EP1088188B1 - Verfahren zur herstellung eines flammenträgers - Google Patents

Verfahren zur herstellung eines flammenträgers Download PDF

Info

Publication number
EP1088188B1
EP1088188B1 EP00920801A EP00920801A EP1088188B1 EP 1088188 B1 EP1088188 B1 EP 1088188B1 EP 00920801 A EP00920801 A EP 00920801A EP 00920801 A EP00920801 A EP 00920801A EP 1088188 B1 EP1088188 B1 EP 1088188B1
Authority
EP
European Patent Office
Prior art keywords
fibres
mat
fibers
alloy
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00920801A
Other languages
English (en)
French (fr)
Other versions
EP1088188A1 (de
Inventor
André Walder
William Guerin
Valérie Bosso
Daniel Confrere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA, Gaz de France SA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP1088188A1 publication Critical patent/EP1088188A1/de
Application granted granted Critical
Publication of EP1088188B1 publication Critical patent/EP1088188B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/002Manufacture of articles essentially made from metallic fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/105Porous plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/20Burner material specifications metallic
    • F23D2212/201Fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2213/00Burner manufacture specifications

Definitions

  • the field of the invention is that of flame supports for burners, in particular with premix, operating on gas.
  • welding specifically concerns welding exclusively between fibers, minimum at their melting point, which is quite different from a sintering, the welding concerned being also specifically a welding "under capacitor discharge” quite different from welding obtained with a much lower transformer welding machine voltage (a few tens to a few hundred volts), inappropriate in the species taking into account the mechanical and thermal behavior characteristics required, as well as performance requirements during operation of the burner.
  • the welding will be carried out in the invention under a voltage of at least 1000 V (or typically several thousand, or even tens of thousands of volts), with an intensity of at least 1000 A (can exceed 10,000 amps) and this for a period of the order of at 20 micro seconds.
  • an additional characteristic of the invention recommends, during step a), to produce metallic fibers advantageously containing between 5.5 and 8% aluminum, by weight.
  • the fibers obtained during step a) will advantageously be fibers elongated in one direction and having in section a lunule shape (or lenticular, or "crescent"), with therefore internally (at the place of their concave face) a hollow channel.
  • the outer cord of these fibers will advantageously between 300 and 3000 microns, with an average typically of around 800 ⁇ m, and an average height of around 20 to 200 ⁇ m.
  • the the length of the fibers will advantageously be between approximately 0.7 cm and 15 cm, and preferably greater than about 1 cm. In terms of porosity of the flame support, this will advantageously be between approximately 60% and 95%, preferably with a substantially isotropic distribution fibers in the support, which can be used both on a burner atmospheric than a supply air burner.
  • the "means of obtaining” will preferably comprise a wheel whose surface will be provided with regularly spaced grooves (or teeth) and each provided with a fine edge, we will turn the wheel and we will make it flush the edge of each groove with the molten metal so that each groove can extract a quantity of metallic alloy substantially equivalent to that required to form a metallic fiber, once the cooled and solidified metal.
  • the compression / welding conditions will be different: if the porosity is between about 60 and 80 to 85%, then the compression will take place in the molding die, but welding can be done outside the mold (the walls of the welding machine will be electrically insulating, only the electrodes being electrically conductive). The heating temperature at the points of contact between the fibers may reach or even exceed 1450 ° C.
  • both the compression that the welding will take place in the molding die always with an electrically non-conductive wall and with a temperature comparable to that indicated above.
  • alloy metallic FeCrAlX alloy metallic FeCrAlX
  • X Yttrium or a rare earth or a mixture of rare earths such as cerium or erbium, even “mischmetall”
  • the technique used to make the fibers 10 uses general to a tank filled with a metallic alloy (here a steel stainless refractory aluminoformer) which is brought to a temperature greater than or equal to its melting temperature so that it becomes liquid.
  • a moving moving extraction means is then put in contact with this metal so that this movement, which can be a rotation or translation, extracts a part of molten metal which comes adhere to a generally very fine peripheral surface of the medium extraction.
  • the metal cools on the element then is ejected from its surface by a force induced by its movement (centrifugal force in the in the case of a rotational movement) to solidify very quickly in air (cooling several tens of thousands of degrees by second) or in a neutral gas (argon for example) so as to form a filament of a certain length.
  • the extraction means is a wheel rotated along an axis and provided with a discontinuous contact surface, for example in the form of regularly spaced grooves or teeth.
  • a tank 3 is filled with metal alloy 5 to constitute the fibers and it is heated to obtain a metal bath in fusion.
  • a fiber 10 with a crescent (or lenticular) section as already indicated), see figure 3, with in particular an interior surface 10a concave, favorable for the flow of the fluid (gas) in the support of flames.
  • the "fiber” is ejected by centrifugation in the air or in a neutral protective gas where it ends up cooling to therefore constitute definitely a metallic fiber with "crescent” section, length corresponding to that of the groove in which it formed.
  • melt extraction we rotate a wheel with grooves (or teeth) above the heated tank still containing the molten alloy bath. We soak the wheel in this bath and it is rotated so that a certain amount of material adheres to each groove (or tooth) and is extracted from the bath to form a meniscus on this groove, then begins to solidify in cooling on the wheel during its rotation before being ejected by centrifugation in air (or in a neutral gas such as argon) where it finishes cooling to form the final metallic fiber.
  • a mat is formed. in a mold (or stamping press) 100 shown in Figure 4.
  • a mold or stamping press 100 shown in Figure 4.
  • F compressive force
  • a movable punch 114 so as to produce a mat of compacted fibers 115 (see Figure 5) of the desired shape.
  • This shape can be parallelepiped, circular, even conical or annular, ... and correspond to the shape final of the flame support.
  • the degree of porosity reached at the outcome of this compression will be that of the final support (60 to 95%).
  • the fibers 10 may have been ground or cut (especially if they are several centimeters to tens of centimeters in length) so that they are more easily distributed in the cavity 112.
  • the degree of porosity of the compressed mat 115 is less than about 85% (to within a few percent), so the consolidation step of this matt welding will take place outside the mold, as illustrated on the figure 5.
  • the mat 115 is placed in the interior space 116 of a welding machine by discharging the capacitor 117.
  • This machine whose interior space 116 is adapted to the shape and dimensions mat (on which no additional mechanical compression effort must not be applied), includes side walls electrically insulators 118 and two electrodes 119a, 119b, between which the mat is placed 115 and which define the space 116 with the side walls 118.
  • the two electrodes 119a, 119b are connected to the terminals of a capacitor 120, with interposition on the circuit of a switch 121.
  • the reference 122 represents the mass.
  • the two electrodes are in electrical contact with the fibers metallic of the mat, so that the closing of the switch 121 causes the discharge of the capacitor 120 which, with the other elements in cause, has been sized so that we can deliver to the contact points between the fibers a tension of several thousand, even tens of thousands of volts, and an intensity typically of a few thousand amps at a few tens of thousands of amperes depending on the part to be produced, this for a period of the order of one to a few tens of micro-seconds without comparison with the durations typically greater than one second and the voltages (of the order of a few tens of volts) of the welds by transformer, well known, but not suitable in the present case given the characteristics of the fibers and the structure to be obtained.
  • capacitor discharge welding ensures that the vast majority (preferably more than 90%) of the fibers are welded to minus two points of contact, which guarantees reliability over time and secure intrinsic mechanical strength of the flame support.
  • the conditions of this welding (which is not sintering, since the temperature of fusion of fibers between them is locally reached, although the general temperature of the mat is much lower than 100 °, such as 50 at 60 ° C) allows the use of a welding device 117 which does not need withstand high temperatures, therefore lower cost (walls 118 can be plastic).
  • fibers 10 and 12 of different diameters and arrange them in a certain way in the matrix, for example with the fibers the finest in the area (s) where a lower porosity is desired.
  • a sectional view of a circular plate 1 obtained using this method is shown in Figure 7 where the coarsest fibers in diameter are substantially in the center of the plate.
  • the advantage of the mold 100 is that it makes it possible to directly obtain the final shape of the support (full cylindrical, ring, annular cylinder, ...), with a fixed porosity, even its final mechanical cohesion if the interfiber welding takes place in the mold.
  • the process for producing the fibers makes it possible to make fibers with variable composition
  • a plate made of fibers having different compositions either mixing said fibers homogeneously, on the contrary by providing a certain type of fiber in one or more areas of the cavity, and another type of fibers in the other zone (s) of said cavity so as to obtain a plate having variable physical characteristics.
  • a circular plate it may be interesting to arrange the fibers which resist at the highest temperatures in the center of the plate, where the flame will be stronger, and use less resistant fibers at the periphery.
  • Figure 9 illustrates a possible configuration of the FeCrAIX metal alloy hanging plate made with the process described above and comprising in particular approximately 7% aluminum.
  • FIG. 9 there is shown a flame support 1, mounted in a known type burner, referenced as a whole at 80, such as a domestic burner with total premix and flame blue.
  • This burner 80 essentially comprises a distribution 81, which has the general shape of a truncated cone box, substantially circular section, connected at its most rear side narrow 81a to separate supply lines 83, 84 respectively combustion air and combustible gas.
  • the acronyms AV and AR are used to locate the "front” and “rear” sides of the burner respectively, with reference to the circulation of the combustible mixture in the burner, such as shown diagrammatically by arrows 87, 87 'and 88.
  • This distribution chamber 81 is separated from a combustion chamber 82, on its front face, by the support of flames 1. In this case, this support is in the form of a cylinder hollow (annular) of height H and thickness E.
  • a solid plate 86 closes frontally the free end of the support 1.
  • the fuel gas supply line 84 meets line 83 air supply just upstream of the distribution chamber (at 85).
  • line 83 pressurized air supply
  • the combustion chamber but it is possible to provide a "natural" air supply ("air" burner atmospheric ").
  • the ignition of the burner is ensured by a electrode 97 suitably insulated and supplied under high voltage by a power cable not shown.
  • the flames develop outside this cylinder, the gas mixture passing through the center of it before leaving.
  • a minimum power of 2 kW i.e. a surface power of 607 kW / m 2
  • a maximum blue flame power of 30 kW i.e. a surface power of 9099 kW / m 2
  • the modulation range is therefore from 2 to 30 kW, ie a ratio from 1 to 15.
  • Emissions of carbon monoxide (CO) are almost zero over the entire operating range.
  • NOx nitrogen oxides
  • they are less than 60 mg / kWh for aeration (factor n) of the order of 30%.
  • the flame support structure can be produced with several porous rings stacked coaxially and separated two by two by a solid non-porous spacer, or even as a plate curved circular or full conical, or even other shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Control Of Combustion (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Claims (3)

  1. Verfahren zur Herstellung eines Flammenträgers eines Gasbrenners, wobei bei dem Verfahren:
    a) einzelne Metallfasern (10) als Gemenge realisiert werden, das einer Temperatur von etwa 750° C widersteht und aus Eisen, Chrom und Aluminium besteht,
    b) diese Fasern unter Druck vereinigt werden, wobei so eine Matte (115) aus verklumpten Fasern entsteht,
    c) die Matte aus Fasern auf eine Temperatur erhitzt wird, die ausreicht, die Fasern der Matte an ihren Kontaktpunkten innig zu verbinden,
    wobei bei dem Verfahren:
    während des Schritts a) mit dem metallischen Gemenge, das einen Gehalt an Aluminium von mehr als etwa 4% hat, ein Gefäß (3) gefüllt wird, das man auf eine Temperatur erhitzt, die höher als die oder gleich der Schmelztemperatur des Gemenges ist, das schmelzende Gemenge mit einer Oberfläche eines sich bewegenden Ausfördermittels (7) in Kontakt gebracht wird so dass ein Teil flüssigen Metalls (5) an dessen Oberfläche (7a) klebt, um aus dem Gefäß gefördert zu werden und man lässt die ausgeförderte Metallmenge erkalten und auf der Oberfläche des Ausfördermittels fest werden und danach an der Luft oder unter einem neutralen Gas, nachdem sie die Oberfläche unter dem Einfluss einer Trennkraft, die durch die Bewegung des Ausfördermittels ausgeübt wird, verlassen hat,
    während des Schrittes b) eine Mischung einzelner Fasern (10) in eine Pressform (100) gegeben wird, die während des Schritts a) erhalten wurden und diese im Wesentlichen gleichmäßig gepresst werden, um die genannte verklumpte Matte (115) zu erhalten, so dass die Porosität in der Matte im Wesentlichen einheitlich ist,
    und, ohne einen wesentlich höheren Druck auszuüben, als bei Schritt b),
    während des Schritts c) die Matte aus verklumpten Fasern mit Elektroden (119a, 119b) und einem Kondensator (120) verbunden wird,
    und durch die Zwischenschaltung der Elektroden und die Entladung des Kondensators die Fasern (10) an ihren Kontaktpunkten auf eine Temperatur gebracht werden, die höher als ihre oder gleich ihrer Schmelztemperatur ist, um unter Hochspannung ein Verschweißen der Fasern unter sich selbst herbeizuführen, so dass die Porosität der Matte aus verschweißten Fasern (1) im Wesentlichen gleichmäßig und im Wesentlichen gleich der von Schritt b) ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die Fasern (10) bei Schritt a) so realisiert, dass sie einen Aluminiumanteil von zwischen 5,5 und 8% besitzen.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass bei Schritt a) man Fasern realisiert, die einen sichelförmigen Querschnitt besitzen.
EP00920801A 1999-04-16 2000-04-14 Verfahren zur herstellung eines flammenträgers Expired - Lifetime EP1088188B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9904804A FR2792394B1 (fr) 1999-04-16 1999-04-16 Procede pour realiser une surface d'accrochage de flammes
FR9904804 1999-04-16
PCT/FR2000/000973 WO2000063617A1 (fr) 1999-04-16 2000-04-14 Procede pour realiser un support de flammes

Publications (2)

Publication Number Publication Date
EP1088188A1 EP1088188A1 (de) 2001-04-04
EP1088188B1 true EP1088188B1 (de) 2003-08-20

Family

ID=9544498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00920801A Expired - Lifetime EP1088188B1 (de) 1999-04-16 2000-04-14 Verfahren zur herstellung eines flammenträgers

Country Status (7)

Country Link
US (1) US6410878B1 (de)
EP (1) EP1088188B1 (de)
AT (1) ATE247799T1 (de)
CA (1) CA2334985C (de)
DE (1) DE60004617T2 (de)
FR (1) FR2792394B1 (de)
WO (1) WO2000063617A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233340B4 (de) * 2002-07-23 2004-07-15 Rational Ag Porenbrenner sowie Gargerät, enthaltend mindestens einen Porenbrenner
DE10250716C1 (de) * 2002-10-31 2003-12-24 Ulrich Mueller Verfahren zur Herstellung eines porösen, plattenförmigen Metallverbundes
ES2445334T3 (es) * 2004-04-06 2014-03-03 Tiax Llc Aparato quemador
FR2903278B1 (fr) * 2006-07-07 2008-09-26 Gen Biscuit Sa Four tunnel notamment pour biscuiterie.
US8186566B2 (en) * 2007-03-10 2012-05-29 Nexgeneering Technology Llc Method for cohesively bonding metal to a non-metallic substrate
DE102009003363B4 (de) * 2009-01-20 2013-01-10 Webasto Ag Heizgerät-Faserverdampfer
WO2011069839A1 (en) * 2009-12-11 2011-06-16 Bekaert Combustion Technology B.V. Burner with low porosity burner deck
IT1402900B1 (it) * 2010-11-24 2013-09-27 Worgas Bruciatori Srl Bruciatore ad elevata stabilita'
EP2914903B1 (de) * 2012-10-31 2018-03-21 Bekaert Combustion Technology B.V. Gasvormischbrenner
EP2951338B1 (de) * 2013-02-04 2016-09-28 NV Bekaert SA Abkühlröhre für die polymerfaserextrusion
TR201910916T4 (tr) 2013-07-02 2019-08-21 Bekaert Combustion Tech Bv Ön karışım gaz brülörü.
JP2016145550A (ja) * 2015-02-09 2016-08-12 愛三工業株式会社 燃料供給装置及び燃料供給ユニット
DE102020117692B4 (de) 2020-07-06 2023-06-07 Viessmann Climate Solutions Se Gasbrennervorrichtung und Verfahren zum Betrieb einer Gasbrennervorrichtung
CN113245684A (zh) * 2021-05-28 2021-08-13 中国石油化工股份有限公司 金属微纤材料及其定型方法、制备方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150711A (en) * 1960-12-23 1964-09-29 Acme Steel Co Gas burner
US3113202A (en) * 1961-08-30 1963-12-03 Armour Res Found Resistance welding method
US3340052A (en) * 1961-12-26 1967-09-05 Inoue Kiyoshi Method of electrically sintering discrete bodies
DE1225026B (de) * 1963-04-10 1966-09-15 Wmf Wuerttemberg Metallwaren Verfahren zum Verbinden von aus Metallfasern hergestellten Werkstuecken
US3437783A (en) * 1966-07-26 1969-04-08 Jerome H Lemelson Matte structure and method of producing same
US3680183A (en) * 1971-03-18 1972-08-01 David R Johnson Machines for making metal fibril compacts
US3861450A (en) * 1973-04-06 1975-01-21 Battelle Development Corp An improved method of formation of filament directly from molten material
US3896203A (en) 1973-04-23 1975-07-22 Battelle Development Corp Centrifugal method of forming filaments from an unconfined source of molten material
US4788406A (en) * 1987-01-23 1988-11-29 Battelle Memorial Institute Microattachment of optical fibers
DE3872868T2 (de) * 1987-12-29 1992-12-03 Bekaert Sa Nv Verdichtung eines metallgewebes.
CA2117605A1 (en) * 1992-03-03 1993-09-16 Philip Vansteenkiste Porous metal fiber plate
BE1006452A3 (nl) * 1992-12-18 1994-08-30 Bekaert Sa Nv Poreus gesinterd laminaat omvattende metaalvezels.
FR2708083B1 (fr) 1993-07-19 1995-09-01 Gaz De France Plaque d'accrochage de flamme pour brûleur à gaz, son procédé de fabrication et brûleur comprenant une telle plaque.
FR2716130B1 (fr) * 1994-02-14 1996-04-05 Unimetall Sa Procédé et dispositif de coulée continue de fils métalliques de très faible diamètre directement à partir de métal liquide.
BE1011478A3 (nl) * 1997-10-02 1999-10-05 Bekaert Sa Nv Brandermembraan omvattende een vernaald metaalvezelvlies.

Also Published As

Publication number Publication date
EP1088188A1 (de) 2001-04-04
DE60004617D1 (de) 2003-09-25
WO2000063617A1 (fr) 2000-10-26
US6410878B1 (en) 2002-06-25
FR2792394A1 (fr) 2000-10-20
DE60004617T2 (de) 2004-06-17
CA2334985C (fr) 2008-02-12
FR2792394B1 (fr) 2001-07-27
CA2334985A1 (fr) 2000-10-26
ATE247799T1 (de) 2003-09-15

Similar Documents

Publication Publication Date Title
EP1088188B1 (de) Verfahren zur herstellung eines flammenträgers
EP1360152B1 (de) Verfahren und vorrichtung zur herstellung von mineralwolle
WO1993013871A1 (fr) Buse coaxiale de traitement superficiel sous irradiation laser, avec apport de materiaux sous forme de poudre
EP0189354B1 (de) Herstellung von Mineralfasern
FR2706112A1 (fr) Injecteurs de plasma à arc en série.
EP1931496A1 (de) Verfahren und installation für laserschneiden/-schweissen
EP0896853B1 (de) Verfahren und Vorrichtung zum Herstellen von geschweisste Metallrohren
WO2017212190A1 (fr) Filament pour impression 3d, procede de fabrication d'un tel filament, et procede de fabrication d'un objet par impression 3d
EP0604279A1 (de) Injektor mit einer porösen Wand für eine Raketenbrennkammer
FR2667809A1 (fr) Procede pour la realisation de pieces a surface antiabrasion.
FR2806019A1 (fr) Procede de moulage-formage d'au moins une piece en un verre metallique
FR2671992A1 (fr) Procede de coulee sous pression, a chambre froide.
EP1255702A1 (de) Verfahren und vorrichtung zur herstellung von mineralwolle mittels innerlicher zentrifugalkraft
FR2516597A1 (fr) Dispositif annulaire de joint d'usure et d'etancheite refroidi par l'air pour aubage de roue de turbine a gaz ou de compresseur
FR2571484A1 (fr) Procede et dispositif pour faire fondre progressivement du materiau en forme de barreau au moyen d'une bobine d'induction
BE1013686A3 (fr) Nez de lance de soufflage.
EP3475012B1 (de) Kühlofen mit gerichteter erstarrung und kühlverfahren mit solch einem ofen
WO1991013817A1 (fr) Conteneur pour le transport d'un materiau en etat solide
CH678648A5 (de)
FR2734186A1 (fr) Procede de lubrification des parois d'une lingotiere de coulee continue des metaux et lingotiere pour sa mise en oeuvre
FR2835906A1 (fr) Bruleur a combustion interne, notamment pour l'etirage de fibres minerales
FR2729322A1 (fr) Procede de scellement par brasage d'elements a base de carbone et assemblages ainsi obtenus
CA2251007C (fr) Procede de coulee continue des metaux et installation de coulee pour sa mise oeuvre
WO2020240128A1 (fr) Procédé de fabrication additive d'une pièce comprenant une étape de fabrication d'un support mixte
EP0578517A1 (de) Verfahren zum Behandeln von schmelzflüsssigem Metall während eines Giessvorganges unter Verwendung eines Filters sowie dazu verwendete Filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60004617

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031201

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040120

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

NLS Nl: assignments of ep-patents

Owner name: GAZ DE FRANCE (GDF) SERVICE NATIONAL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: GDF SUEZ

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CJ

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60004617

Country of ref document: DE

Representative=s name: MERTEN & KOLLEGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60004617

Country of ref document: DE

Representative=s name: MERTEN & KOLLEGEN, DE

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 60004617

Country of ref document: DE

Owner name: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AERO, FR

Free format text: FORMER OWNER: GAZ DE FRANCE (G.D.F.) SERVICE , OFFICE NATIONAL D'ETUDES ET DE, , FR

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 60004617

Country of ref document: DE

Owner name: GDF SUEZ S.A., FR

Free format text: FORMER OWNER: GAZ DE FRANCE (G.D.F.) SERVICE , OFFICE NATIONAL D'ETUDES ET DE, , FR

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 60004617

Country of ref document: DE

Owner name: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AERO, FR

Free format text: FORMER OWNERS: GAZ DE FRANCE (G.D.F.) SERVICE NATIONAL, PARIS, FR; OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES, O.N.E.R.A., CHATILLON-SOUS-BAGNEUX, HAUTS-DE-SEINE, FR

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 60004617

Country of ref document: DE

Owner name: GDF SUEZ S.A., FR

Free format text: FORMER OWNERS: GAZ DE FRANCE (G.D.F.) SERVICE NATIONAL, PARIS, FR; OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES, O.N.E.R.A., CHATILLON-SOUS-BAGNEUX, HAUTS-DE-SEINE, FR

Effective date: 20111028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120328

Year of fee payment: 13

Ref country code: IT

Payment date: 20120321

Year of fee payment: 13

Ref country code: BE

Payment date: 20120329

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120326

Year of fee payment: 13

Ref country code: NL

Payment date: 20120402

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120522

Year of fee payment: 13

BERE Be: lapsed

Owner name: S.A.*GDF SUEZ

Effective date: 20130430

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130414

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60004617

Country of ref document: DE

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130414

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101