EP1112365A2 - Humaner un muriner g-protein gekoppelter rezeptor edg6 (endothelial differentiation gen) und seine verwendung - Google Patents

Humaner un muriner g-protein gekoppelter rezeptor edg6 (endothelial differentiation gen) und seine verwendung

Info

Publication number
EP1112365A2
EP1112365A2 EP99948712A EP99948712A EP1112365A2 EP 1112365 A2 EP1112365 A2 EP 1112365A2 EP 99948712 A EP99948712 A EP 99948712A EP 99948712 A EP99948712 A EP 99948712A EP 1112365 A2 EP1112365 A2 EP 1112365A2
Authority
EP
European Patent Office
Prior art keywords
edg6
receptor
human
protein
fragments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99948712A
Other languages
English (en)
French (fr)
Inventor
Markus GRÄLER
Günter Bernhardt
Martin Lipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
Original Assignee
Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19846979A external-priority patent/DE19846979A1/de
Application filed by Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft filed Critical Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
Publication of EP1112365A2 publication Critical patent/EP1112365A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the invention relates to the G protein-coupled receptor EDG6 and its fragments, variants and mutations and its use. Fields of application of the invention are molecular biology, pharmacy and medicine.
  • G protein coupled receptors The superfamily of G protein coupled receptors (GPRs) comprises several hundred proteins. Their main task in the organism is to pass on information from the extracellular environment into the cell interior through interaction with heterotrimeric guanine nucleotide-binding proteins, which are commonly referred to as G proteins (Dohlman et al., 1987). This influences the regulatory processes within cells (Böhm et al., 1997).
  • GPRs for hormones and neurotransmitters are known, for paracrine substances and inflammatory mediators, for certain proteases, for a large number of taste and odor molecules, and for photons and calcium ions (Watson and Arkinstall, 1994).
  • the EDG (endothelial differentiation gene) receptor family belongs to the group of G-protein coupled receptors (GPRs). The first member of this family, EDG1, was cloned in 1990 as part of an investigation into the nonproliferative aspects of angiogenesis in the organization and differentiation of endothelial cells in capillaries.
  • EDG2 Another member of the EDG receptor family, occurs primarily in cortical neurogenic regions.
  • the cDNA of a third member of the EDG receptor family was isolated from human placenta, kidney and liver as well as from human heart and localized on chromosome 9q22.1-2.
  • Human EDG4 cDNA transcripts have recently been detected from the testes, prostate, pancreas and peripheral blood leukocytes and to a lesser extent in the thymus and spleen. Two other transcripts were isolated from smooth muscle cells of the rat aorta or from murine and bovine taste buds.
  • Lysophosphatidyl acid (LPA; l-acyl-2-hydroxy-s ⁇ -glycero-3-phosphate) was identified as a possible ligand for the human and murine EDG2 receptor and for the human EDG4 receptor. Furthermore, lysosphingolipids have been found as functional ligands for the human receptors EDG1 and EDG3 and for the H218 receptor of the rat.
  • the invention was based on the task of isolating a further member of the EDG receptor family, identifying them and making them usable for medical use.
  • EDG6 EDG receptor
  • the human EDG6 receptor comprises 384 amino acids of sequence 1 with seven transmembrane domains.
  • the receptor has one possible N-terminal glycosylation site, three possible palmitoylation sites located 12 to 15 amino acids C-terminal from the seventh transmembrane domain and four possible C-terminal protein kinase C phosphorylation sites.
  • a model of the receptor is shown in Figure 1.
  • the EDG6 receptor is the first member of the EDG family to be isolated from in vitro differentiated human dendritic cells. It shows a signal at around 1.7 kb in the Northern blot analysis.
  • Human edg6 mRNA is expressed in the Burkitt lymphoma cell lines JBL2, BL64 and DG75, in the promyelocytic cell line U937 and in the T cell line CEM.
  • High tissue specific expression rates of human edg ⁇ was found in human adult and fetal spleens as well as in adult peripheral leukocytes and the lungs.
  • Lower expression rates of human & dg6 were detected in adult thymus, lymph nodes, bone marrow and appendix as well as in fetal liver, thymus and lungs.
  • the scope of the invention also includes the cDNA sequence of the EDG6 receptor with sequence 2.
  • a murine clone was identified that has high homologies to the newly identified EDG6 receptor.
  • the murine cDNA clone from the EST (expressed-sequence tag) nucleic acid database comes from lymph nodes and is at amino acid level after a correction of the database entry, which leads to a change in the reading frame, over 106 amino acids to 88% homologous to the human EDG6 receptor. It follows that this cDNA clone is a fragment of the murine homologue to the human EDG6 receptor.
  • sequence 3 the entire murine cDNA sequence (sequence 3) was determined with the aid of a special polymerase chain reaction.
  • the protein derived from this cDNA sequence has sequence 4.
  • Specific anti-EDG-6 antibodies are also claimed. They are made by immunizing rats with a GST fusion protein containing a fragment of the EDG6 receptor. With the help of the spleen cells of the rat, hybridomas are produced which are examined for the production of specific antibodies by means of ELISA analysis. Additional possibilities for obtaining antibodies are immunization with whole cells which express the receptor EDG6 after the introduction of the cDNA or already naturally, and with a C-terminal 6 x histidine-coupled N-terminal EDG6 fragment.
  • EDG6-deficient mice are produced, i.e. Mice containing non-functional mutants (zero mutant ') of the EDG6. These knock out mice serve as an animal model for diseases that may be associated with the EDG6 receptor. The characterization of the phenotype of these mice can contribute decisively to the function determination.
  • a non-functional edg ⁇ gene with appropriate selection markers is integrated into the genome of murine embryonic stem cells (ES cells) using homologous recombination. The selected ES cells are then used as multipotent cells in murine embryos of early cell development (morula, blastocyst).
  • diseases can be identified that are caused directly or indirectly by the EDG6 receptor or are increased in their extent.
  • diseases include immune deficiencies, for example, against infections, and diseases based on acute and chronic inflammation.
  • This also includes autoimmune diseases, allergies and malignant diseases such as tumors, leukaemias and lymphomas.
  • the human receptor EDG6 according to the invention can be directly or indirectly involved in the occurrence of immune deficiencies, acute and chronic inflammation, autoimmune diseases, allergies and malignant diseases or increase their severity and extent.
  • the invention also relates to the use of the EDG6 nucleic acids and EDG6 polypeptides in their original, modified or synthetic form as a starting basis for the development of pharmaceutically relevant substances.
  • the EDG6 nucleic acids are used for the construction of genes and vectors, and the EDG6 polypeptides for the construction of Elisa methods, diameter and test methods.
  • the pharmaceutically relevant substances either bind themselves to the receptor polypeptide or the receptor-coding nucleic acid or they influence the binding of the physiological ligand or the binding and activity of intracellular downstream signaling molecules and thereby lead to an activation or inhibition of the receptor function.
  • These substances with an agonistic or antagonistic effect on the function of the EDG6 receptor can be organic molecules, inorganic molecules and peptides or combinations of these classes of substances.
  • the invention enables medical use for the following diagnostic or therapeutic measures.
  • diagnosis can be carried out, for example using test kits based on monoclonal antibodies or nucleic acid detection methods.
  • the functions of the receptor can be influenced in an agonistic or antagonistic manner.
  • the EDG6 receptor in its original or modified form as well as specific antibodies or binding partners can be used for therapeutic purposes, for example for gene therapy methods (for example on a cellular, liposomal or viral basis) if a malfunction of the receptor or incorrect expression of the EDG6 receptor or its ligand is present.
  • gene therapy methods for example on a cellular, liposomal or viral basis
  • PCR polymerase chain reaction
  • TM transmembrane domains
  • the possible 1560 bp full-length cDNA was gradually cloned using 5 'and 3' RACE PCR.
  • the cDNA contains an open reading frame of 1155 bp, a 22 bp 5'-untranslated region and a 383 bp 3'-untranslated region.
  • the cDNA at the 3 'end may not be complete because it does not have a typical polyadenylation signal.
  • Sequence 1 shows the resulting amino acid sequence. Sequence comparisons indicate that the newly identified receptor belongs to the EDG family of GPCRs. Therefore it was called EDG6.
  • EDG6 has 46% identity to EDG3, 44% to EDG1, 39% to EDG4 and 37% to EDG2.
  • the next related GPCR is hCBlR, a member of the cannabinoid receptor family, with 31% identity.
  • Computer-aided analyzes showed the possible localization of the seven transmembrane domains, a possible N-glycosylation site in the N-terminal extracellular region and several post-translational modification sites in the C-terminal cytoplasmic domain can be determined. Furthermore, the correct orientation of the molecule in the cell membrane with the N-terminus on the extracellular side was investigated.
  • the protein-encoding cDNA sequence was cloned into a eukaryotic expression vector while maintaining the reading frame, the C-terminal of the cloned-in sequence expressing a j ⁇ yc epitope.
  • the fusion molecule could only be detected in permeabilized cells by means of flow cytometry using an anti-jnyc-specific monoclonal antibody.
  • the last 50 bp of the human edg ⁇ (hedg ⁇ ) cDNA are identical to the base pairs 13 to 62 of a short sequence that contains the repetitive dinucleotide polymorphism D19S120.
  • This polymorphism was located on chromosome 19pl3.3.
  • a PCR with gene-specific primers of hedg6 cDNA and the D19S120 amplicon was able to amplify a human genomic DNA fragment which contains the 3 'end of hedg ⁇ and the D19S120 polymorphism. This shows that hedg ⁇ is located on chromosome 19pl3.3 next to the D19S120 marker.
  • the murine homolog of the edg ⁇ (medg ⁇ ) cDNA could be isolated with the help of RACE-PCR.
  • Total RNA of the dendritic cell line 18 originating from murine fetal skin was used for this.
  • Gene-specific primers were produced which originate from the murine EST sequence of the cDNA clone val6c04.rl (GenBank entry no. AA254425) and have a high identity to the 3 'end of the coding region of the hedg ⁇ cDNA.
  • the primers were chosen so that the open reading frame of medg ⁇ could be amplified. Therefore, the medg ⁇ cDNA is incomplete at the 3 'end. It contains an open reading frame of 1161 bp.
  • the first 99 bp of the 499 bp ⁇ '-untranslated region contain a murine repetitive element B1.
  • the open reading frame of the medg ⁇ cDNA is 80% homologous to the corresponding human sequence. At the protein level, both sequences have an identity of 82% and a similarity of 91%. The possible post-translational modification sites are conserved both in the human and in the murine e g6 sequence.
  • DNA fragments were produced which represent regions with low conservation in the murine and in the human cDNA sequence. These fragments were then used as radiolabelled probes in Northern blots.
  • a hedg ⁇ -specific signal was found at around 1.7 kb in human cell lines, hedg ⁇ itiRNA is expressed in the Burkitt lymphoma cell lines JBL2, BL64 and DG75, in the promyelocytic cell line U937 and in the T cell line CEM, while it is expressed in the Throat cancer cell line HEp2 and the HEp2 subclone cl32 and in the cervical carcinoma cell line HeLa could not be detected.
  • hedg ⁇ is weakly expressed in all positive cell lines tested and can only be demonstrated by prolonged exposure times of the blots. Due to the high specificity of the hybridization samples, it was possible to determine the tissue-specific expression of hedg ⁇ with mRNA samples from 50 different human tissues using a dot blot. High hedg ⁇ expression rates were found in human adult and fetal spleens, as well as in adult peripheral leukocytes and the lungs. Lower hedg ⁇ expression rates were detected in adult thymus, lymph nodes, bone marrow and appendix as well as in fetal liver, thymus and lungs.
  • tissue-specific expression of medg ⁇ mRNA agrees very well with the human expression pattern within the examined organs. Hybridization signals were found in murine lungs, spleen, thymus and lymph nodes while they did not appear in non-lymphatic tissue.
  • the murine edg ⁇ mRNA is approximately 2.1 kb in size and thus 0.4 kb larger than the human edg ⁇ mRNA. material and methods
  • Peripheral blood mononuclear cells were obtained from fresh primary blood cells (buffy coats) by means of density centrifugation.
  • 10 ml of the fresh primary blood cells were mixed in four 50 ml Falcon tubes with 20 ml PBS each.
  • the PBS was mixed with 5 U / ml heparin.
  • This mixture was underlaid with 10 ml of Ficoll separation solution from Biochrom and centrifuged at 200 x g for 20 min.
  • the top 20 to 25 ml of the mixture was then removed.
  • the rest of the mixture which was still contaminated with thrombocytes, was then centrifuged once more for 20 min at 460 x g.
  • the interphase formed from all Falcon tubes was collected and washed three times for 15 min at 300 ⁇ g with ice-cold PBS mixed with 1 mM EDTA in order to largely avoid contamination with platelets.
  • peripheral mononuclear blood cells were placed together with 15 ml of RPMI medium in 3 sterile Petri dishes with a diameter of 10 cm and cultured for 2 hours in a CO 2 incubator at 37 ° C. The bottom of the petri dish was then carefully washed several times with the RPMI medium using a glass pipette from all sides, with a large part of the non-adherent cells detaching from the bottom. The non-adherent cells were discarded together with the medium. 15 ml of fresh RPMI medium, prewarmed to 37 ° C., which now contained 800 U / ml GM-CSF and 1000 U / ml IL-4, were then added to each Petri dish.
  • the medium was refreshed three more times every other day. 7.5 ml of the medium were removed from each Petri dish and replaced with new RPMI medium, which now contained 1600 U / ml GM-CSF and 1000 U / ml IL-4. The cells were harvested on the 7th day of cell culture.
  • the Burkitt lymphoma cell lines BL64 and DG75 as well as the lymphoblastoid T cell line CEM and the promyelocytic Cell line U937 was cultured in RPMI1640 medium with 10% fetal calf serum, the larynx cancer cell line HEp2 and the HEp2 subclone cl32 and the human embryonic kidney cell line HEK293 were cultured in DMEM medium with 10% fetal calf serum.
  • RNA was prepared with the TRIzol reagent from Gibco BRL according to the protocol supplied. The preparation of mRNA was carried out using the "Micro mRNA Purification Kit” from Pharmacia Biotech on the basis of the enclosed documents.
  • RNA was carried out according to the capillary blot method, which enables a directed transfer of RNA fragments by ion migration.
  • a glass plate which was about as wide as the gel to be blotted, was placed across a dish filled with 20x SSC buffer.
  • Two filter papers which had the length of the gel to be blotted and were wide enough to protrude across the glass pane with both projecting ends deep into the bowl filled with buffer, were impregnated with 20x SSC buffer and stacked on top of one another as described put the glass pane.
  • the RNA gel was placed on top of it with a precise fit and free of air bubbles.
  • the nitrocellulose membrane which was the size of the gel and was previously placed in water for 10 minutes and then in 20 ⁇ SSC buffer, was placed on the gel. Since the gel still contained a considerable amount of formaldehyde, the blot was set up under the hood. A water-impermeable plastic mask was placed on the nitrocellulose membrane, which sealed off the edges of the blot around the membrane. Two other filter papers the size of the nitrocellulose membrane were soaked in 20x SSC buffer and also placed in a precise fit and free of air bubbles. A stack of dry paper towels formed the top of the structure. Weighed down with a weight of about 0.5 kg blotted for about 2 days. The RNA was fixed at 80 ° C for 2 hours.
  • a 32P-labeled cloned human or murine edg6 cDNA fragment was used for the hybridization.
  • the labeling reaction was carried out using the "Random Primed Labeling Kit” from Gibco BRL according to their instructions.
  • the human RNA master blot from Clontech was hybridized and washed in accordance with the documents supplied.
  • a ⁇ g of the mRNA isolated from in vitro differentiated human dendritic cells was reverse transcribed with the reverse transcriptase "Superscript" from Gibco BRL in the presence of a pmol of a 25 to 30 mer oligo (dT) primer.
  • the PCR amplification using Thermoprime Plus DNA polymerase from Advanced Biotechnologies was carried out with 100 pmol of the following primers: R1 (5'-C-CGG-ATC-CGC-VTD-VTS-GGM-AAY-KBV-YTS-GT-3 '), R3 (5'-CG-GGA-TCC-GAA-RGY-RTA-SAD-SAD-RGG-RTT-3'). Cycle: 94'C, 60 sec.
  • a RACE-PCR was carried out with the following primers: 5'hGSPRT (5'-TTG-GAG-CCA-AAG-ACG-TCG-GCC-3 ' ), 5 '-hGSPl (5' -AGG-CAG-AAG-AGG-ATG- TAG-CGC-3 '), 5'-hGSP2 (5'-GCG-CTC-CCC-TGC-AGT-GAA-GAG- 3 '), 3' -hGSPl (5 '-AGT-GAC-CTG-CTC-ACG-GGC-GCG-3'), 3 '-hGSP2 (5'- CTC-TTC-ACT-GCA-GGG-GAG- CGC-3 ').
  • the 5 'end of the murine edg6 cDNA was also amplified using RACE-PCR with the following primers: 5'-mGSPRT (5' -CTC-ACC-TCG-TCT-GGG-AGG-GCC-TGC-3 '), 5' -mGSP1 (5 '-TGG-GCA-ACT-GGC-TGG-TCC-AAG-CTC-3'), 5 '-W.GSP2 (5' -GCC-TCG-GGC-CCA-GAT -CCT-CCA-GGG-GTG-CTG-CGG-ACG-CTG-GAA-ATG-CTG-G-3 ').
  • a reverse transcription with 10 ⁇ g total RNA of the murine cell line 18 was previously carried out as described above.
  • the 5 'mGSP2 primer contains part of the myc epitope sequence for further experiments.
  • the primers were based on the murine EST sequence of the cDNA clone val6c04.rl (GenBank entry no. AA254425), which has a high homology with the 3 'end of the coding human edg6 cDNA.
  • the reactions were also carried out according to the protocol of MA Frohman (Frohman, 1995) with an additional cleaning step using "MicroSpin S-400 HR" columns from Pharmacia Biotech using the protocol supplied after the 5'-polyadenylation reaction.
  • the murine edg6 cDNA fragment which was used as a radioactively labeled sample in the Northern blot, was amplified by the reverse transcriptase polymerase chain reaction from a total RNA preparation of the murine cell line 18 as described above with 25 pmol each of the 3 'primer (5th '- CCA-CGT-CCT-CCT-GCC-CGC-CGC-3') and 25 pmol of the 5'-mGSP2 primer (see above). Cycle: 94 ° C, 60 sec .; 50 ° C, 60 sec .; 72 ° C, 90 sec .; 35 cycles.
  • the amplification of the genomic 3 'sequence of the human edg6 was carried out by means of PCR from 400 ng HEp2 genomic DNA with 25 pmol of the 3'-hGSP2 primer (see above) and 25 pmol of the CA primer (5'-CCA-CTT-CCC- GCA-ACG-CCC-AGA- 3 '). Cycle: initial denaturation, 95 ° C, 5 min .; 95 ° C, 30 sec .; 60 ° C, 30 sec .; 72 ° C, 90 sec .; 30 cycles.
  • the cDNA fragments of the PCR reactions with the degenerate primers were cloned into the pZErO-2 vector from Invitrogen after Barn HI digestion.
  • the human edg6 RACE-PCR products were cloned into the same vector after HIND III / Pst I digestion. They were ligated to a full length clone at the Pst I interface.
  • the murine edg6 5'-RACE-PCR product was cloned into the pZErO-2 vector after HIND III / Eco RV restriction.
  • the RACE-PCR product was HIND III-digested after a T4 polymerase reaction.
  • the human cDNA fragment for the radioactive labeling was isolated after Pst I / Aat II restriction of the full length clone (bp 438-842).
  • the amplified murine cDNA fragment (bp 328-637) was cloned into the Apa I cut pZErO-2 vector. After radioactive labeling, this fragment was probed in Northern blots used. All fragments were sequenced with the "Thermo Sequenase fluorescent labeled primer cycle sequencing kit with 7-deaza-dGTP" from Amersham International and analyzed using the Li-Cor sequencer from MWG Biotech in accordance with the protocols provided.
  • Figure 1 Schematic representation of a GPR in the cell membrane (after Emrich, 1995). The arrangement of the ( ⁇ - helical transmembrane domains (I-VII) is shown by cylinders. Possible glycosylation (••) and phosphorylation sites (P) are shown as well as a possible palmitoylation site (0).
  • Figure 2A Northern blot with total RNA of the human Burkitt lymphoma cell lines BL64 and DG75, the promyelocytic cell line U937 and the lymphoblastoid T cell line CEM as well as with mRNA of the larynx cancer cell lines HEp2 and cl32, hybridized with a radioactively labeled probe of the human edg6 cDNA. Ethidium bromide stained rRNA is shown as a control.
  • Figure 2B Human RNA master blot (Clontech), hybridized with a radioactively labeled probe of the human edg6 cDNA.
  • AI testicles; A2: ovaries; A3: pancreas; A4: pituitary; A5: adrenal gland; A6: thyroid; A7: salivary gland; A8: mammary gland; Bl: kidney; B2: liver; B3: small intestine; B4: spleen; B5: thymus; B6: peripheral leukocytes; B7: lymph nodes; B8: bone marrow; Cl: appendix; C2: lungs; C3: trachea; C4: placenta; Dl: fetal brain; D2: fetal heart; D3: fetal kidney; D4: fetal liver; D5: fetal spleen; D6: fetal thymus; D7: Fetal lungs.
  • No edg6-specific hybridization signals were obtained from the mRNA of the following human tissues (not shown): whole brain, cerebellum, cortex, frontal lobe, hippocampus, pituitary gland, occipital lobe, putamen, substantia nigra, temporal lobe, thala us, spinal cord, heart, aorta, Skeletal muscle, colon, urinary bladder, uterus, prostate, stomach.
  • Figure 2C Diagram of the relative intensity of the dot blot signals from selected organs.
  • Figure 2D Northern blot with total RNA of murine organs, hybridized with a radiolabelled probe of the murine edg6 cDNA. Ly: lymph nodes; sp: spleen; th: thymus; lu: lungs; si: small intestine; left: colon; st: stomach. No edg6-specific hybridization signal was obtained from the following total RNA preparations of murine tissue (not shown): heart, liver, kidney, skeletal muscle, pancreas, cerebellum, cerebrum.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Die Erfindung betrifft den G-Protein gekoppelten Rezeptor EDG6 und seine Fragmente, Varianten und Mutationen sowie seine Verwendung. Anwendungsgebiete der Erfindung sind die Molekularbiologie, die Pharmazie und die Medizin. Der Erfindung lag die Aufgabe zugrunde, ein weiteres Mitglied der EDG-Rezeptorfamilie zu isolieren, zu identifizieren und für eine medizinische Anwendung nutzbar zu machen. Der neue humane EDG6 Rezeptor unfasst 384 Aminosäuren der <u>Sequenz 1</u> mit sieben Transmembrandomänen. Der Rezeptor besitzt eine mögliche N-terminale Glykosylierungsstelle, drei mögliche Palmitoylierungsstellen, 12 bis 15 Aminosäuren C-terminal von der siebten Transmembrandomäne gelegen sowie vier mögliche C-terminale Proteinkinase C-Phosphorylierungsstellen. Die Erfindung umfasst auch die Verwendung des EDG6 Rezeptors sowie seiner Fragmente, Varianten und Mutationen und ggf. seiner Bindungspartner für therapeutische Verfahren und Behandlungen.

Description

HUMANER UM MURINER G-PROTEIN GEKOPPELTER REZEPTOR EDG6 (ENDOTHELIAL DIFFERENTIATION GEN) UND SEINE VERWENDUNG
Beschreibung
Die Erfindung betrifft den G-Protein gekoppelten Rezeptor EDG6 und seine Fragmente, Varianten und Mutationen sowie seine Verwendung. Anwendungsgebiete der Erfindung sind die Molekularbiologie, die Pharmazie und die Medizin.
Die Superfamilie der G-Protein gekoppelten Rezeptoren (GPRs) umfaßt mehrere hundert Proteine. Ihre prinzipielle Aufgabe im Organismus besteht darin, Informationen von der extrazellulären Umgebung in das Zellinnere durch Interaktion mit heterotrimeren Guaninnukleotid-bindenden Proteinen, die gemeinhin als G-Proteine bezeichnet werden, weiterzuleiten (Dohlman et al., 1987). Dadurch nehmen sie Einfluß auf die regulatorischen Prozesse innerhalb von Zellen (Böhm et al., 1997).
Die große Zahl der GPRs spiegelt sich auch in einer großen Mannigfaltigkeit von extrazellulären Liganden, der sogenannten xfirst messenger', wieder. Es sind GPRs für Hormone und Neurotransmitter bekannt, für parakrine Substanzen und inflammatorische Mediatoren, für bestimmte Proteasen, für eine große Anzahl von Geschmacks- und Geruchsmolekülen sowie für Photonen und Calciumionen (Watson und Arkinstall, 1994).
Die EDG (endothelial differentiation gene) Rezeptorfamilie gehört zur Gruppe der G-Protein gekoppelten Rezeptoren (GPRs). Das erste Mitglied dieser Familie, EDG1, wurde 1990 im Rahmen einer Untersuchung der nichtproliferativen Aspekte der Angiogenese bei der Organisation und Differenzierung von Endothelzellen in Kapillare kloniert.
Ein weiteres Mitglied der EDG-Rezeptorfamilie, EDG2, kommt vor allem in cortikalen neurogenen Regionen vor. Die cDNA eines dritten Mitglieds der EDG-Rezeptorfamilie wurde aus humaner Placenta, Niere und Leber sowie aus humanem Herz isoliert und auf Chromosom 9q22.1-2 lokalisiert. Humane EDG4 cDNA Transkripte wurden kürzlich aus Hoden, Prostata, Pankreas und peripheren Blutleukozyten sowie in geringerem Umfang in Thymus und Milz nachgewiesen. Zwei weitere Transkripte wurden aus glatten Muskelzellen der Ratten-Aorta bzw. aus murinen und bovinen Geschmacksknospen isoliert. Als möglicher Ligand für den humanen und den murinen EDG2 Rezeptor sowie für den humanen EDG4 Rezeptor wurde Lysophosphatidylsäure (LPA; l-Acyl-2-hydroxy-sτι-glycero-3- phosphat) ausgemacht. Ferner sind für die humanen Rezeptoren EDG1 und EDG3 sowie für den H218 Rezeptor der Ratte Lysosphingolipide als funktioneile Liganden gefunden worden.
Der Erfindung lag die Aufgabe zugrunde, ein weiteres Mitglied der EDG-Rezeptorfamilie zu isolieren, zu identifizieren und für eine medizinische Anwendung nutzbar zu machen.
Es wurde gefunden, daß in vitro differenzierte dendritische Zellen einen weiteren EDG-Rezeptor exprimieren, der als EDG6 bezeichnet wird.
Der humane EDG6 Rezeptor umfaßt 384 Aminosäuren der Sequenz 1 mit sieben Transmembrandomanen. Der Rezeptor besitzt eine mögliche N-terminale Glykosylierungsstelle, drei mögliche Palmitoylierungsstellen 12 bis 15 Aminosäuren C-terminal von der siebten Transmembrandomäne gelegen sowie vier mögliche C- terminale Proteinkinase C-Phosphorylierungsstellen. Ein Modell des Rezeptors ist in Abbildung 1 dargestellt.
Der EDG6 Rezeptor ist das erste Mitglied der EDG-Familie, das aus in vitro differenzierten humanen dendritischen Zellen isoliert werden konnte. Er zeigt in der Northernblot-Analyse ein Signal bei etwa 1,7 kb. Humane edg6 mRNA wird in den Burkitt-Lymphom-Zellinien JBL2 , BL64 und DG75, in der promyelozytischen Zellinie U937 und in der T-Zellinie CEM exprimiert. Hohe gewebsspezifische Expressionsraten von humanem edgβ wurden in humaner adulter und fötaler Milz sowie in adulten peripheren Leukozyten und der Lunge gefunden. Geringere Expressionsraten von humanem &dg6 wurden in adultem Thymus, Lymphknoten, Knochenmark und Blinddarm sowie in fötaler Leber, Thymus und Lunge detektiert.
Zum Umfang der Erfindung gehört auch die cDNA-Sequenz des EDG6 Rezeptors mit der Sequenz 2.
Bei der Suche nach homologen Sequenzen zur Sequenz 2 in der Nukleinsäuredatenbank mit Hilfe des Programms BLASTN aus dem Husar-Paket des Deutschen Krebsforschungszentrums (DKFZ) in Heidelberg konnte ein muriner Klon identifiziert werden, der hohe Homologien zum neu identifizierten EDG6 Rezeptor aufweist. Der murine cDNA-Klon aus der EST (expressed- sequence tag) Nukleinsäuredatenbank stammt aus Lymphknoten und ist auf Aminosäureebene nach einer Korrektur des Datenbankeintrags, der zu einer Veränderung des Leserahmens führt, über 106 Aminosäuren zu 88 % homolog zum humanen EDG6 Rezeptor. Daraus folgt, daß dieser cDNA-Klon ein Fragment des murinen Homologs zum humanen EDG6 Rezeptor ist.
Ausgehend von diesem partiellen Klon wurde mit Hilfe einer speziellen Polymerase-Kettenreaktion die gesamte murine cDNA- Sequenz (Sequenz 3) ermittelt.
Das aus dieser cDNA-Sequenz abgeleitete Protein hat die Sequenz 4.
Ferner werden auch auch spezifische anti-EDG-6-Antikörper beansprucht. Sie werden hergestellt, indem Ratten mit einem GST-Fusionsprotein immunisiert werden, das ein Fragment des EDG6 Rezeptors enthält. Mit Hilfe der Milzzellen der Ratte werden Hybridome hergestellt, die mittels ELISA-Analyse auf die Produktion von spezifischen Antikörpern hin untersucht werden. Weitere Möglichkeiten zur Gewinnung von Antikörpern sind die Immunisierung mit ganzen Zellen, die den Rezeptor EDG6 nach Einbringung der cDNA oder bereits natürlicherweise exprimieren, sowie mit einem C-terminal 6 x Histidin- gekoppelten N-terminalen EDG6-Fragment.
Im weiteren Ausbau der Erfindung werden EDG6-defiziente Mäuse hergestellt, d.h. Mäuse, die funktionslose Mutanten ( Nullmutante' ) des EDG6 enthalten. Diese knock out-Mäuse dienen als Tiermodell für Krankheiten, die möglicherweise mit dem EDG6 Rezeptor in Verbindung stehen. Die Charakterisierung des Phänotyps dieser Mäuse kann entscheidend zur Funktionsbestimmung beitragen. Dazu wird ein funktionsloses edgβ Gen mit entsprechenden Selektionsmarkern mit Hilfe der homologen Rekombination in das Genom von murinen embryonalen Stammzellen (ES-Zellen) integriert. Die selektionierten ES- Zellen werden anschließend als multipotente Zellen in murine Embryonen der frühen Zellentwicklung (Morula, Blastozyste) eingesetzt.
Mit diesen Mäusestämmen können weitere Aussagen über die Funktion des EDG6-Rezeptors gemacht werden, z. B. können Erkrankungen festgestellt werden, die direkt oder indirekt durch den EDG6-Rezeptor verursacht oder in ihrem Ausmaß verstärkt werden. Insbesondere zählen dazu Immunschwächen, beispielsweise gegenüber Infektionen, sowie Erkrankungen, die auf akuten und chronischen Entzündungen beruhen. Weiterhin zählen dazu Autoimmunerkrankungen, Allergien und maligne Erkrankungen, wie Tumore, Leukämien und Lymphome. Aufgrund der hohen Homologie des murinen Rezeptors mit dem humanen Rezeptor, sowie aufgrund des hoch konservierten gewebsspezifischen Expressionsmusters können die Ergebnisse des Mausmodells weitgehend auf den Menschen übertragen werden. Der erfindungsgemäße humane Rezeptor EDG6 kann direkt oder indirekt an dem Auftreten von Immunschwächen, akuten und chronischen Entzündungen, Autoimmunerkrankungen, Allergien und malignen Erkrankungen beteiligt sein oder deren Schwere und Ausmaß verstärken. Des weiteren betrifft die Erfindung auch die Verwendung der EDG6-Nukleinsäuren und EDG6-Polypeptide in ursprünglicher, modifizierter oder synthetischer Form als Ausgangsbasis zur Entwicklung von pharmazeutisch relevanten Substanzen. Die EDG6-Nukleinsäuren werden dabei zum Aufbau von Genen und Vektoren, und die EDG6-Polypeptide zum Aufbau von Elisa- Verfahren, Durchmessungs- und Testverfahren eingesetzt. Die pharmazeutisch relevanten Substanzen binden entweder selbst an das Rezeptorpolypeptid oder die Rezeptor-kodierende Nukleinsäure oder sie beeinflussen die Bindung des physiologischen Liganden oder die Bindung und Aktivität intrazellulärer nachgeschalteter Signalmoleküle und führen dadurch zu einer Aktivierung oder Hemmung der Rezeptorfunktion. Diese Substanzen mit agonistischer oder antagonistischer Wirkung auf die Funktion des EDG6-Rezeptors können organische Moleküle, anorganische Moleküle und Peptide oder Kombinationen aus diesen Substanzklassen sein.
Die Erfindung ermöglicht einen medizinischen Einsatz für folgende diagnostische oder therapeutische Maßnahmen.
1. Bei Krankheiten, die durch normabweichende Expression oder durch Rezeptormutationen hervorgerufen werden, kann eine Diagnostik, zum Beispiel mit Testkits auf der Basis von monoklonalen Antikörpern oder Nukleinsäurenachweisverfahren, erfolgen.
2. Bei Krankheiten, die mit der Rezeptorfunktion in Zusammenhang stehen, können die Funktionen des Rezeptors in agonistischer oder antagonistischer Weise beeinflußt werden.
3. Der EDG6-Rezeptor in ursprünglicher oder modifizierter Form sowie spezifische Antikörper oder Bindungspartner können für therapeutische Zwecke, beispielsweise für gentherapeutische Verfahren (beispielsweise auf zellulärer, liposomaler oder viraler Basis) eingesetzt werden, wenn eine Fehlfunktion des Rezeptors oder fehlerhafte Expression des EDG6-Rezeptors oder dessen Liganden vorliegt. Die Erfindung soll nachfolgend durch Ausführungsbeispiele näher erläutert werden.
Ergebnisse
Zur Bestimmung von neuen Chemokinrezeptoren und verwandten Rezeptoren, die in den regulatorischen Abläufen des Immunsystems involviert sind, wurde die Polymerase- Kettenreaktion (PCR) mit degenerierten Primern angewendet, um G-Protein gekoppelte Rezeptoren (GPCRs) aus in vitro differenzierten humanen dendritischen Zellen zu identifizieren. Humane periphere mononukleäre Blutzellen wurden durch Behandlung mit den Cytokinen GM-CSF und IL-4 zu dendritischen Zellen ausdifferenziert. Die PCR mit degenerierten Primern aus Bereichen der zweiten und der siebten Transmembrandomäne (TM) einiger Chemokinrezeptoren führte zur Identifizierung eines 648 bp Fragments, welches Teil eines neuen Mitglieds der GPCR Superfamilie ist. Die mögliche 1560 bp umfassende Vollängen-cDNA wurde schrittweise mittels 5'- und 3'-RACE-PCR kloniert. Die cDNA enthält einen offenen Leserahmen von 1155 bp, eine 22 bp große 5'- nichttranslatierte Region sowie eine 383 bp große 3'- nichttranslatierte Region. Möglicherweise ist die cDNA am 3'- Ende jedoch nicht vollständig, da sie kein typisches Polyadenylierungssignal aufweist. Sequenz 1 zeigt die resultierende Aminosäuresequenz . Sequenzvergleiche deuten daraufhin, daß der neu identifizierte Rezeptor zur EDG Familie der GPCRs gehört. Daher wurde er EDG6 genannt. Der Vergleich der Aminosäuresequenz von EDG6 mit den anderen EDG- Rezeptormolekülen von der ersten bis zur siebten Transmembrandomäne zeigt, daß EDG6 46% Identität zu EDG3 , 44% zu EDG1, 39% zu EDG4 und 37% zu EDG2 hat. Der nächste verwandte GPCR ist hCBlR, ein Mitglied der Cannabinoid Rezeptorfamilie, mit 31% Identität. Durch computergestützte Analysen konnten die mögliche Lokalisation der sieben Transmembrandomanen, eine mögliche N-Glykosylierungsstelle in der N-terminalen extrazellulären Region sowie mehrere posttranslationale Modifikationsstellen in der C-terminalen zytoplasmatischen Domäne bestimmt werden. Ferner wurde die korrekte Orientierung des Moleküls in der Zellmembran mit dem N-Terminus auf der extrazellulären Seite näher untersucht. Hierzu wurde die Protein kodierende cDNA-Sequenz unter Erhaltung des Leserahmens in einen eukaryontischen Expressionsvektor kloniert, der C-terminal der einklonierten Sequenz ein jπyc-Epitop exprimiert. Nach Transfektion dieses Vektors in die humane embryonale Nierenzellinie HEK 293 konnte das Fusionsmolekül durch einen anti-jnyc spezifischen monoklonalen Antikörper mittels Durchflußzytometrie lediglich in permeabilisierten Zellen nachgewiesen werden. Desweiteren sind die letzten 50 bp der humanen edgβ (hedgβ) cDNA identisch mit den Basenpaaren 13 bis 62 einer kurzen Sequenz, die den repetetiven Dinukleotid-Polymorphismus D19S120 enthält. Dieser Polymorphismus wurde auf Chromosom 19pl3.3 lokalisiert. Durch eine PCR mit genspezifischen Primern von hedg6 cDNA und dem D19S120 Amplicon konnte ein humanes genomisches DNA-Fragment amplifiziert werden, das das 3 '-Ende von hedgβ und den D19S120 Polymorphismus enthält. Damit ist gezeigt, daß hedgβ auf Chromosom 19pl3.3 neben dem D19S120 Marker lokalisiert ist.
Ferner konnte das murine Homolog der edgβ (medgβ) cDNA mit Hilfe der RACE-PCR isoliert werden. Hierfür wurde gesamt-RNA der aus muriner fötaler Haut stammenden dendritischen Zellinie 18 verwendet. Es wurden genspezifische Primer hergestellt, die aus der murinen EST-Sequenz des cDNA-Klons val6c04.rl (GenBank Eintrag Nr. AA254425) stammen und eine hohe Identität zum 3 '-Ende der kodierenden Region der hedgβ cDNA aufweisen. Die Primer wurden so gewählt, daß der offene Leserahmen von medgβ amplifiziert werden konnte. Daher ist die medgβ cDNA am 3 '-Ende unvollständig. Sie enthält einen offenen Leserahmen von 1161 bp. Die ersten 99 bp der 499 bp umfassenden δ'-nichttranslatierten Region enthalten ein murines repetetives Element Bl . Der offene Leserahmen der medgβ cDNA ist zu 80% homolog zur entsprechenden humanen Sequenz. Auf Proteinebene haben beide Sequenzen eine Identität von 82% und eine Ähnlichkeit von 91%. Die möglichen posttranslationalen Modifikationsstellen sind sowohl in der humanen, als auch in der murinen e g6-Sequenz konserviert.
Als nächstes wurde das Expressionsmuster von edgβ untersucht. Hierfür wurden DNA-Fragmente hergestellt, die in der murinen und in der humanen cDNA-Sequenz Regionen mit geringer Konservierung repräsentieren. Diese Fragmente wurden dann als radioaktiv markierte Sonden in Northernblots eingesetzt. In humanen Zellinien wurde ein hedgβ spezifisches Signal bei etwa 1,7 kb gefunden, hedgβ itiRNA wird in den Burkitt-Lymphom- Zellinien JBL2, BL64 und DG75, in der promyelozytischen Zellinie U937 und in der T-Zellinie CEM exprimiert, während sie in der Kehlkopfkrebs-Zellinie HEp2 und dem HEp2 Subklon cl32 sowie in der Cervix-Karzinom-Zellinie HeLa nicht nachgewiesen werden konnte. Generell wird hedgβ in allen getesteten positiven Zellinien schwach exprimiert und ist nur durch verlängerte Expositionszeiten der Blots nachzuweisen. Aufgrund der hohen Spezifität der Hybridisierungsproben war es möglich, die gewebsspezifische Expression von hedgβ mit mRNA-Proben aus 50 unterschiedlichen humanen Geweben mittels eines Dot-Blots zu bestimmen. Hohe Expressionsraten von hedgβ wurden in humaner adulter und fötaler Milz sowie in adulten peripheren Leukozyten und der Lunge gefunden. Geringere Expressionsraten von hedgβ wurden in adultem Thymus, Lymphknoten, Knochenmark und Blinddarm sowie in fötaler Leber, Thymus und Lunge detektiert.
Die gewebsspezifische Expression von medgβ mRNA stimmt im Rahmen der untersuchten Organe sehr gut mit dem humanen Expressionsmuster überein. Hybridisierungssignale wurden in muriner Lunge, Milz, Thymus und Lymphknoten gefunden, während sie in nichtlymphatischem Gewebe ausblieben. Die murine edgβ mRNA ist etwa 2,1 kb groß und damit 0,4 kb größer als die humane edgβ mRNA. Material und Methoden
Isolierung peripherer mononukleärer Blutzellen Periphere mononukleäre Blutzellen (PBMC) wurden aus frischen primären Blutzellen (buffy coats) mittels Dichtezentrifugation gewonnen. Zunächst wurden jeweils 10 ml der frischen primären Blutzellen in vier 50 ml Falcon-Röhrchen mit je 20 ml PBS gemischt. Das PBS war mit 5 U/ml Heparin versetzt. Dieses Gemisch wurde mit 10 ml Ficoll-Separationslösung der Firma Biochrom unterschichtet und für 20 min bei 200 x g zentrifugiert. Anschließend wurden die oberen 20 bis 25 ml des Gemisches entfernt. Der Rest des Gemisches, der immer noch mit Throrabozyten kontaminiert war, wurde anschließend ein weiteres Mal für 20 min bei 460 x g zentrifugiert. Die gebildete Interphase aller Falcon-Röhrchen wurde gesammelt und dreimal für 15 min bei 300 x g mit eiskaltem PBS, versetzt mit 1 mM EDTA, gewaschen, um eine Kontamination mit Thrombozyten weitestgehend zu vermeiden.
Jeweils 5 x 107 periphere mononukleäre Blutzellen wurden zusammen mit 15 ml RPMI-Medium in 3 sterile Petrischalen mit einem Durchmesser von 10 cm gegeben und für 2 h im C02-Brutschrank bei 37°C kultiviert. Anschließend wurde der Boden der Petrischale einige Male vorsichtig mit dem RPMI-Medium mittels einer Glaspipette von allen Seiten gewaschen, wobei ein Großteil der nichtadhärenten Zellen sich vom Boden ablöste. Die nichtadhärenten Zellen wurden zusammen mit dem Medium verworfen. Danach wurden zu jeder Petrischale 15 ml frisches, auf 37°C vorgewärmtes RPMI-Medium zugegeben, das nun 800 U/ml GM-CSF und 1000 U/ml IL-4 enthielt. Von nun an wurde das Medium drei weitere Male jeden 2. Tag aufgefrischt. Dabei wurden von jeder Petrischale 7,5 ml des Mediums abgenommen und durch neues RPMI-Medium, das nun 1600 U/ml GM-CSF und 1000 U/ml IL-4 enthielt, ersetzt. Am 7. Tag der Zellkultur wurden die Zellen geerntet.
Die Burkitt-Lymphom-Zellinien BL64 und DG75 sowie die lymphoblastoide T-Zellinie CEM und die promyelozytische Zellinie U937 wurden in RPMI1640-Medium mit 10% fötalem Kälberserum kultiviert, die Kehlkopfkrebs-Zellinie HEp2 und der HEp2-Subklon cl32 sowie die humane embryonale Nierenzellinie HEK293 wurden in DMEM-Medium mit 10% fötalem Kälberserum kultiviert.
RNA-Isolierung
Gesamt-RNA wurde mit dem TRIzol-Reagenz der Firma Gibco BRL nach dem mitgelieferten Protokoll präpariert. Die Präparation von mRNA erfolgte mit dem "Micro mRNA Purification Kit" der Firma Pharmacia Biotech anhand der beiliegenden Unterlagen.
Northernblot
Der Transfer der RNA wurde nach der Kapillarblot-Methode durchgeführt, die einen gerichteten Transfer von RNA-Fragmenten durch eine Ionenwanderung ermöglicht. Dabei wurde eine Glasscheibe, die etwa so breit war wie das zu blottende Gel, quer über eine mit 20x SSC-Puffer gefüllte Schale gelegt. Zwei Filterpapiere, die die Länge des zu blottenden Gels hatten und breit genug waren, um, quer über der Glasscheibe liegend, mit beiden überstehenden Enden tief in die mit Puffer gefüllte Schale hineinzuragen, wurden mit 20x SSC-Puffer getränkt und in geschilderter Weise übereinander auf die Glasscheibe gelegt. Darauf wurde paßgenau und luftblasenfrei das RNA-Gel mit der Oberseite nach unten gelegt. In gleicher Weise wurde die Nitrocellulosemembran, die die Größe des Gels hatte und zuvor jeweils 10min in Wasser und anschließend in 20x SSC-Puffer eingelegt wurde, auf das Gel aufgelegt. Da das Gel noch einen beträchtlichen Anteil an Formaldehyd enthielt, wurde der Blot unter dem Abzug aufgebaut. Auf die Nitrocellulosemembran wurde eine wasserundurchlässige Plastikmaske aufgelegt, die die Ränder des Blots um die Membran wasserdicht abschloß. Zwei weitere Filterpapiere in der Größe der Nitrocellulosemembran wurden in 20x SSC-Puffer getränkt und ebenfalls paßgenau und luftblasenfrei aufgelegt. Ein Stapel trockener Papierhandtücher bildete den oberen Abschluß des Aufbaus. Mit einem Gewicht von etwa 0,5 kg beschwert, wurde etwa 2 Tage lang geblottet. Die RNA ist für 2 Stunden bei 80 °C fixiert worden.
Für die Hybridisierung wurde ein 32P markiertes kloniertes humanes oder murines edg6 cDNA-Fragment verwendet. Die Markierungsreaktion wurde mit dem "Random Primed Labeling Kit" der Firma Gibco BRL nach deren Anleitung durchgeführt. Der humane RNA Master Blot der Firma Clontech wurde entsprechend den mitgelieferten Unterlagen hybridisiert und gewaschen.
Polymerase-Kettenreaktion
Ein μg der aus in vitro differenzierten humanen dendritischen Zellen isolierten mRNA wurde revers transkribiert mit der reversen Transkriptase "Superscript" der Firma Gibco BRL in Gegenwart von einem pmol eines 25- bis 30-mer Oligo(dT)- Primers. Die PCR-Amplifizierung mittels Thermoprime Plus DNA Polymerase der Firma Advanced Biotechnologies wurde mit 100 pmol der folgenden Primer durchgeführt: Rl ( 5'-C-CGG-ATC-CGC- VTD-VTS-GGM-AAY-KBV-YTS-GT-3 ' ) , R3 ( 5'-CG-GGA-TCC-GAA-RGY- RTA-SAD-SAD-RGG-RTT-3 ' ) . Zyklus: 94'C, 60 sek. ; 48-63°C, 30 sek.; 72°C, 90 sek.; 35 Zyklen. Für die Amplifizierung der 3'- und 5 '-Enden der humanen edg6 cDNA wurde eine RACE-PCR durchgeführt mit den folgenden Primern: 5'hGSPRT (5'-TTG-GAG- CCA-AAG-ACG-TCG-GCC-3 ' ) , 5 '-hGSPl ( 5 '-AGG-CAG-AAG-AGG-ATG- TAG-CGC-3 ' ) , 5'-hGSP2 ( 5'-GCG-CTC-CCC-TGC-AGT-GAA-GAG-3 ' ) , 3 '-hGSPl ( 5 '-AGT-GAC-CTG-CTC-ACG-GGC-GCG-3 ' ) , 3 '-hGSP2 ( 5'- CTC-TTC-ACT-GCA-GGG-GAG-CGC-3 ' ) . Die Reaktionen wurden nach dem Protokoll von M.A. Froh an durchgeführt (Frohman, 1995). Die Amplifikation des 5 '-Endes der murinen edg6 cDNA wurde ebenfalls mit Hilfe der RACE-PCR durchgeführt mit den folgenden Primern: 5'-mGSPRT ( 5 '-CTC-ACC-TCG-TCT-GGG-AGG-GCC- TGC-3 ' ) , 5 '-mGSPl (5 '-TGG-GCA-ACT-GGC-TGG-TCC-AAG-CTC-3 ' ) , 5 '-W.GSP2 (5 '-GCC-TCG-GGC-CCA-GAT-CCT-CCA-GGG-GTG-CTG-CGG-ACG- CTG-GAA-ATG-CTG-G-3' ) . Zuvor wurde wie oben bereits beschrieben eine reverse Transkription mit 10 μg gesamt-RNA der murinen Zellinie 18 durchgeführt. Der 5 '-mGSP2-Primer enthält einen Teil der myc-Epitop-Sequenz für weitergehende Experimente. Die Primer wurden anhand der murinen EST-Sequenz des cDNA-Klons val6c04.rl (GenBank Eintrag Nr. AA254425) ausgewählt, die mit dem 3 '-Ende der kodierenden humanen edg6 cDNA eine hohe Homologie aufweist. Die Reaktionen wurden ebenfalls nach dem Protokoll von M.A. Frohman ausgeführt (Frohman, 1995) mit einem zusätzlichen Reinigungsschritt mittels "MicroSpin S-400 HR" Säulen der Firma Pharmacia Biotech anhand des mitgelieferten Protokolls nach der 5'- Polyadenylierungsreaktion. Desweiteren wurden für beide Amplifizierungen der RACE-PCR 10 μl unverdünnte Vorlagen-DNA verwendet. Das murine edg6 cDNA-Fragment, das als radioaktiv markierte Probe im Northernblot eingesetzt wurde, wurde durch die reverse Transkriptase-Polymerase Kettenreaktion aus einer gesamt-RNA Präparation der murinen Zellinie 18 wie oben beschrieben amplifiziert mit je 25 pmol des 3 '-Primers (5'- CCA-CGT-CCT-CCT-GCC-CGC-CGC-3') und 25 pmol des 5'-mGSP2- Primers (siehe oben). Zyklus: 94°C, 60 sek.; 50°C, 60 sek.; 72°C, 90 sek.; 35 Zyklen. Die Amplifizierung der genomischen 3 '-Sequenz des humanen edg6 wurde mittels PCR aus 400 ng HEp2 genoraischer DNA mit 25 pmol des 3'-hGSP2 Primers (siehe oben) und 25 pmol des CA-Primers (5'-CCA-CTT-CCC-GCA-ACG-CCC-AGA- 3') durchgeführt. Zyklus: Initiale Denaturierung, 95°C, 5 min.; 95°C, 30 sek.; 60°C, 30 sek.; 72°C, 90 sek.; 30 Zyklen.
Klonierung und Sequenzierung
Die cDNA Fragmente der PCR Reaktionen mit den degenerierten Primern wurden nach Barn HI Verdau in den pZErO-2 Vektor der Firma Invitrogen kloniert. Die humanen edg6 RACE-PCR Produkte wurden nach HIND III/Pst I Verdau in denselben Vektor kloniert. Sie wurden an der Pst I Schnittstelle zu einem Vollängenklon ligiert. Das murine edg6 5'-RACE-PCR Produkt wurde nach HIND III/Eco RV Restriktion in den pZErO-2 Vektor kloniert. Das RACE-PCR Produkt wurde hierzu nach einer T4- Polymerase Reaktion HIND III-verdaut. Das humane cDNA- Fragment für die radioaktive Markierung wurde nach Pst I/Aat II-Restriktion des Vollängenklons (bp 438-842) isoliert. Das amplifizierte murine cDNA-Fragemt (bp 328-637) wurde in den Apa I geschnittenen pZErO-2 Vektor kloniert. Dieses Fragment wurde nach radioaktiver Markierung als Sonde in Northernblots eingesetzt. Alle Fragmente wurden mit dem "Thermo Sequenase fluorescent labeled primer cycle sequencing kit with 7-deaza- dGTP" der Firma Amersham International sequenziert und analysiert mit Hilfe des Li-Cor Sequencers der Firma MWG Biotech entsprechend den mitgelieferten Protokollen.
Konstruktion, Expression und FACS-Analyse des myc-Epitop markierten humanen EDG6 Rezeptor
Die Konstruktion des C-terminal myc-Epitop markierten humanen EDG6 Rezeptors sowie dessen Expression in HEK293 Zellen und seine Analyse mittels Durchflußzytometrie wurde wie beschrieben durchgeführt (Emrich et al., 1993).
Computeranalysen
Sequenzvergleiche, Datenbankrecherchen und statistische Kalkulationen wurden mit Hilfe des HUSAR-Packets V4.0 am Deutschen Krebsforschungsinstitut in Heidelberg sowie mit dem PC-Programm ClustalX VI.62b durchgeführt.
Legende zu den Abbildungen:
Abbildung 1: Schematische Darstellung eines GPRs in der Zellmembran (nach Emrich, 1995). Die Anordnung der (α - helikalen Transmembrandomanen (I-VII) ist durch Zylinder wiedergegeben. Mögliche Glykosylierungs- (••) und Phosphorylierungsstellen (P) sind ebenso wie eine mögliche Palmitoylierungsstelle (0) eingezeichnet.
Abbildung 2A: Northernblot mit gesamt-RNA der humanen Burkitt-Lymphom-Zellinien BL64 und DG75, der promyelozytischen Zellinie U937 und der lymphoblastoiden T- Zellinie CEM sowie mit mRNA der Kehlkopfkrebs-Zellinien HEp2 und cl32, hybridisiert mit einer radioaktiv markierten Sonde der humanen edg6 cDNA. Ethidiumbromid gefärbte rRNA ist als Kontrolle gezeigt.
Abbildung 2B: Humaner RNA Master Blot (Clontech), hybridisiert mit einer radioaktiv markierten Sonde der humanen edg6 cDNA. AI: Hoden; A2: Ovarien; A3: Bauchspeicheldrüse; A4: Hypophyse; A5: Nebenniere; A6: Schilddrüse; A7: Speicheldrüse; A8: Brustdrüse; Bl: Niere; B2: Leber; B3: Dünndarm; B4: Milz; B5: Thymus; B6: Periphere Leukozyten; B7: Lymphknoten; B8: Knochenmark; Cl: Blinddarm; C2: Lunge; C3: Luftröhre; C4: Placenta; Dl: Fötales Gehirn; D2: Fötales Herz; D3 : Fötale Niere; D4 : Fötale Leber; D5: Fötale Milz; D6: Fötaler Thymus; D7: Fötale Lunge. Keine edg6-spezifischen Hybridisierungssignale wurden von der mRNA der folgenden humanen Gewebe erhalten (nicht abgebildet): Gesamtes Gehirn, Cerebellum, Gehirnrinde, Stirnlappen, Hippocampus, Hirnanhangsdrüse, Occipitallappen, Putamen, Substantia Nigra, Temporalläppen, Thala us, Rückenmark, Herz, Aorta, Skelettmuskel, Dickdarm, Harnblase, Uterus, Prostata, Magen.
Abbildung 2C: Diagramm über die relative Intensität der Dot Blot Signale von ausgewählten Organen. Abbildung 2D: Northernblot mit gesamt-RNA muriner Organe, hybridisiert mit einer radioaktiv markierten Sonde der murinen edg6 cDNA. Ly: Lymphknoten; sp: Milz; th: Thymus; lu: Lunge; si: Dünndarm; li: Dickdarm; st: Magen. Kein edg6- spezifisches Hybridisierungssignal wurde von folgenden gesamt-RNA Präparationen muriner Gewebe erhalten (nicht abgebildet): Herz, Leber, Niere, Skelettmuskel, Bauchspeicheldrüse, Cerebellum, Cerebrum.

Claims

Patentansprüche
1. Humaner G-Protein gekoppelter Rezeptor EDG6 mit der Sequenz 1 sowie seine Fragmente, Varianten und Mutationen.
2. Muriner G-Protein gekoppelter Rezeptor EDG6 mit der Sequenz 4 sowie seine Fragmente, Varianten und Mutationen.
3. DNA-Sequenz , die den humanen G-Protein gekoppelten Rezeptor EDG6 sowie seine Fragmente, Varianten und Mutationen kodiert.
4. DNA nach Anspruch 3, gekennzeichnet durch Sequenz 2.
5. DNA-Sequenz , die den murinen G-Protein gekoppelten Rezeptor EDG-6 sowie seine Fragmente, Varianten und Mutationen kodiert.
6. DNA nach Anspruch 5 , gekennzeichnet durch Sequenz 3.
7. Vektoren, die eine DNA-Sequenz ggf. gekoppelt an einen geeigneten Promoter gemäß Anspruch 3-6 enthalten.
8. Wirtszellen, die Vektoren gemäß Anspruch 7 enthalten.
9. Antikörper gegen humane oder murine EDG6 G-Protein- gekoppelte Rezeptoren.
10. Monoklonale Antikörper gemäß Anspruch 9.
11. Testkit zum Nachweis des EDG6-Rezeptors auf der Basis von monoklonalen Antikörpern gemäß Anspruch 10.
12. Testkit zum Nachweis des EDG6-Rezeptors auf der Basis von Nukleinsäurediagnostik.
13. Verwendung des EDG6-Rezeptors sowie seiner Fragmente, Varianten und Mutationen und ggf. seiner Bindungspartner für therapeutische Verfahren und Behandlungen.
14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß die therapeutischen Maßnahmen die Funktion von Blut- und Körperzellen beeinflussen, beispielsweise zur Hemmung von akuten und chronischen Entzündungen führen.
15. Verwendung des EDG6-Rezeptors sowie seiner Fragmente, Varianten und Mutationen und ggf. seiner Bindungspartner nach Anspruch 13 - 14, durch die Verwendung für gentherapeutische Verfahren und Behandlungen gekennzeichnet.
16. Verwendung der monoklonalen Antikörper nach Anspruch 10, ggf. gekoppelt an andere Moleküle und Substanzen, beispielsweise Therapeutika, Toxine oder Antikörper, für therapeutische Verfahren und Behandlungen.
17. Verwendung nach Anspruch 16, dadurch gegekennzeichnet, daß die therapeutischen Maßnahmen die Funktion des EDG6- Rezeptors beeinflussen, beispielsweise bei Immun- und Entzündungs-reaktionen.
18. EDG6-defiziente Mausstämme, die funktionslose Mutanten ( Nullmutante' ) des EDG6 enthalten.
19. Mausstämme nach Anspruch 18, in die weitere Gendefizienzen eingekreuzt werden, beispielsweise für immunmodulatorische und iramunregulatorische Genfunktionen, wie z. B. Rezeptoren oder Signalmoleküle.
20. Verwendung von Mäusen nach Anspuch 18-19 als Tiermodell für Krankheiten, die mit dem Rezeptor EDG6 in Verbindung stehen.
EP99948712A 1998-09-11 1999-09-10 Humaner un muriner g-protein gekoppelter rezeptor edg6 (endothelial differentiation gen) und seine verwendung Withdrawn EP1112365A2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19843240 1998-09-11
DE19843240 1998-09-11
DE19846979 1998-10-13
DE19846979A DE19846979A1 (de) 1998-09-11 1998-10-13 G-Protein gekoppelter Rezeptor EDG6 und seine Verwendung
PCT/DE1999/002871 WO2000015784A2 (de) 1998-09-11 1999-09-10 Humaner un muriner g-protein gekoppelter rezeptor edg6 (endothelial differentiation gen) und seine verwendung

Publications (1)

Publication Number Publication Date
EP1112365A2 true EP1112365A2 (de) 2001-07-04

Family

ID=26048985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99948712A Withdrawn EP1112365A2 (de) 1998-09-11 1999-09-10 Humaner un muriner g-protein gekoppelter rezeptor edg6 (endothelial differentiation gen) und seine verwendung

Country Status (3)

Country Link
EP (1) EP1112365A2 (de)
JP (1) JP2002525050A (de)
WO (1) WO2000015784A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812335B1 (en) 1999-03-23 2004-11-02 The Regents Of The University Of California Human polypeptide receptors for lysophospholipids and sphingolipids and nucleic acids encoding the same
JP4516430B2 (ja) 2002-12-20 2010-08-04 メルク・シャープ・エンド・ドーム・コーポレイション 1−(アミノ)インダン並びに(1,2−ジヒドロ−3−アミノ)−ベンゾフラン、ベンゾチオフェン及びインドール
US20050079549A1 (en) * 2003-07-23 2005-04-14 John Castracane Methods for modeling GPCRs and for producing ligand blocking and receptor activating antibodies for same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891720A (en) * 1997-04-17 1999-04-06 Millennium Pharmaceuticals, Inc. Isolated DNA encoding a novel human G-protein coupled receptor
US5912144A (en) * 1997-04-24 1999-06-15 Incyte Pharmaceuticals, Inc. Edg-1-receptor homolog
US6060272A (en) * 1997-05-07 2000-05-09 Human Genome Sciences, Inc. Human G-protein coupled receptors
CA2325049A1 (en) * 1997-12-30 1999-07-15 Ashwani K. Gupta Mammalian edg-7 receptor homologs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0015784A2 *

Also Published As

Publication number Publication date
WO2000015784A3 (de) 2000-08-17
JP2002525050A (ja) 2002-08-13
WO2000015784A2 (de) 2000-03-23

Similar Documents

Publication Publication Date Title
DE68926713T2 (de) Calciumkanal-zusammensetzungen und verfahren
DE69232986T2 (de) TGF-BETA TYP III REZEPTOR, DAFüR KODIERENDE CDNS UND DEREN VERWENDUNG
DE69834432T2 (de) G-protein gekoppelter rezeptor
DE69333315T2 (de) Säugetier-rezeptoren für das melanocyten-stimulierendes hormon und deren verwendungen
DE69931360T2 (de) Neue, an ein g-protein gekoppelte rezeptorproteine
DE69934239T2 (de) Ly6h-gen
DE69333660T2 (de) Pct-65 serotonin rezeptor
EP0613497B1 (de) Lymphoides cd30-antigen
DE69705017T2 (de) Medikamente bindendes Protein
DE69913325T2 (de) Nephrin Gen und Protein
DE69737476T2 (de) Neuer galaninrezeptor
DE69321720T2 (de) Für den interleukin-9-rezeptor kodierende nukleinsäuresequenzen bzw. dafür komplementäre nuleinsäuresequenzen
DE69931345T2 (de) Gen, welches für neues transmembranprotein kodiert
DE69126931T2 (de) Polypeptide mit dopaminerger rezeptor-aktivität, für sie kodierende nukleinsäuren und ihre verwendung
DE69836484T2 (de) Endogenes Retrovirales Genomnukliinelement, das mit einer Autoimmunkrankheit und/oder Schwengerschaftsstörungen verbunden ist, Verwendung als Marker
DE69534753T2 (de) Nierenpolycystose-gen
EP1588172A2 (de) Verfahren zur identifizierung bhs-spezifischer proteine und fragmente davon
WO2000015784A2 (de) Humaner un muriner g-protein gekoppelter rezeptor edg6 (endothelial differentiation gen) und seine verwendung
EP0440321A2 (de) Epididymis-spezifische DNA-Sequenzen und deren Verwendung
EP0805204A2 (de) Nebenhoden-spezifisches Rezeptorprotein und dessen Verwendung
DE19846979A1 (de) G-Protein gekoppelter Rezeptor EDG6 und seine Verwendung
DE60113660T2 (de) G-protein gekoppelter rezeptor
EP1007671B1 (de) Fanconi-gen ii
EP0226069A1 (de) HLA-B 27, dafür codierende DNA und ihre Verwendung
DE19805351A1 (de) Neuer G-Protein-gekoppelter Rezeptor aus menschlichem Gehirn

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010404

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030905

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060405

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1039791

Country of ref document: HK