EP1130262B1 - Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit - Google Patents

Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit Download PDF

Info

Publication number
EP1130262B1
EP1130262B1 EP01102128A EP01102128A EP1130262B1 EP 1130262 B1 EP1130262 B1 EP 1130262B1 EP 01102128 A EP01102128 A EP 01102128A EP 01102128 A EP01102128 A EP 01102128A EP 1130262 B1 EP1130262 B1 EP 1130262B1
Authority
EP
European Patent Office
Prior art keywords
pressure
gear pump
pressure chamber
pump according
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01102128A
Other languages
English (en)
French (fr)
Other versions
EP1130262A2 (de
EP1130262A3 (de
Inventor
Dieter Dipl.-Ing. Voigt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10043842A external-priority patent/DE10043842A1/de
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1130262A2 publication Critical patent/EP1130262A2/de
Publication of EP1130262A3 publication Critical patent/EP1130262A3/de
Application granted granted Critical
Publication of EP1130262B1 publication Critical patent/EP1130262B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/185Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by varying the useful pumping length of the cooperating members in the axial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/088Elements in the toothed wheels or the carter for relieving the pressure of fluid imprisoned in the zones of engagement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms

Definitions

  • the invention relates to a gear pump with a displacement-changing displacement unit, which is arranged displaceably between a first pressure chamber and a second pressure chamber additionally having a compression spring acting on the displacement unit, according to the preamble of claim 1.
  • a pressure control device for a hydraulic pump in particular a vane pump known, which has on one side a first actuator piston-cylinder unit and on the other side a second control piston-cylinder unit. Their pressure chambers are connected via pressure lines to a consumer pressure line of the pump. In a pressure line to the second control piston, a diaphragm is formed. Furthermore, a pressure relief valve is provided, which is connected to a non-pressurized container. To control the pump, the pressure relief valve is controlled in accordance with a predetermined, falling characteristic of a pressure-dependent sensor.
  • gear pumps are known with a displacement-changing displacement unit ( DE 35 28 651 A1 ).
  • Such gear pumps are used, for example, as required for engine lubrication of motor vehicles oil pumps. It is desirable to reduce the energy consumption (fuel consumption) of such gear pumps (oil pumps) for operating the same as possible. Therefore, especially for motor vehicles flow-controlled gear pumps are used, which deliver as much as possible the amount of oil required of an internal combustion engine and require correspondingly lower drive power.
  • Such oil pumps with volume control are preferably designed as external gear oil pumps with axial gear shift.
  • the stated object is achieved in that the pressure chambers a throttle line having a pressure line are in hydraulic operative connection and the second pressure chamber is limited maximum pressure and the throttle as a stepped, the second pressure chamber queritessredu preparede Durc axial bore in the output shaft or as a continuous through hole in the output shaft or as a through hole in the spring piston is formed.
  • the pressure level in the second pressure chamber is lower than that in the first pressure chamber at the present equilibrium of forces at the displacement unit. Since the two pressure chambers are in hydraulic communication with each other by means of a throttle, results in a pressure-compensating flow of the gear pump to be pumped fluid (for example, oil) from the first pressure chamber into the second pressure chamber, so that sets a return displacement of the displacement unit in the direction of the first pressure chamber , This return displacement of the displacement unit is connected to an increase in the delivery of the gear pump.
  • pumped fluid for example, oil
  • the hydraulic active connection between the pressure chambers and the maximum pressure limitation in the second pressure chamber, which is generated by means of a throttle, thus ensure in a fast and reliable manner an effective reduction of a larger pressure level in the gear pump which is set in the second pressure chamber with respect to an adjustable upper pressure limit. In this way it is prevented that the gear pump works with an unnecessarily high flow rate at a correspondingly increased pump drive power.
  • the gear pump is designed as an external gear pump.
  • An external gear pump is suitable in a particularly effective and reliable manner, for example as an oil pump for engine lubrication in a motor vehicle.
  • the throttle formed as a through bore in the spring piston is connected to a pressure pocket of the spring piston which adjoins the tooth region of the driven gearwheel.
  • the throttle leads to a pressure pocket of the spring piston, which in turn by means of a corresponding pressure line part with the first pressure chamber is in hydraulic operative connection.
  • the output shaft may be formed in this embodiment as a solid shaft.
  • the hydraulic operative connection between the throttle and the first pressure chamber can be interrupted periodically by a respective tooth of the rotatable driven gear.
  • the spring piston is not provided with a pressure pocket in communication with the throttle, so that the opening of the throttle located in the tooth region of the rotatable driven gear wheel is periodically closed by the teeth of the driven gear passing past the throttle and thus the hydraulic operative connection between the first and second pressure chamber is periodically interrupted accordingly.
  • the pressure present in each case in the first pressure chamber is periodically introduced through the throttle into the second pressure chamber via the tooth spaces of the output gearwheel.
  • the throttle may have a relatively large throttle bore, whereby advantages in terms of the control behavior in particular in cold, highly viscous fluids such as oil can be achieved.
  • the spring piston has a suction pocket adjoining the tooth region of the output gearwheel.
  • the throttle has a variable passage cross-section. Due to the throttling action that can be changed as a result, there is a possibility of influencing the control behavior of the gear pump, which can thus be designed or set for specific operation.
  • the trained as a through hole in the output shaft. Throttle penetrated by a non-displaceable throttle rod with decreasing to the second pressure chamber cross-section.
  • the throttle effect is varied depending on the control stroke of the displacement unit due to the changing passage cross section of the throttle.
  • a cold, high-viscosity Fluid such as oil
  • increased delivery volume control due to a lower oil quantity requirement of a unit to be supplied can be improved by means of a suitable Entdrosselung with a corresponding size of the passage opening of the throttle, the control behavior of the gear pump.
  • the passage cross section of the throttle is variable as a function of an operating temperature-related thermal expansion of a throttle element operatively connected to the throttle.
  • a dependent of the respective thermal expansion cross-sectional change of a correspondingly formed throttle element is used to set a desired throttle cross-section.
  • the throttle element is designed as an expansion rod with a conically tapered, free throttle end, which reduces the passage cross section of the throttle with a positive thermal expansion of the throttle element.
  • a throttle element formed in this way can be made of aluminum, for example, and be operatively connected to a throttle realized in an output shaft made of steel.
  • a pressure relief valve in operative connection with the latter is provided for limiting the pressure in the second pressure chamber.
  • a pressure relief valve is particularly reliable for limiting the pressure in a pressure chamber.
  • the pressure relief valve is integrated in a wall of the second pressure chamber and has a trained in the wall, leading into the second pressure chamber, calibrated through-bore.
  • the gear pump is advantageously formed compact due to the integration of a pressure relief valve in a wall of the second pressure chamber.
  • the calibration bore of the pressure relief valve exerts an influence on the control behavior of the gear pump.
  • the pressure relief valve is designed as a ball valve or as a tongue valve. Both a ball valve and a reed valve are reliably adapted to limit the pressure of a pressure chamber.
  • an electro-hydraulic control unit operatively connected thereto is provided.
  • an electro-hydraulic control unit By means of an electro-hydraulic control unit, it is possible to set a variable maximum pressure limit in the second pressure chamber.
  • An electro-hydraulic control unit thus offers greater flexibility with respect to the maximum pressure setting in the second pressure chamber compared to a pressure relief valve.
  • a control unit operatively connected to the control unit is provided for needs-based adjustment of the pressure level in the second pressure chamber, which is in communication with a pressurized by means of the gear pump consumer unit.
  • a connected to the control unit control unit can be achieved in a particularly effective manner, a maximum operating pressure-optimized setting in the second pressure chamber.
  • the control unit is provided with a pressure relief valve.
  • a second pressure relief valve By a series connection of a second pressure relief valve with the electro-hydraulic control unit, it is possible to specify a minimum pressure for the second pressure chamber, so that the control unit acts only between the minimum pressure and a set by a first, with the second pressure chamber operatively connected pressure relief valve maximum pressure.
  • the drive gear and the driven gear each have a helical toothing.
  • the hydraulic losses of a gear pump with flow control by pulsation reduction can be further reduced.
  • a gear pump generally designated 10, is shown in the form of an external gear pump.
  • the gear pump 10 has a housing 38 which carries a cover 39 with pin 40.
  • a drive shaft 41 is rotatably mounted according to arrow 42.
  • the drive shaft 41 is rotatably connected to a drive gear 21 which is in mesh with an output gear 18.
  • the gear pump 10 is provided with a displacement-changing displacement unit 11, which is arranged displaceably between a first pressure chamber 12 and a second, additionally acting on the displacement unit 11 compression spring 13 having pressure chamber 14.
  • the displacement unit 11 is axially displaceable according to double arrow 25 and consists of an output shaft 17 and arranged coaxially thereon, the output gear 18, a first pressure chamber 12 limiting control piston 19 and a second pressure chamber 14 limiting spring piston 20.
  • the output gear is 18th rotatably supported on the output shaft 17, while the control piston 19 and the spring piston 20 are pressed onto selbiger.
  • the displacement unit 11 is displaceable in accordance with a possibly adjusting pressure difference between the first pressure chamber 12 and the second pressure chamber 14 with respect to the non-axially displaceable drive gear 21 according to double arrow 25.
  • the pressure chambers 12,14 are by means of a throttle 15 having a pressure line 16 in hydraulic operative connection.
  • the throttle 15 is formed as a stepped, the second pressure chamber 14 cross-section reduced through bore 22 in the output shaft 17.
  • the second pressure chamber 14 is maximally limited by means of a pressure relief valve 32 in operative connection with this in the form of a ball valve.
  • the pressure relief valve 32 is integrated in a wall 33 of the second pressure chamber 14 and has a trained in the wall 33, leading into the second pressure chamber 14, calibrated through-bore 34.
  • the control piston 19 engages with a corresponding recess in the pin 40, so that a rotation for the displacement unit 11 is formed.
  • FIG. 2 shows an alternative embodiment of the gear pump 10, wherein here the displacement unit 11 is shown in a double arrow 25 axially shifted operating position.
  • the throttle 15 is formed as a through hole 24 in the spring piston 20 and communicates with an adjacent to the tooth portion of the driven gear 18 pressure pocket 26 of the spring piston 20 in connection.
  • the output shaft 17 is formed as a solid shaft.
  • the gear pump 10 according to FIG. 2 furthermore has an electro-hydraulic control unit 35 in operative connection with the second pressure chamber 14.
  • the control unit 35 is operatively connected to the second pressure chamber 14 by means of a hydraulic line 37 and an intermediate, second pressure relief valve 36.
  • the gear pump 10 thus has a first pressure relief valve 32 for limiting the operating pressure in the second pressure chamber 14 to a maximum pressure and a second pressure relief valve 36 for establishing a control unit 35 activating, minimum operating pressure in the second pressure chamber 14.
  • the control unit 35 can be operatively connected to a control unit, not shown, for adjusting the pressure level in the second pressure chamber 14 as required, which is connected to a by means of the gear pump 10 pressurized consumer unit (not shown) in connection.
  • the further structural design of the gear pump 10 according to FIG. 2 corresponds to that of FIG. 1.
  • the gear pump 10 operates according to the following principle: Through the throttle 15 having a pressure line 16 is between the two pressure chambers 12,14 a hydraulic operative connection. If the operating pressure in the second chamber 14 is below the maximum pressure limit defined by the pressure relief valve 32, pressure equality exists in the pressure chambers 12, 14 so that the displacement unit 11 assumes a basic position due to the pressure force acting continuously on the pressure spring 13 acting on it the driven gear 18 and the drive gear 21 mesh with each other under full engaging width. This, a maximum flow rate ensuring basic position of the displacement unit 11 is shown in Figure 1.
  • the pressure relief valve 32 opens, so that there is a pressure drop in the second pressure chamber 14 and thus to a pressure difference between the standing in hydraulic operative connection chambers 12,14. Because of this yourself adjusting pressure difference or acting in the first pressure chamber 12 compressive force, which is shown symbolically in Figure 2 as arrows 43, results in relation to the drive gear 21, an axial displacement of the displacement unit 11 in the direction of the second pressure chamber 14 according to double arrow 25. It thus turns a smaller engagement width between the meshing gears 18, 21, so that the axial displacement of the displacement unit 11 in the direction of the second pressure chamber 14 leads to a reduction in the flow rate of the gear pump 10.
  • pressure pocket 26 allows an advantageously adjusting flow of the fluid and reduces the present lateral friction between the output gear 18 and spring piston 20.
  • the leading to the pressure pocket 26 throttle 15, which is formed as a through hole 24, during assembly serve theêtenden on the output shaft 17 spring piston 20 as a fixing hole, so that in this way a position assignment of the pressure pocket 26 is possible.
  • FIG. 3 shows an alternative embodiment of the spring piston 20 in relation to Figure 2 in a schematic view of the driven gear side.
  • the throttle 15 does not lead into a pressure pocket of the spring piston 20 (pressure pocket 26 according to FIG. 2), but directly adjoins the toothed area of the output gearwheel 18.
  • the pressure between the two pressure chambers 12, 14 is increased by means of the throttle 15 adjusting hydraulic operative connection periodically interrupted by the teeth of the rotating output gear 18.
  • the fluid is thus periodically passed from the first pressure chamber 12 into the second pressure chamber 14 in this embodiment.
  • the diameter of the throttle 15 can be chosen to be relatively large in order to achieve advantages with respect to the control behavior, in particular with a cold, highly viscous fluid.
  • An additional pressure pocket 26 and suction pocket 28 of the spring piston 20 leads to advantages in terms of fluid flow and between the output gear 18 and the spring piston 20 adjusting lateral friction.
  • FIG. 4 shows a throttle 15 in a stepped through hole 22 in the output shaft 17 which is in operative connection with an axially non-displaceable throttle rod 29 with a conically tapering in the direction of the second pressure chamber 14 throttle end.
  • the throttle rod 29 is not slidably mounted with its one end on the housing 38 of the gear pump 10 and penetrates with its conical throttle end, the throttle 15. In this way, the passage cross-section of the throttle 15 is changed depending on the axial displacement position of the displacement unit 11.
  • the passage cross section of the throttle 15 in the basic position shown in Figure 4 (Maximum flow rate of the gear pump 10) is relatively small and in a displacement position, not shown (flow reduction of the gear pump 10) relatively large.
  • the control behavior of the gear pump 10 can be improved by means of a de-throttling.
  • the respectively adjusting fluid operating temperature is used to change the passage cross section of the throttle 15, which causes a corresponding thermal expansion of a throttle element 30 operatively connected to the throttle 15.
  • a throttle element 30 may be formed, for example, according to Figure 5 as an expansion rod preferably made of aluminum, which is provided with a tapered in the direction of second pressure chamber 14, conical throttle end 31, with a narrowing of the output shaft 17 formed in the stepped through hole 22 in the area the throttle 15 is in operative connection.
  • the output shaft 17 is preferably made of steel.
  • the throttle element 30 is fixed with its pointing away from the throttle 15 end in the output shaft 17 and influenced by its conical throttle end 31 as a function of the operating temperature, the effective flow area at the throttle 15th
  • control piston 19 to reduce the friction on the peripheral surface and the associated displacement inhibition of the displacement unit 11 has a connecting channel in the form of a connecting bore 51, starting from the first pressure chamber 12 on the peripheral wall of the control piston 19th empties. Via this bore 51, the pressure in the pressure chamber 12 is specifically directed to a certain area of the peripheral surface of the control piston 19, so as to achieve a reduction of the undesirable transverse forces.
  • a connecting channel between the second pressure chamber 14 and the peripheral wall of the spring piston 20 is also provided on the spring piston 20, which there as a recess 53 or pocket in the peripheral wall of the spring piston 20th is trained.
  • This recess guides the pressure of the second pressure chamber 14 laterally on the spring piston 20 so as to be able to compensate for undesirable transverse forces.
  • a through-bore 55 is provided in the control piston 19, which, starting from the end face 57 axially limiting the first pressure chamber 12, completely penetrates the control piston 19 and exits at the end face 59 adjacent to the output gear 18. In this case, the pressure from the first pressure chamber 12 is passed through this through-bore 55 in a wall portion 63 of the output or feed gear 18, so that opposite acting on the gear mesh hydraulic and dental forces can be counteracted.
  • a housing bore 61 in the housing which may e.g. may be arranged at the level of the control piston 19 and discharges from the interior of the housing to the outside.
  • the function of the pressure relief valve 32 can also be taken over by an electrically controllable, hydraulic control unit.
  • a control unit is shown in Figure 2 as provided in addition to the pressure relief valve 32 control unit 35.
  • the advantage of an electrically-hydraulic control unit lies in the arbitrarily adjustable delivery pressure level of the gear pump 10 according to the respective Fluidtikmotifstagen fluid quantity required by the unit to be supplied, such as an internal combustion engine to be supplied with oil.
  • an oil circuit of the respective applied engine oil pressure can be electrically sensed and set according to the specification of an oil pressure map depending on the engine speed and the oil temperature and a required engine function, such as the circuit of a camshaft adjuster, as needed.
  • the electrically controllable control unit can be arranged either directly in a wall of the second pressure chamber of the gear pump 10 or via a hydraulic line to the second pressure chamber of the gear pump in operative connection standing at another location.
  • a combination of an electric pressure control unit with mechanical-hydraulic pressure relief valves is possible.
  • FIG. 2 Such a combination is shown in Figure 2, wherein the control system of the gear pump 10 for limiting the setting in the second pressure chamber 14 operating pressure to a maximum pressure limit to a first pressure relief valve 32 and is provided parallel to this with an electrical control unit 35, which with the second pressure chamber 14 is in operative connection by means of the hydraulic line 37 and the second pressure relief valve 36. In this way it is possible to set an operating pressure in the second pressure chamber 14, which is below the maximum pressure predetermined by the first pressure relief valve 32.
  • the second pressure relief valve 36 connected in series with respect to the control unit 35 serves to set a minimum pressure in the second pressure chamber 14, so that the electrical pressure control by means of the control unit 35 only between a minimum fluid pressure of for example 2 bar by activating the second pressure relief valve 36 and a Maximum fluid pressure of, for example, 5 bar by activating the first pressure relief valve 32 acts.
  • variable gear pump according to the invention shown in two sectional views in FIGS. 7 and 8, substantially corresponds to the structure and function of the embodiments described in FIGS. 1 to 6 and therefore uses their reference numerals.
  • the gear pump 10 there now has a not-shown helical teeth on the gears 21 and 18, through which the delivery oil flow to and from the tooth spaces of the gears 21 and 18 can also be largely radially, so that additional oil pockets in the axially the gears 21 and 18 delimiting chamber walls are minimized, or can be completely eliminated.
  • Quetschölschiffrank is also another, provided at least on the pressure side axial oil pocket, which is arranged in the cover 39 in an advantageous manner.
  • This oil pocket is formed as a groove 83 in the lid 39, which extends over the entire length of the overlap with the pin 40.
  • this training of acting as a pressure oil pocket groove has the advantage that the control stroke of the control piston 19 remains unaffected, since the Drehabstützung of the control piston 19 is maintained on the wall of the pin 40 of the cover 39 over the entire stroke.
  • the frictional moments transmitted by the rotating output gear 18 to the displacement unit 11 are based on the control piston 19 on the cover 39 on the side of the pressure channel 81 from. Therefore, it is particularly advantageous that the groove 83 is not directly connected to the pressure channel 81 as a pressure oil bag, otherwise the maximum displacement stroke of the control piston 19 would be reduced due to the required Drehabstützung to the lid 39 according to their depth.
  • the extension of the groove 83 over the entire, adjacent to the chamber 12 length of the cover the delivery oil to be discharged through it can flow directly from there into the pressure chamber connected to the pressure chamber 81 12.
  • gear pump with flow control is particularly suitable for use as an oil pump to be supplied with oil combustion engine, as it largely allows a needs-based minimization of oil flow and oil pressure levels and thus by a significantly reduced average oil pump drive power a significant Contribution to the preferred reduction of the fuel consumption of the internal combustion engine makes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Description

  • Die Erfindung betrifft eine Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit, die zwischen einer ersten Druckkammer und einer zweiten, eine zusätzlich auf die Verschiebeeinheit wirkende Druckfeder aufweisenden Druckkammer verschiebbar angeordnet ist, gemäß Oberbegriff des Anspruchs 1.
  • Aus der DE 33 47 015 A1 ist eine Druckregelvorrichtung für eine Hydraulikpumpe, insbesondere eine Flügelzellenpumpe bekannt, welche auf der einen Seite eine erste Stellkolben-Zylinder-Einheit und auf der anderen Seite eine zweite Regelkolben-Zylinder-Einheit aufweist. Deren Druckräume sind über Druckleitungen mit einer Verbraucherdruckleitung der Pumpe verbunden. In einer Druckleitung zum zweiten Regelkolben ist eine Blende ausgebildet. Ferner ist ein Druckbegrenzungsventil vorgesehen, welches mit einem drucklosen Behälter verbunden ist. Zur Regelung der Pumpe wird das Druckbegrenzungsventil entsprechend einer vorgegebenen, fallenden Kennlinie von einem druckabhängigen Sensor gesteuert.
  • Des Weiteren sind Zahnradpumpen mit einer fördermengenverändernden Verschiebeeinheit bekannt ( DE 35 28 651 A1 ). Derartige Zahnradpumpen kommen beispielsweise als für eine Motorschmierung von Kraftfahrzeugen erforderliche Ölpumpen zum Einsatz. Dabei ist es anzustreben, den Energieverbrauch (Kraftstoffverbrauch) derartiger Zahnradpumpen (Ölpumpen) zum Betreiben derselben möglichst zu reduzieren. Deshalb kommen insbesondere für Kraftfahrzeuge fördermengengeregelte Zahnradpumpen zum Einsatz, die möglichst die Bedarfsölmenge eines Verbrennungsmotors liefern und entsprechend geringere Antriebsleistungen benötigen. Derartige Ölpumpen mit Mengenregelung sind vorzugsweise als Außenzahnrad-Ölpumpen mit axialer Zahnradverschiebung ausgebildet.
  • Bekannte Ölpumpenausführungen der eingangs genannten Art sind nachteilhafterweise mit konstruktiv aufwendigen mechanischen oder hydraulischen Zusatzvorrichtungen zur Erzielung einer axialen Zahnradverschiebung versehen. Ferner sind diese bekannten Ölpumpen mit Mengenregelung nicht geeignet, in Abhängigkeit des jeweiligen Betriebszustands eines Verbrennungsmotors die jeweils erforderliche, optimale Bedarfsölmenge in zuverlässiger Weise bei gleichzeitig reduzierter, zum Betreiben der Ölpumpe notwendigen Antriebsleistung zu liefern.
  • Es ist daher Aufgabe der Erfindung, eine Zahnradpumpe der eingangs genannten Art zu schaffen, welche eine zuverlässige und optimierte Mengenregelung bei möglichst geringem Antriebsenergiebedarf erlaubt.
  • Ausgehend von einer Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit, die zwischen einer ersten Druckkammer und einer zweiten, eine zusätzlich auf die Verschiebeeinheit wirkende Druckfeder aufweisenden Druckkammer verschiebbar angeordnet ist, wobei die Verschiebeeinheit aus einer Abtriebswelle und, jeweils auf dieser koaxial angeordnet, einem Abtriebszahnrad, einem die erste Druckkammer begrenzenden Steuerkolben und einem die zweite Druckkammer begrenzenden Federkolben besteht, wobei die Verschiebeeinheit in Abhängigkeit einer eventuell sich einstellenden Druckdifferenz zwischen der ersten Druckkammer und der zweiten Druckkammer in Bezug auf ein Antriebszahnrad verschiebbar ist, wird die gestellte Aufgabe dadurch gelöst, dass die Druckkammern mittels einer eine Drossel aufweisenden Druckleitung in hydraulischer Wirkverbindung stehen und die zweite Druckkammer maximaldruckbegrenzt ist und die Drossel als gestufte, zur zweiten Druckkammer querschnittsreduzierte Durchgangsbohrung in der Abtriebswelle oder als stufenlose Durchgangsbohrung in der Abtriebswelle oder als Durchgangsbohrung im Federkolben ausgebildet ist.
  • Mittels einer derart ausgebildeten Zahnradpumpe ist eine betriebsoptimierte Fördermengenregelung bei gleichzeitiger Reduzierung der zum Betreiben der Zahnradpumpe notwendigen Antriebsleistung möglich. Dabei erlaubt die Vorsehung einer Drossel eine besonders kompakte Ausgestaltung der Zahnradpumpe, insbesondere in Bezug auf die fördermengenverändernde Verschiebeeinheit. Aufgrund der geschaffenen hydraulischen Verbindung mittels einer Drossel zwischen der ersten und zweiten Druckkammer wird folgende Funktionsweise der Zahnradpumpe beziehungsweise der fördermengenverändernden Verschiebeeinheit erhalten: Bei Druckgleichheit in den zwei Druckkammern wird mittels der sich in der zweiten Druckkammer befindenden Druckfeder eine Grundstellung der zwei miteinander kämmenden Zahnräder der Zahnradpumpe mit vollständiger Eingriffsbreite erhalten. Bei Erreichen einer oberen Druckgrenze in der zweiten Druckkammer öffnet ein Überdruckventil, so dass aus der zweiten Druckkammer eine bestimmte Druckmittelmenge bei entsprechendem Druckabfall entweicht und somit eine Axialverschiebung der Verschiebeeinheit in Richtung zweiter Druckkammer (im Vergleich zur ersten Druckkammer geringeres Druckniveau) auslöst. Die aufgrund der Axialverschiebung der Verschiebeeinheit resultierende Fördermengenreduzierung führt zu einem Druckabfall in beiden Druckkammern, so dass das Druckniveau in der zweiten Druckkammer die vorgegebene Druckgrenze unterschreitet und bei sich einstellendem Kräftegleichgewicht in Bezug auf die auf die Verschiebeeinheit wirkenden Verschiebekräfte die Axialverschiebung der Verschiebeeinheit abgeschlossen ist. In dieser Weise sind die zwei miteinander kämmenden Zahnräder der Zahnradpumpe aus einer Grundstellung mit vollständiger Eingriffsbreite in eine fördermengenreduzierende Betriebsstellung mit teilweiser Eingriffsbreite gebracht worden. Aufgrund der mittels der sich in der zweiten Druckkammer befindenden Druckfeder auf die Verschiebeeinheit wirkende elastische Rückstellkraft (Druckkraft) ist bei vorliegendem Kräftegleichgewicht an der Verschiebeeinheit das Druckniveau in der zweiten Druckkammer geringer als jenes in der ersten Druckkammer. Da die beiden Druckkammern miteinander mittels einer Drossel in hydraulischer Verbindung stehen, ergibt sich eine druckausgleichende Strömung des von der Zahnradpumpe zu fördernden Fluids (beispielsweise Öl) aus der ersten Druckkammer in die zweite Druckkammer, so dass sich eine Rückverschiebung der Verschiebeeinheit in Richtung erste Druckkammer einstellt. Diese Rückverschiebung der Verschiebeeinheit ist mit einer Fördermengensteigerung der Zahnradpumpe verbunden. Die mittels einer Drossel erzeugte hydraulische Wirkverbindung zwischen den Druckkammern und die Maximaldruckbegrenzung in der zweiten Druckkammer gewährleisten somit in schneller und zuverlässiger Weise eine effektive Abregelung eines sich in Bezug auf eine einstellbare Druckobergrenze in der zweiten Druckkammer einstellenden größeren Druckniveaus in der Zahnradpumpe. In dieser Weise wird verhindert, dass die Zahnradpumpe mit einer unnötig hohen Fördermenge bei entsprechend erhöhter Pumpenantriebsleistung arbeitet.
  • Mit Vorteil ist die Zahnradpumpe als Außenzahnradpumpe ausgebildet. Eine Außenzahnradpumpe ist in besonders effektiver und zuverlässiger Weise beispielsweise als Ölpumpe zur Motorschmierung in einem Kraftfahrzeug geeignet.
  • Entsprechend einer alternativen Ausführungsform steht die als Durchgangsbohrung im Federkolben ausgebildete Drossel mit einer an den Zahnbereich des Abtriebszahnrads grenzenden Drucktasche des Federkolbens in Verbindung. Bei dieser Ausführungsform führt die Drossel zu einer Drucktasche des Federkolbens, welche ihrerseits mittels eines entsprechenden Druckleitungsteils mit der ersten Druckkammer in hydraulischer Wirkverbindung steht. Die Abtriebswelle kann bei dieser Ausführungsform als Vollwelle ausgebildet sein.
  • Mit Vorteil ist bei der als Durchgangsbohrung im Federkolben ausgebildeten Drossel die hydraulische Wirkverbindung zwischen Drossel und der ersten Druckkammer periodisch durch einen jeweiligen Zahn des drehbaren Abtriebszahnrads unterbrechbar. Bei dieser weiteren, alternativen Ausführungsform ist der Federkolben nicht mit einer mit der Drossel in Verbindung stehenden Drucktasche versehen, so dass die sich im Zahnbereich des drehbaren Abtriebszahnrads befindende Öffnung der Drossel periodisch durch die sich an der Drossel vorbeibewegenden Zähne des Abtriebszahnrads verschlossen wird und somit die hydraulische Wirkverbindung zwischen der ersten und zweiten Druckkammer entsprechend periodisch unterbrochen wird. In dieser Weise wird der in der ersten Druckkammer jeweils vorliegende Druck über die Zahnlücken des Abtriebszahnrads periodisch durch die Drossel in die zweite Druckkammer eingeleitet. Dabei kann die Drossel eine verhältnismäßig große Drosselbohrung aufweisen, wodurch Vorteile in Bezug auf das Regelverhalten insbesondere bei kalten, hochviskosen Fluiden wie zum Beispiel Öl erzielbar sind.
  • Vorteilhafterweise weist der Federkolben eine an den Zahnbereich des Abtriebszahnrads grenzende Saugtasche auf. Mittels einer am Federkolben vorgesehenen und an den Zahnbereich des Abtriebszahnrads grenzenden Saugtasche lassen sich eine vorteilhaftere Strömung des zu fördernden Fluids, wie zum Beispiel Öl, und eine reduzierte Kontaktflächenreibung zwischen dem Abtriebszahnrad und dem Federkolben erzielen.
  • Gemäß einer bevorzugten Ausführungsform weist die Drossel einen veränderbaren Durchtrittsquerschnitt auf. Aufgrund der hierdurch veränderbaren Drosselwirkung ergibt sich eine Möglichkeit zur Beeinflussung des Regelverhaltens der Zahnradpumpe, welche somit betriebsspezifisch konzipiert beziehungsweise eingestellt werden kann.
  • Mit Vorteil ist die als Durchgangsbohrung in der Abtriebswelle ausgebildete. Drossel von einer nicht verschiebbaren Drosselstange mit sich zur zweiten Druckkammer verkleinerndem Querschnitt durchdrungen. Bei dieser Ausführungsform wird je nach Regelhub der Verschiebeeinheit die Drosselwirkung aufgrund des sich ändernden Durchtrittsquerschnitts der Drossel variiert. Insbesondere bei einem kalten, hochviskosen Fluid wie zum Beispiel Öl und gleichzeitig erhöhter Fördermengenabregelung aufgrund eines geringeren Ölmengenbedarfs eines zu versorgenden Aggregats kann mittels einer geeigneten Entdrosselung mit einer entsprechenden Größe der Durchtrittsöffnung der Drossel das Regelverhalten der Zahnradpumpe verbessert werden.
  • Gemäß einer alternativen Ausführungsform ist der Durchtrittsquerschnitt der Drossel in Abhängigkeit einer betriebstemperaturbedingten Wärmedehnung eines mit der Drossel in Wirkverbindung stehenden Drosselelements veränderbar. Hierbei wird eine von der jeweiligen Wärmedehnung abhängige Querschnittsveränderung eines entsprechend ausgebildeten Drosselelements zur Einstellung eines erwünschten Drosselquerschnitts ausgenutzt.
  • Mit Vorteil ist das Drosselelement als Dehnungsstange mit einem konisch sich verjüngenden, freien Drosselende ausgebildet, welches bei einer positiven Wärmedehnung des Drosselelements den Durchtrittsquerschnitt der Drossel verringert. Ein derart ausgebildetes Drosselelement kann beispielsweise aus Aluminium hergestellt sein und mit einer in einer aus Stahl hergestellten Abtriebswelle realisierten Drossel in Wirkverbindung stehen.
  • Vorzugsweise ist zur Druckbegrenzung in der zweiten Druckkammer ein mit dieser in Wirkverbindung stehendes Überdruckventil vorgesehen. Ein Überdruckventil eignet sich in besonders zuverlässiger Weise zur Druckbegrenzung in einer Druckkammer.
  • Vorteilhafterweise ist das Überdruckventil in einer Wandung der zweiten Druckkammer integriert und weist eine in der Wandung ausgebildete, in die zweite Druckkammer führende, kalibrierte Durchgangsbohrung auf. Die Zahnradpumpe ist aufgrund der Integrierung eines Überdruckventils in eine Wandung der zweiten Druckkammer vorteilhafterweise kompakt ausgebildet. Die Kalibrierbohrung des Überdruckventils übt dabei einen Einfluss auf das Regelverhalten der Zahnradpumpe aus.
  • Mit Vorteil ist das Überdruckventil als Kugelventil oder als Zungenventil ausgebildet. Sowohl ein Kugelventil als auch ein Zungenventil sind in zuverlässiger Weise zur Druckbegrenzung einer Druckkammer geeignet.
  • Vorzugsweise ist zur Druckbegrenzung in der zweiten Druckkammer eine mit dieser in Wirkverbindung stehende elektro-hydraulische Regeleinheit vorgesehen. Mittels einer elektro-hydraulischen Regeleinheit ist es möglich, in der zweiten Druckkammer eine veränderbare Maximaldruckgrenze einzustellen. Eine elektro-hydraulische Regeleinheit bietet somit im Vergleich zu einem Überdruckventil größere Flexibilität in Bezug auf die Maximaldruckeinstellung in der zweiten Druckkammer.
  • Vorzugsweise ist zur bedarfsgerechten Einstellung des Druckniveaus in der zweiten Druckkammer eine mit der Regeleinheit wirkverbundene Steuereinheit vorgesehen, welche mit einem mittels der Zahnradpumpe druckbeaufschlagten Verbraucheraggregat in Verbindung steht. Durch eine mit der Regeleinheit verbundene Steuereinheit läßt sich in besonders effektiver Weise eine betriebsoptimierte Maximaldruckeinstellung in der zweiten Druckkammer erzielen.
  • Vorzugsweise ist die Regeleinheit mit einem Überdruckventil versehen. Durch eine Reihenschaltung eines zweiten Überdruckventils mit der elektro-hydraulischen Regeleinheit ist es möglich, einen Minimaldruck für die zweite Druckkammer vorzugeben, so dass die Regeleinheit lediglich zwischen dem Minimaldruck und einem durch ein erstes, mit der zweiten Druckkammer in Wirkverbindung stehendes Überdruckventil festgelegten Maximaldruck wirkt. Bei einer derartigen Ausführungsform sind somit sowohl ein erstes Überdruckventil zur Maximaldruckeinstellung in der zweiten Druckkammer als auch ein zweites Überdruckventil einer elektro-hydraulischen Regeleinheit zur Definierung einer Minimaldruckgrenze in der zweiten Druckkammer, ab welcher die elektro-hydraulische Regeleinheit aktiviert wird, vorgesehen.
  • Mit Vorteil weisen das Antriebszahnrad und das Abtriebszahnrad jeweils eine Schrägverzahnung auf. Durch die Verwendung von schrägverzahnten Zahnrädern können die hydraulischen Verluste einer Zahnradpumpe mit Fördermengenregelung durch Pulsationsreduzierung weiter abgesenkt werden.
  • Ein weiterer Vorteil ergibt sich durch die hydraulischen Verbindungskanäle zwischen den Druckkammern der Verschiebeeinheit und deren Umfangswand.
  • Auf diese Weise kann Querkräften an der Verschiebeeinheit, die durch Verzahnungskräfte und hydraulisch bewirkte Querkräfte entstehen, entgegengewirkt werden. Diese genannten Querkräfte erzeugen bei einer Fördermengenänderung eine am Steuerkolben und am Federkolben wirkende Reibkraft entgegen der Verschieberichtung, so daß die Regelung stark hysteresebehaftet ist und damit eine feinfühlige Druck- und Mengenregelung erschwert wird.
  • Der Ausgleich dieser unerwünschten Querkräfte an der Verschiebeeinheit erfolgt über die Verbindungskanäle zwischen Druckkammern und Umfangswand der Verschiebeeinheit, wobei der Steuerkolben, der Federkolben und das Förderzahnrad in definierten Oberflächenbereichen mit Öldruck oder alternativ dazu auch mit Umgebungsdruck beaufschlagt werden.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung.
  • Die Erfindung wird nachfolgend in mehreren Ausführungsbeispielen anhand zugehöriger Zeichnungen näher erläutert. Es zeigen:
  • Figuren 1 und 2
    eine schematische, längsgeschnittene Seitenansicht zweier Ausführungsformen einer erfindungsgemäßen Zahnradpumpe;
    Figur 3
    eine schematische Vorderansicht einer quergeschnittenen, erfindungsgemäßen Zahnradpumpe gemäß einer weiteren Ausführungsform;
    Figuren 4 und 5
    eine schematische Darstellung einer erfindungsgemäßen, längsgeschnittenen Zahnradpumpe mit alternativ ausgebildeten Drosselhilfsmitteln,
    Figur 6
    eine weitere Ausführungsform, bei der Verbindungskanäle zwischen den Druckkammern und der Umfangswand der Verschiebeeinheit vorgesehen sind, und
    Figuren 7 und 8
    eine weitere Ausführungsform, bei der eine als Drucköltasche wirkende Nut in der Umfangswand des Deckels im Bereich der Überdeckung mit dem Steuerkolben angeordnet ist.
  • Unter Bezugnahme auf die Figur 1 ist eine allgemein mit 10 bezeichnete Zahnradpumpe in Form einer Außenzahnradpumpe dargestellt. Die Zahnradpumpe 10 weist ein Gehäuse 38 auf, welches einen Deckel 39 mit Zapfen 40 trägt. Im Zapfen 40 ist eine Antriebswelle 41 gemäß Pfeil 42 drehbar gelagert. Die Antriebswelle 41 ist mit einem Antriebszahnrad 21 drehfest verbunden, welches mit einem Abtriebszahnrad 18 in kämmender Verbindung steht. Die Zahnradpumpe 10 ist mit einer fördermengenverändernden Verschiebeeinheit 11 versehen, die zwischen einer ersten Druckkammer 12 und einer zweiten, eine zusätzlich auf die Verschiebeeinheit 11 wirkende Druckfeder 13 aufweisenden Druckkammer 14 verschiebbar angeordnet ist. Die Verschiebeeinheit 11 ist gemäß Doppelpfeil 25 axial verschiebbar und besteht aus einer Abtriebswelle 17 und, jeweils auf dieser koaxial angeordnet, dem Abtriebszahnrad 18, einem die erste Druckkammer 12 begrenzenden Steuerkolben 19 und einem die zweite Druckkammer 14 begrenzenden Federkolben 20. Dabei ist das Abtriebszahnrad 18 auf der Abtriebswelle 17 drehbar gelagert, während der Steuerkolben 19 und der Federkolben 20 auf selbiger aufgepresst sind. Die Verschiebeeinheit 11 ist in Abhängigkeit einer eventuell sich einstellenden Druckdifferenz zwischen der ersten Druckkammer 12 und der zweiten Druckkammer 14 in Bezug auf das nicht axial verschiebbare Antriebszahnrad 21 gemäß Doppelpfeil 25 verschiebbar. Die Druckkammern 12,14 stehen mittels einer eine Drossel 15 aufweisenden Druckleitung 16 in hydraulischer Wirkverbindung. Die Drossel 15 ist als gestufte, zur zweiten Druckkammer 14 querschnittsreduzierte Durchgangsbohrung 22 in der Abtriebswelle 17 ausgebildet. Die zweite Druckkammer 14 ist mittels eines mit dieser in Wirkverbindung stehenden Überdruckventils 32 in Form eines Kugelventils maximaldruckbegrenzt. Das Überdruckventil 32 ist in einer Wandung 33 der zweiten Druckkammer 14 integriert und weist eine in der Wandung 33 ausgebildete, in die zweite Druckkammer 14 führende, kalibrierte Durchgangsbohrung 34 auf.
  • Der Steuerkolben 19 greift mit einer entsprechenden Ausnehmung in den Zapfen 40, so daß eine Verdrehsicherung für die Verschiebeeinheit 11 gebildet ist.
  • Figur 2 zeigt eine alternative Ausführungsform der Zahnradpumpe 10, wobei hier die Verschiebeeinheit 11 in einer gemäß Doppelpfeil 25 axial verschobenen Betriebsstellung dargestellt ist. Bei dieser in Figur 2 dargestellten Ausführungsform ist die Drossel 15 als Durchgangsbohrung 24 im Federkolben 20 ausgebildet und steht mit einer an den Zahnbereich des Abtriebszahnrads 18 grenzenden Drucktasche 26 des Federkolbens 20 in Verbindung. Dabei ist die Abtriebswelle 17 als Vollwelle ausgebildet. Die Zahnradpumpe 10 gemäß Figur 2 weist ferner eine mit der zweiten Druckkammer 14 in Wirkverbindung stehende elektro-hydraulische Regeleinheit 35 auf. Die Regeleinheit 35 ist mittels einer Hydraulikleitung 37 und eines zwischenangeordneten, zweiten Überdruckventils 36 mit der zweiten Druckkammer 14 wirkverbunden. Die Zahnradpumpe 10 gemäß dieser Ausführungsform weist somit ein erstes Überdruckventil 32 zur Begrenzung des Betriebsdrucks in der zweiten Druckkammer 14 auf einen Maximaldruck und ein zweites Überdruckventil 36 zur Festlegung eines die Regeleinheit 35 aktivierenden, minimalen Betriebsdruckes in der zweiten Druckkammer 14 auf. Die Regeleinheit 35 kann dabei zur bedarfsgerechten Einstellung des Druckniveaus in der zweiten Druckkammer 14 mit einer nicht dargestellten Steuereinheit wirkverbunden sein, welche mit einem mittels der Zahnradpumpe 10 druckbeaufschlagten Verbraucheraggregat (nicht dargestellt) in Verbindung steht. Die weitere konstruktive Ausgestaltung der Zahnradpumpe 10 gemäß Figur 2 entspricht derjenigen der Figur 1.
  • Die Zahnradpumpe 10 gemäß den alternativen Ausführungsformen entsprechend den Figuren 1 und 2 arbeitet nach folgendem Prinzip: Durch die eine Drossel 15 aufweisende Druckleitung 16 besteht zwischen den zwei Druckkammern 12,14 eine hydraulische Wirkverbindung. Wenn der Betriebsdruck in der zweiten Kammer 14 unterhalb des durch das Überdruckventil 32 festgelegten maximalen Druckgrenze liegt, besteht in den Druckkammern 12,14 Druckgleichheit, so dass die Verschiebeeinheit 11 aufgrund der mittels der Druckfeder 13 kontinuierlich an selbiger angreifenden Druckkraft eine Grundstellung einnimmt, bei welcher das Abtriebszahnrad 18 und das Antriebszahnrad 21 miteinander unter vollständiger Eingriffsbreite kämmen. Diese, eine maximale Fördermenge gewährleistende Grundstellung der Verschiebeeinheit 11 ist in Figur 1 dargestellt. Überschreitet der Betriebsdruck in der zweiten Druckkammer 14 die maximal zulässige Druckgrenze, öffnet das Überdruckventil 32, so dass es zu einem Druckabfall in der zweiten Druckkammer 14 und somit zu einer Druckdifferenz zwischen den in hydraulischer Wirkverbindung stehenden Kammern 12,14 kommt. Aufgrund dieser sich einstellenden Druckdifferenz beziehungsweise der in der ersten Druckkammer 12 wirkenden Druckkraft, welche symbolisch in Figur 2 als Pfeile 43 dargestellt ist, ergibt sich in Bezug auf das Antriebszahnrad 21 eine Axialverschiebung der Verschiebeeinheit 11 in Richtung zweite Druckkammer 14 gemäß Doppelpfeil 25. Es stellt sich somit eine geringere Eingriffsbreite zwischen den miteinander kämmenden Zahnrädern 18, 21 ein, so dass die Axialverschiebung der Verschiebeeinheit 11 in Richtung zweite Druckkammer 14 zu einer Fördermengenreduzierung der Zahnradpumpe 10 führt. Aufgrund dieser resultierenden Fördermengenreduzierung ergibt sich ein Betriebsdruckabfall in der Zahnradpumpe 10, so dass das Überdruckventil 32 bei einem sich in der zweiten Druckkammer 14 einstellenden, in Bezug auf die maximale Druckgrenze kleineren Betriebsdruck schließt und somit zu einer Beendigung der Axialverschiebung der Verschiebeeinheit 11 führt. Eine derartige Betriebssituation ist in Figur 2 dargestellt. In dieser Betriebssituation, das heißt bei abgeschlossener Axialverschiebung der Verschiebeeinheit 11, herrscht ein Kräftegleichgewicht zwischen den zwei Druckkammern 12,14, wobei aufgrund der vorliegenden Kraftwirkung der Druckfeder 13 auf die Verschiebeeinheit 11 beziehungsweise auf den Federkolben 20 der Betriebsdruck in der zweiten Druckkammer 14 kleiner ist als jener in der ersten Druckkammer 12. Dadurch ergibt sich ein Fluß des in der ersten Druckkammer 12 sich befindenden Fluids durch die Drossel 15 in die zweite Druckkammer 14 mit einer resultierenden Rückverschiebung der Verschiebeeinheit 11 in Richtung erste Druckkammer 12 gemäß Doppelpfeil 25. Diese Rückverschiebung der Verschiebeeinheit 11 führt zu einer Fördermengensteigerung der Zahnradpumpe 10 und einem entsprechenden Anstieg des Betriebsdrucks. Bei Überschreiten der maximalen Druckgrenze in der zweiten Druckkammer 14 beginnt der oben beschriebene Abregelvorgang (Axialverschiebung der Verschiebeeinheit 11 in Richtung zweiter Druckkammer 14) wieder von vorn. Dabei sichert die Druckfeder 13 im Stillstand der Zahnradpumpe 10 die in Figur 1 gezeigte, vollständige Zahnradeingriffsbreite und gewährleistet somit einen schnellen Fluiddruckaufbau bei Betriebsbeginn der Zahnradpumpe 10.
  • Dieser periodisch sich wiederholende Regelvorgang der Zahnradpumpe 10 führt zu geringen Betriebsdruckschwankungen, wobei das Regelverhalten mittels Auslegung der Druckfeder 13, der Drossel 15 und/oder der kalibrierten Durchgangsbohrung 34 des Überdruckventils 32 beeinflußbar ist.
  • Die in der Ausführungsform gemäß Figur 2 vorgesehene Drucktasche 26 ermöglicht eine sich vorteilhaft einstellende Strömung des Fluids und reduziert die vorliegende Seitenreibung zwischen Abtriebszahnrad 18 und Federkolben 20. Dabei kann die zur Drucktasche 26 führende Drossel 15, welche als Durchgangsbohrung 24 ausgebildet ist, bei der Montage des auf der Abtriebswelle 17 aufzupressenden Federkolbens 20 als Fixierbohrung dienen, so dass in dieser Weise eine Lagezuordnung der Drucktasche 26 möglich ist.
  • Figur 3 zeigt eine in Bezug auf Figur 2 alternative Ausführungsform des Federkolbens 20 in einer schematischen Ansicht von der Abtriebszahnradseite. Bei dieser Ausführungsform gemäß Figur 3 führt die Drossel 15 nicht in eine Drucktasche des Federkolbens 20 (Drucktasche 26 gemäß Figur 2), sondern grenzt direkt an den Zahnbereich des Abtriebszahnrads 18. Somit wird die zwischen den zwei Druckkammern 12, 14 mittels der Drossel 15 sich einstellende hydraulische Wirkverbindung periodisch durch die Zähne des umlaufenden Abtriebszahnrads 18 unterbrochen. Das Fluid wird somit bei dieser Ausführungsform periodisch aus der ersten Druckkammer 12 in die zweite Druckkammer 14 geleitet. Der Durchmesser der Drossel 15 kann verhältnismäßig groß gewählt werden, um Vorteile bezüglich des Regelverhaltens insbesondere bei einem kalten, hochviskosen Fluid zu erzielen. Eine zusätzliche Drucktasche 26 und Saugtasche 28 des Federkolbens 20 führt zu Vorteilen hinsichtlich der Fluidströmung und der zwischen dem Abtriebszahnrad 18 und dem Federkolben 20 sich einstellenden Seitenreibung.
  • Eine weitere Möglichkeit zur Beeinflussung des Regelverhaltens der Zahnradpumpe 10 bei Anordnung der Drossel 15 in der Abtriebswelle 17 wird durch die Realisierung einer Drossel 15 mit veränderlichem Durchtrittsquerschnitt gemäß den Figuren 4 und 5 erzielt. Die in Figur 4 dargestellte Ausführungsform zeigt eine Drossel 15 in einer gestuften Durchgangsbohrung 22 in der Abtriebswelle 17, welche mit einer axial nicht verschieblichen Drosselstange 29 mit einem sich konisch in Richtung zweite Druckkammer 14 verjüngenden Drosselende in Wirkverbindung steht. Die Drosselstange 29 ist mit ihrem einen Ende am Gehäuse 38 der Zahnradpumpe 10 nicht verschiebbar befestigt und durchdringt mit ihrem konisch ausgebildeten Drosselende die Drossel 15. In dieser Weise wird der Durchtrittsquerschnitt der Drossel 15 in Abhängigkeit der axialen Verschiebestellung der Verschiebeeinheit 11 verändert. Dabei ist der Durchtrittsquerschnitt der Drossel 15 in der in Figur 4 dargestellten Grundstellung (maximale Fördermenge der Zahnradpumpe 10) verhältnismäßig klein und in einer nicht dargestellten Verschiebestellung (Fördermengenreduzierung der Zahnradpumpe 10) relativ groß. Insbesondere bei kaltem, hochviskosem Fluid, wie zum Beispiel Öl, und einer sich einstellenden Fördermengenabregelung aufgrund eines geringeren Fluidmengenbedarfs des zu versorgenden Aggregats, wie zum Beispiel eines Verbrennungsmotors, kann mittels einer Entdrosselung das Regelverhalten der Zahnradpumpe 10 verbessert werden.
  • Bei der Ausführungsform gemäß Figur 5 wird zur Änderung des Durchtrittsquerschnitts der Drossel 15 die jeweils sich einstellende Fluidbetriebstemperatur herangezogen, welche eine entsprechende Wärmedehnung eines mit der Drossel 15 in Wirkverbindung stehenden Drosselelements 30 hervorruft. Ein derartiges Drosselelement 30 kann beispielsweise gemäß Figur 5 als Dehnungsstange vorzugsweise aus Aluminium ausgebildet sein, welche mit einem in Richtung zweite Druckkammer 14 sich verjüngenden, konischen Drosselende 31 versehen ist, das mit einer Verengung der in der Abtriebswelle 17 ausgebildeten, gestuften Durchgangsbohrung 22 im Bereich der Drossel 15 in Wirkverbindung steht. Die Abtriebswelle 17 ist hierbei vorzugsweise aus Stahl hergestellt. Das Drosselelement 30 ist mit seinem von der Drossel 15 wegweisenden Ende in der Abtriebswelle 17 befestigt und beeinflußt mit seinem konischen Drosselende 31 in Abhängigkeit der Betriebstemperatur den effektiven Durchtrittsquerschnitt an der Drossel 15.
  • Bei der in der Figur 6 dargestellten weiteren Ausführungsform weist der Steuerkolben 19 zur Reduzierung der Reibung an der Umfangsfläche und der damit verbundenen Verschiebehemmung der Verschiebeeinheit 11 einen Verbindungskanal in Form einer Verbindungsbohrung 51 auf, die ausgehend von der ersten Druckkammer 12 an der Umfangswand des Steuerkolbens 19 mündet. Über diese Bohrung 51 wird der Druck in der Druckkammer 12 gezielt auf einen bestimmten Bereich der Umfangsmantelfläche des Steuerkolbens 19 geleitet, um so eine Reduzierung der unerwünschten Querkräfte zu erreichen.
  • Dementsprechend ist auch am Federkolben 20 ein Verbindungskanal zwischen der zweiten Druckkammer 14 und der Umfangswand des Federkolbens 20 vorgesehen, der dort als Ausnehmung 53 bzw. Tasche in der Umfangswand des Federkolbens 20 ausgebildet ist. Diese Ausnehmung leitet dabei den Druck der zweiten Druckkammer 14 seitlich auf den Federkolben 20 um so unerwünschte Querkräfte ausgleichen zu können. Des weiteren ist im Steuerkolben19 eine Durchgangsbohrung 55 vorgesehen, die ausgehend von der die erste Druckkammer 12 axial begrenzenden Stirnseite 57 den Steuerkolben 19 vollständig durchdringt und an der zum Abtriebszahnrad 18 benachbarten Stirnseite 59 austritt. Dabei wird über diese Durchgangsbohrung 55 der Druck aus der ersten Druckkammer 12 in einen Wandbereich 63 des Abtriebs- bzw. Förderzahnrades 18 geleitet, so daß gegenüberliegend am Zahnradeingriff wirkenden Hydraulik- und Zahnkräften entgegengewirkt werden kann.
  • Um weiterhin einen unerwünschten Druckaufbau an der Mantelfläche der Verschiebeeinheit 11 verhindern zu können, ist es zudem auch möglich, eine Gehäusebohrung 61 im Gehäuse vorzusehen, die z.B. in Höhe des Steuerkolbens 19 angeordnet sein kann und die vom Inneren des Gehäuses nach außen abführt.
  • Dabei ist es mit den in der Figur 6 dargestellten Merkmalen möglich, die axialen Verschiebekräfte der Verschiebeeinrichtung zu reduzieren und die Regelung der Fördermengenregeleinrichtung entsprechend feinfühlig und leichtgängig auszubilden.
  • Der weitere konstruktive Aufbau und die Funktionsweise der Ausführungsformen gemäß den Figuren 3 bis 6 entsprechen demjenigen der Ausführungsformen gemäß den Figuren 1 und 2.
  • Gemäß einer alternativen, nicht dargestellten Ausführungsform kann die Funktion des Überdruckventils 32 auch von einer elektrisch ansteuerbaren, hydraulischen Regeleinheit übernommen werden. Eine derartige Regeleinheit ist in Figur 2 als zusätzlich zum Überdruckventil 32 vorgesehene Regeleinheit 35 dargestellt. Der Vorteil einer elektrischhydraulischen Regeleinheit liegt in dem jederzeit beliebig einstellbaren Förderdruckniveau der Zahnradpumpe 10 entsprechend dem jeweiligen Fluiddruckbeziehungsweise Fluidmengenbedarf des zu versorgenden Aggregats, wie zum Beispiel eines mit Öl zu versorgenden Verbrennungsmotors. Hierbei kann an einer relevanten Stelle eines Ölkreislaufs der jeweils anliegende Motoröldruck elektrisch sensiert werden und nach Vorgabe eines Öldruckkennfelds in Abhängigkeit von der Motordrehzahl und der Öltemperatur und einer erforderlichen Motorfunktion, wie beispielsweise der Schaltung eines Nockenwellenverstellers, bedarfsgerecht eingestellt werden. Die elektrisch ansteuerbare Regeleinheit kann dabei entweder direkt in einer Wandung der zweiten Druckkammer der Zahnradpumpe 10 oder aber über eine Hydraulikleitung mit der zweiten Druckkammer der Zahnradpumpe in Wirkverbindung stehend an einer anderen Stelle angeordnet sein. Jedoch ist zur Erhöhung der Betriebssicherheit der Zahnradpumpe bei elektrischer Druckregelung eine Kombination einer elektrischen Druckregeleinheit mit mechanisch-hydraulischen Überdruckventilen möglich.
  • Eine derartige Kombination ist in Figur 2 dargestellt, wobei das Regelsystem der Zahnradpumpe 10 zur Begrenzung des sich in der zweiten Druckkammer 14 einstellenden Betriebsdrucks auf eine maximale Druckgrenze ein erstes Überdruckventil 32 aufweist und parallel zu diesem mit einer elektrischen Regeleinheit 35 versehen ist, welche mit der zweiten Druckkammer 14 mittels der Hydraulikleitung 37 und des zweiten Überdruckventils 36 in Wirkverbindung steht. Die Regeleinheit 35 ist bedarfsgerecht pulsbar beziehungsweise querschnittsregelbar zum Absteuern einer bestimmten Fluidmenge aus der zweiten Druckkammer 14. In dieser Weise ist es möglich, in der zweiten Druckkammer 14 einen Betriebsdruck einzustellen, welcher unterhalb des durch das erste Überdruckventil 32 vorgegebenen Maximaldrucks liegt. Das in Bezug auf die Regeleinheit 35 in Reihe geschaltete zweite Überdruckventil 36 dient dazu, einen Minimaldruck in der zweiten Druckkammer 14 vorzugeben, so dass die elektrische Druckregelung mittels der Regeleinheit 35 lediglich zwischen einem Minimalfluiddruck von beispielsweise 2 bar durch Aktivieren des zweiten Überdruckventils 36 und einem Maximalfluiddruck von beispielsweise 5 bar durch Aktivieren des ersten Überdruckventils 32 wirkt.
  • Die in den Figuren 7 und 8 in zwei Schnittansichten gezeigte weitere Ausführungsform der erfindungsgemäßen regelbaren Zahnradpumpe, entspricht im wesentlichen dem Aufbau und der Funktion der in den Figuren 1 bis 6 beschriebenen Ausführungsbeispiele und verwendet daher deren Bezugszeichen.
  • Darüber hinaus weist die Zahnradpumpe 10 dort nunmehr eine nicht näher dargestellte Schrägverzahnung auf den Zahnrädern 21 und 18 auf, durch die der Förderölstrom zu und von den Zahnlücken der Zahnräder 21 und 18 weitgehend auch radial erfolgen kann, so daß zusätzliche Öltaschen in den axial die Zahnräder 21 und 18 begrenzenden Kammerwänden minimierbar sind, bzw. vollständig entfallen können. Zur Vermeidung von Ölquetschungen mit örtlich relativ hohen Quetschöldrücken ist zudem eine weitere, zumindest druckseitig angeordnete axiale Öltasche vorgesehen, die in vorteilhafter Weise im Deckel 39 angeordnet ist. Diese Öltasche ist dabei als Nut 83 im Deckel 39 ausgebildet, die sich über die gesamte Länge der Überdeckung mit dem Zapfen 40 erstreckt. Dabei hat diese Ausbildung der als Drucköltasche wirkenden Nut den Vorteil, daß der Regelhub des Steuerkolbens 19 unbeeinträchtigt bleibt, da die Drehabstützung des Steuerkolbens 19 an der Wand des Zapfens 40 des Deckels 39 über den gesamten Hub erhalten bleibt.
  • Die vom rotierenden Abtriebszahnrad 18 auf die Verschiebeeinheit 11 übertragenden Reibmomente stützen sich über den Steuerkolben 19 am Deckel 39 auf der Seite des Druckkanals 81 ab. Daher ist es besonders vorteilhaft, daß die Nut 83 als Drucköltasche nicht direkt mit dem Druckkanal 81 in Verbindung steht, da sonst entsprechend ihrer Tiefe der maximale Verschiebehub des Steuerkolbens 19 wegen der erforderlichen Drehabstützung zum Deckel 39 reduziert wäre. Durch die Erstreckung der Nut 83 über die gesamte, an die Kammer 12 grenzende Deckellänge, kann das über sie abzuführende Förderöl direkt von dort in die mit dem Druckkanal 81 verbundene Druckkammer 12 strömen.
  • Eine gemäß den oben beschriebenen Ausführungsformen ausgebildete Zahnradpumpe mit Fördermengenregelung ist in besonders vorteilhafter Weise zum Einsatz als Ölpumpe eines mit Öl zu versorgenden Verbrennungsmotors geeignet, da sie weitgehend eine bedarfsgerechte Minimierung der Ölfördermenge und des Öldruckniveaus ermöglicht und somit durch eine im Mittel deutlich reduzierte Ölpumpenantriebsleistung einen nennenswerten Beitrag zur bevorzugten Minderung des Kraftstoffverbrauchs des Verbrennungsmotors leistet.

Claims (24)

  1. Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit (11), die zwischen einer ersten Druckkammer (12) und einer zweiten, eine zusätzlich auf die Verschiebeeinheit (11) wirkende Druckfeder (13) aufweisenden Druckkammer (14) verschiebbar angeordnet ist, wobei die Verschiebeeinheit (11) aus einer Abtriebswelle (17) und, jeweils auf dieser koaxial angeordnet, einem Abtriebszahnrad (18), einem die erste Druckkammer (12) begrenzenden Steuerkolben (19) und einem die zweite Druckkammer (14) begrenzenden Federkolben (20) besteht und wobei die Verschiebeeinheit (11) in Abhängigkeit einer eventuell sich einstellenden Druckdifferenz zwischen der ersten Druckkammer (12) und der zweiten Druckkammer (14) in Bezug auf ein Antriebszahnrad (21) verschiebbar ist, dadurch gekennzeichnet, dass die Druckkammern (12, 14) mittels einer eine Drossel (15) aufweisenden Druckleitung (16) in hydraulischer Wirkverbindung stehen und die zweite Druckkammer (14) maximaldruckbegrenzt ist und die Drossel (15) als gestufte, zur zweiten Druckkammer (14) querschnittsreduzierte Durchgangsbohrung (22) in der Abtriebswelle (17) oder als stufenlose Durchgangsbohrung (22) in der Abtriebswelle (17) oder als Durchgangsbohrung (24) im Federkolben (20) ausgebildet ist.
  2. Zahnradpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Zahnradpumpe (10) als Außenzahnradpumpe ausgebildet ist.
  3. Zahnradpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die als Durchgangsbohrung (24) im Federkolben (20) ausgebildete Drossel (15) mit einer an den Zahnbereich des Abtriebszahnrads (18) grenzenden Drucktasche (26) des Federkolbens (20) in Verbindung steht.
  4. Zahnradpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei der als Durchgangsbohrung (24) Im Federkolben (20) ausgebildeten. Drossel (15) die hydraulische Wirkverbindung zwischen der Drossel (15) und der ersten Druckkammer (12) periodisch durch einen jeweiligen Zahn (27) des drehbaren Abtriebszahnrads (18) unterbrechbar ist.
  5. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Federkolben (20) eine an den Zahnbereich des Abtriebszahnrads (18) grenzende Saugtasche (28) aufweist.
  6. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Drossel (15) einen veränderbaren Durchtrittsquerschnitt aufweist.
  7. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die als Durchgangsbohrung (22) der Abtriebswelle (17) ausgebildete Drossel. (15) von einer nicht verschiebbaren Drosselstange (29) mit sich zur zweiten Druckkammer (14) verkleinerndem Querschnitt durchdrungen ist
  8. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Durchtrittsquerschnitt der Drossel (15) in Abhängigkeit einer betriebstemperaturbedingten Wärmedehnung eines mit der Drossel (15) in Wirkverbindung stehenden Drosselelements (30) veränderbar ist.
  9. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Drosselelement (30) als Dehnungsstange mit einem konisch sich verjüngenden, freien Drosselende (31) ausgebildet ist, welches bei einer positiven Wärmedehnung des Drosselelements (30) den Durchtrittsquerschnitt der Drossel (15) verringert.
  10. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Druckbegrenzung in der zweiten Druckkammer (14) ein mit dieser in Wirkverbindung stehendes Überdruckventil (32) vorgesehen ist.
  11. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Überdruckventil (32) in einer Wandung (33) der zweiten Druckkammer (14) integriert ist und eine in der Wandung (33) ausgebildete, in die zweite Druckkammer (14) führende, kalibrierte Durchgangsbohrung (34) aufweist.
  12. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Überdruckventil (32) als Kugelventil oder als Zungenventil ausgebildet ist.
  13. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Druckbegrenzung in der zweiten Druckkammer (14) eine mit dieser in Wirkverbindung stehende elektro-hydraulische Regeleinheit (35) vorgesehen ist.
  14. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur bedarfsgerechten Einstellung des Druckniveaus in der zweiten Druckkammer (14) eine mit der Regeleinheit (35) wirkverbundene Steuereinheit vorgesehen ist, welche mit einem mittels der Zahnradpumpe druckbeaufschlagten Verbraucheraggregat in Verbindung steht.
  15. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Regeleinheit (35) mit einem Überdruckventil (36) versehen ist.
  16. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Antriebszahnrad (21) und das Abtriebszahnrad (18) jeweils eine Schrägverzahnung aufweisen.
  17. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verschiebeeinheit (11) Verbindungskanäle aufweist, die ausgehend von wenigstens einer der Druckkammern (12, 14) an die Umfangswand der Verschiebeeinheit münden.
  18. Zahnradpumpe nach Anspruch 17, dadurch gekennzeichnet, dass von der ersten Druckkammer (12) eine Verbindungsbohrung (51) im Steuerkolben (19) abführt, die an dessen Umfangsmantelfläche mündet.
  19. Zahnradpumpe nach Anspruch 17, dadurch gekennzeichnet, dass der Steuerkolben (19) eine Durchgangsbohrung (55) aufweist, die ausgehend von einer die erste Druckkammer (12) begrenzenden Stirnwand (57) in einen zwischen der Umfangswand des Abtriebszahnrades (18) und der Gehäuseinnenwand gebildeten Raum (63) einmündet.
  20. Zahnradpumpe nach Anspruch 17, dadurch gekennzeichnet, dass an der Umfangswand des Federkolbens (20) der Verschiebeeinheit (11) eine Ausnehmung (53) angeordnet ist, die in die zweite Druckkammer (14) einmündet.
  21. Zahnradpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine von der Innenwand des die Verschiebeeinheit (11) aufnehmenden Gehäuses nach außen abführende Gehäusebohrung (61), vorzugsweise im Bereich des Steuerkolbens (19), vorgesehen ist.
  22. Zahnradpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Verzahnung des miteinander kämmenden Zahnradpaares als Schrägverzahnung ausgebildet ist.
  23. Zahnradpumpe nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eine der die Zahnräder (21, 18) axial begrenzenden Kammerwände eine Ausnehmung aufweist, die eine Tasche (83) für das Fördermedium, vorzugsweise Drucköl bildet.
  24. Zahnradpumpe nach Anspruch 23, dadurch gekennzeichnet, dass die Drucköltasche als Nut (83) in der Wand eines Gehäusedeckels (39) ausgebildet ist, die sich über die gesamte Länge der Überdeckung des Deckels (39) mit einer ersten Druckkammer (12) erstreckt.
EP01102128A 2000-03-02 2001-02-01 Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit Expired - Lifetime EP1130262B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10010039 2000-03-02
DE10010039 2000-03-02
DE10043842A DE10043842A1 (de) 2000-03-02 2000-09-06 Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit
DE10043842 2000-09-06

Publications (3)

Publication Number Publication Date
EP1130262A2 EP1130262A2 (de) 2001-09-05
EP1130262A3 EP1130262A3 (de) 2002-05-22
EP1130262B1 true EP1130262B1 (de) 2007-12-19

Family

ID=26004623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01102128A Expired - Lifetime EP1130262B1 (de) 2000-03-02 2001-02-01 Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit

Country Status (3)

Country Link
EP (1) EP1130262B1 (de)
AT (1) ATE381675T1 (de)
DE (1) DE50113387D1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674095B2 (en) 2000-12-12 2010-03-09 Borgwarner Inc. Variable displacement vane pump with variable target regulator
US7726948B2 (en) 2002-04-03 2010-06-01 Slw Automotive Inc. Hydraulic pump with variable flow and variable pressure and electric control
DE102013001750A1 (de) * 2013-01-31 2014-07-31 Volkswagen Aktiengesellschaft Verfahren zur Regelung eines Öldrucks für einen Verbrennungsmotor sowie entsprechend ausgestaltete Ölpumpe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896489B2 (en) 2000-12-12 2005-05-24 Borgwarner Inc. Variable displacement vane pump with variable target regulator
WO2003058071A1 (de) * 2002-01-12 2003-07-17 Dieter Voigt Vorrichtung zur druckregelung von hydraulikpumpen
AT500629B8 (de) * 2004-05-27 2007-02-15 Tcg Unitech Ag Zahnradpumpe
DE102006011200B4 (de) 2006-03-10 2014-11-13 Schwäbische Hüttenwerke Automotive GmbH & Co. KG Außenzahnradpumpe mit Entlastungstasche
WO2009129666A1 (zh) * 2008-04-21 2009-10-29 Feng Zhengmin 液力汽车传动、差速机构及变腔式齿轮泵
CN107940219B (zh) * 2017-11-21 2019-07-30 吉林大学 可变排量齿轮式机油泵

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB930913A (en) * 1960-09-21 1963-07-10 Serck Radiators Ltd Rotary liquid pumps
FR1395842A (fr) * 1964-03-06 1965-04-16 Amélioration aux pompes à engrenages ordinaires ou à débit variable
DE3347015A1 (de) * 1983-12-24 1985-07-04 Alfred Teves Gmbh, 6000 Frankfurt Druckregelvorrichtung fuer eine hydraulikpumpe, insbesondere eine fluegelzellenpumpe
DE3528651A1 (de) * 1985-08-09 1987-02-19 Rohs Hans Guenther Prof Dr Ing Zahnradpumpe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674095B2 (en) 2000-12-12 2010-03-09 Borgwarner Inc. Variable displacement vane pump with variable target regulator
US7726948B2 (en) 2002-04-03 2010-06-01 Slw Automotive Inc. Hydraulic pump with variable flow and variable pressure and electric control
DE102013001750A1 (de) * 2013-01-31 2014-07-31 Volkswagen Aktiengesellschaft Verfahren zur Regelung eines Öldrucks für einen Verbrennungsmotor sowie entsprechend ausgestaltete Ölpumpe

Also Published As

Publication number Publication date
ATE381675T1 (de) 2008-01-15
EP1130262A2 (de) 2001-09-05
EP1130262A3 (de) 2002-05-22
DE50113387D1 (de) 2008-01-31

Similar Documents

Publication Publication Date Title
DE10237801C5 (de) Vorrichtung zur Druckregelung von Hydraulikpumpen
EP1363025B1 (de) Verdrängerpumpe mit Fördervolumenverstellung
WO2008067935A2 (de) Verstelleinrichtung
WO2004020831A1 (de) Einrichtung zur regelung der pumpleistung einer schmiermittelpumpe für eine brennkraftmaschine
EP0702755A1 (de) Mehrstufenregler für schmiermittelpumpen mit kontinuierlich veränderbarem fördervolumen
DE19542653C2 (de) Automatikgetriebe für ein motorbetriebenes Fahrzeug
WO2006040090A1 (de) Linearantrieb
DE10043842A1 (de) Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit
DE3333647A1 (de) Regelbare schmiermittelpumpe
EP0712997A2 (de) Ventilsteuerung mit sauggeregelter Zahnring-/Innenzahnradpumpe
EP1141551B1 (de) Pumpenanordnung mit zwei hydropumpen
DE10141786B4 (de) Einrichtung zur Regelung des Schmieröldruckes einer Brennkraftmaschine
EP1130262B1 (de) Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit
EP0724068A1 (de) Ölversorgungssystem
DE102005028598B3 (de) Regelbare Kühlmittelpumpe
DE4308506A1 (de) Ölpumpensystem
EP0642430B1 (de) Von einem verbrennungsmotor angetriebene hydraulikpumpe
EP1463888B1 (de) Vorrichtung zur druckregelung von hydraulikpumpen
EP0561304B1 (de) Sauggeregelte Zahnringpumpe
EP1048879B1 (de) Druckmittelversorgung eines CVT-Getriebes
DE4128543C2 (de)
DE4135904A1 (de) Kolbenpumpe, insbesondere radialkolbenpumpe
EP0846861A1 (de) Stufenlos verstellbare Zahnringpumpe
DE102009060188B4 (de) Verstellventil für die Verstellung des Fördervolumens einer Verdrängerpumpe mit Kaltstartfunktion
DE10152647B4 (de) Ablassventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021122

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20060721

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 15/00 20060101AFI20070622BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50113387

Country of ref document: DE

Date of ref document: 20080131

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080330

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

26N No opposition filed

Effective date: 20080922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130319

Year of fee payment: 13

Ref country code: DE

Payment date: 20130228

Year of fee payment: 13

Ref country code: GB

Payment date: 20130228

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113387

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113387

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228