EP1112439B1 - Turbine bucket - Google Patents

Turbine bucket Download PDF

Info

Publication number
EP1112439B1
EP1112439B1 EP99952439A EP99952439A EP1112439B1 EP 1112439 B1 EP1112439 B1 EP 1112439B1 EP 99952439 A EP99952439 A EP 99952439A EP 99952439 A EP99952439 A EP 99952439A EP 1112439 B1 EP1112439 B1 EP 1112439B1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
coolant
cooling
vane according
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99952439A
Other languages
German (de)
French (fr)
Other versions
EP1112439A1 (en
Inventor
Dirk Anding
Burkhard Bischoff-Beiermann
Hans-Thomas Bolms
Michael Scheurlen
Thomas Schulenberg
Peter Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1112439A1 publication Critical patent/EP1112439A1/en
Application granted granted Critical
Publication of EP1112439B1 publication Critical patent/EP1112439B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall

Definitions

  • the invention relates to a turbine blade, in particular a gas turbine blade, with a surrounding an interior External wall through which interior cooling fluid can be passed is.
  • a gas turbine vane with a guide from Cooling air for cooling it is described, for example, in US Pat. No. 5,419,039 or FR 57426.
  • the guide vane is designed as a casting or composed of two castings. She points in her Inside a supply of cooling air from the compressor assigned gas turbine system. In their the hot gas flow exposed to the gas turbine, enclosing the cooling air supply Wall structures are cast in, open on one side Cooling bags provided.
  • the object of the invention is to provide a turbine blade with an internal cooling structure.
  • this object is achieved by a turbine blade with an interior for guiding a cooling fluid enclosing outer wall, the outer wall in the interior supported by a support rib with a side surface is, and being at least in front of a part of the side surface thermally insulating cooling insulation shield is arranged so that the side surface at least in part by the cooling insulation shield can be shielded from the cooling fluid.
  • a support rib or several support ribs are arranged in the interior of the gas turbine blade. On the one hand, these serve a stiffening and support of the outer wall and can on the other hand to form two or more subspaces of the interior be provided.
  • the cooling fluid runs along the length the turbine blade from a foot area through the subspaces led through to a head area and exits there. This corresponds to an open cooling fluid guide. It can also there is a closed cooling fluid guide, i.e. the cooling fluid becomes like a snake through the subspaces and led out of the foot area again.
  • the cooling fluid not only cools the outer wall, but also that Support rib or the support ribs.
  • the support rib In the transition area to the outer wall is the support rib when the turbine blade is applied very hot with hot gas.
  • the support rib very much on their side surface or on their side surfaces intensively cooled by the cooling fluid flowing past. It Temperature gradients thus occur within the support rib on too high thermal stresses, especially in Transitional area between the support rib and the outer wall being able to lead. Such thermal stresses can cause material fatigue and a shortened lifespan of the turbine blade to lead.
  • the invention provides a Measure ready to reduce cooling of the support rib becomes. Thanks to the thermally insulating cooling insulation shield the side faces of the support rib or at least one Part of it before direct contact with the cooling fluid shielded. The heat transfer between the cooling fluid and the support rib is thus significantly reduced. In order to the support rib is no longer cooled so intensely and the The temperature gradient within the support rib is reduced. This also causes the thermal stresses that occur reduced within the turbine blade.
  • the cooling insulation shield is preferably a coating of the Side surface. This coating is advantageously made of a thermally well insulating material.
  • the cooling insulation shield is preferably through from the side surface spaced a gap with a gap width.
  • the cooling fluid due to a high flow resistance much slower than inside. This reduces the convective cooling of the side surface. It can also be expedient, the gap completely against a cooling fluid entry seal.
  • Openings for one or more are preferred in the cooling insulation shield Outlet of cooling fluid is provided in the gap. With help such openings can allow a controlled flow of cooling fluid can be set in the gap. Depending on the size of this river there is a higher or lower heat transfer between the support rib and the cooling fluid. It can therefore be easier Way, a value for heat transfer can be set at the support rib is sufficient, but at least not so is strongly cooled that thermal stresses become too high.
  • a spacer for adjusting the gap width is arranged.
  • the spacer is more preferably a part of the cooling insulation shield.
  • the spacer is preferred formed by a bulge in the cooling insulation shield.
  • spacers can also be an independent, between Cooling insulation shield and side surface arranged component.
  • the spacer can also be part of the support rib the side surface.
  • the spacer is a bulge in the cooling insulation shield provided with the cooling insulation plate on the side surface rests.
  • the cooling insulation shield is preferably a sheet metal.
  • the cooling insulation shield with the aid of a projection is preferred the outer wall held on the outer wall. More preferred the lead is a turbulator to generate a turbulent Flow in the cooling fluid.
  • the lead is a turbulator to generate a turbulent Flow in the cooling fluid.
  • On the one facing the interior Side of the outer wall can e.g. B. rib-like turbulators be provided which the generation of a turbulent Serve flow in the cooling fluid. By such a turbulent The convective cooling of the outer wall is caused by the flow Cooling fluid improved.
  • the cooling insulation shield can be done in simpler Way between the support rib and one or more such Turbulators are clamped.
  • the one facing the interior Side of the outer wall can also be used specifically for mounting the cooling insulation shield manufactured, for. B. co-cast, Contain a projection that holds the cooling insulation shield serves.
  • the turbine blade has a cooling fluid supply area , via which the turbine blade is supplied with the cooling fluid becomes.
  • the cooling insulation shield is preferably in the cooling fluid supply area soldered or welded on. Through the attachment the cooling insulation shield in the cooling fluid supply area, in particular by means of soldering or welding, this can Cooling insulation shield can be fixed in a simple manner without it additional thermal stresses occur because the location of the Fixation, i.e. the cooling fluid supply area, thermally is lightly loaded.
  • the turbine blade is preferably a gas turbine blade, especially for a stationary gas turbine.
  • Gas turbine blades become particularly high temperatures through them flowing working medium, a hot gas, exposed. to The efficiency will be increased in the turbine entering hot gas aimed at higher gas inlet temperatures. These higher gas entry temperatures require one ever better and more efficient cooling of the gas turbine blades.
  • thermal Tensions in the area of the support rib are impermissibly high Accept values. A reduction in these thermal stresses So there is a rising for a gas turbine blade Meaning too.
  • FIG. 1 shows a cross section through a gas turbine blade.
  • a double-walled outer wall 3 with a suction side 4 and a pressure side 6 encloses an interior 5.
  • three support ribs 7 are arranged.
  • each Support rib 7 connects the suction side 4 of the outer wall 3 with the pressure side 6.
  • the gas turbine blade 1 is z. B. in one piece cast.
  • Each support rib 7 has two towards the interior 5 directed side surfaces 9.
  • a cooling insulation shield 11 This is in the example shown as a coating or a covering made of a thermally insulating material executed.
  • the outside of the A hot gas flows around the outer wall 3.
  • a cooling fluid 12 which is perpendicular to the Drawing plane flows through the interior 5.
  • the cooling fluid 12 penetrates one after the other these subspaces 5a, 5b, 5c, 5d. It also cools everyone Support rib 7. Since the support rib 7 is connected to the outer wall 3 it warms up. Especially in a transition area 7a to the outer wall 3, very high temperatures occur.
  • each support rib 7 becomes efficient due to the cooling fluid 5 cooled, primarily via a convective Heat exchange via the side surfaces 9. Due to a high temperature gradients between the relatively cool side walls 9 and the hot transition areas 7a to the outer wall 3 occur in the support rib 7 large thermal stresses on. This serves to reduce these thermal stresses Cooling insulation plate 11. Through the cooling insulation plate 11 is the heat transfer reduced between the support rib 7 and the cooling fluid 5. The side walls 9 are thus no longer as strong cooled and the temperature gradient to the hot outer wall 3 decreases.
  • FIG 2 shows a section of a cross section through a Gas turbine blade. It is a support rib 7 accordingly the embodiment of FIG 1 shown.
  • a cooling insulation shield 11 is arranged in front of one of the side walls 9 . This is as one Sheet metal executed. Bulges are made in the sheet, which serve as spacers 17. Through the spacers 17 is a gap 18 with a defined Gap width d between the cooling insulation plate 11 and the support rib 7 formed. The gap width is preferably between 0.2 mm and 3 mm.
  • the cooling insulation shield 11 is on the interior 5 facing side of the pressure side 6 of the outer wall 3 supported by a rib-like turbulator 15. On the Interior 5 facing side of the suction side 4 of the outer wall 3 is a projection 13 cast into the outer wall 3, the also serves to hold the cooling insulation plate 11.
  • the cooling fluid 12 only flows to a small extent in the gap 18. As a result, the convective cooling of the side wall 9 is considerable reduced. This in turn leads to a reduced temperature gradient within the support rib 7 and thus reduced thermal stresses.
  • FIG. 3 shows a longitudinal section of the detail from FIG. 2.
  • the cooling fluid 12 flows over a cooling fluid supply area 19 in the interior 5.
  • the cooling insulation plate 11 is in the cooling fluid supply area 19 at a welding point 21 welded to the support rib 7.
  • At an opening 23A the cooling fluid 12 enters the gap 18.
  • At an opening 23B the cooling fluid 12 exits the gap 18.
  • Cooling fluid flow in the gap 18 can be adjusted so that Adequate cooling of the support rib 7 results, but at the same time the cooling remains so low that none impermissibly high thermal stresses in the turbine blade 1 occur.
  • FIG. 4 shows a partially broken gas turbine blade 1.
  • the gas turbine blade 1 points along a blade axis 29 a foot region 30, an airfoil 31 and one Head area 32.
  • Inside the gas turbine blade 1 there is an interior space 5 which has support ribs 7 with side surfaces 9 into subspaces directed along the blade axis 29 5a, 5b, 5c, 5d, 5e is divided.
  • a cooling insulation shield 11 arranged in front of one of the side walls 9 a cooling insulation shield 11 arranged.
  • 9 are preferably in front of all side walls Support ribs 7 cooling insulation 11 arranged. Execution of the cooling insulation shield 11 and its advantages result accordingly the explanations of the other figures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Turbinenschaufel, insbesondere eine Gasturbinenschaufel, mit einer einen Innenraum umschließenden Außenwand, durch welchen Innenraum Kühlfluid führbar ist.The invention relates to a turbine blade, in particular a gas turbine blade, with a surrounding an interior External wall through which interior cooling fluid can be passed is.

Eine Leitschaufel einer Gasturbine mit einer Führung von Kühlluft zu deren Kühlung ist z.B in der US-PS 5,419,039 oder FR 57426 beschrieben. Die Leitschaufel ist als ein Gußstück ausgeführt oder aus zwei Gußstücken zusammengesetzt. Sie weist in ihrem Inneren eine Zuführung von Kühlluft aus dem Verdichter der zugeordneten Gasturbinenanlage auf. In ihrer der Heißgasströmung der Gasturbine ausgesetzten, die Kühlluftzuführung umschließenden Wandstruktur sind eingegossene, einseitig offene Kühltaschen vorgesehen.A gas turbine vane with a guide from Cooling air for cooling it is described, for example, in US Pat. No. 5,419,039 or FR 57426. The guide vane is designed as a casting or composed of two castings. She points in her Inside a supply of cooling air from the compressor assigned gas turbine system. In their the hot gas flow exposed to the gas turbine, enclosing the cooling air supply Wall structures are cast in, open on one side Cooling bags provided.

Aufgabe der Erfindung ist die Angabe einer Turbinenschaufel mit einer inneren Kühlstruktur.The object of the invention is to provide a turbine blade with an internal cooling structure.

Erfindungsgemäß wird diese Aufgabe gelöst durch eine Turbinenschaufel mit einer einen Innenraum zur Führung eines Kühlfluides umschließenden Außenwand, wobei die Außenwand im Innenraum von einer Stützrippe mit einer Seitenfläche gestützt ist, und wobei zumindest vor einem Teil der Seitenfläche ein thermisch isolierendes Kühldämmschild so angeordnet ist, daß die Seitenfläche zumindest zum Teil durch das Kühldämmschild von dem Kühlfluid abschirmbar ist.According to the invention, this object is achieved by a turbine blade with an interior for guiding a cooling fluid enclosing outer wall, the outer wall in the interior supported by a support rib with a side surface is, and being at least in front of a part of the side surface thermally insulating cooling insulation shield is arranged so that the side surface at least in part by the cooling insulation shield can be shielded from the cooling fluid.

Im Innenraum der Gasturbinenschaufel ist eine Stützrippe oder sind mehrere Stützrippen angeordnet. Diese dienen einerseits einer Versteifung und Stützung der Außenwand und können andererseits zur Bildung zweier oder mehrerer Teilräume des Innenraums vorgesehen sein. Das Kühlfluid wird über die Länge der Turbinenschaufel von einem Fußbereich durch die Teilräume hindurch bis zu einem Kopfbereich geführt und tritt dort aus. Dies entspricht einer offenen Kühlfluidführung. Es kann auch eine geschlossene Kühlfluidführung vorliegen, d.h., das Kühlfluid wird schlangenartig durch die Teilräume hindurch und wieder aus dem Fußbereich heraus geführt.In the interior of the gas turbine blade is a support rib or several support ribs are arranged. On the one hand, these serve a stiffening and support of the outer wall and can on the other hand to form two or more subspaces of the interior be provided. The cooling fluid runs along the length the turbine blade from a foot area through the subspaces led through to a head area and exits there. This corresponds to an open cooling fluid guide. It can also there is a closed cooling fluid guide, i.e. the cooling fluid becomes like a snake through the subspaces and led out of the foot area again.

Das Kühlfluid kühlt nicht nur die Außenwand, sondern auch die Stützrippe oder die Stützrippen. Im Übergangsbereich zur Außenwand ist die Stützrippe bei Beaufschlagung der Turbinenschaufel mit Heißgas sehr heiß. Andererseits wird die Stützrippe an ihrer Seitenfläche oder an ihren Seitenflächen sehr intensiv durch das vorbeiströmende Kühlfluid abgekühlt. Es treten somit innerhalb der Stützrippe Temperaturgradienten auf, welche zu großen thermischen Spannungen, insbesondere im Übergangsbereich zwischen der Stützrippe und der Außenwand führen können. Solche thermischen Spannungen können zu Materialermüdungen und zu einer verkürzten Lebensdauer der Turbinenschaufel führen.The cooling fluid not only cools the outer wall, but also that Support rib or the support ribs. In the transition area to the outer wall is the support rib when the turbine blade is applied very hot with hot gas. On the other hand, the support rib very much on their side surface or on their side surfaces intensively cooled by the cooling fluid flowing past. It Temperature gradients thus occur within the support rib on too high thermal stresses, especially in Transitional area between the support rib and the outer wall being able to lead. Such thermal stresses can cause material fatigue and a shortened lifespan of the turbine blade to lead.

Ausgehend von dieser Erkenntnis stellt die Erfindung eine Maßnahme bereit, mit der die Kühlung der Stützrippe verringert wird. Durch das thermisch isolierende Kühldämmschild werden die Seitenflächen der Stützrippe oder zumindest ein Teil davon vor einer unmittelbaren Berührung mit dem Kühlfluid abgeschirmt. Der Wärmeübergang zwischen dem Kühlfluid und der Stützrippe wird somit erheblich verringert. Damit wird die Stützrippe nicht mehr so intensiv gekühlt und der Temperaturgradient innerhalb der Stützrippe wird reduziert. Hierdurch werden auch die auftretenden thermischen Spannungen innerhalb der Turbinenschaufel reduziert.Based on this finding, the invention provides a Measure ready to reduce cooling of the support rib becomes. Thanks to the thermally insulating cooling insulation shield the side faces of the support rib or at least one Part of it before direct contact with the cooling fluid shielded. The heat transfer between the cooling fluid and the support rib is thus significantly reduced. In order to the support rib is no longer cooled so intensely and the The temperature gradient within the support rib is reduced. This also causes the thermal stresses that occur reduced within the turbine blade.

Vorzugsweise ist das Kühldämmschild eine Beschichtung der Seitenfläche. Diese Beschichtung ist zweckmäßigerweise aus einem thermisch gut isolierenden Material ausgeführt.The cooling insulation shield is preferably a coating of the Side surface. This coating is advantageously made of a thermally well insulating material.

Bevorzugt ist das Kühldämmschild von der Seitenfläche durch einen Spalt mit einer Spaltbreite beabstandet. In einem solchen Spalt strömt das Kühlfluid aufgrund eines hohen Strömungswiderstandes sehr viel langsamer als im Innenraum. Dies reduziert die konvektive Kühlung der Seitenfläche. Es kann auch zweckmäßig sein, den Spalt völlig gegen einen Kühlfluideintritt abzudichten.The cooling insulation shield is preferably through from the side surface spaced a gap with a gap width. In one Gap flows the cooling fluid due to a high flow resistance much slower than inside. This reduces the convective cooling of the side surface. It can also be expedient, the gap completely against a cooling fluid entry seal.

Bevorzugt sind im Kühldämmschild Öffnungen für einen Einoder Auslaß von Kühlfluid in den Spalt vorgesehen. Mit Hilfe solcher Öffnungen kann ein kontrollierter Fluß von Kühlfluid im Spalt eingestellt werden. Je nach Größe dieses Flusses ergibt sich ein höherer oder niedrigerer Wärmeübergang zwischen der Stützrippe und dem Kühlfluid. Es kann somit in einfacher Weise ein Wert für den Wärmeübergang eingestellt werden, bei dem die Stützrippe ausreichend, aber jedenfalls nicht so stark gekühlt wird, daß thermische Spannungen zu groß werden. Vorzugsweise ist zwischen dem Kühldämmschild und der Seitenfläche ein Abstandshalter zur Einstellung der Spaltbreite angeordnet. Weiter bevorzugt ist der Abstandshalter ein Teil des Kühldämmschildes. Bevorzugtermaßen ist der Abstandshalter durch eine Ausbuchtung des Kühldämmschildes gebildet. Ein solcher Abstandshalter kann auch ein eigenständiges, zwischen Kühldämmschild und Seitenfläche angeordnetes Bauteil sein. Ebenso kann der Abstandshalter ein Teil der Stützrippe auf der Seitenfläche sein. In einr besonders einfachen Ausführung des Abstandshalters ist eine Ausbuchtung im Kühldämmschild vorgesehen, mit der das Kühldämmschild auf der Seitenfläche aufliegt.Openings for one or more are preferred in the cooling insulation shield Outlet of cooling fluid is provided in the gap. With help such openings can allow a controlled flow of cooling fluid can be set in the gap. Depending on the size of this river there is a higher or lower heat transfer between the support rib and the cooling fluid. It can therefore be easier Way, a value for heat transfer can be set at the support rib is sufficient, but at least not so is strongly cooled that thermal stresses become too high. Is preferably between the cooling insulation shield and the side surface a spacer for adjusting the gap width is arranged. The spacer is more preferably a part of the cooling insulation shield. The spacer is preferred formed by a bulge in the cooling insulation shield. On such spacers can also be an independent, between Cooling insulation shield and side surface arranged component. The spacer can also be part of the support rib the side surface. In a particularly simple version the spacer is a bulge in the cooling insulation shield provided with the cooling insulation plate on the side surface rests.

Vorzugsweise ist das Kühldämmschild ein Blech.The cooling insulation shield is preferably a sheet metal.

Bevorzugt ist das Kühldämmschild mit Hilfe eines Vorsprunges der Außenwand an der Außenwand gehaltert. Weiter bevorzugt ist der Vorsprung ein Turbulator zur Erzeugung einer turbulenten Strömung im Kühlfluid. An der dem Inneneraum zugewandten Seite der Außenwand können z. B. rippenartige Turbulatoren vorgesehen sein, welche der Erzeugung einer turbulenten Strömung im Kühlfluid dienen. Durch eine solche turbulente Strömung wird die konvektive Kühlung der Außenwand durch das Kühlfluid verbessert. Das Kühldämmschild kann in einfacher Weise zwischen die Stützrippe und ein oder mehrerer solcher Turbulatoren geklemmt werden. Die dem Innenraum zugewandte Seite der Außenwand kann aber auch einen speziell zur Halterung des Kühldämmschildes gefertigten, z. B. mitgegossenen, Vorsprung enthalten, der zur Halterung des Kühldämmschildes dient.The cooling insulation shield with the aid of a projection is preferred the outer wall held on the outer wall. More preferred the lead is a turbulator to generate a turbulent Flow in the cooling fluid. On the one facing the interior Side of the outer wall can e.g. B. rib-like turbulators be provided which the generation of a turbulent Serve flow in the cooling fluid. By such a turbulent The convective cooling of the outer wall is caused by the flow Cooling fluid improved. The cooling insulation shield can be done in simpler Way between the support rib and one or more such Turbulators are clamped. The one facing the interior Side of the outer wall can also be used specifically for mounting the cooling insulation shield manufactured, for. B. co-cast, Contain a projection that holds the cooling insulation shield serves.

Die Turbinenschaufel weist einen Kühlfluidzuführungsbereich auf, über den der Turbinenschaufel das Kühlfluid zugeführt wird. Vorzugsweise ist das Kühldämmschild im Kühlfluidzuführungsbereich angelötet oder angeschweißt. Durch die Befestigung des Kühldämmschildes im Kühlfluidzuführungsbereich, insbesondere mittels Anlöten oder Anschweißen, kann das Kühldämmschild in einfacher Weise fixiert werden, ohne daß es zu zusätzlichen thermischen Spannungen kommt, da der Ort der Fixierung, also der Kühlfluidzuführungsbereich, thermisch gering belastet ist.The turbine blade has a cooling fluid supply area , via which the turbine blade is supplied with the cooling fluid becomes. The cooling insulation shield is preferably in the cooling fluid supply area soldered or welded on. Through the attachment the cooling insulation shield in the cooling fluid supply area, in particular by means of soldering or welding, this can Cooling insulation shield can be fixed in a simple manner without it additional thermal stresses occur because the location of the Fixation, i.e. the cooling fluid supply area, thermally is lightly loaded.

Bevorzugt ist die Turbinenschaufel eine Gasturbinenschaufel, insbesondere für eine stationäre Gasturbine. Gasturbinenschaufeln werden besonders hohen Temperaturen durch ein sie umströmendes Arbeitsmedium, einem Heißgas, ausgesetzt. Zur Steigerung des Wirkungsgrades werden für das in die Turbine eintretende Heißgas höhere Gaseintrittstemperaturen angestrebt. Diese höheren Gaseintrittstemperaturen erfordern eine immer bessere und effizientere Kühlung der Gasturbinenschaufeln. Es tritt somit zunehmend das Problem auf, daß thermische Spannungen im Bereich der Stützrippe unzulässig hohe Werte annehmen. Einer Verringerung dieser thermischen Spannungen kommt also für eine Gasturbinenschaufel eine steigende Bedeutung zu.The turbine blade is preferably a gas turbine blade, especially for a stationary gas turbine. Gas turbine blades become particularly high temperatures through them flowing working medium, a hot gas, exposed. to The efficiency will be increased in the turbine entering hot gas aimed at higher gas inlet temperatures. These higher gas entry temperatures require one ever better and more efficient cooling of the gas turbine blades. The problem that thermal Tensions in the area of the support rib are impermissibly high Accept values. A reduction in these thermal stresses So there is a rising for a gas turbine blade Meaning too.

Die Erfindung wird anhand der Zeichnungen in einem Ausführungsbeispiel teilweise schematisch näher erläutert. Es zeigen:

FIG 1
einen Querschnitt durch eine Gasturbinenschaufel,
FIG 2
einen Ausschnitt eines Querschnittes durch eine Gasturbinenschaufel,
FIG 3
einen Ausschnitt durch einen Längsschnitt durch eine Gasturbinenschaufel und
FIG 4
einen Längsschnitt durch eine Gasturbinenschaufel
The invention is partially schematically explained in more detail in an exemplary embodiment with reference to the drawings. Show it:
FIG. 1
a cross section through a gas turbine blade,
FIG 2
a section of a cross section through a gas turbine blade,
FIG 3
a section through a longitudinal section through a gas turbine blade and
FIG 4
a longitudinal section through a gas turbine blade

Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.The same reference numerals have in the different figures same meaning.

FIG 1 zeigt einen Querschnitt durch eine Gasturbinenschaufel. Eine doppelwandig ausgeführte Außenwand 3 mit einer Saugseite 4 und einer Druckseite 6 umschließt einen Innenraum 5. Im Innenraum 5 sind drei Stützrippen 7 angeordnet. Jede Stützrippe 7 verbindet die Saugseite 4 der Außenwand 3 mit der Druckseite 6. Die Gasturbinenschaufel 1 ist z. B. einstückig gegossen. Jede Stützrippe 7 weist zwei zum Innenraum 5 gerichtete Seitenflächen 9 auf. Vor beiden Seitenflächen 9 einer der Stützrippen 7 ist jeweils ein Kühldämmschild 11 angeordnet. Dieses ist im gezeigten Beispiel als eine Beschichtung oder ein Belag aus einem thermisch isolierenden Material ausgeführt.1 shows a cross section through a gas turbine blade. A double-walled outer wall 3 with a suction side 4 and a pressure side 6 encloses an interior 5. In the interior 5, three support ribs 7 are arranged. each Support rib 7 connects the suction side 4 of the outer wall 3 with the pressure side 6. The gas turbine blade 1 is z. B. in one piece cast. Each support rib 7 has two towards the interior 5 directed side surfaces 9. In front of both side surfaces 9 one of the support ribs 7 is arranged a cooling insulation shield 11. This is in the example shown as a coating or a covering made of a thermally insulating material executed.

Im Einsatz der Gasturbinenschaufel 1 wird die Außenseite der Außenwand 3 von einem heißen Gas umströmt. Um eine unzulässig hohe Erwärmung der Gasturbinenschaufel 1 zu vermeiden, wird diese durch ein Kühlfluid 12 gekühlt, welches senkrecht zur Zeichenebene durch den Innenraum 5 strömt. Dabei ist der Innenraum 5 durch die Stützrippen 7 in vier Teilräume 5a, 5b, 5c, 5d unterteilt. Das Kühlfluid 12 durchdringt nacheinander diese Teilräume 5a, 5b, 5c, 5d. Dabei kühlt es auch jede Stützrippe 7. Da die Stützrippe 7 mit der Außenwand 3 verbunden ist, erwärmt sie sich. Insbesondere in einem Übergangsbereich 7a zur Außenwand 3 treten sehr hohe Temperaturen auf. Gleichzeitig wird jede Stützrippe 7 effizient durch das Kühlfluid 5 gekühlt, und zwar in erster Linie über einen konvektiven Wärmeaustausch über die Seitenflächen 9. Aufgrund eines hohen Temperaturgradienten zwischen den relativ kühlen Seitenwänden 9 und den heißen Übergangsbereichen 7a zur Außenwand 3 treten in der Stützrippe 7 große thermische Spannungen auf. Zur Reduktion dieser thermischen Spannungen dient das Kühldämmschild 11. Durch das Kühldämmschild 11 ist der Wärmeübergang zwischen der Stützrippe 7 und dem Kühlfluid 5 reduziert. Die Seitenwände 9 werden somit nicht mehr so stark gekühlt und der Temperaturgradient zur heißen Außenwand 3 nimmt ab.When using the gas turbine blade 1, the outside of the A hot gas flows around the outer wall 3. To be an inadmissible to avoid high heating of the gas turbine blade 1 this is cooled by a cooling fluid 12 which is perpendicular to the Drawing plane flows through the interior 5. Here is the interior 5 through the support ribs 7 into four sub-spaces 5a, 5b, 5c, 5d divided. The cooling fluid 12 penetrates one after the other these subspaces 5a, 5b, 5c, 5d. It also cools everyone Support rib 7. Since the support rib 7 is connected to the outer wall 3 it warms up. Especially in a transition area 7a to the outer wall 3, very high temperatures occur. At the same time, each support rib 7 becomes efficient due to the cooling fluid 5 cooled, primarily via a convective Heat exchange via the side surfaces 9. Due to a high temperature gradients between the relatively cool side walls 9 and the hot transition areas 7a to the outer wall 3 occur in the support rib 7 large thermal stresses on. This serves to reduce these thermal stresses Cooling insulation plate 11. Through the cooling insulation plate 11 is the heat transfer reduced between the support rib 7 and the cooling fluid 5. The side walls 9 are thus no longer as strong cooled and the temperature gradient to the hot outer wall 3 decreases.

FIG 2 zeigt einen Ausschnitt eines Querschnittes durch eine Gasturbinenschaufel. Es ist eine Stützrippe 7 entsprechend der Ausführung der FIG 1 gezeigt. Vor einer der Seitenwände 9 ist ein Kühldämmschild 11 angeordnet. Dieses ist als ein Blech ausgeführt. In dem Blech sind Ausbuchtungen eingebracht, welche als Abstandshalter 17 dienen. Durch die Abstandshalter 17 wird ein Spalt 18 mit einer definierten Spaltbreite d zwischen dem Kühldämmschild 11 und der Stützrippe 7 gebildet. Die Spaltbreite liegt vorzugsweise zwischen 0.2 mm und 3 mm. Das Kühldämmschild 11 ist auf der dem Innenraum 5 zugewandten Seite der Druckseite 6 der Außenwand 3 von einem rippenartigen Turbulator 15 gehaltert. Auf der dem Innenraum 5 zugewandten Seite der Saugseite 4 der Außenwand 3 ist ein Vorsprung 13 mit in die Außenwand 3 eingegossen, der ebenfalls zur Halterung des Kühldämmschildes 11 dient.2 shows a section of a cross section through a Gas turbine blade. It is a support rib 7 accordingly the embodiment of FIG 1 shown. In front of one of the side walls 9 a cooling insulation shield 11 is arranged. This is as one Sheet metal executed. Bulges are made in the sheet, which serve as spacers 17. Through the spacers 17 is a gap 18 with a defined Gap width d between the cooling insulation plate 11 and the support rib 7 formed. The gap width is preferably between 0.2 mm and 3 mm. The cooling insulation shield 11 is on the interior 5 facing side of the pressure side 6 of the outer wall 3 supported by a rib-like turbulator 15. On the Interior 5 facing side of the suction side 4 of the outer wall 3 is a projection 13 cast into the outer wall 3, the also serves to hold the cooling insulation plate 11.

In dem Spalt 18 strömt das Kühlfluid 12 nur in geringem Maße. Dadurch ist die konvektive Kühlung der Seitenwand 9 erheblich reduziert. Dies führt wiederum zu einem verringerten Temperaturgradienten innerhalb der Stützrippe 7 und damit zu verringerten thermischen Spannungen.The cooling fluid 12 only flows to a small extent in the gap 18. As a result, the convective cooling of the side wall 9 is considerable reduced. This in turn leads to a reduced temperature gradient within the support rib 7 and thus reduced thermal stresses.

In FIG 3 ist ein Längsschnitt des Ausschnittes aus FIG 2 gezeigt. Das Kühlfluid 12 strömt über einen Kühlfluidzuführungsbereich 19 in den Innenraum 5 ein. Das Kühldämmschild 11 ist im Kühlfluidzuführungsbereich 19 an einer Schweißstelle 21 mit der Stützrippe 7 verschweißt. An einer Öffnung 23A tritt das Kühlfluid 12 in den Spalt 18 ein. An einer Öffnung 23B tritt das Kühlfluid 12 aus dem Spalt 18 aus. Durch eine geeignete Dimensionierung der Öffnungen 23A, 23B kann der Kühlfluidfluß im Spalt 18 so eingestellt werden, daß sich eine ausreichende Kühlung der Stützrippe 7 ergibt, wobei aber gleichzeitig die Kühlung noch so niedrig bleibt, daß keine unzulässig hohen thermischen Spannungen in der Turbinenschaufel 1 auftreten.FIG. 3 shows a longitudinal section of the detail from FIG. 2. The cooling fluid 12 flows over a cooling fluid supply area 19 in the interior 5. The cooling insulation plate 11 is in the cooling fluid supply area 19 at a welding point 21 welded to the support rib 7. At an opening 23A the cooling fluid 12 enters the gap 18. At an opening 23B, the cooling fluid 12 exits the gap 18. By a the openings 23A, 23B can be suitably dimensioned Cooling fluid flow in the gap 18 can be adjusted so that Adequate cooling of the support rib 7 results, but at the same time the cooling remains so low that none impermissibly high thermal stresses in the turbine blade 1 occur.

FIG 4 zeigt eine teilweise aufgebrochene Gasturbinenschaufel 1. Die Gasturbinenschaufel 1 weist entlang einer Schaufelachse 29 einen Fußbereich 30, ein Schaufelblatt 31 und einen Kopfbereich 32 auf. Im Inneren der Gasturbinenschaufel 1 liegt ein Innenraum 5 welcher durch Stützrippen 7 mit Seitenflächen 9 in entlang der Schaufelachse 29 gerichtete Teilräume 5a, 5b, 5c, 5d, 5e unterteilt ist. Vor einer der Seitenwände 9 einer der Stützrippen 7 ist ein Kühldämmschild 11 angeordnet. Vorzugsweise sind vor allen Seitenwänden 9 aller Stützrippen 7 Kühldämmschilde 11 angeordnet. Die Ausführung des Kühldämmschildes 11 und dessen Vorteile ergeben sich entsprechend den Ausführungen zu den übrigen Figuren.4 shows a partially broken gas turbine blade 1. The gas turbine blade 1 points along a blade axis 29 a foot region 30, an airfoil 31 and one Head area 32. Inside the gas turbine blade 1 there is an interior space 5 which has support ribs 7 with side surfaces 9 into subspaces directed along the blade axis 29 5a, 5b, 5c, 5d, 5e is divided. In front of one of the side walls 9 one of the support ribs 7 is a cooling insulation shield 11 arranged. 9 are preferably in front of all side walls Support ribs 7 cooling insulation 11 arranged. Execution of the cooling insulation shield 11 and its advantages result accordingly the explanations of the other figures.

Claims (12)

  1. Turbine blade or vane having an external wall (3) enclosing an internal space (5) for the guidance of a coolant fluid (12), the external wall (3) being supported in the internal space (5) by a stiffening rib (7) and the stiffening rib (7) having a side surface, characterized in that a thermally insulating coolant screen (11) is arranged at least before a part of the side surface (9) in such a way that the side surface (9) can be screened, at least in part, by the coolant screen (11) from the coolant fluid (12).
  2. Turbine blade or vane according to Claim 1, characterized in that the coolant screen (11) is a coating on the side surface (9).
  3. Turbine blade or vane according to Claim 1, characterized in that the coolant screen (11) is located at a distance from the side surface (9) by means of a gap (18) with a gap width (d).
  4. Turbine blade or vane according to Claim 3, characterized in that openings (23A, 23B) are provided in the coolant screen (11) for an inlet or outlet of coolant fluid (12) into the gap (18).
  5. Turbine blade or vane according to Claim 3 or 4, characterized in that a distance retainer (17) for setting the gap width is arranged between the coolant screen (11) and the side surface (9).
  6. Turbine blade or vane according to Claim 5, characterized in that the distance retainer (17) is part of the coolant screen (11).
  7. Turbine blade or vane according to Claim 6, characterized in that the distance retainer (17) is formed by a bulge in the coolant screen (11).
  8. Turbine blade or vane according to one of the preceding claims, characterized in that the coolant screen (11) is a metal sheet.
  9. Turbine blade or vane according to one of Claims 3 to 8, characterized in that the coolant screen (11) is retained by means of a protrusion (13) of the external wall (3).
  10. Turbine blade or vane according to Claim 9, characterized in that the protrusion is a turbulator (15) for generating a turbulent flow in the coolant fluid (12).
  11. Turbine blade or vane according to one of Claims 3 to 10, having a coolant fluid supply region (19), characterized in that the coolant screen (11) is brazed or welded in the coolant fluid supply region (19).
  12. Turbine blade or vane according to one of the preceding claims, characterized by an embodiment as a gas turbine blade or vane (1), in particular for a stationary gas turbine.
EP99952439A 1998-08-31 1999-08-18 Turbine bucket Expired - Lifetime EP1112439B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19839624 1998-08-31
DE19839624 1998-08-31
PCT/DE1999/002596 WO2000012868A1 (en) 1998-08-31 1999-08-18 Turbine bucket

Publications (2)

Publication Number Publication Date
EP1112439A1 EP1112439A1 (en) 2001-07-04
EP1112439B1 true EP1112439B1 (en) 2003-06-11

Family

ID=7879308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99952439A Expired - Lifetime EP1112439B1 (en) 1998-08-31 1999-08-18 Turbine bucket

Country Status (5)

Country Link
US (1) US6533547B2 (en)
EP (1) EP1112439B1 (en)
JP (1) JP4315599B2 (en)
DE (1) DE59905944D1 (en)
WO (1) WO2000012868A1 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1099825A1 (en) * 1999-11-12 2001-05-16 Siemens Aktiengesellschaft Turbine blade and production method therefor
EP1167689A1 (en) * 2000-06-21 2002-01-02 Siemens Aktiengesellschaft Configuration of a coolable turbine blade
FR2858352B1 (en) * 2003-08-01 2006-01-20 Snecma Moteurs COOLING CIRCUIT FOR TURBINE BLADE
US7216694B2 (en) * 2004-01-23 2007-05-15 United Technologies Corporation Apparatus and method for reducing operating stress in a turbine blade and the like
US7018176B2 (en) * 2004-05-06 2006-03-28 United Technologies Corporation Cooled turbine airfoil
US7118326B2 (en) * 2004-06-17 2006-10-10 Siemens Power Generation, Inc. Cooled gas turbine vane
US7534089B2 (en) * 2006-07-18 2009-05-19 Siemens Energy, Inc. Turbine airfoil with near wall multi-serpentine cooling channels
US7780413B2 (en) * 2006-08-01 2010-08-24 Siemens Energy, Inc. Turbine airfoil with near wall inflow chambers
US7520725B1 (en) 2006-08-11 2009-04-21 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall leading edge multi-holes cooling
ES2322661T3 (en) 2006-08-23 2009-06-24 Siemens Aktiengesellschaft COVERED TURBINE ALABE.
US7625179B2 (en) 2006-09-13 2009-12-01 United Technologies Corporation Airfoil thermal management with microcircuit cooling
US8197184B2 (en) * 2006-10-18 2012-06-12 United Technologies Corporation Vane with enhanced heat transfer
US7625180B1 (en) * 2006-11-16 2009-12-01 Florida Turbine Technologies, Inc. Turbine blade with near-wall multi-metering and diffusion cooling circuit
US7556476B1 (en) 2006-11-16 2009-07-07 Florida Turbine Technologies, Inc. Turbine airfoil with multiple near wall compartment cooling
US7704048B2 (en) * 2006-12-15 2010-04-27 Siemens Energy, Inc. Turbine airfoil with controlled area cooling arrangement
US7753650B1 (en) 2006-12-20 2010-07-13 Florida Turbine Technologies, Inc. Thin turbine rotor blade with sinusoidal flow cooling channels
US7871246B2 (en) * 2007-02-15 2011-01-18 Siemens Energy, Inc. Airfoil for a gas turbine
US7857589B1 (en) 2007-09-21 2010-12-28 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall cooling
DE102007054782A1 (en) * 2007-11-16 2009-05-20 Mtu Aero Engines Gmbh Induction coil, method and device for inductive heating of metallic components
US8042268B2 (en) * 2008-03-21 2011-10-25 Siemens Energy, Inc. Method of producing a turbine component with multiple interconnected layers of cooling channels
US20090324841A1 (en) * 2008-05-09 2009-12-31 Siemens Power Generation, Inc. Method of restoring near-wall cooled turbine components
US8167558B2 (en) * 2009-01-19 2012-05-01 Siemens Energy, Inc. Modular serpentine cooling systems for turbine engine components
US8007242B1 (en) * 2009-03-16 2011-08-30 Florida Turbine Technologies, Inc. High temperature turbine rotor blade
US8052391B1 (en) * 2009-03-25 2011-11-08 Florida Turbine Technologies, Inc. High temperature turbine rotor blade
US8070450B1 (en) * 2009-04-20 2011-12-06 Florida Turbine Technologies, Inc. High temperature turbine rotor blade
US8147196B2 (en) * 2009-05-05 2012-04-03 Siemens Energy, Inc. Turbine airfoil with a compliant outer wall
US8079821B2 (en) * 2009-05-05 2011-12-20 Siemens Energy, Inc. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure
US8894367B2 (en) * 2009-08-06 2014-11-25 Siemens Energy, Inc. Compound cooling flow turbulator for turbine component
US20110146075A1 (en) * 2009-12-18 2011-06-23 Brian Thomas Hazel Methods for making a turbine blade
US8506242B2 (en) * 2010-05-04 2013-08-13 Brayton Energy Canada, Inc. Method of making a heat exchange component using wire mesh screens
US9011077B2 (en) * 2011-04-20 2015-04-21 Siemens Energy, Inc. Cooled airfoil in a turbine engine
JP6169161B2 (en) 2012-03-22 2017-07-26 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Turbine blade
US20130280081A1 (en) * 2012-04-24 2013-10-24 Mark F. Zelesky Gas turbine engine airfoil geometries and cores for manufacturing process
US9115590B2 (en) * 2012-09-26 2015-08-25 United Technologies Corporation Gas turbine engine airfoil cooling circuit
WO2014130151A1 (en) * 2013-02-23 2014-08-28 Thomas David J Insulating coating to permit higher operating temperatures
FR3021697B1 (en) * 2014-05-28 2021-09-17 Snecma OPTIMIZED COOLING TURBINE BLADE
US10012090B2 (en) * 2014-07-25 2018-07-03 United Technologies Corporation Airfoil cooling apparatus
US10156157B2 (en) * 2015-02-13 2018-12-18 United Technologies Corporation S-shaped trip strips in internally cooled components
WO2017082868A1 (en) * 2015-11-10 2017-05-18 Siemens Aktiengesellschaft Laminated airfoil for a gas turbine
PL232314B1 (en) 2016-05-06 2019-06-28 Gen Electric Fluid-flow machine equipped with the clearance adjustment system
US10309246B2 (en) 2016-06-07 2019-06-04 General Electric Company Passive clearance control system for gas turbomachine
US10605093B2 (en) 2016-07-12 2020-03-31 General Electric Company Heat transfer device and related turbine airfoil
US10392944B2 (en) * 2016-07-12 2019-08-27 General Electric Company Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium
US10422229B2 (en) * 2017-03-21 2019-09-24 United Technologies Corporation Airfoil cooling
US10487672B2 (en) * 2017-11-20 2019-11-26 Rolls-Royce Corporation Airfoil for a gas turbine engine having insulating materials
FR3096074B1 (en) 2019-05-17 2021-06-11 Safran Aircraft Engines Trailing edge turbomachine blade with improved cooling
US11333022B2 (en) * 2019-08-06 2022-05-17 General Electric Company Airfoil with thermally conductive pins
US11773723B2 (en) 2019-11-15 2023-10-03 Rtx Corporation Airfoil rib with thermal conductance element
CN111677557B (en) * 2020-06-08 2021-10-26 清华大学 Turbine guide blade and turbo machine with same
CN112160796B (en) * 2020-09-03 2022-09-09 哈尔滨工业大学 Turbine blade of gas turbine engine and control method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR999820A (en) 1946-01-11 1952-02-05 Improvements to gas turbines
US4519745A (en) * 1980-09-19 1985-05-28 Rockwell International Corporation Rotor blade and stator vane using ceramic shell
DE3615226A1 (en) 1986-05-06 1987-11-12 Mtu Muenchen Gmbh HOT GAS OVERHEATING PROTECTION DEVICE FOR GAS TURBINE ENGINES
JP3142850B2 (en) * 1989-03-13 2001-03-07 株式会社東芝 Turbine cooling blades and combined power plants
US5405242A (en) 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
US5383766A (en) * 1990-07-09 1995-01-24 United Technologies Corporation Cooled vane
US5203873A (en) * 1991-08-29 1993-04-20 General Electric Company Turbine blade impingement baffle
US6095755A (en) * 1996-11-26 2000-08-01 United Technologies Corporation Gas turbine engine airfoils having increased fatigue strength

Also Published As

Publication number Publication date
US20010018021A1 (en) 2001-08-30
DE59905944D1 (en) 2003-07-17
WO2000012868A1 (en) 2000-03-09
US6533547B2 (en) 2003-03-18
JP4315599B2 (en) 2009-08-19
JP2002523675A (en) 2002-07-30
EP1112439A1 (en) 2001-07-04

Similar Documents

Publication Publication Date Title
EP1112439B1 (en) Turbine bucket
EP1320661B1 (en) Gas turbine blade
EP1032791B1 (en) Combustion chamber and method for cooling a combustion chamber with vapour
EP1701095B1 (en) Heat shield
DE602004009487T2 (en) Damping and sealing element for turbine
DE69816532T2 (en) Heat transfer structure
DE60031185T2 (en) Method for cooling a wall of a turbomachine blade
DE2515117C1 (en) Cooled hollow blade for a gas turbine jet engine
DE2320581C2 (en) Gas turbine with air-cooled turbine blades
EP1899582B1 (en) Heat shield and stator vane for a gas turbine
DE3345263C2 (en) Cooled turbine blade
DE2630629A1 (en) LAYERED BODY, IN PARTICULAR FOR GAS TURBINE ENGINES
DE4441507A1 (en) Cooling structure for gas turbine blade
EP0031174B1 (en) Cooled gasturbine blade
DE10001109A1 (en) Cooled blade for gas turbine, with several internal cooling channels running radially in blade
EP1247602B1 (en) Method for producing an airfoil
DE1476804A1 (en) Turbine blade with aerofoil profile
WO2006064038A1 (en) Heat shield element
EP1073827B1 (en) Turbine blade
EP1112440A1 (en) Turbine guide blade
DE102005055482A1 (en) Heat exchanger for an internal combustion engine
DE19963716A1 (en) Cooled flow deflection device for a turbomachine operating at high temperatures
DE2643049A1 (en) SHOVEL WITH COOLED PLATFORM FOR A FLOW MACHINE
EP2747218B1 (en) Cooling assembly for laser active solid materials, laser system and method for cooling a laser active solid material
EP1028228A1 (en) Cooling device for a turbine rotor blade platform

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RIN2 Information on inventor provided after grant (corrected)

Inventor name: TIEMANN, PETER

Inventor name: SCHULENBERG, THOMAS

Inventor name: SCHEURLEN, MICHAEL

Inventor name: BOLMS, HANS-THOMAS

Inventor name: BISCHOFF-BEIERMANN, BURKHARD

Inventor name: ANDING, DIRK

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59905944

Country of ref document: DE

Date of ref document: 20030717

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040312

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150812

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150818

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150825

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151016

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59905944

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160818

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160818

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160818