argon column as a parallel working rectification column or auxiliary column system in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Definitions

  • the present invention relates to a method and an installation for air separation by cryogenic distillation, and in particular a production process pressurized gaseous oxygen and optionally nitrogen gas using a single column.
  • EP-A-0584420 relates to a simple column which produces oxygen and nitrogen with overhead condenser and two reboilers operating at between 5 and 20 bars. A reboilers is heated with compressed nitrogen at room temperature and then cooled.
  • EP-B-0 606 027 also describes a single column process for produce oxygen and / or nitrogen under pressure as well as at least one product liquid. Such a process is not interesting if one does not wish to produce products liquid. Indeed, the air pressure is eminently a function of the quantity of liquid produced. At zero or low liquid production, the air pressure is less than 3 bar abs, which poses problems in terms of the design of purification in mind, which requires an enormous amount of absorbent, making this process uneconomic.
  • the US-A-5794458 also describes a single column air distillation process. The main criticism that can be made of such a scheme is that it includes a compressor cold compressing a fluid very rich in oxygen. Furthermore, conventionally, the air compression is carried out in one or more compressors operating at the ambient temperature.
  • DE-A-1199293 describes a process for the distillation of air according to the preamble to the claim 1 wherein an air flow is separated into a single column and a liquid oxygen flow is withdrawn from the bottom of the column and vaporized by exchange of heat with compressed cycle nitrogen flow in a cold compressor.
  • a part compressed nitrogen in the cold compressor at between 30 and 40 atma is used to reboil the single column. In this case it is necessary to heat the nitrogen to compress it before cooling it and liquefying it against the oxygen which vaporizes. This is costly in energy and complicates the construction of the exchangers.
  • US-A-5475980 describes a double column process for distillation air which in an original way proposes to compress part of the air necessary for the distillation in a cold compressor.
  • the disadvantage of such a solution is the complexity of the exchange line from which the cold fluid to be compressed is extracted before there reintroduce.
  • a cold compressor compresses a fluid whose oxygen content does not not exceed 30 mol%.
  • Another advantage of such a scheme is that it is better in energy as the diagram described in US Patent 5,794,458 because the turbine of the invention being on a fluid entering the cold box and not a fluid leaving the cold box, the amount of heat exchanged in the main exchanger is much lower, hence less irreversibilities.
  • Another aspect of the invention is to produce oxygen at a pressure higher than the pressure of the single column by compressing a liquid rich in oxygen (either by pump or by hydrostatic head) at a pressure greater than that of the single column and by vaporizing it either by heat exchange indirect in a main exchanger or an external vaporizer, either by direct contact in a mixing column.
  • the ambient temperature is defined by the suction temperature of the main air compressor supplying the separation unit.
  • a separation installation air by distillation in at least a first column this column having a tank reboiler comprising means for sending compressed and purified air to the column, a compressor to compress a gas containing at most 30 mol% oxygen from the column having an inlet temperature of at most 5 ° C plus hot of a column temperature, possibly means to enrich the compressed gas in nitrogen upstream of the reboiler, means for sending the gas compressed to the reboiler, means for returning the compressed gas at least partially condensed in the column reboiler, means for withdrawing an oxygen-enriched liquid from the tank of the first column, means for pressurize it and means for vaporizing the pressurized liquid by heat exchange to form a gaseous product under pressure rich in oxygen, characterized in that it includes means for vaporizing the pressurized liquid by direct heat exchange or indirect and if the exchange is indirect the heat exchange is done with air intended for the first column.
  • FIGS. 1 to 6 are schematic representations of installations according to the invention.
  • the air 1 is compressed in the compressor 3, purified at 5 and divided in two.
  • the fraction 7 is partially cooled in the exchanger 13 and sent to a turbine 15 in which it expands before being sent to the first column 17
  • the rest of the air 9 (around 35%) is boosted in the booster 11 and passes through then the exchanger 13 where it condenses before being sent to the column, after a sub-cooling step in exchanger 35, a few trays above the turbine air injection point 15.
  • the column operates at a pressure between 1.2 and 1.3 bar abs, this process can be used up to pressures of 20 bar abs, preferably less than 10 bar abs.
  • Oxygen 27 is withdrawn from the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
  • Nitrogen 25 from the head of the column heats up in the sub-cooler 35 before being split in half.
  • a portion 31 is sent to the exchanger 13 where it heats up.
  • the rest 29 is sent to compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of the first column 17. There it condenses and is returned to the top of the column to serve as reflux 33.
  • the turbine 15 is coupled to the cold compressor 21.
  • Oxygen 27 is withdrawn from the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
  • the cycle nitrogen to the condenser intermediate 39 and the air 12 to the tank reboiler 19 by adjusting the pressures.
  • a cold booster 21 with several stages in series, each feeding an intermediate or tank vaporizer.
  • the booster cold 21 can have several stages in series each driven by a turbine or combined for example by means of a multiplier with a single turbine.
  • Nitrogen 25 from the head of the column heats up in the sub-cooler 21 before being split in half.
  • a portion 31 is sent to the exchanger 13 where it heats up.
  • the rest 29 is sent to compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of the first column 17 (the pressure could be 4 bar if the nitrogen is sent to the intermediate reboiler). There it condenses and is returned to the top of the column to serve as reflux.
  • the turbine 15 is coupled to the cold compressor 21.
  • Figure 3 shows the case where the pressurized tank oxygen from the column vaporizes by direct heat exchange in a mixing column.
  • the air 1 is compressed in the compressor 3, purified at 5 and divided into two.
  • the fraction 7 is partially cooled in the exchanger 13 and sent to a turbine 15 in which it relaxes before being sent to the first column 17.
  • the rest of air 9 (about 25%) is boosted in the booster 11 and then passes through the exchanger 13.
  • the first column 17 operates at a pressure between 3 and 20 bar.
  • the air flow 9 does not liquefy in the exchanger but is sent in the form carbonated in the tank of the mixing column. So the mixing column operates at a higher pressure than first column 17. We can consider operating both columns at the same pressure or operate the mixing column at the lowest pressure.
  • the mixing column is supplied at the head with oxygen pumped from the tank of the first column 17 but can be supplied at the head by another flow less rich in oxygen than the flow pumped or in the tank by air from a source other than compressor 1.
  • Nitrogen 25 from the head of the column heats up in the sub-cooler 21 before being split in half.
  • a portion 31 is sent to the exchanger 13 where it heats up.
  • the rest 29 is sent to compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of column 17. There it condenses and is returned to the top of the column to serve as reflux.
  • the turbine 15 is coupled to the cold compressor 21.
  • an exchanger 49 heats the pumped oxygen sent to the head of the column mixing 47.
  • the intermediate liquid flow from the mixing column is sent to the column 17 and the impure oxygen 48 withdrawn at the head of this one is sent to the exchanger 13.
  • FIG. 4 illustrates the case where a flow enriched in argon of the column 17 feeds a mixture column 57 having a cooled head condenser 51 by an intermediate liquid from the first column 17. A fluid enriched in argon is withdrawn at the head of the mixture column 57.
  • Nitrogen 25 from the head of the column heats up in the sub-cooler 21 before being split in half.
  • a portion 31 is sent to the exchanger 13 where it heats up.
  • the rest 29 is sent to compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of the first column 17. There it condenses and is returned to the top of the column to serve reflux.
  • the turbine 15 is coupled to the cold compressor 21.
  • Oxygen 27 is withdrawn from the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
  • Figure 5 shows a Etienne 67 column supplied to the tank by a flow liquid drawn off a few trays below the air injection point 9 and at the same level that the blown air 7. This liquid is pressurized by the pump 63 before being sent to the Etienne column. The liquid formed at the top of the Etienne 67 column is sent in head of the first column 17.
  • the Etienne column operating at 2.5 bar has an overhead condenser 61 cooled by part of the tank liquid 65 from the same column, the rest of the liquid being sent to column 17 below the point of injection of the blown air 7.
  • the expanded liquid vaporizes in the condenser 61 before being sent some trays above the condenser 19 of column 17.
  • Nitrogen 25 from the head of the column heats up in the sub-cooler 21 before being split in half.
  • a portion 31 is sent to the exchanger 13 where it heats up.
  • the rest 29 is sent to compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to reboilers 19.69 columns 17.67 respectively.
  • reboilers 19.69 columns 17.67 respectively.
  • the turbine 15 is coupled to the compressor cold 21.
  • Oxygen 27 is withdrawn from the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
  • an air flow 7 is expanded in a turbine 15 and sent to the middle of the first column 19 operating between 1.5 and 20 bar.
  • a gas 25 of the first column is heated in the sub-cooler 35, compressed in the cold compressor 21 and sent as the sole supply to the tank of a second column 77, operating at higher pressure than the first column.
  • the head of the second column 77 is connected with the tank of the first column 17 by means of a reboiler 19.
  • a flow rate liquid nitrogen 78 is withdrawn at the head of the second column.
  • the air flow 9 is overpressed and used to vaporize liquid oxygen.
  • the compressed gas in the cold compressor 21 is enriched with nitrogen before to be sent to reboiler 19.
  • Other means of enrichment, such as membrane can be provided.
  • the liquid in the second column is expanded and sent to the first column at the gas withdrawal level 25 to be compressed in the cold compressor 21.
  • a gas 31 richer in nitrogen than gas 25 is withdrawn from the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Air is compressed, purified and sent (7, 9) to sections of a first column, to be separated at cryogenic temperatures. At least part of a fraction (25) containing at most 30 mole% of oxygen extracted from the column, is sent for compression (21); the compressor inlet temperature being below ambient. At least part of the fraction compressed, is cooled and condensed, simultaneously vaporizing an internal fluid or extract from the first column, possibly after nitrogen enrichment. A liquid fraction (33) rich in oxygen is extracted from the first column, and pressurized to exceed column (17) pressure. It is vaporized by direct or indirect heat exchange with part of the air (7, 9) feed, to form a gaseous product under pressure, which is rich in oxygen. An Independent claim is included for the corresponding plant, in which the pressurized liquid is vaporized by heat exchange in direct or indirect mode. In the case of direct heat exchange, this is made with air (9) sent to the first column. Preferred features: The compressed fraction (25) contains at most 19 mole% of oxygen and at least 81 mole% of nitrogen. At least part (7) of the air is let down in a turbine (15) before sending it to the first column. Work output in this stage, partially compresses the fraction containing at least 30% of oxygen in one or more stages of compression. At least a part of the air (9) is compressed to high pressure, condensed and sent to the first column. A fraction of the air which is not let down, is condensed, simultaneously vaporizing an internal fluid or material extracted from the first column. Further variants based on the foregoing principles are described. At least a fraction of the air sent to a column of the plant, comes from the compressor of a gas turbine and/or a gas enriched with nitrogen from the first column is returned to the gas turbine system. The inlet pressure of the gas turbine exceeds 15 bar absolute. The inlet temperature of the cold compressor (21) is below -100 to -150 degrees C. The final product is liquid or otherwise. The compressed fraction condenses at least partially in the internal reboiler (19) of the first column. The fraction compressed becomes enriched in nitrogen in a second distillation column connected for heat exchange, with the first.

Description

La présente invention est relative à un procédé et une installation de séparation d'air par distillation cryogénique, et en particulier un procédé de production d'oxygène gazeux sous pression et éventuellement d'azote gazeux utilisant une simple colonne.The present invention relates to a method and an installation for air separation by cryogenic distillation, and in particular a production process pressurized gaseous oxygen and optionally nitrogen gas using a single column.

Depuis le début du siècle, la distillation de l'air est pratiquée dans une double colonne comportant une colonne moyenne pression et une colonne basse pression reliées par un échangeur de chaleur.Since the beginning of the century, air distillation has been practiced in a double column comprising a medium pressure column and a low pressure column connected by a heat exchanger.

Des solutions ont été proposées dans différents brevets pour réduire le nombre de colonnes de deux à une.Solutions have been proposed in various patents to reduce the number of columns from two to one.

Le brevet US-A- 4947649 décrit une solution où l'on comprime de l'air pour l'introduire au moins partiellement dans une simple colonne. Une telle solution n'est applicable que si l'on veut produire de l'azote à une pression sensiblement plus haute que la pression atmosphérique, notamment dans le cas d'une intégration avec une turbine à gaz. A l'inverse si la pression de l'air fourni par le compresseur de la turbine à gaz est très élevée, il est peu recommandable d'utiliser ce procédé car la distillation sous haute pression (pression supérieure à 15 bars) est très difficile et pose des problèmes technologiques non négligeables lorsque l'on se rapproche de la pression supercritique de l'azote (33 bar). L'autre inconvénient du cycle décrit dans ce brevet est que l'on produit l'oxygène gazeux à la même pression que l'air envoyé à la simple colonne.US Pat. No. 4,947,649 describes a solution in which air is compressed for introduce it at least partially in a simple column. Such a solution is not applicable only if one wants to produce nitrogen at a significantly higher pressure than atmospheric pressure, especially in the case of integration with a gas turbine. Conversely if the air pressure supplied by the turbine compressor gas is very high, it is not advisable to use this process because the distillation under high pressure (pressure above 15 bar) is very difficult and poses significant technological problems when you get closer to the pressure supercritical nitrogen (33 bar). The other disadvantage of the cycle described in this patent is that we produce oxygen gas at the same pressure as the air sent to the simple column.

EP-A-0584420 concerne une simple colonne qui produit de l'oxygène et de l'azote avec condenseur de tête et deux rebouilleurs opérant à entre 5 et 20 bars. Un des rebouilleurs est chauffé avec de l'azote comprimé à température ambiante et ensuite refroidi.EP-A-0584420 relates to a simple column which produces oxygen and nitrogen with overhead condenser and two reboilers operating at between 5 and 20 bars. A reboilers is heated with compressed nitrogen at room temperature and then cooled.

Le brevet EP-B-0 606 027 décrit aussi un procédé à simple colonne pour produire de l'oxygène et/ou de l'azote sous pression ainsi qu'au moins un produit liquide. Un tel procédé n'est pas intéressant si l'on ne désire pas produire des produits liquide. En effet, la pression d'air est éminemment fonction de la quantité de liquide produite. A production de liquide nulle ou faible, la pression d'air est inférieure à 3 bar abs, ce qui pose des problèmes au niveau de la conception de l'épuration en tête, qui nécessite une quantité énorme d'absorbant, rendant ce procédé non économique. Le brevet US-A-5794458 décrit aussi un procédé de distillation d'air à simple colonne. Le principal reproche que l'on peut faire à un tel schéma est qu'il comporte un compresseur froid comprimant un fluide très riche en oxygène. Par ailleurs, de manière classique, la compression de l'air est réalisée dans un ou plusieurs compresseurs fonctionnant à la température ambiante.EP-B-0 606 027 also describes a single column process for produce oxygen and / or nitrogen under pressure as well as at least one product liquid. Such a process is not interesting if one does not wish to produce products liquid. Indeed, the air pressure is eminently a function of the quantity of liquid produced. At zero or low liquid production, the air pressure is less than 3 bar abs, which poses problems in terms of the design of purification in mind, which requires an enormous amount of absorbent, making this process uneconomic. The US-A-5794458 also describes a single column air distillation process. The main criticism that can be made of such a scheme is that it includes a compressor cold compressing a fluid very rich in oxygen. Furthermore, conventionally, the air compression is carried out in one or more compressors operating at the ambient temperature.

DE-A-1199293 décrit un procédé de distillation d'air selon le préambule de la revendication 1 dans lequel un débit d'air est séparé dans une simple colonne et un débit d'oxygène liquide est soutiré en cuve de la colonne et vaporisé par échange de chaleur avec un débit d'azote de cycle comprimé dans un compresseur froid. Une partie de l'azote comprimé dans le compresseur froid à entre 30 et 40 atma sert à rebouillir la simple colonne. Dans ce cas il est nécessaire de réchauffer l'azote pour le comprimer avant de le refroidir et le liquéfier contre l'oxygène qui se vaporise. Ceci est coûteux en énergie et complique la construction des échangeurs.DE-A-1199293 describes a process for the distillation of air according to the preamble to the claim 1 wherein an air flow is separated into a single column and a liquid oxygen flow is withdrawn from the bottom of the column and vaporized by exchange of heat with compressed cycle nitrogen flow in a cold compressor. A part compressed nitrogen in the cold compressor at between 30 and 40 atma is used to reboil the single column. In this case it is necessary to heat the nitrogen to compress it before cooling it and liquefying it against the oxygen which vaporizes. This is costly in energy and complicates the construction of the exchangers.

Le brevet US-A- 5475980 décrit un procédé à double colonne pour la distillation d'air qui de manière originale propose de comprimer une partie de l'air nécessaire à la distillation dans un compresseur froid. L'inconvénient d'une telle solution est la complexité de la ligne d'échange d'où l'on extrait le fluide froid à comprimer avant de l'y réintroduire.US-A-5475980 describes a double column process for distillation air which in an original way proposes to compress part of the air necessary for the distillation in a cold compressor. The disadvantage of such a solution is the complexity of the exchange line from which the cold fluid to be compressed is extracted before there reintroduce.

Dans les procédés de distillation d'air selon l'invention utilisant une simple colonne, un compresseur froid comprime un fluide dont la teneur en oxygène ne dépasse pas 30 % molaires. Un autre avantage d'un tel schéma est qu'il est meilleur en énergie que le schéma décrit dans le brevet US 5794458 car la turbine de l'invention étant sur un fluide entrant dans la boíte froide et non un fluide sortant de la boíte froide, la quantité de chaleur échangée dans l'échangeur principal est nettement inférieure d'où des irréversibilités moindres. Un autre aspect de l'invention est de produire de l'oxygène à une pression supérieure à la pression de la simple colonne en comprimant un liquide riche en oxygène (soit par pompe, soit par hauteur hydrostatique) à une pression supérieure à celle de la simple colonne et en le vaporisant soit par échange de chaleur indirect dans un échangeur principal ou un vaporiseur extérieur, soit par contact direct dans une colonne de mélange. Enfin, la coproduction de produits liquides en plus des produits gazeux n'est pas nécessaire pour rendre ce procédé attractif même si elle est possible.In the air distillation processes according to the invention using a simple column, a cold compressor compresses a fluid whose oxygen content does not not exceed 30 mol%. Another advantage of such a scheme is that it is better in energy as the diagram described in US Patent 5,794,458 because the turbine of the invention being on a fluid entering the cold box and not a fluid leaving the cold box, the amount of heat exchanged in the main exchanger is much lower, hence less irreversibilities. Another aspect of the invention is to produce oxygen at a pressure higher than the pressure of the single column by compressing a liquid rich in oxygen (either by pump or by hydrostatic head) at a pressure greater than that of the single column and by vaporizing it either by heat exchange indirect in a main exchanger or an external vaporizer, either by direct contact in a mixing column. Finally, the co-production of liquid products in addition to gaseous products is not necessary to make this process attractive even if it is possible.

La température ambiante est définie par la température à l'aspiration du compresseur d'air principal d'alimentation de l'unité de séparation. The ambient temperature is defined by the suction temperature of the main air compressor supplying the separation unit.

Selon l'invention, il est prévu un procédé de séparation de l'air par distillation cryogénique comprenant les étapes de :

  • comprimer de l'air, l'épurer et en envoyer au moins une partie à une première (la) colonne ;
  • séparer à température cryogénique de l'air dans la colonne ;
  • comprimer au moins une partie d'une fraction contenant au plus 30 % molaires d'oxygène extraite de la colonne dans un compresseur dont la température d'aspiration est inférieure à la température ambiante ;
  • refroidir au moins partiellement ladite fraction comprimée et la condenser en vaporisant un fluide interne ou extrait de la première colonne, et éventuellement après l'avoir enrichie en azote ; et,
  • extraire une fraction liquide riche en oxygène de la première colonne, la pressuriser à une pression supérieure à celle de la colonne et la vaporiser par échange de chaleur direct ou indirect avec une partie de l'air d'alimentation pour former un produit gazeux sous pression riche en oxygène.
According to the invention, there is provided a method for separating air by cryogenic distillation comprising the steps of:
  • compress air, purify it and send at least part of it to a first column;
  • separate at cryogenic temperature the air in the column;
  • compressing at least part of a fraction containing at most 30 mol% of oxygen extracted from the column in a compressor whose suction temperature is lower than ambient temperature;
  • at least partially cooling said compressed fraction and condensing it by vaporizing an internal fluid or extract from the first column, and possibly after having enriched it with nitrogen; and,
  • extract an oxygen-rich liquid fraction from the first column, pressurize it to a pressure higher than that of the column and vaporize it by direct or indirect heat exchange with part of the supply air to form a gaseous product under pressure rich in oxygen.

Selon d'autres aspects de l'invention :

  • on soutire un produit gazeux riche an azote en tête de la première (la) colonne ;
  • on comprime une fraction contenant au plus 30 % molaires d'oxygène extraite de la colonne dans un compresseur dont la température d'aspiration est inférieure à la température ambiante à une pression inférieure à 30 bar ab ;
  • la pression de la première (la) colonne est entre 1,3 et 20 bar abs, de préférence entre 3 et 10 bar abs;
  • la fraction comprimée contient au plus 19% molaires d'oxygène et au moins 81% molaires d'azote, de préférence au moins 90% molaires d'azote ;
  • au moins une partie de l'air est détendue dans une turbine avant de l'envoyer à la première (la) colonne ;
  • la production de travail par la détente d'au moins une partie de l'air sert au moins partiellement à comprimer la fraction contenant au plus 30 % d'oxygène en un ou plusieurs étage(s) de compression ;
  • au moins une partie de l'air est comprimée à une haute pression, condensée et envoyée à la première (la ) colonne ;
  • une partie non-détendue de l'air est condensée en vaporisant un fluide interne ou extrait de la première colonne (Fig. 2) ;
  • la vaporisation de la fraction liquide riche en oxygène s'effectue par contact direct dans une colonne auxiliaire dite de mélange (Fig. 3);
  • une colonne auxiliaire destinée à la production d'argon est alimentée à partir de la première colonne (Fig. 4) ;
  • on distille dans une colonne auxiliaire un liquide enrichi en oxygène extrait de la simple colonne pour produire une fraction plus riche en oxygène et une fraction appauvrie en oxygène réintroduites dans la première colonne (Fig. 5) ;
  • au moins une partie de l'air destiné à une colonne de l'appareil vient du compresseur d'une turbine à gaz et/ou un gaz enrichi en azote provenant de la première (la) colonne est renvoyé au système de la turbine à gaz ;
  • la pression d'entrée de la turbine à gaz est supérieure à 15 bar abs ;
  • la pureté de l'oxygène gazeux produit est au moins 80% molaires, de préférence au moins 90% molaires ;
  • la température d'aspiration du compresseur froid est inférieure à -100 °C ou de préférence inférieure à -150 °C ;
  • on produit ou on ne produit pas de liquide comme produit final ;
  • la fraction comprimée se condense au moins partiellement dans le rebouilleur de cuve de la première (la) colonne ;
  • le débit d'air qui sert à vaporiser le liquide riche en oxygène se condense au moins partiellement et est envoyé à la première colonne ;
  • la fraction comprimée s'enrichit en azote dans une colonne de distillation reliée thermiquement avec la première colonne.
According to other aspects of the invention:
  • a nitrogen-rich gas product is drawn off at the head of the first column;
  • a fraction containing at most 30 mol% of oxygen extracted from the column is compressed in a compressor whose suction temperature is lower than ambient temperature at a pressure below 30 bar ab;
  • the pressure of the first column is between 1.3 and 20 bar abs, preferably between 3 and 10 bar abs;
  • the compressed fraction contains at most 19 mol% of oxygen and at least 81 mol% of nitrogen, preferably at least 90 mol% of nitrogen;
  • at least part of the air is expanded in a turbine before sending it to the first (the) column;
  • the production of work by the expansion of at least part of the air is used at least partially to compress the fraction containing at most 30% oxygen in one or more compression stage (s);
  • at least part of the air is compressed to a high pressure, condensed and sent to the first column;
  • a non-relaxed part of the air is condensed by vaporizing an internal fluid or extracted from the first column (Fig. 2);
  • the vaporization of the oxygen-rich liquid fraction is vaporized by direct contact in an auxiliary column called the mixing column (Fig. 3);
  • an auxiliary column intended for the production of argon is supplied from the first column (Fig. 4);
  • an oxygen-enriched liquid extracted from the single column is distilled in an auxiliary column to produce a fraction richer in oxygen and a fraction depleted in oxygen reintroduced into the first column (Fig. 5);
  • at least part of the air intended for a column of the appliance comes from the compressor of a gas turbine and / or a nitrogen-enriched gas coming from the first column is returned to the gas turbine system ;
  • the inlet pressure of the gas turbine is greater than 15 bar abs;
  • the purity of the gaseous oxygen produced is at least 80 mol%, preferably at least 90 mol%;
  • the suction temperature of the cold compressor is less than -100 ° C or preferably less than -150 ° C;
  • one produces or does not produce liquid as final product;
  • the compressed fraction at least partially condenses in the bottom reboiler of the first column;
  • the air flow which is used to vaporize the oxygen-rich liquid at least partially condenses and is sent to the first column;
  • the compressed fraction is enriched in nitrogen in a distillation column thermally connected with the first column.

Selon un autre aspect de l'invention, il est prévu une installation de séparation d'air par distillation dans au moins une première colonne, cette colonne ayant un rebouilleur de cuve comprenant des moyens pour envoyer de l'air comprimé et épuré à la colonne, un compresseur pour comprimer un gaz contenant au plus 30% molaires d'oxygène provenant de la colonne ayant une température d'entrée au plus 5°C plus chaude d'une température de la colonne, éventuellement des moyens pour enrichir le gaz comprimé en azote en amont du rebouilleur, des moyens pour envoyer le gaz comprimé au rebouilleur de cuve, des moyens pour renvoyer le gaz comprimé au moins partiellement condensé dans le rebouilleur de cuve à la colonne, des moyens pour soutirer un liquide enrichi en oxygène en cuve de la première colonne, des moyens pour le pressuriser et des moyens pour vaporiser le liquide pressurisé par échange de chaleur pour former un produit gazeux sous pression riche en oxygène caractérisé en ce qu'il comprend des moyens pour vaporiser le liquide pressurisé par échange de chaleur direct ou indirect et si l'échange est indirect l'échange de chaleur se fait avec de l'air destiné à la première colonne.According to another aspect of the invention, there is provided a separation installation air by distillation in at least a first column, this column having a tank reboiler comprising means for sending compressed and purified air to the column, a compressor to compress a gas containing at most 30 mol% oxygen from the column having an inlet temperature of at most 5 ° C plus hot of a column temperature, possibly means to enrich the compressed gas in nitrogen upstream of the reboiler, means for sending the gas compressed to the reboiler, means for returning the compressed gas at least partially condensed in the column reboiler, means for withdrawing an oxygen-enriched liquid from the tank of the first column, means for pressurize it and means for vaporizing the pressurized liquid by heat exchange to form a gaseous product under pressure rich in oxygen, characterized in that it includes means for vaporizing the pressurized liquid by direct heat exchange or indirect and if the exchange is indirect the heat exchange is done with air intended for the first column.

Selon d'autres aspects inventifs :

  • l'appareil comprend une turbine alimentée par de l'air et la sortie de la turbine est reliée à la première colonne;
  • le liquide pressurisé se vaporise dans une colonne de mélange ;
  • l'appareil comprend une colonne de production d'argon alimentée à partir de la première colonne ayant un rebouilleur de cuve ;
  • la colonne ayant un rebouilleur de cuve a au moins un condenseur intermédiaire ;
  • la colonne ayant un rebouilleur de cuve n'a pas de condenseur de tête
  • il y a une deuxième colonne reliée thermiquement avec la première colonne, éventuellement comprenant des moyens pour envoyer le gaz de tête de la deuxième colonne au rebouilleur de cuve (19).
  • il y a des moyens pour envoyer le gaz comprimé dans le compresseur (21) en cuve de a deuxième colonne.
According to other inventive aspects:
  • the apparatus comprises a turbine supplied with air and the outlet of the turbine is connected to the first column;
  • the pressurized liquid vaporizes in a mixing column;
  • the apparatus comprises an argon production column supplied from the first column having a tank reboiler;
  • the column having a tank reboiler has at least one intermediate condenser;
  • the column having a tank reboiler does not have an overhead condenser
  • there is a second column thermally connected with the first column, possibly comprising means for sending the overhead gas from the second column to the tank reboiler (19).
  • there are means for sending the compressed gas into the compressor (21) in the tank of a second column.

L'invention sera maintenant décrite en se référant aux figures 1 à 6 qui sont des représentations schématiques d'installations selon l'invention.The invention will now be described with reference to FIGS. 1 to 6 which are schematic representations of installations according to the invention.

Dans la figure 1, l'air 1 est comprimé dans le compresseur 3, épuré en 5 et divisé en deux. La fraction 7 est partiellement refroidie dans l'échangeur 13 et envoyée à une turbine 15 dans laquelle elle se détend avant d'être envoyée à la première colonne 17.Le reste de l'air 9 (environ 35%) est surpressé dans le surpresseur 11 et traverse ensuite l'échangeur 13 où il se condense avant d'être envoyé à la colonne, après une étape de sous-refroidissement dans l'échangeur 35, quelques plateaux au-dessus du point d'injection de l'air de la turbine 15. La colonne opère à une pression d'entre 1.2 et 1.3 bar abs, ce procédé pouvant être utilisé jusqu'à des pressions de 20 bar abs, de préférence inférieures à 10 bar abs . In FIG. 1, the air 1 is compressed in the compressor 3, purified at 5 and divided in two. The fraction 7 is partially cooled in the exchanger 13 and sent to a turbine 15 in which it expands before being sent to the first column 17 The rest of the air 9 (around 35%) is boosted in the booster 11 and passes through then the exchanger 13 where it condenses before being sent to the column, after a sub-cooling step in exchanger 35, a few trays above the turbine air injection point 15. The column operates at a pressure between 1.2 and 1.3 bar abs, this process can be used up to pressures of 20 bar abs, preferably less than 10 bar abs.

De l'oxygène 27 est soutiré en cuve de la colonne, pressurisé par la pompe 23 et envoyé à l'échangeur 13 où il se vaporise.Oxygen 27 is withdrawn from the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.

De l'azote 25 de la tête de la colonne se réchauffe dans le sous-refroidisseur 35 avant d'être divisé en deux. Une partie 31 est envoyé à l'échangeur 13 où il se réchauffe. Le reste 29 est envoyé au compresseur 21 avec une température d'entrée de -182 °C où il est comprimé à 4.9 bar avant d'être envoyé au rebouilleur de cuve 19 de la première colonne 17. Là il se condense et est renvoyé en tête de la colonne pour servir de reflux 33. La turbine 15 est couplée au compresseur froid 21.Nitrogen 25 from the head of the column heats up in the sub-cooler 35 before being split in half. A portion 31 is sent to the exchanger 13 where it heats up. The rest 29 is sent to compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of the first column 17. There it condenses and is returned to the top of the column to serve as reflux 33. The turbine 15 is coupled to the cold compressor 21.

Dans la figure 2 on retrouve les mêmes débits 7,25,27,31 mais seule une partie du débit 7 est envoyée à la turbine 15.Une partie 12 du débit 7 non-surpressé traverse. entièrement l'échangeur et est envoyé à un rebouilleur intermédiaire 39 de la colonne 17. L'air ainsi condensé est envoyé à la colonne avec l'air 9.In Figure 2 we find the same flow rates 7,25,27,31 but only a part of the flow 7 is sent to the turbine 15. A part 12 of the non-overpressed flow 7 crosses. fully the exchanger and is sent to an intermediate reboiler 39 of the column 17. The air thus condensed is sent to the column with the air 9.

De l'oxygène 27 est soutiré en cuve de la colonne, pressurisé par la pompe 23 et envoyé à l'échangeur 13 où il se vaporise.Oxygen 27 is withdrawn from the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.

De même on peut envisager d'envoyer l'azote de cycle au condenseur intermédiaire 39 et l'air 12 au rebouilleur de cuve 19 en ajustant les pressions. On pourrait imaginer avoir un booster froid 21 avec plusieurs étages en série, chacun alimentant un vaporiseur intermédiaire ou de cuve. D'une manière générale, le booster froid 21 peut avoir plusieurs étages en série entraíné chacun par une turbine ou combinés par exemple par l'intermédiaire d'un multiplicateur à une seule turbine.Similarly we can consider sending the cycle nitrogen to the condenser intermediate 39 and the air 12 to the tank reboiler 19 by adjusting the pressures. We could imagine having a cold booster 21 with several stages in series, each feeding an intermediate or tank vaporizer. In general, the booster cold 21 can have several stages in series each driven by a turbine or combined for example by means of a multiplier with a single turbine.

De l'azote 25 de la tête de la colonne se réchauffe dans le sous-refroidisseur 21 avant d'être divisé en deux. Une partie 31 est envoyé à l'échangeur 13 où il se réchauffe. Le reste 29 est envoyé au compresseur 21 avec une température d'entrée de -182 °C où il est comprimé à 4.9 bar avant d'être envoyé au rebouilleur de cuve 19 de la première colonne 17 (la pression pourrait être de 4 bar si l'azote est envoyé au rebouilleur intermédiaire). Là il se condense et est renvoyé en tête de la colonne pour servir de reflux. La turbine 15 est couplé au compresseur froid 21.Nitrogen 25 from the head of the column heats up in the sub-cooler 21 before being split in half. A portion 31 is sent to the exchanger 13 where it heats up. The rest 29 is sent to compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of the first column 17 (the pressure could be 4 bar if the nitrogen is sent to the intermediate reboiler). There it condenses and is returned to the top of the column to serve as reflux. The turbine 15 is coupled to the cold compressor 21.

La figure 3 montre le cas où l'oxygène de cuve pressurisé de la colonne se vaporise par échange de chaleur direct dans une colonne de mélange.Figure 3 shows the case where the pressurized tank oxygen from the column vaporizes by direct heat exchange in a mixing column.

L'air 1 est comprimé dans le compresseur 3, épuré en 5 et divisé en deux. La fraction 7 est partiellement refroidie dans l'échangeur 13 et envoyée à une turbine 15 dans laquelle elle se détend avant d'être envoyée à la première colonne 17.Le reste de l'air 9 (environ 25%) est surpressé dans le surpresseur 11 et traverse ensuite l'échangeur 13. La première colonne 17 opère à une pression d'entre 3 et 20 bar.The air 1 is compressed in the compressor 3, purified at 5 and divided into two. The fraction 7 is partially cooled in the exchanger 13 and sent to a turbine 15 in which it relaxes before being sent to the first column 17. The rest of air 9 (about 25%) is boosted in the booster 11 and then passes through the exchanger 13. The first column 17 operates at a pressure between 3 and 20 bar.

Le débit d'air 9 ne se liquéfie pas dans l'échangeur mais est envoyé sous forme gazeuse en cuve de la colonne de mélange. Ainsi la colonne de mélange opère à une pression plus élevée que la première colonne 17. On peut envisager de faire fonctionner les deux colonnes à la même pression ou de faire fonctionner la colonne de mélange à la pression la plus basse. La colonne de mélange est alimentée en tête par de l'oxygène pompé provenant de la cuve de la première colonne 17 mais peut être alimentée en tête par un autre débit moins riche en oxygène que le débit pompé ou en cuve par de l'air provenant d'une source autre que le compresseur 1.The air flow 9 does not liquefy in the exchanger but is sent in the form carbonated in the tank of the mixing column. So the mixing column operates at a higher pressure than first column 17. We can consider operating both columns at the same pressure or operate the mixing column at the lowest pressure. The mixing column is supplied at the head with oxygen pumped from the tank of the first column 17 but can be supplied at the head by another flow less rich in oxygen than the flow pumped or in the tank by air from a source other than compressor 1.

De l'azote 25 de la tête de la colonne se réchauffe dans le sous-refroidisseur 21 avant d'être divisé en deux. Une partie 31 est envoyé à l'échangeur 13 où il se réchauffe. Le reste 29 est envoyé au compresseur 21 avec une température d'entrée de -182 °C où il est comprimé à 4.9 bar avant d'être envoyé au rebouilleur de cuve 19 de la colonne 17. Là il se condense et est renvoyé en tête de la colonne pour servir de reflux. La turbine 15 est couplé au compresseur froid 21.Nitrogen 25 from the head of the column heats up in the sub-cooler 21 before being split in half. A portion 31 is sent to the exchanger 13 where it heats up. The rest 29 is sent to compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of column 17. There it condenses and is returned to the top of the column to serve as reflux. The turbine 15 is coupled to the cold compressor 21.

Ici un échangeur 49 réchauffe l'oxygène pompé envoyé en tête de la colonne de mélange 47. Le débit liquide intermédiaire de la colonne de mélange est envoyé à la colonne 17 et l'oxygène impur 48 soutiré en tête de celle-là est envoyé à l'échangeur 13.Here an exchanger 49 heats the pumped oxygen sent to the head of the column mixing 47. The intermediate liquid flow from the mixing column is sent to the column 17 and the impure oxygen 48 withdrawn at the head of this one is sent to the exchanger 13.

La version de la figure 4 illustre le cas où un débit enrichi en argon de la colonne 17 alimente une colonne de mixture 57 ayant un condenseur de tète 51 refroidi par un liquide intermédiaire de la première colonne 17. Un fluide enrichi en argon est soutiré en tête de la colonne de mixture 57.The version of Figure 4 illustrates the case where a flow enriched in argon of the column 17 feeds a mixture column 57 having a cooled head condenser 51 by an intermediate liquid from the first column 17. A fluid enriched in argon is withdrawn at the head of the mixture column 57.

De l'azote 25 de la tête de la colonne se réchauffe dans le sous-refroidisseur 21 avant d'être divisé en deux. Une partie 31 est envoyé à l'échangeur 13 où il se réchauffe. Le reste 29 est envoyé au compresseur 21 avec une température d'entrée de -182 °C où il est comprimé à 4.9 bar avant d'être envoyé au rebouilleur de cuve 19 de la première colonne 17. Là il se condense et est renvoyé en tête de la colonne pour servir de reflux. La turbine 15 est couplé au compresseur froid 21.Nitrogen 25 from the head of the column heats up in the sub-cooler 21 before being split in half. A portion 31 is sent to the exchanger 13 where it heats up. The rest 29 is sent to compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of the first column 17. There it condenses and is returned to the top of the column to serve reflux. The turbine 15 is coupled to the cold compressor 21.

De l'oxygène 27 est soutiré en cuve de la colonne, pressurisé par la pompe 23 et envoyé à l'échangeur 13 où il se vaporise.Oxygen 27 is withdrawn from the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.

La figure 5 montre une colonne Etienne 67 alimentée en cuve par un débit liquide soutiré quelques plateaux en dessous du point d'injection de l'air 9 et au même niveau que l'air insufflé 7. Ce liquide est pressurisé par la pompe 63 avant d'être envoyé à la colonne Etienne. Le liquide formé en tête de la colonne Etienne 67 est envoyé en tête de la première colonne 17.Figure 5 shows a Etienne 67 column supplied to the tank by a flow liquid drawn off a few trays below the air injection point 9 and at the same level that the blown air 7. This liquid is pressurized by the pump 63 before being sent to the Etienne column. The liquid formed at the top of the Etienne 67 column is sent in head of the first column 17.

La colonne Etienne opérant à 2.5 bar a un condenseur de tête 61 refroidi par une partie du liquide de cuve 65 de la même colonne, le reste du liquide étant envoyé à la colonne 17en dessous du point d'injection de l'air insufflé 7.The Etienne column operating at 2.5 bar has an overhead condenser 61 cooled by part of the tank liquid 65 from the same column, the rest of the liquid being sent to column 17 below the point of injection of the blown air 7.

Le liquide détendu se vaporise dans le condenseur 61 avant d'être envoyé quelques plateaux au-dessus du condenseur 19 de la colonne 17.The expanded liquid vaporizes in the condenser 61 before being sent some trays above the condenser 19 of column 17.

De l'azote 25 de la tête de la colonne se réchauffe dans le sous-refroidisseur 21 avant d'être divisé en deux. Une partie 31 est envoyé à l'échangeur 13 où il se réchauffe. Le reste 29 est envoyé au compresseur 21 avec une température d'entrée de -182°C où il est comprimé à 4.9 bar avant d'être envoyé au rebouilleurs 19,69 des colonnes 17,67 respectivement. Dans chaque rebouilleur il se condense et est renvoyé en tête de la colonne 17 pour servir de reflux. La turbine 15 est couplé au compresseur froid 21.Nitrogen 25 from the head of the column heats up in the sub-cooler 21 before being split in half. A portion 31 is sent to the exchanger 13 where it heats up. The rest 29 is sent to compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to reboilers 19.69 columns 17.67 respectively. In each reboiler it condenses and is returned at the head of column 17 to serve as reflux. The turbine 15 is coupled to the compressor cold 21.

De l'oxygène 27 est soutiré en cuve de la colonne, pressurisé par la pompe 23 et envoyé à l'échangeur 13 où il se vaporise.Oxygen 27 is withdrawn from the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.

A la figure 6, un débit d'air 7 est détendu dans une turbine 15 et envoyé au milieu de la première colonne 19 opérant entre 1,5 et 20 bar. Un gaz 25 de la première colonne est réchauffé dans le sous refroidisseur 35, comprimé dans le compresseur froid 21 et envoyé comme seule alimentation en cuve d'une deuxième colonne 77, opérant à une pression plus élevée que la première colonne. La tête de la deuxième colonne 77 est reliée avec la cuve de la première colonne 17 au moyen d'un rebouilleur 19. Un débit d'azote liquide 78 est soutiré en tête de la deuxième colonne. Le débit d'air 9 est surpressé et sert à vaporiser l'oxygène liquide.In FIG. 6, an air flow 7 is expanded in a turbine 15 and sent to the middle of the first column 19 operating between 1.5 and 20 bar. A gas 25 of the first column is heated in the sub-cooler 35, compressed in the cold compressor 21 and sent as the sole supply to the tank of a second column 77, operating at higher pressure than the first column. The head of the second column 77 is connected with the tank of the first column 17 by means of a reboiler 19. A flow rate liquid nitrogen 78 is withdrawn at the head of the second column. The air flow 9 is overpressed and used to vaporize liquid oxygen.

Ainsi le gaz comprimé dans le compresseur froid 21 s'enrichit en azote avant d'être envoyé au rebouilleur 19. D'autres moyens d'enrichissement, telle qu'une membrane peuvent être prévus.Thus the compressed gas in the cold compressor 21 is enriched with nitrogen before to be sent to reboiler 19. Other means of enrichment, such as membrane can be provided.

Le liquide de cuve de la deuxième colonne est détendu et envoyé à la première colonne au niveau de soutirage du gaz 25 à comprimer dans le compresseur froid 21. Un gaz 31 plus riche en azote que le gaz 25 est soutiré de l'appareil.The liquid in the second column is expanded and sent to the first column at the gas withdrawal level 25 to be compressed in the cold compressor 21. A gas 31 richer in nitrogen than gas 25 is withdrawn from the device.

Claims (24)

Procédé de séparation de l'air par distillation cryogénique dans un appareil comprenant au moins une colonne (17,47,57,77) comprenant les étapes de : comprimer de l'air, l'épurer et en envoyer au moins une partie (7,9) à une première (la) colonne (17); séparer à température cryogénique de l'air dans la colonne ; comprimer au moins une partie d'une fraction (25) contenant au plus 30 % molaires d'oxygène extraite de la colonne dans un compresseur (21) dont la température d'aspiration est inférieure à la température ambiante ; refroidir au moins partiellement ladite fraction comprimée et la condenser en vaporisant un fluide interne ou extrait de la première colonne ; et éventuellement après l'avoir enrichie en azote, et, extraire une fraction liquide (33) riche en oxygène de la première colonne, la pressuriser à une pression supérieure à celle de la colonne (17) et la vaporiser par échange de chaleur direct ou indirect avec une partie de l'air (7,9) d'alimentation pour former un produit gazeux sous pression riche en oxygène. Method for separating air by cryogenic distillation in an apparatus comprising at least one column (17,47,57,77) comprising the steps of: compress air, purify it and send at least a part (7,9) to a first (the) column (17); separate at cryogenic temperature the air in the column; compressing at least part of a fraction (25) containing at most 30 mol% of oxygen extracted from the column in a compressor (21) whose suction temperature is lower than ambient temperature; at least partially cooling said compressed fraction and condensing it by vaporizing an internal fluid or extract from the first column; and possibly after enriching it with nitrogen, and, extract a liquid fraction (33) rich in oxygen from the first column, pressurize it to a pressure higher than that of the column (17) and vaporize it by direct or indirect heat exchange with part of the air (7,9 ) feed to form a gaseous product under pressure rich in oxygen. Procédé selon la revendication 1 dans lequel la fraction comprimée (25) contient au plus 19% molaires d'oxygène et au moins 81% molaires d'azote.The method of claim 1 wherein the compressed fraction (25) contains at most 19 mol% of oxygen and at least 81 mol% of nitrogen. Procédé selon l'une des revendications 1 et 2 dans lequel au moins une partie (7) de l'air est détendue dans une turbine (15) avant de l'envoyer à la première (la) colonne.Method according to one of claims 1 and 2 wherein at least one part (7) of the air is expanded in a turbine (15) before sending it to the first (the) column. Procédé selon la revendication 3 dans lequel la production de travail par la détente d'au moins une partie de l'air sert au moins partiellement à comprimer la fraction contenant au plus 30 % d'oxygène en un ou plusieurs étage de compression.The method of claim 3 wherein the production of work by the expansion of at least part of the air at least partially serves to compress the fraction containing at most 30% oxygen in one or more compression stages. Procédé selon la revendication 1,2 ,3 ou 4 dans lequel au moins une partie de l'air (9) est comprimée à une haute pression, condensée et envoyée à la première (la) colonne.The method of claim 1,2, 3 or 4 wherein at least one part of the air (9) is compressed to a high pressure, condensed and sent to the first column. Procédé selon la revendication 5 dans lequel une partie non-détendue de l'air est condensée en vaporisant un fluide interne ou extrait de la première colonne (Fig. 1,2). The method of claim 5 in which an unexpanded portion of the air is condensed by vaporizing an internal fluid or extracted from the first column (Fig. 1,2). Procédé selon la revendication 1 à 6 dans lequel la vaporisation de la fraction liquide riche en oxygène s'effectue par contact direct dans une colonne auxiliaire dite de mélange (47)(Fig. 3).The method of claims 1 to 6 wherein the vaporization of the liquid fraction rich in oxygen is carried out by direct contact in an auxiliary column so-called mixing (47) (Fig. 3). Procédé selon l'une des revendications 1 à 7 dans lequel une colonne auxiliaire (57) destinée à la production d'argon est alimentée à partir de la première colonne. (Fig. 4).Method according to one of Claims 1 to 7, in which a column auxiliary (57) intended for the production of argon is supplied from the first column. (Fig. 4). Procédé selon l'une des revendications 1à 8 dans lequel on distille dans une colonne auxiliaire un liquide enrichi en oxygène extrait de la simple colonne pour produire une fraction plus riche en oxygène et une fraction appauvrie en oxygène réintroduites dans la première colonne (Fig. 5).Method according to one of claims 1 to 8 wherein it is distilled in an auxiliary column a liquid enriched in oxygen extracted from the simple column for produce a fraction richer in oxygen and a fraction depleted in oxygen reintroduced into the first column (Fig. 5). Procédé selon l'une des revendications 1 à 9 dans lequel au moins une partie de l'air destiné à une colonne de l'appareil vient du compresseur d'une turbine à gaz et/ou un gaz enrichi en azote provenant de la première (la) colonne est renvoyé au système de la turbine à gaz.Method according to one of Claims 1 to 9, in which at least one part of the air intended for a column of the apparatus comes from the compressor of a turbine gas and / or a nitrogen-enriched gas from the first column is returned to the gas turbine system. Procédé selon la revendication 10 dans lequel la pression d'entrée de la turbine à gaz est supérieure à 15 bar abs.The method of claim 10 wherein the inlet pressure of the gas turbine is greater than 15 bar abs. Procédé selon l'une des revendications 1 à 11 dans lequel la température d'aspiration du compresseur froid (21) est inférieure à -100 °C.Method according to one of claims 1 to 11 wherein the temperature of the cold compressor (21) is less than -100 ° C. Procédé selon la revendication 12 dans lequel la température d'aspiration du compresseur froid (21) est inférieure à -150 °C.The method of claim 12 wherein the suction temperature of the cold compressor (21) is less than -150 ° C. Procédé selon l'une des revendications 1 à 13 dans lequel on produit ou on ne produit pas de liquide (78) comme produit final.Method according to one of claims 1 to 13 wherein one produces or no liquid (78) is produced as the final product. Procédé selon l'une des revendications 1 à 14 dans lequel la fraction comprimée se condense au moins partiellement dans le rebouilleur de cuve (19) de la première (la) colonne.Method according to one of claims 1 to 14 wherein the fraction compressed at least partially condenses in the tank reboiler (19) of the first column. Procédé selon l'une des revendications précédentes dans lequel la fraction comprimée s'enrichit en azote dans une deuxième colonne de distillation (77) reliée thermiquement avec la première colonne (Fig 6).Method according to one of the preceding claims, in which the compressed fraction enriched with nitrogen in a second distillation column (77) thermally connected with the first column (Fig 6). Installation de séparation d'air par distillation dans au moins une première colonne (17) ayant un rebouilleur de cuve (19) comprenant des moyens (7) pour envoyer de l'air comprimé et épuré à la première (la) colonne, un compresseur (21) pour comprimer un gaz (25) contenant au plus 30% molaires d'oxygène provenant de la colonne ayant une température d'entrée au plus 5°C plus chaude d'une température de la première (la) colonne, des moyens pour envoyer le gaz comprimé au rebouilleur de cuve, des moyens (33) pour renvoyer le gaz comprimé au moins partiellement condensé dans le rebouilleur de cuve (19) à la colonne, éventuellement des moyens pour enrichir le gaz comprimé en azote en amont du rebouilleur, des moyens (27) pour soutirer un liquide enrichi en oxygène en cuve de la colonne, des moyens (23) pour le pressuriser et des moyens (13,47) pour vaporiser le liquide pressurisé par échange de chaleur direct ou indirect caractérisé en ce qu'elle comprend des moyens pour vaporiser le liquide pressurisé par échange de chaleur direct ou indirect et si l'échange est indirect l'échange de chaleur se fait avec de l'air (9) destiné à la première colonne.Installation for air separation by distillation in at least a first column (17) having a tank reboiler (19) comprising means (7) for sending compressed and purified air to the first (the) column, a compressor (21) for compressing a gas (25) containing at most 30 mol% of oxygen coming from the column having an inlet temperature at most 5 ° C warmer than a temperature of the first column, means for sending the compressed gas to the tank reboiler, means (33) for returning the compressed gas at least partially condensed in the tank reboiler (19) to the column, possibly means for enriching the compressed gas with nitrogen upstream from the reboiler , means (27) for withdrawing an oxygen-enriched liquid from the bottom of the column, means (23) for pressurizing it and means (13,47) for vaporizing the pressurized liquid by direct or indirect heat exchange, characterized in that that it includes means s to vaporize the pressurized liquid by direct or indirect heat exchange and if the exchange is indirect the heat exchange takes place with air (9) intended for the first column. Installation selon la revendication 17 comprenant une turbine de détente d'air (15) et dans laquelle la sortie de la turbine est reliée à la première (la) colonne.Installation according to claim 17 comprising an expansion turbine air (15) and in which the turbine outlet is connected to the first (the) column. Installation selon une des revendications 17 et 18 dans laquelle le liquide pressurisé se vaporise dans une colonne de mélange (47).Installation according to one of claims 17 and 18 in which the liquid pressurized vaporizes in a mixing column (47). Installation selon une des revendications 17 à 19 comprenant une colonne de production d'argon (57) alimentée à partir de la colonne (17) ayant un rebouilleur de cuve (19).Installation according to one of claims 17 to 19 comprising a column argon production (57) fed from the column (17) having a reboiler tank (19). Installation selon une des revendications 17 à 20 dans laquelle la colonne (17) ayant un rebouilleur de cuve (19) a au moins un condenseur intermédiaire (39).Installation according to one of claims 17 to 20 in which the column (17) having a tank reboiler (19) has at least one intermediate condenser (39). Installation selon une des revendications 17 à 21 dans laquelle la colonne (17) ayant un rebouilleur de cuve (19) n'a pas de condenseur de tête.Installation according to one of claims 17 to 21 in which the column (17) having a tank reboiler (19) does not have an overhead condenser. Installation selon l'une des revendications 17 à 22, comprenant une deuxième colonne (77) reliée thermiquement avec la première colonne, éventuellement comprenant des moyens pour envoyer le gaz de tête de la deuxième colonne au rebouilleur de cuve (19) (Fig 6).Installation according to one of claims 17 to 22, comprising a second column (77) thermally connected with the first column, possibly comprising means for sending the overhead gas from the second column to the tank reboiler (19) (Fig 6). Installation selon la revendication 23 comprenant des moyens pour envoyer le gaz comprimé dans le compresseur (21) en cuve de la deuxième colonne (77).Installation according to claim 23 comprising means for send the compressed gas to the compressor (21) in the tank of the second column (77).
EP01400413A 2000-03-07 2001-02-16 Process and apparatus for air separation by cryogenic distillation Expired - Lifetime EP1132700B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0002924A FR2806152B1 (en) 2000-03-07 2000-03-07 PROCESS AND INSTALLATION FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR0002924 2000-03-07

Publications (2)

Publication Number Publication Date
EP1132700A1 true EP1132700A1 (en) 2001-09-12
EP1132700B1 EP1132700B1 (en) 2005-10-26

Family

ID=8847820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01400413A Expired - Lifetime EP1132700B1 (en) 2000-03-07 2001-02-16 Process and apparatus for air separation by cryogenic distillation

Country Status (8)

Country Link
US (1) US6484534B2 (en)
EP (1) EP1132700B1 (en)
AR (1) AR027970A1 (en)
BR (1) BR0102482A (en)
CA (1) CA2339392A1 (en)
DE (1) DE60114269T2 (en)
ES (1) ES2252164T3 (en)
FR (1) FR2806152B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922848A (en) * 2009-06-16 2010-12-22 普莱克斯技术有限公司 Be used to produce the method and apparatus of pressurized product
WO2012155318A1 (en) * 2011-05-13 2012-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of oxygen at high pressure by cryogenic distillation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830928B1 (en) * 2001-10-17 2004-03-05 Air Liquide PROCESS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION AND AN INSTALLATION FOR CARRYING OUT SAID METHOD
US7296437B2 (en) * 2002-10-08 2007-11-20 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for separating air by cryogenic distillation and installation for implementing this process
EP2221315A1 (en) * 2003-12-04 2010-08-25 Xencor, Inc. Methods of generating variant proteins with increased host string content and compositions thereof
EP1767884A1 (en) * 2005-09-23 2007-03-28 L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1199293B (en) * 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3392536A (en) * 1966-09-06 1968-07-16 Air Reduction Recompression of mingled high air separation using dephlegmator pressure and compressed low pressure effluent streams
EP0589646A1 (en) * 1992-09-23 1994-03-30 Air Products And Chemicals, Inc. Distillation process for the production of carbon monoxide-free nitrogen
US5596885A (en) * 1994-06-20 1997-01-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous oxygen under pressure
EP0810412A2 (en) * 1996-05-29 1997-12-03 Teisan Kabushiki Kaisha High purity nitrogen generator unit and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379599A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Pumped liquid oxygen method and apparatus
US5832748A (en) * 1996-03-19 1998-11-10 Praxair Technology, Inc. Single column cryogenic rectification system for lower purity oxygen production
US6082135A (en) * 1999-01-29 2000-07-04 The Boc Group, Inc. Air separation method and apparatus to produce an oxygen product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1199293B (en) * 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3392536A (en) * 1966-09-06 1968-07-16 Air Reduction Recompression of mingled high air separation using dephlegmator pressure and compressed low pressure effluent streams
EP0589646A1 (en) * 1992-09-23 1994-03-30 Air Products And Chemicals, Inc. Distillation process for the production of carbon monoxide-free nitrogen
US5596885A (en) * 1994-06-20 1997-01-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous oxygen under pressure
EP0810412A2 (en) * 1996-05-29 1997-12-03 Teisan Kabushiki Kaisha High purity nitrogen generator unit and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922848A (en) * 2009-06-16 2010-12-22 普莱克斯技术有限公司 Be used to produce the method and apparatus of pressurized product
CN101922848B (en) * 2009-06-16 2015-03-18 普莱克斯技术有限公司 Method and apparatus for pressurized product production
WO2012155318A1 (en) * 2011-05-13 2012-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of oxygen at high pressure by cryogenic distillation

Also Published As

Publication number Publication date
ES2252164T3 (en) 2006-05-16
CA2339392A1 (en) 2001-09-07
DE60114269T2 (en) 2006-07-20
FR2806152B1 (en) 2002-08-30
US20020134105A1 (en) 2002-09-26
AR027970A1 (en) 2003-04-16
DE60114269D1 (en) 2005-12-01
EP1132700B1 (en) 2005-10-26
US6484534B2 (en) 2002-11-26
BR0102482A (en) 2001-10-16
FR2806152A1 (en) 2001-09-14

Similar Documents

Publication Publication Date Title
EP0713069B1 (en) Process and plant for air separation
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP2122282B1 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation
JP4728219B2 (en) Method and system for producing pressurized air gas by cryogenic distillation of air
JP2009509120A (en) Method and apparatus for separating air by cryogenic distillation.
JPH10227560A (en) Air separation method
EP0618415B1 (en) Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air
EP1014020B1 (en) Cryogenic process for separating air gases
FR2990500A1 (en) METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR3062197A3 (en) METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
EP1189003B1 (en) Process and apparatus for air separation by cryogenic distillation
EP2694898B1 (en) Method and device for separating air by cryogenic distillation
US6305191B1 (en) Separation of air
EP1132700B1 (en) Process and apparatus for air separation by cryogenic distillation
US20110041552A1 (en) Apparatus And Method For Separating Air By Cryogenic Distillation
CA2146831A1 (en) Process and unit for producing oxygen by air distillation
EP3058297B1 (en) Method and device for separating air by cryogenic distillation
FR2831249A1 (en) Air separation in an apparatus containing at least two columns which can be operated normally or with air expanded to a low pressure in the turbine before distillation in the low pressure column
EP0612967A1 (en) Process and installation for the production of oxygen and/or nitrogen under pressure
US20040244416A1 (en) Method for separating air by cryogenic distillation and installation therefor
EP1063485B1 (en) Device and process for air separation by cryogenic distillation
FR2787559A1 (en) Air separation using cryogenic distillation has double column receiving compressed, cooled, and expanded air to produce oxygen rich and nitrogen rich fractions
FR2787561A1 (en) Cryogenic distillation of air uses double column with air supply to medium pressure column and oxygen rich fluid from bottom of both low pressure and auxiliary columns
FR3135134A1 (en) Method for increasing the capacity of an existing cryogenic distillation air separation apparatus and air separation apparatus
FR2864213A1 (en) Producing oxygen, argon or nitrogen as high-pressure gas by distilling air comprises using electricity generated by turbine to drive cold blower

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FI FR GB SE

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

17P Request for examination filed

Effective date: 20020312

AKX Designation fees paid

Free format text: DE ES FI FR GB SE

17Q First examination report despatched

Effective date: 20030718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FI FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60114269

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2252164

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110302

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110228

Year of fee payment: 11

Ref country code: GB

Payment date: 20110217

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120216

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140219

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60114269

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901