EP1124641B1 - Method and device for mechanically separating a disperse system - Google Patents

Method and device for mechanically separating a disperse system Download PDF

Info

Publication number
EP1124641B1
EP1124641B1 EP99955886A EP99955886A EP1124641B1 EP 1124641 B1 EP1124641 B1 EP 1124641B1 EP 99955886 A EP99955886 A EP 99955886A EP 99955886 A EP99955886 A EP 99955886A EP 1124641 B1 EP1124641 B1 EP 1124641B1
Authority
EP
European Patent Office
Prior art keywords
centrifugal separator
cross
feed channels
partial
tangential feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99955886A
Other languages
German (de)
French (fr)
Other versions
EP1124641A1 (en
Inventor
Günter Slowik
Jürgen Kohlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOHLMANN, JUERGEN
SLOWIK, GUENTER
Original Assignee
Kohlmann Juergen
Slowik Guenter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19920237A external-priority patent/DE19920237B4/en
Application filed by Kohlmann Juergen, Slowik Guenter filed Critical Kohlmann Juergen
Publication of EP1124641A1 publication Critical patent/EP1124641A1/en
Application granted granted Critical
Publication of EP1124641B1 publication Critical patent/EP1124641B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C11/00Accessories, e.g. safety or control devices, not otherwise provided for, e.g. regulators, valves in inlet or overflow ducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0422Separating oil and gas with a centrifuge device
    • F01M2013/0427Separating oil and gas with a centrifuge device the centrifuge device having no rotating part, e.g. cyclone

Definitions

  • the invention relates to a method for mechanically separating a disperse system into two or more disperse systems with different properties in a centrifugal separator and a device suitable for carrying out the method.
  • Suitable disperse systems are those in which the disperse phase is solid, liquid or gaseous and the dispersant is either liquid or gaseous, that is to say fluid.
  • the mechanical separation of such a disperse system of identical particle density in coarse and fine material is referred to as "classifying”. If a separation is carried out according to different densities, one speaks of “sorting”. If particles are separated from a liquid or gaseous dispersant surrounding them, this is a separation process. So-called centrifugal separators, also called cyclones, are used to carry out the mechanical separation processes “classifying”, “sorting” and “separating”.
  • a device for separating solid, floating parts in a gas stream by means of a centrifugal separator is known.
  • the total flow is divided into two partial flows before entering the centrifugal separator, which are introduced tangentially at different points in the centrifugal separator in order to introduce the partial flow enriched with the lower concentration of material into it so that the separation of the remaining material is not disturbed ,
  • a separating tongue is arranged in the total flow line through which the total flow is separated into the two partial flows and in order to effect the desired preliminary separation of the coarse material layer.
  • a generic method and the associated device are known from DE 39 36 078 C2.
  • the method used to control the degree of separation of a fluid multi-phase mixture is carried out using a cyclone separator with a swirl generator.
  • the entire material flow is divided into at least two partial flows by a first division, or at least two input material flows are used for the cyclone separator, the size of at least one of the partial flows being changeable.
  • the partial streams are optionally further divided and then the feed channels of the Swirl generator fed.
  • the swirl generator has a swirl chamber with several tangential feed channels, which have the same cross-sectional area and the number of which is even.
  • the main disadvantage of this procedure and the associated device is that the degree of separation can only be varied within a very small range, or requires the installation of a relatively large number of tangential feed channels. The latter leads to a significant increase in costs.
  • the selectivity and the grain size are other important characteristics when mechanically separating a disperse system. The two last-mentioned parameters can only be influenced insignificantly by the procedure described in DE 39 36 078 C2.
  • the invention had for its object to provide a generic method with which it is possible to vary the degree of separation in a wide range regardless of the fluid throughput without major structural changes and to influence the particle size and the selectivity.
  • the object is achieved by the method features specified in claim 1. Suitable embodiments of the procedure are given in claims 2 to 12. A device for carrying out the method is the subject of claim 13. Suitable design variants of the device are specified in claims 14 to 25.
  • the proposed procedure of dividing the partial flows into tangential feed channels with different cross-sectional areas as individual values or as a sum at the entry point in the centrifugal separator leads to a substantial expansion of the control range and to an improved influence on the procedural and qualitative parameters during operation. It is of great advantage that, compared to the solutions known from the prior art, the degree of separation can be regulated within a relatively large range independently of the total volume flow. An operating mode with three or four tangential feed channels is already sufficient for a large number of application areas.
  • centrifugal separators are either arranged directly on the centrifugal separator, evenly distributed over the circumference, or they open into a separate swirl chamber with which the centrifugal separator is additionally equipped.
  • a centrifugal separator with such a swirl chamber is described in detail, for example, in DE 39 36 078 C2.
  • each partial flow is divided into one or two tangential feed channels, whereby in the case of two tangential Differentiation of the supply channels in their cross-sectional area at the entry point in the centrifugal separator, or in the case of more than two tangential supply channels, the sum of the cross-sectional areas is essential as a distinguishing feature, enables a multitude of variations with regard to a different setting of the input impulses of the individual partial flows to be introduced into the centrifugal separator affect centrifugal acceleration in the separator. This means that the selectivity and the grain size can be set specifically for the product and the setting parameters can be changed during operation.
  • the required rotational symmetry of the partial streams is not impaired after entering the centrifugal separator.
  • the partial flow rate which is introduced through the tangential feed channel with the smallest cross-sectional area at the entry point into the centrifugal separator, is increased by appropriate adjustment of the pump or throttle element, and the other partial flow rate is reduced accordingly.
  • the total volume flow remains constant.
  • the partial flows introduced into the centrifugal separator are mixed very well with one another. This effect can be further improved by the arrangement of the swirl chamber already mentioned, the radial component of the speed vector increasing.
  • the partial flow amount which is assigned to the tangential feed channel with the larger cross-sectional area or the feed channels with the larger sum of the cross-sectional areas should be controllable via a throttle valve integrated in the partial flow line. With this valve, this partial flow can then be influenced in its throughput. If the throughput is constant, the other partial flow quantity, which is introduced into the centrifugal separator via the feed channel with the smaller cross-sectional area, is then inevitably increased. This already results in a large control range for the degree of separation.
  • any irregularities that may occur as a result of different entry impulses of the two, three or four partial flow quantities can be largely compensated for.
  • installations should be provided for a certain positive guidance of the partial flows introduced. It is important that a free selection can be made for the partial flows and that a partial flow does not result from a return and therefore cannot be freely adjusted.
  • the partial flows can either be formed from a total volume flow by division or as separate output conveying flows which originate from one or two storage containers and in which the mass transfer takes place through separate conveying members. A change in volume flow to form different partial flows can then be effected by changing the speed of the pumps used.
  • the proposed procedure can also be used for those applications in which the degree of separation is to be kept constant, with variable fluid throughput.
  • the control range which can be achieved is considerably restricted in the procedure known from the prior art.
  • the two partial flows are arranged symmetrically and tangentially Feed channels introduced into the swirl chamber of the centrifugal separator.
  • this solution is only suitable for centrifugal separators with an additional swirl chamber.
  • the pressure can be measured in order to influence the degree of separation in the partial flow which is introduced into the centrifugal separator at the entry point via the feed channel with the smallest cross-sectional area. This is kept at a predetermined value by changing at least one of the remaining partial flow quantities.
  • a pressure measuring device is integrated in the feed channel with the smallest cross-sectional area at the inlet parts in the centrifugal separator. This is coupled to a control valve, which is integrated into one of the supply channels for the other partial flows. There is also the possibility of arranging a control valve in several of the other partial flows, which are then optionally controlled via the pressure measuring device.
  • a further embodiment variant consists of measuring or determining selected substance parameters before and / or after the centrifugal separator and, depending on this, the partial flow quantity ratio between two or more partial flows and / or the pressure difference between two defined points, one before and one after the centrifugal separator, to be changed.
  • This measure is used primarily when the pressure cannot be used as a parameter for controlling the deposition process. This is particularly the case when influencing variables change which influence the deposition process but not the pressure. For example, the loading of the feed stream can change. In this case the property of a material flow is measured and used as the reference variable for the control.
  • the particle size distribution in the stream after the centrifugal separator can be measured by means of a measuring device and the pressure upstream of the centrifugal separator and the ratio of the partial flows upstream of the centrifugal separator can be changed.
  • This measure allows, for example, the dust content in the clean gas flow or the average particle size of the centrifugal separator to be kept constant by appropriate control.
  • the actuators required to change the partial flow ratio and / or the pressure difference can be, for example, a pump or a valve, which can also be used in combination if necessary.
  • the centrifugal separator 10 shown in FIG. 1 consists, in a manner known per se, of a separating space 3, which is connected to a conical lower part 4, and an immersion tube 5, which protrudes from the separating space 3.
  • the two feed channels 1, 2 have different cross-sectional areas at their entry points S 1 , S 2 .
  • the two tangential feed channels 1, 2 have the same height and each have a rectangular cross-sectional area, and differ only in their width.
  • the feed channel 1 is formed wider at the entry point S 1 than the other tangential feed channel 2 at the same point S 2 .
  • the decisive factor is the cross-sectional area directly at the point of entry into the Centrifugal separator 10.
  • the tangential feed channels can also have a different cross-sectional profile, for example a conical one.
  • the shape or contour of the cross-sectional area does not have to be exclusively rectangular, but can also be circular, for example.
  • the mode of operation of this embodiment variant is explained in more detail with reference to FIG. The entire fluid flow of the disperse system to be separated is removed from a storage container and then divided into two partial flows 7 and 8.
  • a valve 9 is integrated in front of the connection point to the tangential feed channel 1.
  • the partial flow 8 which can be changed in its volume flow, is introduced into the centrifugal separator 10 via the feed channel 1 with the larger cross-sectional area at the entry point S 1 .
  • the other partial flow 7 is introduced directly via the feed channel 2, which has a smaller cross-sectional area at the entry point S 2 . If the valve 9 is completely opened, then with a constant total volume flow 6, a degree of separation dependent on the separation geometry and the material data is established. If the valve 9 is closed step by step and the total volume flow 6 is kept constant, the degree of separation is increased due to the higher speed at the entry point S 2 with the smaller cross-sectional area.
  • FIGS. 4 and 5 show an embodiment variant which, in comparison to the variant according to FIGS. 1 to 3, is also equipped with an additional swirl chamber 11.
  • This is located above the separating chamber 3 and has a larger diameter than the separating chamber 3.
  • the swirl chamber 11 is lower in height than the height of the separating chamber 3.
  • the tangential feed channels 1 and 2 open into the swirl chamber 11 on the outer circumference thereof.
  • the tangentially introduced partial flows to the central axis of the centrifugal separator 10 are accelerated and made more uniform. This ensures that a particularly high rotational symmetry of the flow is achieved when entering the separating chamber 3.
  • FIG. 6 to 8 show an embodiment variant with three tangential feed channels 1, 2, and 12 with identical cross-sectional areas at the entry points S 1 , S 2 and S 12 into the spiral chamber 11 of the centrifugal separator 10.
  • the entry points S 1 , S 2 and S 12 are evenly distributed over the circumference of the swirl chamber 11, and are therefore each at the same distance from one another.
  • a component 14 with a conical outer surface is arranged within the swirl chamber 11 around the immersion tube 5, the cone tip of which points in the direction of the separating space 3.
  • the effect according to the invention only occurs when two tangential feed channels, such as 2 and 12, are fed via one feed line 8 and the third feed channel, eg 1, is fed via the other feed line 7.
  • This circuit variant is shown in FIG. 9.
  • the total fluid flow 6 is removed from the storage container by means of a delivery flow pump 16 and divided between the two partial flows 7 and 8.
  • the partial stream 7 reaches the centrifugal separator 10 without further influence via the tangential feed channel 1.
  • the partial stream 8 is divided into two further sub-streams 8a and 8b, a valve 9 being integrated in the line for the partial stream 8.
  • the lower part stream 8a then reaches the centrifugal separator 10 via the tangential feed channel 2 and the lower part stream 8b via the tangential feed channel 12.
  • the sum of the cross-sectional areas at the entry points S 2 and S 12 of the feed channels 2 and 12 is larger than the cross-sectional area at the entry point S. 1 of the feed channel 1.
  • the cross-sectional areas of all three feed channels are identical. However, this does not always have to be the case, it is only important that the two tangential feed channels, which are connected to a line which can be changed in volume flow, have a larger cross-sectional area in total.
  • the advantages of this circuit variant are, above all, a uniform design of the tangential feed channels, which means that the construction effort is kept low.
  • all tangential feed channels can be equipped with the same connection connections. FIG.
  • the feed channels 1 and 12 each have the same cross-sectional area at their entry points S 1 and S 12 in the centrifugal separator 10 and are arranged opposite one another. Both apply analogously to the feed channels 2 and 13 with the entry points S 2 and S 13 . However, the sum of the cross-sectional areas, on the one hand of the feed channels 1 and 12 and on the other hand of the feed channels 2 and 13 are different.
  • the total volume flow 6 withdrawn from a container is divided between the two partial flows 7 and 8 after the delivery flow pump 16 has been integrated.
  • a valve 9 is integrated in the line for the partial flow 8.
  • the partial flow 8 is divided into two further lower partial flows 8a and 8b, which have the larger cross-sectional areas via the tangential feed channels 2 and 13, which have the larger cross-sectional areas at the entry points S 2 and S 13 compared to the two other feed channels 1 and 12 in the centrifugal separator 10 be initiated.
  • the other partial flow 7 branching off from the total volume flow is likewise divided into two further partial flows 7a and 7b, which are introduced into the centrifugal separator 10 via the tangential feed channels 1, 12 with the smaller cross-sectional areas at the entry points S 1 and S 12 .
  • FIG. 11 A further embodiment variant is shown in which the total volume flow is formed from two separate partial flows 7, 8, which are either taken from a container or two locally separated containers, namely each partial flow 7, 8 via a separate delivery flow pump 16 or 17.
  • the sub-stream 7 then passes without further division via the tangential feed channel 1 with the smaller cross-sectional area at the entry point S 1 into the centrifugal separator 10.
  • the other sub-stream 8 is divided into two sub-streams 8a and 8b, which via the tangential feed channels 2 and 12 with the Larger cross-sectional areas are passed into the centrifugal separator 10 at the entry points S 2 and S 12 . It is again crucial that the sum of the cross-sectional areas of the entry points S 2 and S 12 is larger than the remaining cross-sectional area.
  • the individual flow rates are regulated exclusively via the speed control of the flow pumps 16 and 17. This variant offers the following advantages: Certain disperse systems run the risk of clogging the supply lines, particularly in the area of valves. A risk of clogging can be avoided by the possible regulation of the quantities of material to be supplied exclusively by means of the speed control via built-in pumps.
  • FIG. 12 also shows a centrifugal separator as a functional circuit diagram, the structure of which essentially corresponds to the variant shown in FIG. 3.
  • a pressure measuring device 18 is integrated in the tangential feed channel 2, which has the smaller cross-sectional area at the entry point into the centrifugal separator compared to the other tangential feed channel 1, , is integrated in the tangential feed channel 2, which has the smaller cross-sectional area at the entry point into the centrifugal separator compared to the other tangential feed channel 1, a pressure measuring device 18 is integrated , which is connected to the feed channel 1, is coupled.
  • This variant is used when it is a feed stream whose loading remains almost constant and in which the other material properties do not change.
  • this measure takes place when the total volume flow, the feed flow, is divided into two partial flows, which are introduced directly into the centrifugal separator 10 via a respective tangential feed channel 1 or 2, as shown in FIG.
  • the pressure is measured in the feed channel 2, and the measuring point can also be outside this channel 2, for example in the feed line to this channel.
  • the steep valve 9 is changed in the event of throughput fluctuations until the pressure has reached the desired setpoint again.
  • the ratio of the two partial flows is influenced at the same time. If you consider the change in the feed current in detail, the following process takes place. If the feed flow increased, the pressure would also increase without the proposed regulation.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Centrifugal Separators (AREA)
  • Cyclones (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

The invention relates to a method for mechanically separating a disperse system into two or more disperse systems, said systems having different features, in a centrifugal separator, and to a device suited for carrying out the inventive method. Based on the disadvantages of the prior art, the aim of the invention was to create a method of the type in question with which it is possible, without large structural changes, to be able to vary the degree of solids recovery independent of fluid flow rate to a large extent and to influence the size of separation and the sharpness of separation. To these ends, the partial streams (7, 8) are partitioned to feed channels (1, 2) which, in the centrifugal separator, differ in the cross-sectional areas thereof at the points of entry (S1, S2). During the partitioning of the partial streams to more than two tangential feed channels (1, 2, 12, 13), the cross-sectional areas (2) and (13) or (1) and (12) are formed from the sum of the cross-sectional areas of the feed channels which are in contact with the respective partial stream (7 or 8), and therefore the sums of the cross-sectional areas of the respective partial streams (7 or 8) differ at the points of entry (S2, S13 or S1, S12) into the centrifugal separator.

Description

Die Erfindung betrifft ein Verfahren zum mechanischen Trennen eines dispersen Systems in zwei oder mehrere disperse Systeme mit unterschiedlichen Eigenschaften in einem Zentrifugalabscheider und eine zur Durchführung des Verfahrens geeignete Vorrichtung.The invention relates to a method for mechanically separating a disperse system into two or more disperse systems with different properties in a centrifugal separator and a device suitable for carrying out the method.

Als disperse Systeme kommen solche in Frage, bei denen die disperse Phase fest, flüssig oder gasförmig ist und das Dispersionsmittel entweder flüssig oder gasförmig, also fluid ist. Die mechanische Trennung eines derartigen dispersen System identischer Partikeldichte in Grob- und Feingut wird als "Klassieren" bezeichnet. Wird eine Trennung nach unterschiedlichen Dichten durchgeführt, so spricht man von "Sortieren". Werden Partikel von einem sie umgebenden flüssigen oder gasförmigen Dispersionsmittel getrennt, so handelt es sich um ein Abscheideverfahren. Zur Durchführung der mechanischen Trennverfahren "Klassieren", "Sortieren" und "Abscheiden" werden sogenannte Zentrifugalabscheider, auch Zyklone genannt, eingesetzt.
Aus der DE- PS 875 753 ist eine Einrichtung zum Abscheiden fester, in einem Gasstrom schwebender Gutteile mittels eines Zentrifugalabscheiders bekannt. Der Gesamtstrom wird vor dem Eintritt in den Zentrifugalabschelder in zwei Teilströme geteilt, die tangential an unterschiedlichen Stellen in den Zentrifugalabscheider eingeleitet werden, um den mit der niedrigeren Konzentration an Gut angereicherten Teilstrom so in diesen einzuleiten, daß dadurch die Abscheidung des übrigen Gutes nicht gestört wird. In der Gesamtstromleitung ist eine Trennzunge angeordnet durch die der Gesamtstrom in die zwei Teilströme getrennt wird und um die gewünschte Vorabtrennung der Grobgutschicht zu bewirken.
Ein gattungsgemäßes Verfahren und die dazugehörige Vorrichtung sind aus der DE 39 36 078 C2 bekannt. Das zur Steuerung des Grades der Trennung eines fluiden Mehrphasengemisches bestimmte Verfahren wird unter Verwendung eines Zyklonabscheiders mit einem Drallerzeuger durchgeführt. Dabei wird der gesamte Stoffstrom durch eine erste Teilung auf mindestens zwei Teilströme aufgeteilt oder es werden mindestens zwei Eingangsstoffströme für den Zyklonabscheider verwendet, wobei mindestens einer der Teilströme in seiner Größe veränderbar ist. Die Teilströme werden gegebenenfalls weiter aufgeteilt und anschließend den Zuführungskanälen des Drallerzeugers zugeleitet. Der Drallerzeuger besitzt eine Drallkammer mit mehreren tangentialen Zuführungskanälen, die die gleiche Querschnittsfläche haben und deren Anzahl geradzahlig ist.
Der Nachteil dieser Verfahrensweise und der dazugehörigen Vorrichtung besteht vor allem darin, daß der Abscheidegrad nur in einem sehr kleinen Bereich variiert werden kann, oder den Einbau einer verhältnismäßig großen Anzahl an tangentialen Zuführungskanälen erfordert. Letzteres führt zu einer wesentlichen Kostenerhöhung. Außer dem Abscheidegrad sind die Trennschärfe und die Trennkorngröße weitere bedeutende Kennwerte beim mechanischen Trennen eines dispersen Systems. Die beiden letztgenannten Kenngrößen können durch die in der DE 39 36 078 C2 beschriebenen Verfahrensweise nur unwesentlich beeinflußt werden.
Suitable disperse systems are those in which the disperse phase is solid, liquid or gaseous and the dispersant is either liquid or gaseous, that is to say fluid. The mechanical separation of such a disperse system of identical particle density in coarse and fine material is referred to as "classifying". If a separation is carried out according to different densities, one speaks of "sorting". If particles are separated from a liquid or gaseous dispersant surrounding them, this is a separation process. So-called centrifugal separators, also called cyclones, are used to carry out the mechanical separation processes "classifying", "sorting" and "separating".
From DE-PS 875 753 a device for separating solid, floating parts in a gas stream by means of a centrifugal separator is known. The total flow is divided into two partial flows before entering the centrifugal separator, which are introduced tangentially at different points in the centrifugal separator in order to introduce the partial flow enriched with the lower concentration of material into it so that the separation of the remaining material is not disturbed , A separating tongue is arranged in the total flow line through which the total flow is separated into the two partial flows and in order to effect the desired preliminary separation of the coarse material layer.
A generic method and the associated device are known from DE 39 36 078 C2. The method used to control the degree of separation of a fluid multi-phase mixture is carried out using a cyclone separator with a swirl generator. The entire material flow is divided into at least two partial flows by a first division, or at least two input material flows are used for the cyclone separator, the size of at least one of the partial flows being changeable. The partial streams are optionally further divided and then the feed channels of the Swirl generator fed. The swirl generator has a swirl chamber with several tangential feed channels, which have the same cross-sectional area and the number of which is even.
The main disadvantage of this procedure and the associated device is that the degree of separation can only be varied within a very small range, or requires the installation of a relatively large number of tangential feed channels. The latter leads to a significant increase in costs. In addition to the degree of separation, the selectivity and the grain size are other important characteristics when mechanically separating a disperse system. The two last-mentioned parameters can only be influenced insignificantly by the procedure described in DE 39 36 078 C2.

Der Erfindung lag die Aufgabe zugrunde ein gattungsgemäßes Verfahren zu schaffen, mit dem es möglich ist, ohne große bauliche Veränderungen den Abscheidegrad unabhängig vom Fluiddurchsatz in einer großen Breite variieren zu können sowie die Trennkorngröße und die Trennschärfe zu beeinflussen.The invention had for its object to provide a generic method with which it is possible to vary the degree of separation in a wide range regardless of the fluid throughput without major structural changes and to influence the particle size and the selectivity.

Erfindungsgemäß wird die Aufgabe durch die im Anspruch 1 angegebenen Verfahrensmerkmale gelöst. Geeignete Ausgestaltungen der Verfahrensweise sind in den Ansprüchen 2 bis 12 angegeben. Eine Vorrichtung zur Durchführung des Verfahrens ist Gegenstand des Anspruches 13. Geeignete Ausgestaltungsvarianten der Vorrichtung sind in den Ansprüchen 14 bis 25 angegeben.
Die vorgeschlagene Verfahrensweise, die Teilströme auf tangentiale Zuführungskanäle mit unterschiedlichen Querschnittsflächen als Einzelwert oder Summe an der Eintrittsstelle in den Zentrifugalabscheider aufzuteilen, führt zu einer wesentlichen Erweiterung des Regelbereiches und auf eine verbesserte Einflußnahme auf die verfahrenstechnischen und qualitativen Parameter während des Betriebes. Von großem Vorteil ist, daß sich im Vergleich zu den aus dem Stand der Technik bekannten Lösungen, der Abscheidegrad unabhängig vom Gesamtvolumenstrom in einem relativ großen Bereich geregelt werden kann. Für eine Vielzahl an Einsatzgebieten ist bereits eine Betriebsweise mit drei oder vier tangentialen Zuführungskanälen ausreichend. Diese sind entweder direkt am Zentrifugalabscheider gleichmäßig am Umfang verteilt angeordnet oder sie münden in eine gesonderte Drallkammer, mit der der Zentrifugalabscheider zusätzlich ausgerüstet ist. Ein Zentrifugalabscheider mit einer derartigen Drallkammer ist z.B. in der DE 39 36 078 C2 ausführlich beschrieben.
Die Aufteilung des Gesamtvolumenstromes auf zwei Teilströme, die separat über ein Drosselventil oder eine Pumpe steuerbar sind, und jeder Teilstrom auf einen oder zwei tangentiale Zuführungskanäle aufgeteilt wird, wobei sich im Falle von zwei tangentialen Zuführungskanälen diese in ihrer Querschnittsfläche an der Eintrittsstelle in den Zentrifugalabscheider unterscheiden, oder bei mehr als zwei tangentialen Zuführungskanälen die Summe der Querschnittsflächen als Unterscheidungsmerkmal wesentlich ist, ermöglicht eine Vielzahl an Variationen hinsichtlich einer unterschiedlichen Einstellung der Eintrittsimpulse der einzelnen In den Zentrifugalabscheider einzuleitenden Teilströme, die sich auf die Zentrifugalbeschleunigung im Abscheider auswirken. Dadurch kann produktspezifisch die Trennschärfe und die Trennkorngräße eingestellt und die Einstellgrößen während des Betriebes verändert werden.
According to the invention the object is achieved by the method features specified in claim 1. Suitable embodiments of the procedure are given in claims 2 to 12. A device for carrying out the method is the subject of claim 13. Suitable design variants of the device are specified in claims 14 to 25.
The proposed procedure of dividing the partial flows into tangential feed channels with different cross-sectional areas as individual values or as a sum at the entry point in the centrifugal separator leads to a substantial expansion of the control range and to an improved influence on the procedural and qualitative parameters during operation. It is of great advantage that, compared to the solutions known from the prior art, the degree of separation can be regulated within a relatively large range independently of the total volume flow. An operating mode with three or four tangential feed channels is already sufficient for a large number of application areas. These are either arranged directly on the centrifugal separator, evenly distributed over the circumference, or they open into a separate swirl chamber with which the centrifugal separator is additionally equipped. A centrifugal separator with such a swirl chamber is described in detail, for example, in DE 39 36 078 C2.
The division of the total volume flow into two partial flows, which can be controlled separately via a throttle valve or a pump, and each partial flow is divided into one or two tangential feed channels, whereby in the case of two tangential Differentiation of the supply channels in their cross-sectional area at the entry point in the centrifugal separator, or in the case of more than two tangential supply channels, the sum of the cross-sectional areas is essential as a distinguishing feature, enables a multitude of variations with regard to a different setting of the input impulses of the individual partial flows to be introduced into the centrifugal separator affect centrifugal acceleration in the separator. This means that the selectivity and the grain size can be set specifically for the product and the setting parameters can be changed during operation.

Wesentlich ist auch, daß die erforderliche Rotationssymmetrie der Teilströme nach dem Eintritt in den Zentrifugalabscheider nicht beeinträchtigt wird.
Zur Vergrößerung des Abscheidegrades wird die Teilstrommenge, die durch den tangentialen Zuführungskanal mit der kleinsten Querschnittsfläche an der Eintrittsstelle in den Zentrifugalabscheider eingeleitet wird, durch entsprechende Einstellung von Pumpe oder Drosselorgan vergrößert und die andere Teilstrommenge wird dementsprechend verkleinert. Der Gesamtvolumenstrom bleibt dabei konstant. Die in den Zentrifugalabscheider eingeleiteten Teilströme werden sehr gut miteinander vermischt. Durch die Anordnung der bereits erwähnten Drallkammer kann dieser Effekt noch verbessert werden, wobei die radiale Komponente des Geschwindigkeitsvektors zunimmt. Bei einer Teilung der Teilströme vor den tangentialen Zuführungskanälen auf zwei Teilstrommengen, sollte die Teilstrommenge, die dem tangentialen Zuführungskanal mit der größeren Querschnittsfläche oder den Zuführungskanälen mit der größeren Summe der Querschnittsflächen zugeordnet ist, über ein in die Teilstromleitung eingebundenes Drosselventil regelbar sein. Mit diesem Ventil kann dann dieser Teilstrom in seinem Durchsatz beeinflußt werden. Bei konstantem Durchsatz wird dann zwangsläufig die andere Teilstrommenge, die über den Zuführungskanal mit der kleineren Querschnittsfläche in den Zentrifugalabscheider eingeleitet wird, erhöht. Dadurch ergibt sich bereits ein großer Regelbereich für den Abscheidegrad. Durch den Einbau einer zusätzlichen Drallkammer in den Zentrifugalabscheider können evtl. auftretende Unregelmäßigkeiten infolge unterschiedlicher Eintrittsimpulse der zwei, drei oder vier Teilstrommengen weitestgehend ausgeglichen werden. In der Drallkammer sollten Einbauten für eine gewisse Zwangsführung der eingeleiteten Teilströme vorgesehen sein. Wichtig ist, daß für die Teilströme eine freie Auswahl getroffen werden kann und nicht ein Teilstrom aus einer Rückführung resultiert und demzufolge nicht frei einstellbar ist. Die Teilströme können entweder aus einem Gesamtvolumenstrom durch Teilung oder als getrennte Ausgangsförderströme, die von einem oder zwei Vorratsbehältern ausgehen und bei denen der Stofftransport durch separate Förderorgane erfolgt, gebildet werden. Eine Volumenstromänderung zur Bildung unterschiedlicher Teilströme kann dann durch Änderung der Drehzahl der eingesetzten Pumpen bewirkt werden. Die vorgeschlagene Verfahrensweise kann auch für solche Anwendungen zum Einsatz kommen, bei denen der Abscheidegrad konstant gehalten werden soll, bei veränderlichem Fluiddurchsatz. Im Vergleich zu der erfindungsgemäßen Lösung ist bei der aus dem Stand der Technik bekannten Verfahrensweise der erzielbare Regelbereich erheblich eingeschränkt. Bei gleichen Querschnittsflächen aller tangentialen Zuführungskanäle ist lediglich eine weitere Aufteilung der Teilströme im Teilungsverhältnis 2:1 möglich. Die beiden Teilströme werden über symmetrisch angeordnete Leitungen und tangentiale Zuführungskanäle in die Drallkammer des Zentrifugalabscheiders eingeleitet. Außerdem ist diese Lösung nur für Zentrifugalabscheider mit einer zusätzlichen Drallkammer geeignet.
It is also essential that the required rotational symmetry of the partial streams is not impaired after entering the centrifugal separator.
To increase the degree of separation, the partial flow rate, which is introduced through the tangential feed channel with the smallest cross-sectional area at the entry point into the centrifugal separator, is increased by appropriate adjustment of the pump or throttle element, and the other partial flow rate is reduced accordingly. The total volume flow remains constant. The partial flows introduced into the centrifugal separator are mixed very well with one another. This effect can be further improved by the arrangement of the swirl chamber already mentioned, the radial component of the speed vector increasing. If the partial flows upstream of the tangential feed channels are divided into two partial flow amounts, the partial flow amount which is assigned to the tangential feed channel with the larger cross-sectional area or the feed channels with the larger sum of the cross-sectional areas should be controllable via a throttle valve integrated in the partial flow line. With this valve, this partial flow can then be influenced in its throughput. If the throughput is constant, the other partial flow quantity, which is introduced into the centrifugal separator via the feed channel with the smaller cross-sectional area, is then inevitably increased. This already results in a large control range for the degree of separation. By installing an additional swirl chamber in the centrifugal separator, any irregularities that may occur as a result of different entry impulses of the two, three or four partial flow quantities can be largely compensated for. In the swirl chamber, installations should be provided for a certain positive guidance of the partial flows introduced. It is important that a free selection can be made for the partial flows and that a partial flow does not result from a return and therefore cannot be freely adjusted. The partial flows can either be formed from a total volume flow by division or as separate output conveying flows which originate from one or two storage containers and in which the mass transfer takes place through separate conveying members. A change in volume flow to form different partial flows can then be effected by changing the speed of the pumps used. The proposed procedure can also be used for those applications in which the degree of separation is to be kept constant, with variable fluid throughput. In comparison with the solution according to the invention, the control range which can be achieved is considerably restricted in the procedure known from the prior art. With the same cross-sectional areas of all tangential feed channels, only a further division of the partial flows in the division ratio 2: 1 is possible. The two partial flows are arranged symmetrically and tangentially Feed channels introduced into the swirl chamber of the centrifugal separator. In addition, this solution is only suitable for centrifugal separators with an additional swirl chamber.

Gemäß einer weiteren Ausgestaltung der Verfahrensweise kann zur Beeinflussung des Abscheidegrades in dem Teilstrom, der über den Zuführungskanal mit der kleinsten Querschnittsfläche an der Eintrittsstelle in den Zentrifugalabscheider eingeleitet wird, der Druck gemessen werden. Dieser wird auf einem vorbestimmten Wert gehalten, indem mindestens eine der übrigen Teilstrommengen verändert wird. Diese Verfahrensweise bietet den Vorteil, daß bei schwankenden Aufgabeströmen die Trennleistung bzw. der Abscheidegrad des Zentrifugalabscheiders im Wesentlichen aufrechterhalten werden kann.According to a further embodiment of the procedure, the pressure can be measured in order to influence the degree of separation in the partial flow which is introduced into the centrifugal separator at the entry point via the feed channel with the smallest cross-sectional area. This is kept at a predetermined value by changing at least one of the remaining partial flow quantities. This procedure offers the advantage that the separation performance or the degree of separation of the centrifugal separator can essentially be maintained in the case of fluctuating feed streams.

Zur Realisierung dieser Verfahrensweise ist in den Zuführungskanal mit der kleinsten Querschnittsfläche an der Eintrittssteile in den Zentrifugalabscheider ein Druckmeßgerät eingebunden. Dieses ist mit einem Stellventil gekoppelt, das in einen der Zuführungskanäle für die anderen Teilströme eingebunden ist Es besteht auch die Möglichkeit, jeweils in mehreren der übrigen Teilströme ein Stellventil anzuordnen, die dann wahlweise über das Druckmeßgerät gesteuert werden.To implement this procedure, a pressure measuring device is integrated in the feed channel with the smallest cross-sectional area at the inlet parts in the centrifugal separator. This is coupled to a control valve, which is integrated into one of the supply channels for the other partial flows. There is also the possibility of arranging a control valve in several of the other partial flows, which are then optionally controlled via the pressure measuring device.

Eine weitere Ausführungsvariante besteht darin, daß vor und/oder nach dem Zentrifugalabscheider ausgewählte Stoffparameter gemessen oder bestimmt werden und in Abhängigkeit davon das Teilstrommengenverhältnis zwischen zwei oder mehreren Teilströmen und/oder die Druckdifferenz zwischen zwei definierten Stellen, jeweils einer vor und einer nach dem Zentrifugalabscheider, verändert werden. Diese Maßnahme kommt vor allem dann zur Anwendung, wenn der Druck nicht als Größe für die Steuerung des Abscheideprozesses verwendet werden kann. Dies ist insbesondere der Fall, wenn sich Einflußgrößen ändern, die zwar auf den Abscheideprozeß Einfluß nehmen, nicht aber auf den Druck. So kann sich beispielsweise die Beladung des Aufgabestromes ändern. In diesem Fall wird die Eigenschaft eines Stoffstromes gemessen und als Führungsgröße der Regelung verwendet. Zum Beispiel kann die Partikelgrößenverteilung im Strom nach dem Zentrifugalabscheider mittels eines Meßgerätes gemessen werden und der Druck vor dem Zentrifugalabscheider sowie das Verhältnis der Teilströme vor dem Zentrifugalabscheider verändert werden. Durch diese Maßnahme kann zum Beispiel der Staubgehalt im Reingasstrom oder die mittlere Trennkorngröße des Zentrifugalabscheiders durch entsprechende Regelung konstant gehalten werden.A further embodiment variant consists of measuring or determining selected substance parameters before and / or after the centrifugal separator and, depending on this, the partial flow quantity ratio between two or more partial flows and / or the pressure difference between two defined points, one before and one after the centrifugal separator, to be changed. This measure is used primarily when the pressure cannot be used as a parameter for controlling the deposition process. This is particularly the case when influencing variables change which influence the deposition process but not the pressure. For example, the loading of the feed stream can change. In this case the property of a material flow is measured and used as the reference variable for the control. For example, the particle size distribution in the stream after the centrifugal separator can be measured by means of a measuring device and the pressure upstream of the centrifugal separator and the ratio of the partial flows upstream of the centrifugal separator can be changed. This measure allows, for example, the dust content in the clean gas flow or the average particle size of the centrifugal separator to be kept constant by appropriate control.

Bei den erforderlichen Stellorganen zur Veränderung des Teilstrommengenverhältnisses und/oder der Druckdifferenz kann es sich beispielsweise um eine Pumpe oder ein Ventil handeln, die erforderlichenfalls auch in Kombination eingesetzt werden können.The actuators required to change the partial flow ratio and / or the pressure difference can be, for example, a pump or a valve, which can also be used in combination if necessary.

Die Erfindung soll nachstehend an mehreren Beispielen erläutert werden. In der zugehörigen Zeichnung zeigen

Fig. 1
einen Zentrifugalabscheider mit zwei tangentialen Zuführungskanälen, als Längsschnitt gemäß der Linie B-B in Fig. 2,
Fig. 2
einen Schnitt gemäß der Linie A-A in Fig. 1,
Fig. 3
die perspektivische Darstellung des Zentrifugalabscheiders gemäß Fig. 1 mit einer Variante für die Teilstromaufteilung,
Fig. 4
einen Zentrifugalabscheider gemäß Figur 1 mit einer zusätzlichen Drallkammer, als Längsschnitt gemäß der Linie B-B in Fig. 5,
Fig. 5
einen Schnitt gemäß der Linie A-A in Fig. 4,
Fig. 6
einen Zentrifugalabscheider mit drei tangentialen Zuführungskanälen, die in eine Drallkammer münden, in perspektivischer Darstellung,
Fig. 7
den Zentrifugalabscheider gemäß Fig. 6 als Längsschnitt,
Fig. 8
die Draufsicht auf den Zentrifugalabscheider gemäß Fig. 6,
Fig. 9
das Funktionsschaltbild für eine Variante der Teilstromaufteilung des Zentrifugalabscheiders gemäß Fig. 6,
Fig. 10
ein Funktionsschaltbild für die Aufteilung der Teilströme bei einem Zentrifugalabscheider mit vier tangentialen Zuführungskanälen,
Fig. 11
ein Funktionsschaltbild für die Aufteilung zwei separat entnommener Teilströme auf drei tangentiale Zuführungskanäle eines Zentrifugalabscheiders und
Fig. 12
ein Funktionsschaltbild für einen Zentrifugalabscheider mit zwei tangentialen Zuführungskanälen und einem Druckmeßgerät.
The invention will be explained below using several examples. Show in the accompanying drawing
Fig. 1
a centrifugal separator with two tangential feed channels, as a longitudinal section along the line BB in Fig. 2,
Fig. 2
2 shows a section along line AA in FIG. 1,
Fig. 3
1 shows a perspective view of the centrifugal separator according to FIG. 1 with a variant for the partial flow division,
Fig. 4
2 shows a centrifugal separator according to FIG. 1 with an additional swirl chamber, as a longitudinal section along line BB in FIG. 5,
Fig. 5
3 shows a section along line AA in FIG. 4,
Fig. 6
a centrifugal separator with three tangential feed channels, which open into a swirl chamber, in a perspective view,
Fig. 7
6 as a longitudinal section,
Fig. 8
6 the top view of the centrifugal separator according to FIG. 6,
Fig. 9
6 shows the functional circuit diagram for a variant of the partial flow division of the centrifugal separator according to FIG. 6,
Fig. 10
a functional circuit diagram for the division of the partial flows in a centrifugal separator with four tangential feed channels,
Fig. 11
a functional circuit diagram for the division of two separately taken partial streams on three tangential feed channels of a centrifugal separator and
Fig. 12
a functional diagram for a centrifugal separator with two tangential feed channels and a pressure gauge.

Der in der Figur 1 gezeigte Zentrifugalabscheider 10 besteht in an sich bekannter Weise aus einem Abscheideraum 3, der mit einem konischen Unterteil 4 verbunden ist sowie einem Tauchrohr 5, das aus dem Abscheideraum 3 herausragt. In den Abscheideraum 3 münden die beiden tangentialen Zuführungskanäle 1, 2 für die Zuführung des dispersen Systems, das im Zentrifugalabscheider 10 einem Trennprozeß unterzogen werden soll. Wie in der Figur 2 deutlich zu sehen, weisen die beiden Zuführungskanäle 1, 2 an ihren Eintrittsstellen S1, S2 unterschiedliche Querschnittsflächen auf. Die beiden tangentialen Zuführungskanäle 1, 2 besitzen die gleiche Höhe und jeweils eine rechteckige Querschnittsfläche, und unterscheiden sich lediglich in ihrer Breite. Der Zuführungskanal 1 ist an der Eintrittsstelle S1 breiter ausgebildet als der andere tangentiale Zuführungskanal 2 an der gleichen Stelle S2. Entscheidend ist die Querschnittsfläche unmittelbar an der Eintrittsstelle in den Zentrifugalabscheider 10. Bis zu dieser Stelle können die tangentialen Zuführungskanäle auch einen anderen Querschnittsverlauf aufweisen, z.B. einen konischen. Die Form bzw. Kontur der Querschnittsfläche muß selbstverständlich nicht ausschließlich rechteckförmig, sondern kann z.B. auch kreisrund ausgeführt sein. Unter Bezugnahme auf die Figur 3 wird die Betriebsweise dieser Ausführungsvariante näher erläutert. Der gesamte Fluidstrom des zu trennenden dispersen Systems wird einem Vorratsbehälter entnommen und anschließend auf zwei Teilströme 7 und 8 aufgeteilt. In die Teilstromleitung für den Teilstrom 8 ist vor der Anschlußstelle an den tangentialen Zuführungskanal 1 ein Ventil 9 eingebunden. Der in seinem Volumenstrom veränderbare Teilstrom 8 wird über den Zuführungskanal 1 mit der größeren Querschnittsfläche an der Eintrittsstelle S1 in den Zentrifugalabscheider 10 eingeleitet. Der andere Teilstrom 7 wird direkt über den Zuführungskanal 2 eingeleitet, der an der Eintrittsstelle S2 eine kleinere Querschnittsfläche aufweist. Wird das Ventil 9 vollständig geöffnet, so stellt sich bei konstantem Gesamtvolumenstrom 6 ein von der Abscheidegeometrie und den Stoffdaten abhängiger Abscheidegrad ein. Schließt man das Ventil 9 schrittweise und hält dabei den Gesamtvolumenstrom 6 konstant, so wird der Abscheidegrad erhöht, infolge der höheren Geschwindigkeit an der Eintrittsstelle S2 mit der kleineren Querschnittsfläche.
In den Figuren 4 und 5 ist eine Ausführungsvariante dargestellt, die im Vergleich zu der Variante gemäß den Figuren 1 bis 3 noch mit einer zusätzlichen Drallkammer 11 ausgerüstet ist. Diese befindet sich oberhalb des Abscheideraumes 3 und besitzt einen größeren Durchmesser als der Abscheideraum 3. In ihrer Höhe ist die Drallkammer 11 niedriger als die Höhe des Abscheideraumes 3. Die tangentialen Zuführungskanäle 1 und 2 münden am Außenumfang der Drallkammer 11 in diese. In der Drallkammer 11 werden die tangential eingeleiteten Teilströme zur Mittelachse des Zentrifugalabscheiders 10 beschleunigt und vergleichmäßigt. Dadurch wird erreicht, daß beim Eintritt in den Abscheideraum 3 eine besonders hohe Rotationssymmetrie der Strömung erreicht wird.
In den Figuren 6 bis 8 ist eine Ausführungsvariante mit drei tangentialen Zuführungskanälen 1, 2, und 12 mit identischen Querschnittsflächen an den Eintrittsstellen S1, S2 und S12 in die Dralikammer 11 des Zentrifugalabscheiders 10 gezeigt. Die Eintrittsstellen S1, S2 und S12 sind gleichmäßig verteilt über den Umfang der Drallkammer 11 angeordnet, besitzen somit jeweils den gleichen Abstand zueinander. Innerhalb der Drallkammer 11 ist um das Tauchrohr 5 ein Bauteil 14 mit einer kegelförmigen Mantelfläche angeordnet, deren Kegelspitze in Richtung des Abscheideraumes 3 zeigt. Parallel dazu beabstandet ist an der Übergangsstelle von der Drallkammer 11 in den Abscheideraum 3 ein in entgegengesetzter Richtung zeigender kegelförmiger bzw. trichterförmiger Einlauf 15 angeordnet. Dadurch kann in der Drallkammer bereits eine Vorabscheidung der schwereren Phase stattfinden.
Bei dieser Variante tritt der erfindungsgemäße Effekt nur dann ein, wenn zwei tangentiale Zuführungskanäle, wie z.B. 2 und 12, über eine Zuführungsleitung 8 und der dritte Zuführungskanal, z.B. 1, über die andere Zuführungsleitung 7 gespeist werden. Diese Schaltungsvariante ist in Figur 9 gezeigt. Der Gesamtfluidstrom 6 wird mittels einer Förderstrompumpe 16 dem Vorratsbehälter entnommen und auf die beiden Teilströme 7 und 8 aufgeteilt. Der Teilstrom 7 gelangt ohne weitere Beeinflussung über den tangentialen Zuführungskanal 1 in den Zentrifugalabscheider 10. Der Teilstrom 8 wird in zwei weitere Unterteilströme 8a und 8b aufgeteilt, wobei in die Leitung für den Teilstrom 8 ein Ventil 9 eingebunden ist. Der Unterteilstrom 8a gelangt dann über den tangentialen Zuführungskanal 2 und der Unterteilstrom 8b über den tangentialen Zuführungskanal 12 in den Zentrifugalabscheider 10. Die Summe der Querschnittsflächen an den Eintrittsstellen S2 und S12 der Zuführungskanäle 2 und 12 ist größer als die Querschnittsfläche an der Eintrittsstelle S1 des Zuführungskanals 1. Im vorliegenden Fall sind die Querschnittsflächen aller drei Zuführungskanäle identisch.
Das muß jedoch nicht immer so sein, wesentlich ist nur, daß die beiden tangentialen Zuführungskanäle, die mit einer im Volumenstrom veränderbaren Leitung verbunden sind, in ihrer Summe eine größere Querschnittsfläche aufweisen.
Die Vorteile dieser Schaltungsvariante bestehen vor allem in einer einheitlichen konstruktiven Auslegung der tangentialen Zuführungskanäle, wodurch der bauliche Aufwand gering gehalten wird. Außerdem können alle tangentialen Zuführungskanäle mit den gleichen Anschlußverbindungen ausgerüstet werden.
In der Figur 10 ist eine weitere erfindungsgemäße Ausführungsvariante für eine Anordnung mit vier tangentialen Zuführungskanälen 1, 2, 12 und 13 dargestellt.
Die Zuführungskanäle 1 und 12 haben an ihren Eintrittsstellen S1, und S12 in den Zentrifugalabscheider 10 jeweils die gleiche Querschnittsfläche und sind einander gegenüberliegend angeordnet. Beides trifft in analoger Weise auch für die Zuführungskanäle 2 und 13 mit den Eintrittsstellen S2 und S13 zu. Die Summen der Querschnittsflächen, einerseits der Zuführungskanäle 1 und 12 und andererseits der Zuführungskanäle 2 und 13 sind jedoch unterschiedlich. Der einem Behälter entnommene Gesamtvolumenstrom 6 wird nach der Einbindung der Förderstrompumpe 16 auf die beiden Teilströme 7 und 8 aufgeteilt. In die Leitung für den Teilstrom 8 ist ein Ventil 9 eingebunden. Nach dem Ventil 9 wird der Teilstrom 8 auf zwei weitere Unterteilströme 8a und 8b aufgeteilt, die über die tangentialen Zuführungskanäle 2 und 13, die an den Eintrittsstellen S2 und S13 im Vergleich zu den beiden anderen Zuführungskanälen 1 und 12 die größeren Querschnittsflächen aufweisen, in den Zentrifugalabscheider 10 eingeleitet werden. Der andere, vom Gesamtvolumenstrom abzweigende Teilstrom 7 wird ebenfalls auf zwei weitere Teilströme 7a und 7b aufgeteilt, die über die tangentialen Zuführungskanäle 1, 12 mit den kleineren Querschnittsflächen an den Eintrittsstellen S1 und S12 in den Zentrifugalabscheider 10 eingeleitet werden. An dieser Stelle soll nochmals darauf hingewiesen werden, daß z.B. bei vier Zuführungskanälen nicht die Einzelquerschnitte von Bedeutung sind, sondern die Summen der Querschnittsflächen der jeweils einer von der Gesamtvolumenstromleitung 6 abzweigenden Teilstromleitungen 7 und 8. Bei vier tangentialen Zuführungskanälen besteht auch die Möglichkeit einer Schaltungsvariante, wonach der eine Teilstrom, z.B. 7, nur über einen tangentialen Zuführungskanal in den Zentrifugalabscheider eingeleitet wird und der andere Teilstrom 8, der über ein Ventil regelbar ist, auf die anderen drei tangentialen Zuführungskanäle aufgeteilt wird. Selbstverständlich ist die Summe der drei Querschnittsflächen größer als die noch verbleibende Querschnittsfläche.
Durch die paarweise gegenüberliegende Anordnung der tangentialen Zuführungskanäle mit jeweils gleichem Querschnitt an der Eintrittsstelle in den Zentrifugalabscheider wird eine verbesserte Rotationssymmetrie bei Einleitung unterschiedlicher Teilstrommengen erreicht.
In Figur 11 ist noch eine weitere Ausführungsvariante dargestellt, bei der der Gesamtvolumenstrom aus zwei separaten Teilströmen 7, 8 gebildet wird, die entweder einem Behälter oder zwei örtlich getrennten Behältern entnommen werden, und zwar jeweils jeder Teilstrom 7, 8 über eine gesonderte Förderstrompumpe 16 bzw. 17.
Der Teilstrom 7 gelangt dann ohne weitere Aufteilung über den tangentialen Zuführungskanal 1 mit der kleineren Querschnittsfläche an der Eintrittsstelle S1 in den Zentrifugalabscheider 10. Der andere Teilstrom 8 wird auf zwei Unterteilströme 8a und 8b aufgeteilt, die über die tangentialen Zuführungskanäle 2 und 12 mit den größeren Querschnittsflächen an den Eintrittsstellen S2 und S12 in den Zentrifugalabscheider 10 geleitet werden. Entscheidend ist wiederum, daß die Summe der Querschnittsflächen der Eintrittsstellen S2 und S12 größer ist als die noch verbleibende Querschnittsfläche.
Die Regelung der einzelnen Förderstrommengen erfolgt ausschließlich über die Drehzahlregelung der Förderstrompumpen 16 und 17.
Diese Variante bietet folgende Vorteile:
Bei bestimmten dispersen Systemen besteht die Gefahr, daß sie die Zufuhrleitungen verstopfen können, insbesondere im Bereich von Ventilen. Durch die mögliche Regelung der zuzuführenden Stoffmengen ausschließlich durch die Drehzahlregelung über eingebaute Pumpen, kann eine Verstopfungsgefahr vermieden werden.
Wird der Zentrifugalsbscheider im Saugbetrieb gefahren, so ist die Pumpe bzw. der Verdichter hinter dem Zentrifugalabscheider angeordnet Eine Einflußnahme auf den Förderstrom erfolgt dann über die Kennlinie der Pumpe oder über die angesaugte Falschluft (Aerozyklon).
In der Figur 12 ist noch ein Zentrifugalabscheider als Funktionsschaltbild gezeigt ,der in seinem Aufbau im Wesentlichen der in Figur 3 gezeigten Variante entspricht.
In den tangentialen Zuführungskanal 2, der an der Eintrittsstelle in den Zentrifugalabscheider im Vergleich zu dem anderen tangentialen Zuführungskanal 1 die kleinere Querschnittsfläche aufweist, ist ein Druckmeßgerät 18 eingebunden, das über eine Leitung 19 mit dem Stellventil 9, das in der Zufuhrleitung für den Teilstrom 8, die mit dem Zuführungskanal 1 verbunden ist, gekoppelt ist.
Diese Variante kommt zur Anwendung, wenn es sich um einen Aufgabestrom handelt, dessen Beladung nahezu konstant bleibt und bei dem sich auch die sonstigen Stoffeigenschaften nicht ändern. Die einfachste Realisierung dieser Maßnahme erfolgt bei Aufteilung des Gesamtvolumenstromes, des Aufgabestromes, in zwei Teilströme, die direkt über jeweils einen tangentialen Zuführungskanal 1 bzw. 2 in den Zentrifugalabscheider 10 eingeleitet werden, wie in Figur 12 gezeigt.
Der Druck wird dabei in dem Zuführungskanal 2 gemessen, wobei die Meßstelle auch außerhalb dieses Kanals 2 liegen kann, zum Beispiel in der Zuführungsleitung zu diesem Kanal. In Abhängigkeit von dem gemessenen Druck wird bei Durchsatzschwankungen das Steilventil 9 verändert, bis der Druck wieder den gewünschten Sollwert erreicht hat. Dadurch wird gleichzeitig das Verhältnis der beiden Teilströme beeinflußt.
Betrachtet man die Veränderung des Aufgabestromes detailliert, so läuft folgender Vorgang ab. Bei einem zunehmenden Aufgabestrom würde ohne die vorgeschlagene Regelung auch der Druck ansteigen. Das bedeutet, daß die Drallgeschwindigkeit im Zentrifugalabscheider steigen würde, was zu einer veränderten Abscheidung führt. Wird nun das Stellventil 9 geöffnet, so erhöht sich der Teilstrom, der durch den Zuführungskanal 1 mit der größeren Querschnittsfläche an der Eintrittsstelle in den Zentrifugalabscheider in diesen geleitet wird. Die Geschwindigkeit des Teilstromes in diesem Zuführungskanal 1 nimmt nur geringfügig zu, während die Geschwindigkeit des Teilstromes in dem Zuführungskanal 2, der an der besagten Eintrittsstelle die kleinere Querschnittsfläche aufweist, beträchtlich abnimmt. Dadurch wird der Drall im Zentrifugalabscheider auch bei höherem Aufgabestrom konstant gehalten. Ausdruck des konstanten Dralls im Zentrifugalabscheider ist im Wesentlichen der Druck vor dem Zentrifugalabscheider.
The centrifugal separator 10 shown in FIG. 1 consists, in a manner known per se, of a separating space 3, which is connected to a conical lower part 4, and an immersion tube 5, which protrudes from the separating space 3. The two tangential feed channels 1, 2 for feeding the disperse system, which is to be subjected to a separation process in the centrifugal separator 10, open into the separating space 3. As can be clearly seen in FIG. 2, the two feed channels 1, 2 have different cross-sectional areas at their entry points S 1 , S 2 . The two tangential feed channels 1, 2 have the same height and each have a rectangular cross-sectional area, and differ only in their width. The feed channel 1 is formed wider at the entry point S 1 than the other tangential feed channel 2 at the same point S 2 . The decisive factor is the cross-sectional area directly at the point of entry into the Centrifugal separator 10. Up to this point, the tangential feed channels can also have a different cross-sectional profile, for example a conical one. Of course, the shape or contour of the cross-sectional area does not have to be exclusively rectangular, but can also be circular, for example. The mode of operation of this embodiment variant is explained in more detail with reference to FIG. The entire fluid flow of the disperse system to be separated is removed from a storage container and then divided into two partial flows 7 and 8. In the partial flow line for the partial flow 8, a valve 9 is integrated in front of the connection point to the tangential feed channel 1. The partial flow 8, which can be changed in its volume flow, is introduced into the centrifugal separator 10 via the feed channel 1 with the larger cross-sectional area at the entry point S 1 . The other partial flow 7 is introduced directly via the feed channel 2, which has a smaller cross-sectional area at the entry point S 2 . If the valve 9 is completely opened, then with a constant total volume flow 6, a degree of separation dependent on the separation geometry and the material data is established. If the valve 9 is closed step by step and the total volume flow 6 is kept constant, the degree of separation is increased due to the higher speed at the entry point S 2 with the smaller cross-sectional area.
FIGS. 4 and 5 show an embodiment variant which, in comparison to the variant according to FIGS. 1 to 3, is also equipped with an additional swirl chamber 11. This is located above the separating chamber 3 and has a larger diameter than the separating chamber 3. The swirl chamber 11 is lower in height than the height of the separating chamber 3. The tangential feed channels 1 and 2 open into the swirl chamber 11 on the outer circumference thereof. In the swirl chamber 11, the tangentially introduced partial flows to the central axis of the centrifugal separator 10 are accelerated and made more uniform. This ensures that a particularly high rotational symmetry of the flow is achieved when entering the separating chamber 3.
FIGS. 6 to 8 show an embodiment variant with three tangential feed channels 1, 2, and 12 with identical cross-sectional areas at the entry points S 1 , S 2 and S 12 into the spiral chamber 11 of the centrifugal separator 10. The entry points S 1 , S 2 and S 12 are evenly distributed over the circumference of the swirl chamber 11, and are therefore each at the same distance from one another. A component 14 with a conical outer surface is arranged within the swirl chamber 11 around the immersion tube 5, the cone tip of which points in the direction of the separating space 3. At the transition point from the swirl chamber 11 into the separating space 3, there is a parallel spacing in the opposite direction pointing conical or funnel-shaped inlet 15 is arranged. This allows the heavier phase to be pre-separated in the swirl chamber.
In this variant, the effect according to the invention only occurs when two tangential feed channels, such as 2 and 12, are fed via one feed line 8 and the third feed channel, eg 1, is fed via the other feed line 7. This circuit variant is shown in FIG. 9. The total fluid flow 6 is removed from the storage container by means of a delivery flow pump 16 and divided between the two partial flows 7 and 8. The partial stream 7 reaches the centrifugal separator 10 without further influence via the tangential feed channel 1. The partial stream 8 is divided into two further sub-streams 8a and 8b, a valve 9 being integrated in the line for the partial stream 8. The lower part stream 8a then reaches the centrifugal separator 10 via the tangential feed channel 2 and the lower part stream 8b via the tangential feed channel 12. The sum of the cross-sectional areas at the entry points S 2 and S 12 of the feed channels 2 and 12 is larger than the cross-sectional area at the entry point S. 1 of the feed channel 1. In the present case, the cross-sectional areas of all three feed channels are identical.
However, this does not always have to be the case, it is only important that the two tangential feed channels, which are connected to a line which can be changed in volume flow, have a larger cross-sectional area in total.
The advantages of this circuit variant are, above all, a uniform design of the tangential feed channels, which means that the construction effort is kept low. In addition, all tangential feed channels can be equipped with the same connection connections.
FIG. 10 shows a further embodiment variant according to the invention for an arrangement with four tangential feed channels 1, 2, 12 and 13.
The feed channels 1 and 12 each have the same cross-sectional area at their entry points S 1 and S 12 in the centrifugal separator 10 and are arranged opposite one another. Both apply analogously to the feed channels 2 and 13 with the entry points S 2 and S 13 . However, the sum of the cross-sectional areas, on the one hand of the feed channels 1 and 12 and on the other hand of the feed channels 2 and 13 are different. The total volume flow 6 withdrawn from a container is divided between the two partial flows 7 and 8 after the delivery flow pump 16 has been integrated. A valve 9 is integrated in the line for the partial flow 8. After the valve 9, the partial flow 8 is divided into two further lower partial flows 8a and 8b, which have the larger cross-sectional areas via the tangential feed channels 2 and 13, which have the larger cross-sectional areas at the entry points S 2 and S 13 compared to the two other feed channels 1 and 12 in the centrifugal separator 10 be initiated. The other partial flow 7 branching off from the total volume flow is likewise divided into two further partial flows 7a and 7b, which are introduced into the centrifugal separator 10 via the tangential feed channels 1, 12 with the smaller cross-sectional areas at the entry points S 1 and S 12 . At this point, it should again be pointed out that, for example, in the case of four supply channels, it is not the individual cross sections that are important, but rather the sum of the cross-sectional areas of the partial flow lines 7 and 8 branching off from the total volume flow line 6. whereupon the one partial flow, for example 7, is only introduced into the centrifugal separator via a tangential feed channel and the other partial flow 8, which can be regulated via a valve, is divided between the other three tangential feed channels. Of course, the sum of the three cross-sectional areas is larger than the remaining cross-sectional area.
The arrangement of the tangential feed channels opposite each other in pairs, each with the same cross-section, at the entry point into the centrifugal separator improves rotational symmetry when different amounts of partial flow are introduced.
A further embodiment variant is shown in FIG. 11, in which the total volume flow is formed from two separate partial flows 7, 8, which are either taken from a container or two locally separated containers, namely each partial flow 7, 8 via a separate delivery flow pump 16 or 17.
The sub-stream 7 then passes without further division via the tangential feed channel 1 with the smaller cross-sectional area at the entry point S 1 into the centrifugal separator 10. The other sub-stream 8 is divided into two sub-streams 8a and 8b, which via the tangential feed channels 2 and 12 with the Larger cross-sectional areas are passed into the centrifugal separator 10 at the entry points S 2 and S 12 . It is again crucial that the sum of the cross-sectional areas of the entry points S 2 and S 12 is larger than the remaining cross-sectional area.
The individual flow rates are regulated exclusively via the speed control of the flow pumps 16 and 17.
This variant offers the following advantages:
Certain disperse systems run the risk of clogging the supply lines, particularly in the area of valves. A risk of clogging can be avoided by the possible regulation of the quantities of material to be supplied exclusively by means of the speed control via built-in pumps.
If the centrifugal separator is operated in suction mode, the pump or the compressor is arranged behind the centrifugal separator The flow rate then takes place via the characteristic curve of the pump or via the sucked-in false air (aero cyclone).
FIG. 12 also shows a centrifugal separator as a functional circuit diagram, the structure of which essentially corresponds to the variant shown in FIG. 3.
In the tangential feed channel 2, which has the smaller cross-sectional area at the entry point into the centrifugal separator compared to the other tangential feed channel 1, a pressure measuring device 18 is integrated , which is connected to the feed channel 1, is coupled.
This variant is used when it is a feed stream whose loading remains almost constant and in which the other material properties do not change. The simplest implementation of this measure takes place when the total volume flow, the feed flow, is divided into two partial flows, which are introduced directly into the centrifugal separator 10 via a respective tangential feed channel 1 or 2, as shown in FIG.
The pressure is measured in the feed channel 2, and the measuring point can also be outside this channel 2, for example in the feed line to this channel. Depending on the measured pressure, the steep valve 9 is changed in the event of throughput fluctuations until the pressure has reached the desired setpoint again. As a result, the ratio of the two partial flows is influenced at the same time.
If you consider the change in the feed current in detail, the following process takes place. If the feed flow increased, the pressure would also increase without the proposed regulation. This means that the swirl speed in the centrifugal separator would increase, which leads to a changed separation. If the control valve 9 is now opened, the partial flow which is passed through the feed channel 1 with the larger cross-sectional area at the entry point into the centrifugal separator increases. The speed of the partial flow in this feed channel 1 increases only slightly, while the speed of the partial flow in the feed channel 2, which has the smaller cross-sectional area at the said entry point, decreases considerably. As a result, the swirl in the centrifugal separator is kept constant even with a higher feed current. The expression of the constant swirl in the centrifugal separator is essentially the pressure in front of the centrifugal separator.

Claims (25)

  1. A method for mechanically separating a disperse system into two or more disperse systems with different properties in a centrifugal separator (10), wherein at least two partial streams (7, 8) are formed from a total volume flow (6) or as separate initial delivery streams, which are introduced through tangential feed channels (1, 2, 12, 13) as rotational flow into the centrifugal separator (10) and the partial streams (7, 8) either
    a) are introduced in two tangential feed channels (1, 2) with different cross-sectional areas at the entry points (S1, S2) into the centrifugal separator (10) there into or
    b) in the case of partitioning of the partial streams (7, 8) to more than two tangential feed channels (1, 2, 12, 13), at least one partial stream (7, 8) is partitioned into further sub-partial streams (7a, 7b, 8a, 8b) and each sub-partial stream is introduced through a tangential feed channel (1, 2, 12, 13) into the centrifugal separator (10), wherein there differ the sums of the cross-sectional areas of the tangential feed channels (1, 2, 12, 13) at the entry points (S1 or S2 and S12; or S1 and S12 or S2 and S13) into the centrifugal separator (10) which are allocated to the respective partial stream (7 or 8),
    and at least the partial stream (8) which is allocated to the tangential feed channel (1) with the larger cross-sectional area or to the tangential feed channels (2, 12, 13) with the larger sum of the cross-sectional areas is changed directly by means of an open-loop control organ (9, 17), and the partitioning of the partial streams (7, 7a, 7b, 8, 8a, 8b) to the tangential feed channels (1, 2, 12, 13) is undertaken such that, In the case of required higher circumferential velocity in the centrifugal separator (10), the tangential feed channels (2, 1 or 1 and 12) with the smaller cross-sectional area or sum of the cross-sectional areas at the entry point (S2, S1 or S1 and S12) into the centrifugal separator (10) are made to admit a larger partial stream (7) or the total volume flow (6) and vice versa.
  2. A method according to claim 1, characterized in that the total volume flow (6) is partitioned into two partial streams (7, 8), each of which is introduced into the centrifugal separator (10) through a feed channel (1, 2) wherein the partial stream (8) associated with the larger cross-sectional area at the entry point (S1) into the centrifugal separator (10) is changed by means of a control organ (9).
  3. A method according to claim 1, characterized in that the total volume flow (6) Is partitioned to more than two partial streams (7, 8, 7a, 7b, 8a, 8b) introduced tangentially into the centrifugal separator (10), wherein at least two tangential partial streams (7a, 7b, 8a, 8b) are branched off from one partial stream (7, 8), and the partial stream (8) whose sub-partial streams (8a, 8b) are introduced through tangential feed channels (2, 12, 13) with the cross-sectional area which is larger in the sum at the entry point (S2, S12, S13) into the centrifugal separator (10) there into is changed by means of a control organ (9).
  4. A method according to one of claims 1 to 3, characterized in that a pump and/or a valve is used as the open-loop control organ (9).
  5. A method according to one of claims 1 to 4, characterized in that the partial streams (7, 8) are subjected to closed-loop control independently of one another by change of the delivery flow of the respective pump.
  6. A method according to one of claims 1 to 5, characterized in that two separate partial streams (7, 8) form the initial delivery streams, wherein each of these partial streams (7, 8) is changed by a pump (16, 17) and at least one partial stream (8) is partitioned to further sub-partial streams (8a, 8b), which are introduced into the centrifugal separator (10) through tangential feed channels (2,12).
  7. A method according to one of claims 1 to 6, characterized in that the Influence on the throughput of the partial streams (7, 7a, 7b, 8, 8a, 8b) is exerted outside the tangential feed channels (1, 2, 12, 13).
  8. A method according to one of claims 1 to 7, characterized in that the partial streams and/or sub-partial streams (7, 7a, 7b, 8, 8a, 8b) introduced into the centrifugal separator (10) are accelerated in the direction of the axis of the centrifugal separator (10) before reaching the working space of the centrifugal separator.
  9. A method according to one of claims 1 to 8, characterized in that the partial stream flow rates (7, 8) are drawn from a common or separate reservoir vessels.
  10. A method according to one of claims 1 to 9, characterized in that, In the case of constant volume flow (6), in order to reduce the separation particle size, the partial stream (7, 8) with the larger volume flow is decreased and the partial stream with the smaller volume flow is increased, while the fore pressure is simultaneously increased.
  11. A method according to one of claims 1 to 10, characterized In that, to influence the collection efficiency as a result of pressure fluctuations in the partial stream (7, 8) which is introduced through the feed channel (1, 2, 12, 13) with the smallest cross-sectional point at the entry point (S1, S2, S12, S13) into the centrifugal separator (10), the pressure Is measured and maintained at a constant value, by changing at least one of the other partial stream flow rates.
  12. A method according to one of claims 1 to 11, characterized in that, to influence the separation properties, one or more material parameters which characterize the separation process, are measured or determined upstream and/or downstream from the centrifugal separator (10) and, depending thereon, the partial stream flow rate ratio between two or more partial streams (7, 8) andlor the pressure difference between two specified points, one upstream and the other downstream respectively from the centrifugal separator (10), is varied.
  13. A device suited for carrying out the method according to at least one of the previous claims, comprising of a centrifugal separator (10) with several tangential feed channels (1, 2, 12, 13), whereby
    a) in an arrangement of two feed channels (1, 2), these have different cross-sectional area at the entry points (S1, S2) into the centrifugal separator (10) and
    b) in an arrangement of more than two tangential feed channels (1, 2, 12, 13) at least two tangential feed channels (2, 12 or 2, 13) are connected via lines (8a, 8b) for sub-partial streams which are branched off from a partial stream line (8), and the sums of the cross-sectional areas at the entry points (S1 or S2 and S12; or S1 and S12 or S2 and S13) of the feeding channels (1, 2, 12, 13) into the centrifugal separator (10), which are arranged to the respective partial stream line (7 or 8), differentiate,
    and as well a control organ (9, 17) is tied in at an arrangement of two and also of more than two tangential feed channels (1, 2, 12, 13) at least in the partial stream line (8), which is connected to the tangential feeding channels (1 or 2, 12 or 2, 13) with the larger cross sectional area or the sum of the cross sectional areas on the entry point into the centrifugal separator (10).
  14. A device according to claim 13, characterized in that the tangential feed channels (1, 2, 12, 13) at the entry points (S1, S2, S12, S13) into the centrifugal separator (10) have the same height as well as an identical or different width.
  15. A device according to one of claims 13 or 14, characterized in that the different cross-sectional areas or the formed sum of the cross-sectional areas differ by more than a factor of four.
  16. A device according to one of claims 13 to 15, characterized in that the tangential feed channels (2, 12 or 1, 12 or 2, 13) with identical cross-sectional areas at the entry point into the centrifugal separator (10) are connected via lines (7a, 7b, 8a, 8b) for the sub-partial streams to a common feed line (7, 8) for the partial streams.
  17. A device according to one of claims 13 to 16, characterized in that an infinitely adjustable open-loop control organ (9, 16, 17) is integrated in at least one of the feed lines (7, 8).
  18. A device according to claim 17, characterized in that the open-loop control organ is a pump (16, 17) or a valve (9).
  19. A device according to one of claims 13 to 18, characterized in that the central axes of the cross-sectional areas of the tangential feed channels (1, 2, 12, 13) at the entry points (S1, S2, S12, S13) into the centrifugal separator (10) lie in one plane and the cross-sectional areas are disposed in uniformly distributed manner.
  20. A device according to one of claims 13 to 19, characterized in that the tangential feed channels (1, 2, 12, 13) are disposed such that they lie on the same axial coordinate.
  21. A device according to one of claims 13 to 20, characterized in that the feed lines (7, 8, 7a, 7b, 8a, 8b) have different connection cross sections, to the effect that the feed lines (8, 8a, 8b) which are connected to the tangential feed channels (1, 2, 12, 13) whose cross-sectional area or sum of the cross-sectional areas at the entry points into the centrifugal separator (10) is the largest have the larger connection cross section.
  22. A device according to one of claims 13 to 21, characterized in that, in the line (7) integrated in the feed channel (2) with the smallest cross-sectional area at the entry point into the centrifugal separator (10) or in this feed channel (2) there is integrated a pressure-measuring instrument (18), which is coupled with at least one control valve (9), which is integrated in at least one of the feed channels (1) for the other partial stream flow rates.
  23. A device according to one of claims 13 to 22, characterized in that, upstream or downstream from the centrifugal separator (10), there is integrated, for measurement or determination of one or several the separation process characterizing parameters, a measuring instrument which is coupled with at least one control organ for changing the partial stream flow rate ratio and/or the pressure difference between two specified points, one upstream and the other downstream respectively from the centrifugal separator (10).
  24. A device according to one of claims 13 to 23, characterized in that the centrifugal separator (10) is equipped with a swirl chamber (11), whose diameter is larger than the diameter of the collection space (3) of the centrifugal separator (10) and whose height is smaller than the height of the collection space (3), wherein the tangential feed channels (1, 2, 12, 13) are connected to the swirl chamber (11).
  25. A device according to one of claims 13 to 24, characterized in that the number of tangential feed channels (1, 2, 12, 13) is restricted to four.
EP99955886A 1998-10-29 1999-10-27 Method and device for mechanically separating a disperse system Expired - Lifetime EP1124641B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19849645 1998-10-29
DE19849645 1998-10-29
DE19920237A DE19920237B4 (en) 1998-10-29 1999-05-03 Method and device for mechanically separating a disperse system
DE19920237 1999-05-03
PCT/EP1999/008097 WO2000025932A1 (en) 1998-10-29 1999-10-27 Method and device for mechanically separating a disperse system

Publications (2)

Publication Number Publication Date
EP1124641A1 EP1124641A1 (en) 2001-08-22
EP1124641B1 true EP1124641B1 (en) 2003-09-10

Family

ID=26049807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99955886A Expired - Lifetime EP1124641B1 (en) 1998-10-29 1999-10-27 Method and device for mechanically separating a disperse system

Country Status (6)

Country Link
EP (1) EP1124641B1 (en)
CN (1) CN1121909C (en)
AT (1) ATE249282T1 (en)
AU (1) AU1266100A (en)
CA (1) CA2348385A1 (en)
WO (1) WO2000025932A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2520468C1 (en) * 2013-02-05 2014-06-27 Виктор Александрович Рудницкий Scrubbing of gas flow from suspended solids

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005061256A1 (en) * 2005-12-20 2007-06-21 Günter Dr. Slowik Method and device for deoiling crankcase ventilation gases of an internal combustion engine
CN103785550B (en) * 2012-10-29 2017-03-01 中国石油化工股份有限公司 Air-flowing type particle sorter and fluidized-bed reactor and its application
CN103861326B (en) * 2013-11-13 2016-08-17 中石化石油工程设计有限公司 A kind of three-dimensional multi-point continues pushing-type eddy flow cloth water-bound
CN104907189A (en) * 2015-07-02 2015-09-16 泸州北方化学工业有限公司 Particle material gas-solid separator
TWI687258B (en) * 2019-05-10 2020-03-11 頂程國際股份有限公司 Filter apparatus
CN113798071A (en) * 2021-08-23 2021-12-17 鞍钢集团矿业有限公司 Single-inlet multi-channel feed body hydrocyclone

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE875753C (en) * 1941-11-29 1953-05-07 Kohlenscheidungs Ges Mit Besch Device for separating solid good parts suspended in a gas flow
FR1009165A (en) * 1950-01-26 1952-05-26 Improvements to gas dedusting devices
DE1292478B (en) * 1959-10-20 1969-04-10 Maschf Augsburg Nuernberg Ag Centrifugal dry separator in cyclone design
US3507397A (en) * 1969-04-09 1970-04-21 William R Robinson Hydrocyclone unit
DE3936078C2 (en) * 1989-10-30 1994-02-10 Guenter Dr Ing Slowik Swirl generator for cyclone separators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2520468C1 (en) * 2013-02-05 2014-06-27 Виктор Александрович Рудницкий Scrubbing of gas flow from suspended solids

Also Published As

Publication number Publication date
ATE249282T1 (en) 2003-09-15
CN1325324A (en) 2001-12-05
EP1124641A1 (en) 2001-08-22
AU1266100A (en) 2000-05-22
WO2000025932A1 (en) 2000-05-11
CA2348385A1 (en) 2000-05-11
CN1121909C (en) 2003-09-24

Similar Documents

Publication Publication Date Title
DE3915641C2 (en) Air classifier
DE10104012C2 (en) Aerosol generating device
EP0126399A1 (en) Fluid duct presenting a reduced construction
DE2731279A1 (en) METHOD AND DEVICE FOR DIVIDING A FLOWING LIQUID-GAS MIXTURE INTO SEVERAL SUBSTREAMS
EP1124641B1 (en) Method and device for mechanically separating a disperse system
DE3936078C2 (en) Swirl generator for cyclone separators
EP1124642A1 (en) Hydrocyclone arrangement, and a corresponding method
DE19920237B4 (en) Method and device for mechanically separating a disperse system
DE4400489C2 (en) Centrifugal separator, device and method
DE3404093C2 (en)
DE1910501B2 (en) Circulating air classifier
DE102017209068A1 (en) An aerosol device and method for providing an aerosol
WO2007071373A2 (en) Method and device for separating oil from crankcase breather gases from an internal combustion engine
AT412148B (en) DEVICE FOR SORTING WOODCHIPS IN SEPARATE QUANTITIES
DE2946232A1 (en) METHOD AND DEVICE FOR CONTROLLING A FLOW
DE19923600A1 (en) Process for preparing mineral raw materials involves directing separating medium in two or more partial streams into separating vessel with flow parameters each controllable independently
DE3238361C2 (en)
DE10014586C1 (en) Dynamic filtration of fluid materials comprises forming overflow of fluid stream fed to concentrate chamber from stream or partial streams and removing the concentrate stream centrally from the concentrate chamber
DE10310002B3 (en) Separating method, for separating liquid and gas from two-phase mixture, involves adjusting feed parameters so that layer flow, wave flow or annular flow is present in branch
WO2010066571A1 (en) Gas chromatograph comprising a controllable switching device
EP0641587B1 (en) Process for splitting dispersions of particles in liquids into a particle-rich and a particle poor stream
WO2019219552A1 (en) Separating device
DE623564C (en)
DE19626895A1 (en) Liquid distributor for a mass transfer column
DE3943733C2 (en) Air separator classifying powders

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KOHLMANN, JUERGEN

Owner name: SLOWIK, GUENTER

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOHLMANN, JUERGEN

Inventor name: SLOWIK, GUENTER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030910

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59906973

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031027

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031027

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031027

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031221

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030910

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: *KOHLMANN JURGEN

Effective date: 20031031

Owner name: *SLOWIK GUNTER

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040614

EN Fr: translation not filed