EP1088108A1 - Cell-based assay for immunodeficiency virus infectivity and sensitivity - Google Patents

Cell-based assay for immunodeficiency virus infectivity and sensitivity

Info

Publication number
EP1088108A1
EP1088108A1 EP99931859A EP99931859A EP1088108A1 EP 1088108 A1 EP1088108 A1 EP 1088108A1 EP 99931859 A EP99931859 A EP 99931859A EP 99931859 A EP99931859 A EP 99931859A EP 1088108 A1 EP1088108 A1 EP 1088108A1
Authority
EP
European Patent Office
Prior art keywords
hiv
cell line
primary
virus
marker gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99931859A
Other languages
German (de)
French (fr)
Other versions
EP1088108A4 (en
Inventor
John C. Kappes
Xiaoyun Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UAB Research Foundation
Original Assignee
UAB Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UAB Research Foundation filed Critical UAB Research Foundation
Publication of EP1088108A1 publication Critical patent/EP1088108A1/en
Publication of EP1088108A4 publication Critical patent/EP1088108A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • G01N33/56988HIV or HTLV

Definitions

  • the present invention relates genetically modified cells, to an assay and methods and the usage thereof to measure the infectivity and viral resistant/sensitivity of isolate from peripheral blood mononuclear cells (PBMC) and plasma of an immunodeficiency virus.
  • PBMC peripheral blood mononuclear cells
  • the present invention has utility in determining the HIV co-receptor usage, discovery of new drugs effective against HTV and monitoring a drug therapy protocol in order to enhance the effectiveness of drug treatment regimes against HIV-l infection.
  • RT reverse transcriptase
  • ELISA based assays for the detection of HTV/SlV core antigen
  • direct quantitation of infectious virus by syncytial focus plaque assays or limiting dilution titration in susceptible host cells visualization of virions by electron microscopy, in situ hybridization, and various nucleic acid-based assays.
  • genetic reporter-based assays have been created to detect HIV/SIV infection.
  • mammalian cells are genetically modified to express a reporter gene such as ⁇ -galactosidase ( ⁇ -gal), green fluorescent protein (GFP) or chloramphenicol acetyltransferase (CAT) in response to infection and Tat protein expression.
  • a reporter gene such as ⁇ -galactosidase ( ⁇ -gal), green fluorescent protein (GFP) or chloramphenicol acetyltransferase (CAT) in response to infection and Tat protein expression.
  • ⁇ -gal ⁇ -galactosidase
  • GFP green fluorescent protein
  • CAT chloramphenicol acetyltransferase
  • CAT chloramphenicol acetyltransferase
  • the sensitive detection of the virus quasispecies that comprise primary HIV isolates has proved difficult using immortalized CD4 positive cell lines. At least in part, this has been due to the lack of expression of the CCR5 chemokine co-receptor on the surface of such cell lines.
  • the failure to detect infection of primary virus isolates (T-cell and macrophage tropic viruses) using immortalized cell lines has greatly impeded the development of useful approaches for detecting, quantifying and analyzing HIV infection of primary virus isolates.
  • the present invention largely overcomes the prior art limitations.
  • Figure 1 is a schematic block diagram illustrating a generalized sequence of steps in creating an assay for detecting and analyzing primary HIV.
  • Figures 2A-2E are schematics illustrating the construction of various gene transfer expression plasmids of the present invention.
  • FIG. 26 is a schematic illustrating the production of lentiviral transduction vectors for the delivery of marker genes of the present invention.
  • a gene transfer plasmid representatively including those shown in Figure 2 are separately transfected into a host cell together with viral based packaging and envelope plasmids.
  • Figures 4A and 4B are graphs illustrating the relationship between the concentration of vector and infectious units as determined with ⁇ -gal, GFP and luciferase activity.
  • Figure 5 is a graph illustrating a nearly linear relationship between HIV-1 infectious units and luciferase activity for a cell line of the present invention.
  • Figure 6 is a graph illustrating the relationship between infectious virus units and luciferase activity for viruses: TIVI, WIMI, KIWE and YU2, using a cell line of the present invention.
  • Figure 7 is a graph illustrating a correlation between infectious virus units and luciferase activity.
  • Figures 8A-8C are graphs illustrating the effect that different concentrations of 3TC, AZT, and Nevaripine, respectively, have on virus replication relative to non-drug treated viruses as determined by luciferase activity according to the present invention.
  • Figures 9A-9C are graphs illustrating drug sensitivity to AZT for 100, 500, and 2500 virus infectious units respectively, according to the present invention.
  • Figure 10 is a schematic illustrating the construction of a Tat transduction plasmid.
  • Figures 1 1A and 1 IB are graphs illustrating the viral amplification two days following infection with equal quantities of YU2 HIV (a) for infectivity and (b) p24 antigen.
  • the present invention pertains to a cell-based assay for analyzing primary
  • HIV including an immortalized cell line that expresses the CCR5, CXCR4 and
  • CD4 receptors and a marker gene.
  • the CCR5 or CD4 receptors enable binding and entry of HIV wherein marker gene expression correlates the magnitude of virus infection.
  • An immortalized cell line is disclosed capable of allowing efficient amplification of primary HIV.
  • a method is further disclosed wherein the cell line contains a gene that can be expressed in response to infection of the virus.
  • a method for producing an immunodeficiency virus infection sensitive clonal cells including selecting a cell line expressing CCR5,
  • the present invention finds utility as a method for detecting, isolating and analyzing primary HIV by infecting a cell line of the present invention with a quantity of virus and after some time measuring marker gene expression.
  • Practicing the method of the present invention for determining immunodeficiency virus titer and conducting the presence of a drug candidate indicates the sensitivity of a given strain, type, species or genus of virus to the given drug candidate.
  • the present invention affords the ability to test virus derived from blood plasma as well as cell culture. Description of the Invention
  • an immortalized cell line to detect and analyze primary HIV other than PBMC offers numerous advantages which are exploited to develop a novel assay.
  • immortalized cell lines are refractory to primary HIV.
  • the expression of CCR5 in an immortalized cell line significantly enhances the detection of primary HIV-1.
  • the ability to detect primary isolates of HIV-1 with greater sensitivity than currently possible is an aspect of the present invention.
  • the present invention provides for: (1) the sampling and analysis of a representative population of viruses that comprise primary HIV-1; (2) the analysis of a significantly greater proportion of virus; and (3) high throughput testing, via miniaturization and sampling of small sample volumes.
  • T-trophic virus is intended herein to define a phenotype of an immunodeficiency virus capable of infecting a T-cell by binding the CD4 receptor on the T-cell.
  • macrophage trophic virus is intended to mean a phenotype of an immunodeficiency virus capable of infecting a macrophage by binding the CCR5 co-receptor on the macrophage.
  • the SG3 (S.K. Ghosh et al. 1993, Virology 194:858-864) and NL43 (W. Paxton et al. 1993, J. Virol. 67:7229-7237) strains of HIV-1 are derived by extensive passage in tissue culture. They represent T-cell tropic viruses and do not infect monocytes and macrophages. These viruses are not representative of the complex mixtures of viruses that exit in infected individuals.
  • Primary HIV-1 represent virus that is derived directly from the blood of an HIV infected individual. Primary HIV can also be derived by short term culture in vitro culture in primary peripheral blood mononuclear cells (PBMC).
  • PBMC peripheral blood mononuclear cells
  • Primary HIV can also be derived using the cell line of this invention.
  • Such isolates are complex mixtures and may contain macrophage- and/or T-tropic viruses.
  • T-cell tropic viruses are able to infect cells that express CD4 and CXCR4, while macrophage tropic (M-tropic) viruses also require expression of the CCR5 chemokine co-receptor.
  • M-tropic macrophage tropic
  • Most HIV-2 and SIV viruses also require the CCR5.
  • Several groups have produced cell lines that express CD4, CXCR4 and CCR5 in attempts to render them sensitive to infection with primary HIV-1 (both T-cell and macrophage tropic viruses).
  • primary HIV is defined as HTV derived directly from an infected host organism from sources such as blood, plasma, PBMC, CSF and other tissues.
  • immunodeficiency virus is defined as various strains and stocks of HIV-1, HIV-2, SIV and lentiviruses.
  • minor population is defined as a titer of a given viral strain, type or species or genus that constitutes less than 10% of the total quantity of virus present obtained from a host culture or organism.
  • major population is defined as the numerically dominant viral strain, type, species or genus of a viral titer obtained from a host culture or organism.
  • drug sensitivity is defined as the effectiveness of a drug to inhibit HIV replication and/or expression with a host cell, the term is used synonymously with “drug resistivity.”
  • drug resistivity By making genetic modifications to a CCR5 or CD4 expressing cell line, the present invention represents is an efficient method for analyzing the drug sensitivity properties of primary HIV, such as HIV-1.
  • FIG. 1 is a schematic block diagram illustrating a generalized sequence of steps in creating an assay for measuring HIV-1 drug sensitivity according to the present invention.
  • the creation of a cell based assay of the present invention involves a series of steps. Initially, a vector is constructed for the purpose of transducing mammalian cells with a marker gene. Such a marker gene transduction plasmids bring the marker gene expression under the regulation of an immunodeficiency virus 10.
  • the marker gene vector is placed under the control of HIV-1 or HIV-2 long terminal repeats (LTRs) and the Rev responsive element (RRE).
  • the marker genes illustratively including ⁇ -gal, luciferase, GFP, CAT and other fluorescent proteins.
  • the marker gene is luciferase.
  • CD4 positive cells are then transduced with the vector in order to confirm appropriate marker gene expression from the transduction vectors 20.
  • the cells are CD4, CCR5, CXCR4 positive.
  • an amplicon gene is readily substituted for a marker gene to induce amplification of viral stocks (not shown).
  • the amplicon gene is Tat. Clones of the stable CD4 positive cell line are established 30. A stable
  • CD4 positive cell line is selected for low marker background expression levels 40.
  • the marker gene is luciferase.
  • An immortalized cell line 15 is positive for CCR5, CD4 and CXCR4 receptors and optionally other receptors illustratively including CCR3, CCR2B and T-lymphocyte expressed 7 transmembrane domain receptor.
  • the origin cell line is HeLa. More preferably, the cell line is J53 (Oregon Health Sciences University) or a cell line that naturally expresses CD4, CCR5 and CXCR4.
  • the cells of immortalized cell line 15 are then tested for sensitivity to HIV-1 infection 25. Expansion of highly sensitive cells to HIV-1 infection 35. The clone of 40 is used to transduce 50 the highly sensitive immortalized cell line of 35.
  • the receptor is selected to create a cell which is highly sensitive to infection by HIV-1 isolates.
  • Clones established from this second transduction are both highly sensitive to infection with primary HIV- 1 isolates and express low background levels of the marker gene product in the absence of HIV-1 60.
  • Those clones which are positive for the marker gene are identified 70.
  • Such positive clones 70 have utility to promote HIV production upon transduction with Tat 75. HIV primary virus stock production is exploited herein to selectively enrich drug resistant minor HIV strains infecting a host 85.
  • Infection of the clones expressing low background levels of at least two markers such as ⁇ -gal and luciferase with HIV-1 confirms the relationship between infectious viral units and marker gene (luciferase) activity 80, although in practice expression of a single marker gene is operative herein.
  • Clones that relate infectious virus units, such as ⁇ -gal, with a second marker gene activity such as luciferase find utility in the measurement of HIV co-receptor utilization (not shown).
  • the cells capable of expressing marker genes in response to HIV infection are optionally used to measure viral sensitivity in the presence of a drug 90. Drug resistance to various pharmaceutical during viral life cycle events such as envelop formation 92, reverse transcription 94 and proteo lysis 96 is optionally determined.
  • the measurement of viral sensitivity finds utility in HIV viral target resistance analysis 98.
  • the resulting composition of clones in a suitable medium is amenable for use to quantify HIV-1 titer.
  • the present invention also finds utility in quantifying the drug sensitivity of particular HIV-1 phenotypes. It is appreciated that the present invention is applicable to use with immunodeficiency viruses other than the representative HIV-1. By transducing a cell line to express co-receptors adapted for binding an immunodeficiency virus, a variety of viruses may be assayed with the present invention.
  • the present invention pertains to cell lines that are capable of detecting sensitivity of a given strain of HIV to inhibitors that act upon various stages of the virus life cycle by monitoring the effect various drugs have on early viral life cycle stages such as reverse transcription, integration and envelop mediated receptor binding, envelope fusion, as well as the late life cycle stages complexes such as proteolysis and Gag complex formation.
  • a method and a kit are provided for monitoring the major and minor virus populations infecting a given host. Through the enrichment and detection of minor drug resistant virus populations and the sensitivity of those populations to viral inhibitors, the assay is well suited for determining specific anti-retroviral drugs suited to contain replication of the various HIV strains infecting a given host.
  • Such a tailored therapeutic protocol is more effective in inhibiting viral amplification and/or reduces pharmacological side effects.
  • the J53 Tat cell line is well suited to detect sensitivity of a host's particular viral infection to inhibit or affect the various stages of the virus life cycle.
  • the present invention provides more rapid viral amplification as compared to conventional PBMC cells thereby allowing more rapid amplification, with fewer cycles of reverse transcription. Further applications of the present invention include measurement of HIV attributes of co-receptor utilization, antibody neutralization, isolation, titration, gene sequencing, and CTL assays.
  • the present invention also provides a method for detection of primary HTV from plasma, including noninfectious HIV-1 found in plasma.
  • VSV-G serves to mediate infection of HIV-1 particles and thus, in the absence of VSV-G the virus remains noninfectious, whereas in its presence infectivity is complemented.
  • VSV-G in addition to VSV-G other infectivity complements are also operative herein including adenovirus, liposome, monoclonal antibody and other vectors to complement noninfectious HIV.
  • the methods and indicator cell lines of the present invention are operative to analyze drug sensitivity of primary HIV which has been purified and taken directly from infected host plasma.
  • luciferase expression To directly analyze the relationship between luciferase expression and infectious virus units, a series of gene transfer plasmids are constructed to express luciferase, ⁇ -galactosidase ( ⁇ -gal), and green fluorescence protein (GFP), respectively, ⁇ -gal, GFP, and luciferase (luf) are placed under control of the HIV-
  • LTR long terminal repeats
  • RRE Rev Responsive Element
  • Figures 2A through 2E illustrate the different gene transfer expression plasmids that are constructed.
  • the ⁇ -gal and GFP markers allow for direct enumeration of the number of infectious virus units as infected cells by counting under a microscope.
  • the luciferase marker allows for sensitive and high throughput quantitation of HIV infection. In the present invention the requirement of Tat and
  • Rev for marker gene expression is different from previous work in that it allows for highly regulated and decreased background level expression of the marker gene. This is particularly important for luciferase.
  • the J53BL cell line or its functional equivalents are operative in accordance with the present invention. It is appreciated that the nucleic acid sequences coding for CCR5, CXCR4, CD4, luciferase, ⁇ -galactosidase, GFP, CAT, Tat and the J53 cell line as a whole can be altered by substitutions, additions or deletions that provide for functionally equivalent cells.
  • "functional equivalency” is defined to mean a nucleic acid sequence which encodes for a product that performs operationally within the present invention with at least half the effectiveness of the product derived from the unaltered nucleic acid sequence of a receptor, amplicon, marker gene or cell line.
  • nucleotide coding sequences which encode substantially the same receptor amino acid sequences, cell line amino acid sequences, marker gene sequences and amplicon sequences may be used in the practice of the present invention. These include but are not limited to nucleotide sequences which are altered by the substitution of different codons that encode a functionally equivalent amino acid residue within the sequence thus producing a silent change.
  • receptor, marker, amplicon and cell lines proteins or fragments or derivatives thereof of the present invention include, but are not limited to, those containing as a primary amino acid sequence all or part of the amino acid sequence of the sequences for CCR5, CXCR4, CD4, luciferase, ⁇ - galactosidase, GFP, CAT, Tat and J53 sequences including altered sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a silent change.
  • one or more amino acid residues within a sequence are optionally substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent alteration.
  • Substitutes for an amino acid within a sequence may be selected from other members of a class to which the amino acid belongs.
  • non-polar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine.
  • Polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine.
  • the positively charged (basic) amino acids include arginine, lysine and histidine.
  • Negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Also included within the scope of the present invention are proteins or fragments or derivatives associated with J53BL which are differentially modified during or after translation by operations such as glycosilation, proteolytic cleavage and linkage to an antibody or other cellular ligand.
  • Example 1 Generation of transduction vectors for the delivery of marker genes.
  • the ⁇ -gal, GFP and luciferase gene transfer plasmids are separately transfected into cultures of 293T cell together with a lentiviral-based packaging plasmid
  • the vector-containing culture supernatants are harvested, clarified by low- speed centrifugation, filtered through 0.45 micron filters, analyzed for HIV-1 p24 core antigen concentration by ELISA, aliquoted, and cryopreserved as stocks.
  • Four serial five- fold dilutions (normalized for p24 antigen concentration) of the stocks are prepared and used to infect replica cultures of HIV-HeLa cell.
  • the HIV-HeLa cells contained an integrated HIV-1 pro virus that is defective in vpr and env, and produces the Tat and Rev protein for transactivating marker gene expression. Two days after infection of the HIV-HeLa cells with the different
  • vector stocks, ⁇ -gal and GFP expression is quantified using a microscope to count
  • FIGS. 4A and 4B show the relationship between concentration (HIV-1 p24 antigen, Coulter Inc.) of the
  • Example 2 Generation of ⁇ -gal, luciferase and GFP indicator cell lines to quantify HIV/SIV infection.
  • the following pairs of vector stocks (derived as described above) are used
  • microscopy are expanded into replica cultures.
  • One replica culture set is infected
  • HIV-1 infection provided Tat and Rev to activate marker gene expression
  • luciferase activity levels 36 non-HIV-1 infected, luciferase expression- positive clonal cultures (derived from HeLa-CD4 cells transduced with pluf + p ⁇ - gal) are analyzed for luciferase activity to determine basal background expression levels.
  • the HeLa-CD4 cells being obtained from the AIDS Research and Reference Reagent Repository of NTH.
  • luciferase activity ranged from 15 to 250 units.
  • Analysis for ⁇ -gal expression in response to HIV-1 infection indicated approximately 70% of the clones expressed both ⁇ - gal and luciferase.
  • the two clones (referred to as HeLa- ⁇ -gal-lufl, and HeLa- ⁇ - gal-luf2) that exhibited the lowest background levels of luciferase expression and are positive for ⁇ -gal expression are used to directly analyze the relationship between HIV-1 infectious units and luciferase activity.
  • Serial dilutions of two different HIV-1 strains (HIV-1/SG3 and HIV-1/NL43) are normalized for p24 antigen concentration and used to infect replica cultures of HeLa- ⁇ -gal-lufl, and HeLa- ⁇ -gal-luf2. After 48 hours, one set of cultures is analyzed for luciferase activity and the other was analyzed for ⁇ -gal.
  • Figure 5 shows the relationship between HIV-1 infectious units ( ⁇ -gal positive cells) and luciferase activity for the HeLa- ⁇ -gal-lufl cell line.
  • the HeLa- ⁇ -gal-luf2 cell line gave nearly identical results with slightly higher luciferase activity levels at the lower virus inoculums. Between approximately 10 and 10,000 virus infectious units.
  • a near- linear relationship to luciferase activity is shown in Figure 5.
  • the linear range of detection using the luciferase marker in Figure 5 is approximately 3 orders of magnitude, and as few as 10-20 infected cells out of approximately 100,000 can generate a virus-positive (above background) result.
  • This dynamic range allows for quantitative analysis of virus infection from approximately 10 to 10000 infectious units, thereby reducing the necessity of dilution of virus in order to generate quantitative
  • Example 3 Sensitive detection of HIV-1 primary viruses using ⁇ -gal and luciferase reporter genes.
  • the present invention utilizes a combination of a reporter assay system for
  • Table 1 shows that all viruses, including the macrophage tropic
  • YU2 clone included as a control, are highly infectious in the J53 ⁇ -gal/luf cell
  • viruses are prepared and analyzed: TIVI, WIMI, KIWE and YU2. Between approximately 100 to 10,000 infectious units, the data show a linear relationship with luciferase activity (Figure 6). Background levels of luciferase are between 100 and 150.
  • the J53 ⁇ -gal/luf cell line represents a transduced population of cells since integration of the transduction vector into the genome of the J53 cells can occur differently in each cell.
  • cultures of single cell clones are derived from the J53 ⁇ -gal/luf cell line as described above and characterized for luf and ⁇ -gal expression in response to HIV-1 infection. Ten clones expressing between 17 and 750 luf activity are selected for analysis. Clone number 13, termed J53-C13, is confirmed to express both luciferase and ⁇ -gal, and is used for subsequent analysis as described below. Stocks of twenty different HIV-1 isolates are obtained from HIV-1 infected individuals by standard coculture techniques.
  • the J53-C13 cell line is sensitive to HIV-1 infection to a degree similar to PBMC.
  • the JC11 cell line is analyzed for comparison.
  • JC11 is the parental cell line to J53-C13. It expresses equal amounts of CD4 and CXCR4 but is negative for CCR5.
  • JC11 is transduced to express b-gal and luciferase, and positive cells are biologically cloned exactly as described above for J53-C13.
  • Jl 1-C5 A clone designated Jl 1-C5, which is capable of expressing both b-gal and designated Jl 1-C5, which is capable of expressing both b-gal and luciferase, is selected for comparison with J53-C13. Both cell lines are infected with primary virus isolates and molecularly cloned virus including YU2, SG3, and 89.6 (a dual tropic clone).
  • Table 4 shows the titer of each virus in the J53-C13 and Jl 1-C5 cell lines.
  • results show a marked reduction in virus titer in the Jl 1-C5 cell line, indicating that the CCR5 co-receptor is necessary for efficient infection/detection of primary
  • HIV-1 isolates are derived by PBMC coculture from two different HIV-1
  • YU2 (included as a control) virus stocks are used to infect the J53-C13 reporter
  • viruses - as determined by luciferase activity as an indicator.
  • a major problem with existing methods for evaluating HIV-1 drug sensitivity is that differences in virus inoculum can have significant effects on the
  • IC50 for a given drug That is, as the infectious dose of virus is increased, the
  • J53-C13 cells are infected with 100, 500, and 2500 infectious units of virus and analyzed for drug sensitivity as described above.
  • Figure 9 shows the results for drug sensitivity to AZT. There is no significant
  • Example 5 Generation of a Tat expressing cell line to rapidly amplify virus production from infected cells. The amplification of primary virus from infected individuals is required
  • the present invention confirms that the JC53 and the J53-C13 cell lines are highly sensitive to infection of primary virus isolates.
  • cell lines may be utilized to amplify the primary virus isolate instead of PBMC.
  • JC53 cells are transduced with the HIV Tat gene under control of the CMV, or LTR promoter, as shown in Figure 10.
  • Tat is constructed into a self-deleting U3 transduction vector, Figure 10. Three days after transduction, single cells are cloned and 33 are identified to be Tat expression positive, 10 containing LTR-2 as a promoter and 23 containing CMV as a promoter for Tat expression.
  • HIV-1 p24 antigen ELISA is measured by HIV-1 p24 antigen ELISA and the highest HIV-1 producing lines from each are selected for further analysis.
  • J53-CMVtat is infected with the YU2 clone and the KEWI virus isolate
  • the JC53 cell line is analyzed in a
  • Tat expressing cell lines causes a 4-6-fold increase in HIV-1 replication.
  • Example 6 The use of CD4/CCR5/CXCR4 + Tat expressing cell line to capture and amplify primary virus.
  • the J53tat cell line is compared with PBMC for primary virus
  • PBMC and J53tat are each infected with 2.5E5 infective particles of YU2. Two days later the concentration of progeny virus is analyzed for
  • the J53tat cell line amplifies primary virus to
  • Tat facilitates the rapid generation of high titered primary virus stocks for resistance testing without selection of longer term culture, such as PBMC culture for virus amplification.
  • Example 7 Detection of drug resistance/sensitivity that effect various stages of virus life cycle.
  • the J53tat cell line is used to produce virus and thereby enable viral testing
  • viral drug resistance mutations in early stage targets such as reverse transcriptase (RT), integrase (IN) and env
  • late stage targets such as protease and Gag
  • the J53tat cells are infected
  • HIV YU2 MOI of either 0.2 or 0.04
  • protease inhibitor infavir
  • protease inhibitor with increasing concentrations causing greater inhibition.
  • Example 8 Detection of noninfectious cultured virus.
  • the pellet is resuspended in 100 ul DMEM.
  • the infectivity is then determined using J53BL cells. The infectivity is determined to be 7.5E4.
  • YU2 virus containing wild-type envelope is pelleted through sucrose by
  • the resuspended (100 ul) virus is mixed with and without VSG-G (1:1) and repelleted by ultracentrifugation (150,000g, 2 hours, 4°C).
  • the pellets are resuspended in 100 ul DMEM, and the infectious units are determined using J53BL cell summarized as in Table 7. Virus pelleted through sucrose is noninfectious. Virus pelleted
  • the recovery in infectivity is approximately 20% compared with the
  • VSV-G 2500 infectious particles are detected as summarized in
  • Plasma from patients infected with HIV-1 is tested for the presence of
  • HIV is incubated with J53BL cell line for four hours to allow binding and entry into J53BL cells, reverse transcription proceeds and the viral cDNA is
  • HIV replication is suppressed through expression of an inhibitor of viral gene expression, such as the rev inhibitor, rev mlO by conventional techniques.
  • the HIV genome is expanded as J53BL cells divide and increase in number, without further rounds of reverse transcription.
  • the increased copy numbers of the viral genome are purified and sequenced. By relieving the inhibitory effect on rev, viral gene expression will return to normal in the expanded cells, and virus can be analyzed.
  • HIV-1 isolates were derived by coculture (7-10 days) of HIV-1 infected patient PBMC with PHA stimulated normal donor BPMC.
  • Virus titer was determined by counting the # of beta-gal positive cells. Results indicate infection positive cells per ml of stock virus. Neg. (negative) titers were undetectable below 40 infectious units per ml.
  • Nos. represent pg of p24 antigen per ml.
  • TCIU tissue culture infectious units

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • AIDS & HIV (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Methods and reagents for the capture of primary HIV are provided. A cell line expressing CCR5, CXCR4 and CD4 receptors binds and is infected by primary HIV. The cell line contains a marker gene sequence, the marker gene sequence expressed in near linear quantities over at least two orders of magnitude in response to HIV infection. Primary HIV is amplified to create a primary virus stock through insertion of an amplicon gene into the receptor expressing cell line. HIV amplification occurs rapidly and is operative with noninfectious HIV through amplification in the presence of an infectivity complement. The present invention is useful in determining host HIV titer, drug sensitivity, HIV amplification, gene sequencing and co-receptor utilization.

Description

CELL-BASED ASSAY FOR IMMUNODEFICIENCY VIRUS INFECTIVITY
AND SENSITIVITY
Field of the Invention The present invention relates genetically modified cells, to an assay and methods and the usage thereof to measure the infectivity and viral resistant/sensitivity of isolate from peripheral blood mononuclear cells (PBMC) and plasma of an immunodeficiency virus. The present invention has utility in determining the HIV co-receptor usage, discovery of new drugs effective against HTV and monitoring a drug therapy protocol in order to enhance the effectiveness of drug treatment regimes against HIV-l infection.
Background of the Invention There is currently no cost effective, "high throughput" method for analyzing the drug resistant phenotype of primary virus isolates derived from individuals receiving antiretroviral treatment. Various in vitro biologic and immunologic techniques have been developed to detect human and simian immunodeficiency viruses (HTV and SIV, respectively). These include assays that detect the enzymatic activity of the reverse transcriptase (RT) protein, ELISA based assays for the detection of HTV/SlV core antigen (HIV-1 p24 or HIV-2/SIN p27), direct quantitation of infectious virus by syncytial focus plaque assays or limiting dilution titration in susceptible host cells, visualization of virions by electron microscopy, in situ hybridization, and various nucleic acid-based assays. Recently, genetic reporter-based assays have been created to detect HIV/SIV infection. In this approach, mammalian cells are genetically modified to express a reporter gene such as β-galactosidase (β-gal), green fluorescent protein (GFP) or chloramphenicol acetyltransferase (CAT) in response to infection and Tat protein expression. These detection systems require enumeration of the number of infection-positive cells by flow cytometry or fluorescence microscopy (GFP), microscopy (β-gal), or the utilization of radioisotopes (CAT). The firefly luciferase gene, under control of the HIV-1 LTR promoter, has been used as a reporter gene for HIV-1 infection. Luciferase is very sensitive marker gene for HIV-1 infection, since expression of a relatively few number of luciferase molecules can result in appreciable activity levels using standard luciferase detection assays.
The sensitive detection of the virus quasispecies that comprise primary HIV isolates has proved difficult using immortalized CD4 positive cell lines. At least in part, this has been due to the lack of expression of the CCR5 chemokine co-receptor on the surface of such cell lines. The failure to detect infection of primary virus isolates (T-cell and macrophage tropic viruses) using immortalized cell lines has greatly impeded the development of useful approaches for detecting, quantifying and analyzing HIV infection of primary virus isolates. The present invention largely overcomes the prior art limitations.
Brief Description of the Drawings Figure 1 is a schematic block diagram illustrating a generalized sequence of steps in creating an assay for detecting and analyzing primary HIV.
Figures 2A-2E are schematics illustrating the construction of various gene transfer expression plasmids of the present invention.
SUBSTITUTE SHEET (RULE 26 Figure 3 is a schematic illustrating the production of lentiviral transduction vectors for the delivery of marker genes of the present invention. A gene transfer plasmid representatively including those shown in Figure 2 are separately transfected into a host cell together with viral based packaging and envelope plasmids.
Figures 4A and 4B are graphs illustrating the relationship between the concentration of vector and infectious units as determined with β-gal, GFP and luciferase activity.
Figure 5 is a graph illustrating a nearly linear relationship between HIV-1 infectious units and luciferase activity for a cell line of the present invention.
Figure 6 is a graph illustrating the relationship between infectious virus units and luciferase activity for viruses: TIVI, WIMI, KIWE and YU2, using a cell line of the present invention.
Figure 7 is a graph illustrating a correlation between infectious virus units and luciferase activity.
Figures 8A-8C are graphs illustrating the effect that different concentrations of 3TC, AZT, and Nevaripine, respectively, have on virus replication relative to non-drug treated viruses as determined by luciferase activity according to the present invention. Figures 9A-9C are graphs illustrating drug sensitivity to AZT for 100, 500, and 2500 virus infectious units respectively, according to the present invention. Figure 10 is a schematic illustrating the construction of a Tat transduction plasmid.
Figures 1 1A and 1 IB are graphs illustrating the viral amplification two days following infection with equal quantities of YU2 HIV (a) for infectivity and (b) p24 antigen.
Summary of the Invention
The present invention pertains to a cell-based assay for analyzing primary
HIV including an immortalized cell line that expresses the CCR5, CXCR4 and
CD4 receptors and a marker gene. The CCR5 or CD4 receptors enable binding and entry of HIV wherein marker gene expression correlates the magnitude of virus infection. An immortalized cell line is disclosed capable of allowing efficient amplification of primary HIV. A method is further disclosed wherein the cell line contains a gene that can be expressed in response to infection of the virus.
A method is further disclosed for producing an immunodeficiency virus infection sensitive clonal cells, the method including selecting a cell line expressing CCR5,
CXCR4 and CD4, thereafter transducing the cell line with a gene vector encoding for a marker gene such as luciferase such that marker gene expression correlates to the magnitude of immunodeficiency virus binding by said cell line and establishing sensitive clonal cells therefrom. The present invention finds utility as a method for detecting, isolating and analyzing primary HIV by infecting a cell line of the present invention with a quantity of virus and after some time measuring marker gene expression.
Practicing the method of the present invention for determining immunodeficiency virus titer and conducting the presence of a drug candidate indicates the sensitivity of a given strain, type, species or genus of virus to the given drug candidate. The present invention affords the ability to test virus derived from blood plasma as well as cell culture. Description of the Invention
The use of an immortalized cell line to detect and analyze primary HIV other than PBMC offers numerous advantages which are exploited to develop a novel assay. Currently, one of the major limitations is that immortalized cell lines are refractory to primary HIV. The expression of CCR5 in an immortalized cell line significantly enhances the detection of primary HIV-1. The ability to detect primary isolates of HIV-1 with greater sensitivity than currently possible is an aspect of the present invention. Unlike previous assays, the present invention provides for: (1) the sampling and analysis of a representative population of viruses that comprise primary HIV-1; (2) the analysis of a significantly greater proportion of virus; and (3) high throughput testing, via miniaturization and sampling of small sample volumes.
Most prior art molecular clones of HIV-1 have been derived by tissue culture methods that select for viruses that do not require CCR5 co-receptor for infection, herein defined as T-tropic viruses. Such clones are not able to infect monocytes and macrophages. The term "T-trophic virus" is intended herein to define a phenotype of an immunodeficiency virus capable of infecting a T-cell by binding the CD4 receptor on the T-cell. The term "macrophage trophic virus" is intended to mean a phenotype of an immunodeficiency virus capable of infecting a macrophage by binding the CCR5 co-receptor on the macrophage. This difference in tropism has been mapped to the viral env gene. The SG3 (S.K. Ghosh et al. 1993, Virology 194:858-864) and NL43 (W. Paxton et al. 1993, J. Virol. 67:7229-7237) strains of HIV-1 are derived by extensive passage in tissue culture. They represent T-cell tropic viruses and do not infect monocytes and macrophages. These viruses are not representative of the complex mixtures of viruses that exit in infected individuals. Primary HIV-1 represent virus that is derived directly from the blood of an HIV infected individual. Primary HIV can also be derived by short term culture in vitro culture in primary peripheral blood mononuclear cells (PBMC). Primary HIV can also be derived using the cell line of this invention. Such isolates are complex mixtures and may contain macrophage- and/or T-tropic viruses. During the natural history/progression of HIV-1 infection there is generally a shift from a population of macrophage-tropic toward one of T-tropic viruses. T-cell tropic viruses are able to infect cells that express CD4 and CXCR4, while macrophage tropic (M-tropic) viruses also require expression of the CCR5 chemokine co-receptor. Most HIV-2 and SIV viruses also require the CCR5. Several groups have produced cell lines that express CD4, CXCR4 and CCR5 in attempts to render them sensitive to infection with primary HIV-1 (both T-cell and macrophage tropic viruses). Only recently have such cell lines been derived which appear to be susceptible to infection with diverse HIV-1 isolates (Platt et al., J. Virol. 72:2855, 1988; Overbaugh et al., J. Virol. 71 :3932, 1997). As used herein, "primary HIV" is defined as HTV derived directly from an infected host organism from sources such as blood, plasma, PBMC, CSF and other tissues.
As used herein, "immunodeficiency virus" is defined as various strains and stocks of HIV-1, HIV-2, SIV and lentiviruses.
As used herein, "minor population" is defined as a titer of a given viral strain, type or species or genus that constitutes less than 10% of the total quantity of virus present obtained from a host culture or organism.
As used herein, "major population" is defined as the numerically dominant viral strain, type, species or genus of a viral titer obtained from a host culture or organism.
As used herein, "drug sensitivity" is defined as the effectiveness of a drug to inhibit HIV replication and/or expression with a host cell, the term is used synonymously with "drug resistivity." By making genetic modifications to a CCR5 or CD4 expressing cell line, the present invention represents is an efficient method for analyzing the drug sensitivity properties of primary HIV, such as HIV-1.
Figure 1 is a schematic block diagram illustrating a generalized sequence of steps in creating an assay for measuring HIV-1 drug sensitivity according to the present invention. The creation of a cell based assay of the present invention involves a series of steps. Initially, a vector is constructed for the purpose of transducing mammalian cells with a marker gene. Such a marker gene transduction plasmids bring the marker gene expression under the regulation of an immunodeficiency virus 10. Preferably, the marker gene vector is placed under the control of HIV-1 or HIV-2 long terminal repeats (LTRs) and the Rev responsive element (RRE). The marker genes illustratively including β-gal, luciferase, GFP, CAT and other fluorescent proteins. Preferably, the marker gene is luciferase. CD4 positive cells are then transduced with the vector in order to confirm appropriate marker gene expression from the transduction vectors 20. Preferably, the cells are CD4, CCR5, CXCR4 positive. It is appreciated that an amplicon gene is readily substituted for a marker gene to induce amplification of viral stocks (not shown). Preferably, the amplicon gene is Tat. Clones of the stable CD4 positive cell line are established 30. A stable
CD4 positive cell line is selected for low marker background expression levels 40. Preferably, the marker gene is luciferase. An immortalized cell line 15 is positive for CCR5, CD4 and CXCR4 receptors and optionally other receptors illustratively including CCR3, CCR2B and T-lymphocyte expressed 7 transmembrane domain receptor. Preferably, the origin cell line is HeLa. More preferably, the cell line is J53 (Oregon Health Sciences University) or a cell line that naturally expresses CD4, CCR5 and CXCR4. The cells of immortalized cell line 15 are then tested for sensitivity to HIV-1 infection 25. Expansion of highly sensitive cells to HIV-1 infection 35. The clone of 40 is used to transduce 50 the highly sensitive immortalized cell line of 35. Preferably, the receptor is selected to create a cell which is highly sensitive to infection by HIV-1 isolates. Clones established from this second transduction are both highly sensitive to infection with primary HIV- 1 isolates and express low background levels of the marker gene product in the absence of HIV-1 60. Those clones which are positive for the marker gene are identified 70. Such positive clones 70 have utility to promote HIV production upon transduction with Tat 75. HIV primary virus stock production is exploited herein to selectively enrich drug resistant minor HIV strains infecting a host 85.
Infection of the clones expressing low background levels of at least two markers such as β-gal and luciferase with HIV-1 confirms the relationship between infectious viral units and marker gene (luciferase) activity 80, although in practice expression of a single marker gene is operative herein. Clones that relate infectious virus units, such as β-gal, with a second marker gene activity such as luciferase find utility in the measurement of HIV co-receptor utilization (not shown). The cells capable of expressing marker genes in response to HIV infection are optionally used to measure viral sensitivity in the presence of a drug 90. Drug resistance to various pharmaceutical during viral life cycle events such as envelop formation 92, reverse transcription 94 and proteo lysis 96 is optionally determined. The measurement of viral sensitivity finds utility in HIV viral target resistance analysis 98. The resulting composition of clones in a suitable medium is amenable for use to quantify HIV-1 titer. The present invention also finds utility in quantifying the drug sensitivity of particular HIV-1 phenotypes. It is appreciated that the present invention is applicable to use with immunodeficiency viruses other than the representative HIV-1. By transducing a cell line to express co-receptors adapted for binding an immunodeficiency virus, a variety of viruses may be assayed with the present invention. The present invention pertains to cell lines that are capable of detecting sensitivity of a given strain of HIV to inhibitors that act upon various stages of the virus life cycle by monitoring the effect various drugs have on early viral life cycle stages such as reverse transcription, integration and envelop mediated receptor binding, envelope fusion, as well as the late life cycle stages complexes such as proteolysis and Gag complex formation. A method and a kit are provided for monitoring the major and minor virus populations infecting a given host. Through the enrichment and detection of minor drug resistant virus populations and the sensitivity of those populations to viral inhibitors, the assay is well suited for determining specific anti-retroviral drugs suited to contain replication of the various HIV strains infecting a given host. Such a tailored therapeutic protocol is more effective in inhibiting viral amplification and/or reduces pharmacological side effects. In particular, the J53 Tat cell line is well suited to detect sensitivity of a host's particular viral infection to inhibit or affect the various stages of the virus life cycle. The present invention provides more rapid viral amplification as compared to conventional PBMC cells thereby allowing more rapid amplification, with fewer cycles of reverse transcription. Further applications of the present invention include measurement of HIV attributes of co-receptor utilization, antibody neutralization, isolation, titration, gene sequencing, and CTL assays. The present invention also provides a method for detection of primary HTV from plasma, including noninfectious HIV-1 found in plasma. A loss of viral infectivity is due in part to a loss of env or env blocking. VSV-G serves to mediate infection of HIV-1 particles and thus, in the absence of VSV-G the virus remains noninfectious, whereas in its presence infectivity is complemented.
It is appreciated that in addition to VSV-G other infectivity complements are also operative herein including adenovirus, liposome, monoclonal antibody and other vectors to complement noninfectious HIV.
The methods and indicator cell lines of the present invention are operative to analyze drug sensitivity of primary HIV which has been purified and taken directly from infected host plasma.
To directly analyze the relationship between luciferase expression and infectious virus units, a series of gene transfer plasmids are constructed to express luciferase, β-galactosidase (β-gal), and green fluorescence protein (GFP), respectively, β-gal, GFP, and luciferase (luf) are placed under control of the HIV-
1 or HIV-2 long terminal repeats (LTR), and the Rev Responsive Element (RRE).
Figures 2A through 2E illustrate the different gene transfer expression plasmids that are constructed. The β-gal and GFP markers allow for direct enumeration of the number of infectious virus units as infected cells by counting under a microscope. The luciferase marker allows for sensitive and high throughput quantitation of HIV infection. In the present invention the requirement of Tat and
Rev for marker gene expression is different from previous work in that it allows for highly regulated and decreased background level expression of the marker gene. This is particularly important for luciferase.
The J53BL cell line or its functional equivalents are operative in accordance with the present invention. It is appreciated that the nucleic acid sequences coding for CCR5, CXCR4, CD4, luciferase, β-galactosidase, GFP, CAT, Tat and the J53 cell line as a whole can be altered by substitutions, additions or deletions that provide for functionally equivalent cells. As used herein, "functional equivalency" is defined to mean a nucleic acid sequence which encodes for a product that performs operationally within the present invention with at least half the effectiveness of the product derived from the unaltered nucleic acid sequence of a receptor, amplicon, marker gene or cell line. Due to the degeneracy of nucleotide coding sequences, other DNA sequences which encode substantially the same receptor amino acid sequences, cell line amino acid sequences, marker gene sequences and amplicon sequences may be used in the practice of the present invention. These include but are not limited to nucleotide sequences which are altered by the substitution of different codons that encode a functionally equivalent amino acid residue within the sequence thus producing a silent change. Likewise, receptor, marker, amplicon and cell lines proteins or fragments or derivatives thereof of the present invention include, but are not limited to, those containing as a primary amino acid sequence all or part of the amino acid sequence of the sequences for CCR5, CXCR4, CD4, luciferase, β- galactosidase, GFP, CAT, Tat and J53 sequences including altered sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a silent change. For example, one or more amino acid residues within a sequence are optionally substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent alteration. Substitutes for an amino acid within a sequence may be selected from other members of a class to which the amino acid belongs. For example, non- polar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. Polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine.
Negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Also included within the scope of the present invention are proteins or fragments or derivatives associated with J53BL which are differentially modified during or after translation by operations such as glycosilation, proteolytic cleavage and linkage to an antibody or other cellular ligand.
Example 1 - Generation of transduction vectors for the delivery of marker genes.
In order to generate vector stocks for transduction with the different reporter genes, the β-gal, GFP and luciferase gene transfer plasmids, including those containing the HIV-2 LTR (shown in Figure 2), are separately transfected into cultures of 293T cell together with a lentiviral-based packaging plasmid
(pCMV-GPl), and the pCMV-VSV-G env plasmid (Figure 3). Forty-eight hours later, the vector-containing culture supernatants are harvested, clarified by low- speed centrifugation, filtered through 0.45 micron filters, analyzed for HIV-1 p24 core antigen concentration by ELISA, aliquoted, and cryopreserved as stocks. Four serial five- fold dilutions (normalized for p24 antigen concentration) of the stocks are prepared and used to infect replica cultures of HIV-HeLa cell. The HIV-HeLa cells contained an integrated HIV-1 pro virus that is defective in vpr and env, and produces the Tat and Rev protein for transactivating marker gene expression. Two days after infection of the HIV-HeLa cells with the different
vector stocks, β-gal and GFP expression is quantified using a microscope to count
the number of positive cells/well. Luciferase expression is measured using standard assay methods (Promega) and a luminometer. Figures 4A and 4B show the relationship between concentration (HIV-1 p24 antigen, Coulter Inc.) of the
vector stocks and infectious units as determined with β-gal and GFP, (virus
infectious units) or luciferase activity.
Example 2 - Generation of β-gal, luciferase and GFP indicator cell lines to quantify HIV/SIV infection. The following pairs of vector stocks (derived as described above) are used
to co-transduce cultures of HeLa-CD4 cells: (a) pluf + pβ-gal, (b) pluf + pLTR2-
β-gal, (c) pluf + pGFP, (d) pluf + pLTR2-GFP, (e) pLTR2-luf + pβ-gal, (f)
pLTR2-luf + pLTR-2β-gal, (g) pLTR2-luf + pGFP, (h) pLTR2-luf + pLTR2-GFP. Three days later, the cells are biologically cloned by limiting dilution in 48 well plates. Wells containing clonal cells (confirmed after initial plating by
microscopy) are expanded into replica cultures. One replica culture set is infected
with HIV-1/SG3 and analyzed for marker gene expression (HIV-1 infection provided Tat and Rev to activate marker gene expression) as described above.
Expression positive cells cultures are identified, expanded and cryopreserved.
Since the expression of relatively few molecules of luciferase produces
substantial luciferase activity levels, 36 non-HIV-1 infected, luciferase expression- positive clonal cultures (derived from HeLa-CD4 cells transduced with pluf + pβ- gal) are analyzed for luciferase activity to determine basal background expression levels. The HeLa-CD4 cells being obtained from the AIDS Research and Reference Reagent Repository of NTH. Of the 36 clones analyzed, luciferase activity ranged from 15 to 250 units. Analysis for β-gal expression in response to HIV-1 infection indicated approximately 70% of the clones expressed both β- gal and luciferase. The two clones (referred to as HeLa-β-gal-lufl, and HeLa-β- gal-luf2) that exhibited the lowest background levels of luciferase expression and are positive for β-gal expression are used to directly analyze the relationship between HIV-1 infectious units and luciferase activity. Serial dilutions of two different HIV-1 strains (HIV-1/SG3 and HIV-1/NL43) are normalized for p24 antigen concentration and used to infect replica cultures of HeLa-β-gal-lufl, and HeLa-β-gal-luf2. After 48 hours, one set of cultures is analyzed for luciferase activity and the other was analyzed for β-gal. Figure 5 shows the relationship between HIV-1 infectious units (β-gal positive cells) and luciferase activity for the HeLa-β-gal-lufl cell line. The HeLa-β-gal-luf2 cell line gave nearly identical results with slightly higher luciferase activity levels at the lower virus inoculums. Between approximately 10 and 10,000 virus infectious units. A near- linear relationship to luciferase activity is shown in Figure 5. The linear range of detection using the luciferase marker in Figure 5 is approximately 3 orders of magnitude, and as few as 10-20 infected cells out of approximately 100,000 can generate a virus-positive (above background) result. As referred to herein "near linear" is intended to mean an increase in marker activity, A proportional to an increase in the surrounding virus infectious unit concentration, IU such that A=n(ιU)1±x + b where n is a real number; x is a real number between 0 and 0.5; b is the measured background level of marker expression in the absence of virus; for at least 2 orders of magnitude of IU. This dynamic range allows for quantitative analysis of virus infection from approximately 10 to 10000 infectious units, thereby reducing the necessity of dilution of virus in order to generate quantitative
data.
Example 3 - Sensitive detection of HIV-1 primary viruses using β-gal and luciferase reporter genes.
The present invention utilizes a combination of a reporter assay system for
sensitively and rapidly quantifying infectious HIV-1 over a wide linear range with a cell line which is highly sensitive to infection with both M-tropic and T-cell
tropic viruses. Transduction of the CD4-CCR5 positive J53 cell clone (Dr. David
Kabat, Oregon Health Sciences University, Portland, Oregon) with the pluf and pβ-gal expression vectors as described above. The pluf and pβ-gal transduced J53
cells (termed J53-βgal luf) are infected with six different virus isolates (using four five- fold serial dilutions) that were unable to efficiently infect other CD4, CXCR4
expressing cell lines (P4 or Hi5) or a CD4, CXCR4 expressing cell line (MAGI)
(see Table 2). Table 1 shows that all viruses, including the macrophage tropic
YU2 clone, included as a control, are highly infectious in the J53β-gal/luf cell
line.
To assess the relationship between infectious virus units and luciferase
activity in the J53β-gal/luf cell line, four serial five-fold dilutions of the following
viruses are prepared and analyzed: TIVI, WIMI, KIWE and YU2. Between approximately 100 to 10,000 infectious units, the data show a linear relationship with luciferase activity (Figure 6). Background levels of luciferase are between 100 and 150. The J53β-gal/luf cell line represents a transduced population of cells since integration of the transduction vector into the genome of the J53 cells can occur differently in each cell.
To minimize luciferase background levels of non HIV induced expression and thus maximize sensitivity using luciferase as a reporter for HIV infection, cultures of single cell clones are derived from the J53β-gal/luf cell line as described above and characterized for luf and β-gal expression in response to HIV-1 infection. Ten clones expressing between 17 and 750 luf activity are selected for analysis. Clone number 13, termed J53-C13, is confirmed to express both luciferase and β-gal, and is used for subsequent analysis as described below. Stocks of twenty different HIV-1 isolates are obtained from HIV-1 infected individuals by standard coculture techniques. Each stock is analyzed for HIV-1 p24 antigen concentration, SI and NSI phenotype, and infectivity in HeLa-CD4 (MAGI), HeLa-CD4-CCR5 (P4), H9 CD4-CCR5 (Hi5), and HeLa-CD4-CCR5 (J53-C13) cells. These results are summarized in Table 2. These results show that the J53-C 13 cell line is sensitive to primary HIV- 1.
Importantly, the J53-C13 cell line is sensitive to HIV-1 infection to a degree similar to PBMC. To confirm the importance of the CCR5 co-receptor for this level of sensitivity, the JC11 cell line is analyzed for comparison. JC11 is the parental cell line to J53-C13. It expresses equal amounts of CD4 and CXCR4 but is negative for CCR5. JC11 is transduced to express b-gal and luciferase, and positive cells are biologically cloned exactly as described above for J53-C13. A clone designated Jl 1-C5, which is capable of expressing both b-gal and designated Jl 1-C5, which is capable of expressing both b-gal and luciferase, is selected for comparison with J53-C13. Both cell lines are infected with primary virus isolates and molecularly cloned virus including YU2, SG3, and 89.6 (a dual tropic clone).
Table 4 shows the titer of each virus in the J53-C13 and Jl 1-C5 cell lines. The
results show a marked reduction in virus titer in the Jl 1-C5 cell line, indicating that the CCR5 co-receptor is necessary for efficient infection/detection of primary
virus isolates.
To analyze the relationship between luciferase and β-gal expression over a range of different virus concentrations, 5-fold serial dilutions are prepared from
seven different virus stocks and used to infect J53-C13 cells. After two days the
number of β-gal positive cells and luciferase activity is determined. Figure 7
shows a strong correlation (r=0.92) between β-gal positivity (infectious virus units) and luciferase activity over 2 orders of magnitude.
Example 4 - Evaluation of primary HIV-1 isolates for drug sensitivity/resistance using the J53β-gal/luf (J51-C13) cell line. HIV-1 isolates are derived by PBMC coculture from two different HIV-1
infected patients (LEMI and S ARO) receiving anti-retroviral treatment. The RT
sequence of each isolate is analyzed for nucleic acid sequence using ABI sequencing methods. Known drug resistance conferring mutations found in the
LEMI and SARO RT sequences are shown in Table 3. The LEMI and SARO and
YU2 (included as a control) virus stocks are used to infect the J53-C13 reporter
cell line in the presence of AZT, 3TC and Nevaripine (NVP), respectively. Two days after infection the cells are lysed and the clarified lysates are examined for luciferase activity using standard methods (Promega). Figure 8 shows the effect of different concentrations of drug on virus replication relative to non-drug treated
viruses - as determined by luciferase activity as an indicator.
A major problem with existing methods for evaluating HIV-1 drug sensitivity is that differences in virus inoculum can have significant effects on the
IC50 for a given drug. That is, as the infectious dose of virus is increased, the
concentration of drug that inhibits virus replication by 50% is increased. This factor has made drug sensitivity testing extremely difficult to standardize among
independent laboratories. J53-C13 cells are infected with 100, 500, and 2500 infectious units of virus and analyzed for drug sensitivity as described above.
Figure 9 shows the results for drug sensitivity to AZT. There is no significant
shift in the IC50 among the different drug concentrations tested. Analysis of 3TC
and Nevaripine showed similar results (data not shown).
Example 5 - Generation of a Tat expressing cell line to rapidly amplify virus production from infected cells. The amplification of primary virus from infected individuals is required
for phenotypic resistance in assays that test whole virus. Currently, the only
effective means by which this can be accomplished is by culture of infected tissue
with donor PBMC. The present invention confirms that the JC53 and the J53-C13 cell lines are highly sensitive to infection of primary virus isolates. Thus, these
cell lines may be utilized to amplify the primary virus isolate instead of PBMC.
To this end, JC53 cells are transduced with the HIV Tat gene under control of the CMV, or LTR promoter, as shown in Figure 10. To eliminate Tat transactivation
of the lentivirus vector LTR, Tat is constructed into a self-deleting U3 transduction vector, Figure 10. Three days after transduction, single cells are cloned and 33 are identified to be Tat expression positive, 10 containing LTR-2 as a promoter and 23 containing CMV as a promoter for Tat expression. To
identify which of these clones could most efficiently promote HIV-1 replication,
HIV-1 YU2 is used for infection at an MOI=0.01. After 40 hrs. virus production
is measured by HIV-1 p24 antigen ELISA and the highest HIV-1 producing lines from each are selected for further analysis. The highest HIV-1 producer,
designated J53-CMVtat is infected with the YU2 clone and the KEWI virus isolate
at MOIs of approximately 0.1. As a control, the JC53 cell line is analyzed in a
parallel experiment. 40 hrs. later culture supernatants are analyzed for HIV-1 production by p24 antigen ELISA. The results, shown in Table 5, indicate that the
Tat expressing cell lines causes a 4-6-fold increase in HIV-1 replication.
Example 6 - The use of CD4/CCR5/CXCR4 + Tat expressing cell line to capture and amplify primary virus.
The J53tat cell line is compared with PBMC for primary virus
amplification. PBMC and J53tat are each infected with 2.5E5 infective particles of YU2. Two days later the concentration of progeny virus is analyzed for
infectivity in J53BL indicator cells as shown in Figure 11(a) and by p24 antigen
ELISA, as shown in Figure 11(b). The J53tat cell line amplifies primary virus to
higher titers and more rapidly than PBMC. Since the parental J53BL cell line is
highly sensitive to primary virus, Tat facilitates the rapid generation of high titered primary virus stocks for resistance testing without selection of longer term culture, such as PBMC culture for virus amplification. Example 7 - Detection of drug resistance/sensitivity that effect various stages of virus life cycle.
The J53tat cell line is used to produce virus and thereby enable viral testing
of drug candidates that affect various stages of the virus life cycle. Thus, viral drug resistance mutations in early stage targets such as reverse transcriptase (RT), integrase (IN) and env; and late stage targets such as protease and Gag are
analyzed by the methods of the present invention. The J53tat cells are infected
with HIV YU2 (MOI of either 0.2 or 0.04), and protease inhibitor (indinavir) is added to the cultures at various concentrations. Forty hours after infection the culture supernatant is collected and used to infect the J53BL cell line in the
presence of the same drug concentrations. Table 6 shows that YU2 is sensitive to
protease inhibitor, with increasing concentrations causing greater inhibition.
Example 8 - Detection of noninfectious cultured virus.
To test how to recover noninfectious virus, a molecular clone is generated
to produce env minus HTV-1 (pSG3-env). SG3-env virus, derived by transfection,
is mixed (1 :2, v:v) with VSV-G derived from the supernatant of pDm transfected
293T cell cultures. The mixture is ultracentrifuged for 1.5 hours at 115,000g at
4°C. The pellet is resuspended in 100 ul DMEM. The infectivity is then determined using J53BL cells. The infectivity is determined to be 7.5E4. Without
mixing of VSV-G the infectivity is 0.
YU2 virus containing wild-type envelope is pelleted through sucrose by
ultracentrifugation to strip away the gpl20 glycoprotein (SU). The resuspended (100 ul) virus is mixed with and without VSG-G (1:1) and repelleted by ultracentrifugation (150,000g, 2 hours, 4°C). The pellets are resuspended in 100 ul DMEM, and the infectious units are determined using J53BL cell summarized as in Table 7. Virus pelleted through sucrose is noninfectious. Virus pelleted
through sucrose, mixed with VSV-G and repelleted had a marked increase in
infectivity. The recovery in infectivity is approximately 20% compared with the
original virus stock.
Example 9 - Detection of noninfectious plasma virus.
Patient plasma (GADA) is mixed with and without VSV-G, pelleted
through sucrose, resuspended in 100 ul DMEM as per Example 10. Infectivity is
measured using J53BL cells. Without VSV-G 1500 infectious particles are
detected. With VSV-G 2500 infectious particles are detected as summarized in
Table 7.
Example 10 - Detection of plasma virus using CD4/
CCR5/CXCR4 or CD4/CCR5/CXCR4 + Tat expressing cell line to capture and amplify primary virus. Plasma from patients infected with HIV-1 is tested for the presence of
infectious virus in the plasma towards J53BL cells. Three serial dilutions of plasma are incubated with J53BL cell line for 4 hours. Three days later the cells
are stained for β-gal and infectious units are counted by microscopy as
summarized in Table 8. Example 11 - Integrated HIV genome expansion with limited rounds of reverse transcription.
HIV is incubated with J53BL cell line for four hours to allow binding and entry into J53BL cells, reverse transcription proceeds and the viral cDNA is
integrated into the chromosomes of J53BL cells. Thereafter, HIV replication is suppressed through expression of an inhibitor of viral gene expression, such as the rev inhibitor, rev mlO by conventional techniques. The HIV genome is expanded as J53BL cells divide and increase in number, without further rounds of reverse transcription. The increased copy numbers of the viral genome are purified and sequenced. By relieving the inhibitory effect on rev, viral gene expression will return to normal in the expanded cells, and virus can be analyzed.
Based on the description and examples of the present invention, it is appreciated that modifications of the present invention will be apparent to one skilled in the art of the present invention. Such modifications are intended to fall within the scope of the appended claims. All references cited herein are intended to be incorporated to the same extent as if each reference was individually incorporated by reference.
Table 1. Efficient HIV-1 infection of a CD4 CCR5 expressing HeLa cell line.
HIV-1 isolates were derived by coculture (7-10 days) of HIV-1 infected patient PBMC with PHA stimulated normal donor BPMC.
Virus titer - determined by endpoint dilution titration in PBMC, calculated by the Spearman-Karber Formula (TCID 50/ml)
Virus titer - determined by counting the number of virus infected (blue) HeLa-CD4-CCR5-β-gal indicator cells (J53-C16).
Table 3. RT resistance conferring mutations
Table 4. CCR5 facilitates infection of primary isolates of HIV-1
Virus Stock J53-C13 titer J11-C5 titer
DBP D-7 6.30E+04 Neg.
DBP dl40 1.20E+04 4.00E+01
HVH D-7 6.10E+04 1.10E+04
HVH D140 6.80E+04 1.00E+03
SHL D-7 6.00E+04 Neg.
SHL D140 7.70E+04 Neg.
TED D127 1.30E+05 Neg.
TED D211 3.20E+04 Neg.
XHB2 1.75E+05 Neg.
YU2 4.85E+05 7.50E+04
89.6 1.40E+05 Neg.
Virus titer was determined by counting the # of beta-gal positive cells. Results indicate infection positive cells per ml of stock virus. Neg. (negative) titers were undetectable below 40 infectious units per ml.
Table 5. Trans Tat expression enhances HIV-1 production
Virus JC53 JC53-CMVtat
Exp 1. Exp. 2 Exp. 1 Exp. 2
YU2 1240 920 6430 4910 KEWI 3120 2760 9590 7590
Nos. represent pg of p24 antigen per ml.
Table 6. Number of colony formed in the presence of protease Inhibitor Indinavir
Table 7
Table 8. Detection/Isolation of HIV-1 from human plasma using J53BL cells
Plasma virus TCIU/PBMC TCIU/J53 BL
LEMI 3.47xl03/m 4.40xl03/ml
ALPI 3.47xl03/m 1.20xl04/ml
GADA 7.81 x 103/ml 1.20xl04/ml
TCIU = tissue culture infectious units

Claims

Claims 1. An assay for primary HIV comprising: a cell line that expresses CCR5, CXCR4 and CD4 receptors and a marker gene, said receptors adapted to bind and facilitate entry of said primary HIV into cells at said cell line, wherein marker gene expression indicates HIV infection.
2. The assay of claim 1 wherein said cell line is immortal.
3. The assay of claim 1 wherein said cell line originates from HeLa.
4. The assay of claim 1 wherein said marker gene encodes luciferase.
5. The assay of claim 1 wherein said marker gene encodes a fluorescence protein.
6. The assay of claim 1 further comprising an amplicon gene, wherein the expression of said amplicon gene increases primary HIV production.
7. The assay of claim 6 wherein said amplicon gene facilitates the production of drug resistant minor species of primary HIV.
8. The assay of claim 6 wherein said amplicon gene is Tat.
9. The assay of claim 1 wherein marker gene expression is in near linear quantities to HIV infection of cells of said cell line over at least two orders of magnitude.
10. The assay of claim 1 wherein said immortalized cell line is J53tat.
11. The assay of claim 1 wherein said immortalized cell line is J53BL.
12. The assay of claim 1 for the measurement of HIV attributes selected from the group consisting of: co-receptor utilization, drug sensitivity, antibody neutralization, isolation and titration.
13. A composition comprising: an immortalized cell line having receptors for binding a primary HIV and having a marker gene expressed in response to binding of HIV, wherein marker gene expression correlates to the magnitude of virus binding to said receptors and entry into cells of said cell line.
14. The composition of claim 13 further comprising primary HIV within cells of said cell line.
. 15. The composition of claim 13 wherein said immunodeficiency virus is a primary virus, said primary virus being amplified in less than three days to create a virus stock.
16. The composition of claim 13 wherein said immortalized cell line is J53tat and functional equivalents thereof.
17. The composition of claim 13 wherein said immortalized cell line is J53BL and functional equivalents thereof.
18. A method for producing primary HIV infection sensitive clonal cells, comprising the steps of: selecting a cell line expressing CCR5, CXCR4 and CD4 receptors; transducing said cell line with a gene vector encoding for luciferase such that luciferase expression correlates to the magnitude of HIV infection of said cell line; and establishing said clonal cells.
19. A method of determining a primary HIV titer, comprising: infecting a cell line with a quantity of primary HIV, wherein said cell line expresses a marker gene product, CCR5, CXCR4 and CD4 receptors, wherein the marker gene product expression increases in response to said cell line infection with said quantity of HIV; allowing sufficient time for said quantity of HIV to bind and enter into said cell line; and measuring the marker gene expression.
20. A method of determining primary HIV phenotypic drug sensitivity, comprising the steps of: infecting a cell line with a quantity of primary HIV in the presence of a drug candidate; wherein said cell line expresses a marker gene product, CCR5, CXCR4 and CD4 receptors, wherein the marker gene product expression increases in response to said cell line infection with said quantity of HIV; allowing sufficient time for said primary HIV to bind and enter said cell line; and measuring the marker gene product in response to said quantity of primary HIV.
21. The method of claim 20 further comprising the step of infecting a second immortalized cell line with a quantity of HIV wherein said second cell line expresses an amplicon gene, CCR5, CXCR4 and CD4 receptors, wherein amplicon expression increases said quantity of HIV.
22. A method of amplifying primary HIV to create a virus stock comprising the steps of: infecting a cell line with a quantity of primary HIV; wherein said cell line expresses an amplicon gene, CCR5, CXCR4 and CD4 receptors, wherein the amplicon gene expression increases in response to said cell line infection with said quantity of HIV; allowing sufficient time for primary HIV to bind, enter and replicate in said cell line to form said virus stock; and isolating said virus stock.
23. The method of claim 22 further comprising the steps of: infecting a second cell line with a quantity of primary HIV in the presence of a drug candidate; wherein said second cell line expresses a marker gene product, CCR5, CXCR4 and CD4 receptors, wherein the marker gene product expression increases in response to said second cell line infection with said quantity of HIV; allowing sufficient time for said primary HIV to bind and enter said second cell line; and measuring the marker gene product in response to said quantity of primary HIV.
24. The method of claims 19, 20 or 22 wherein said primary HIV is HIV-1.
25. The method of claims 19 or 20 wherein said immortalized cell line is J53BL.
26. The method of claims 19 or 20 wherein said cell line expresses an amplicon.
27. The method of claim 26 wherein said amplicon is Tat.
28. The method of claims 19, 20 or 23 wherein the marker gene product is selected from the group consisting of: luciferase, ╬▓-galactosidase, green fluorescent protein and chloramphenicol acetyltransferase.
29. The method of claims 19, 20 or 22 wherein infecting said cell line with said quantity of immunodeficiency virus occurs in the presence of an infectivity complement.
30. The method of claim 29 wherein said infectivity complement is selected from a group consisting of VSV-G, adenovirus, liposome and monoclonal antibody.
31. The method of claims 18, 19, 20 or 22 wherein said quantity of virus is derived from blood plasma.
32. The method of claim 22 wherein said quantity of HIV comprises a major population and a minor population having a number ratio therebetween and the minor population is amplified to a greater extent than the major population so as to change the number ratio.
33. The method of claims 18, 19, 20 or 22 wherein said quantity of primary HIV is derived from cell culture.
34. The use of an infectivity complement in conjunction with the composition of claim 13.
35. The use of an infectivity complement in conjunction with the method of claims 18, 19, 20 or 22.
36. A cell-based assay according to claim 1 substantially as described herein in any of the examples.
EP99931859A 1998-06-23 1999-06-23 Cell-based assay for immunodeficiency virus infectivity and sensitivity Withdrawn EP1088108A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9031798P 1998-06-23 1998-06-23
US90317P 1998-06-23
PCT/US1999/014104 WO1999067429A1 (en) 1998-06-23 1999-06-23 Cell-based assay for immunodeficiency virus infectivity and sensitivity

Publications (2)

Publication Number Publication Date
EP1088108A1 true EP1088108A1 (en) 2001-04-04
EP1088108A4 EP1088108A4 (en) 2002-04-17

Family

ID=22222264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99931859A Withdrawn EP1088108A4 (en) 1998-06-23 1999-06-23 Cell-based assay for immunodeficiency virus infectivity and sensitivity

Country Status (4)

Country Link
EP (1) EP1088108A4 (en)
AU (1) AU4827899A (en)
CA (1) CA2331760A1 (en)
WO (1) WO1999067429A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025154A (en) 1995-06-06 2000-02-15 Human Genome Sciences, Inc. Polynucleotides encoding human G-protein chemokine receptor HDGNR10
US6461809B1 (en) 1996-10-15 2002-10-08 Bio-Tech Imaging, Inc Methods of improving infectivity of cells for viruses
US7344830B2 (en) 2000-09-26 2008-03-18 Health Research Inc. Heteroduplex tracking assay
US7718356B2 (en) 2000-09-26 2010-05-18 Health Research Inc. Heteroduplex tracking assay
WO2002027321A2 (en) * 2000-09-26 2002-04-04 Health Research Incorporated Analysis of hiv-1 coreceptor use in the clinical care of hiv-1-infected patients
CA2637600A1 (en) * 2006-01-17 2007-07-26 Health Research, Inc. Heteroduplex tracking assay

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000535A2 (en) * 1996-06-28 1998-01-08 Dana-Farber Cancer Institute Method for inhibiting hiv-1 infection, drug screens, and methods of diagnosis and prognosis of susceptibility to hiv infection
WO1999023107A1 (en) * 1997-10-31 1999-05-14 Maxygen, Incorporated Modification of virus tropism and host range by viral genome shuffling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0854918A1 (en) * 1996-01-30 1998-07-29 The National Institutes of Health Cells expressing both human cd4 and cxcr4

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000535A2 (en) * 1996-06-28 1998-01-08 Dana-Farber Cancer Institute Method for inhibiting hiv-1 infection, drug screens, and methods of diagnosis and prognosis of susceptibility to hiv infection
WO1999023107A1 (en) * 1997-10-31 1999-05-14 Maxygen, Incorporated Modification of virus tropism and host range by viral genome shuffling

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DEICHMANN MARTIN ET AL: "Expression of the human immunodeficiency virus type-1 coreceptors CXCR-4 (fusin, LESTR) and CKR-5 in CD34+ hematopoietic progenitor cells." BLOOD, vol. 89, no. 10, 1997, pages 3522-3528, XP002189343 ISSN: 0006-4971 *
D'SOUZA M P ET AL: "CHEMIKINES AND HIV-1 SECOND RECEPTORS" NATURE MEDICINE, NATURE PUBLISHING, CO, US, vol. 2, no. 12, 1 December 1996 (1996-12-01), pages 1293-1300, XP002068215 ISSN: 1078-8956 *
HASLER J M ET AL: "A RAPID QUANTITATIVE BIOASSAY BASED ON THE HUMAN IMMUNODEFICIENCY VIRUS TRANS-ACTIVATOR" AIDS RESEARCH AND HUMAN RETROVIRUSES, vol. 5, no. 5, 1989, pages 507-516, XP001056420 ISSN: 0889-2229 *
MOORE J P ET AL: "Co-receptors for HIV-1 entry" CURRENT OPINION IN IMMUNOLOGY, CURRENT BIOLOGY LTD, XX, vol. 9, no. 4, August 1997 (1997-08), pages 551-562, XP004313554 ISSN: 0952-7915 *
See also references of WO9967429A1 *
ZELLA DAVIDE ET AL: "Interferon-gamma increases expression of chemokine receptors CCR1, CCR3, and CCR5, but not CXCR4 in monocytoid U937 cells." BLOOD, vol. 91, no. 12, 15 June 1998 (1998-06-15), pages 4444-4450, XP002189344 ISSN: 0006-4971 *

Also Published As

Publication number Publication date
CA2331760A1 (en) 1999-12-29
WO1999067429A1 (en) 1999-12-29
AU4827899A (en) 2000-01-10
EP1088108A4 (en) 2002-04-17

Similar Documents

Publication Publication Date Title
Kader et al. α4+ β7hiCD4+ memory T cells harbor most Th-17 cells and are preferentially infected during acute SIV infection
Schneidewind et al. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication
Forshey et al. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication
Rullo et al. Persistence of an intact HIV reservoir in phenotypically naive T cells
McBreen et al. Infection of the CD45RA+ (naive) subset of peripheral CD8+ lymphocytes by human immunodeficiency virus type 1 in vivo
JP2003530889A (en) Viral vector for monitoring HIV drug resistance
Battivelli et al. Strain-specific differences in the impact of human TRIM5α, different TRIM5α alleles, and the inhibition of capsid-cyclophilin a interactions on the infectivity of HIV-1
Spenlehauer et al. A luciferase-reporter gene-expressing T-cell line facilitates neutralization and drug-sensitivity assays that use either R5 or X4 strains of human immunodeficiency virus type 1
Wu et al. Rev-dependent indicator T cell line
Bet et al. The HIV-1 antisense protein (ASP) induces CD8 T cell responses during chronic infection
US6900010B2 (en) Compositions and methods for detecting human immunodeficiency virus
Lohrengel et al. Determinants of human immunodeficiency virus type 1 resistance to membrane-anchored gp41-derived peptides
Mori et al. Quintuple deglycosylation mutant of simian immunodeficiency virus SIVmac239 in rhesus macaques: robust primary replication, tightly contained chronic infection, and elicitation of potent immunity against the parental wild-type strain
Toyoda et al. Differential ability of primary HIV-1 Nef isolates to downregulate HIV-1 entry receptors
Naarding et al. Development of a luciferase based viral inhibition assay to evaluate vaccine induced CD8 T-cell responses
AU777953B2 (en) Methods of monitoring HIV drug resistance
Song et al. Analysis of human cell heterokaryons demonstrates that target cell restriction of cyclosporine-resistant human immunodeficiency virus type 1 mutants is genetically dominant
Yeh et al. Compensatory substitutions restore normal core assembly in simian immunodeficiency virus isolates with Gag epitope cytotoxic T-lymphocyte escape mutations
US6797462B1 (en) Cell-based assay for immunodeficiency virus infectivity and sensitivity
WO1999067429A1 (en) Cell-based assay for immunodeficiency virus infectivity and sensitivity
Miller et al. Human immunodeficiency virus type 1 IIIB selected for replication in vivo exhibits increased envelope glycoproteins in virions without alteration in coreceptor usage: separation of in vivo replication from macrophage tropism
Dorsky et al. An indicator cell assay for T-cell tropic, macrophage-tropic, and primary isolates of HIV-1 based on green fluorescent protein
US20040106136A1 (en) Method for testing drug susceptibility of HIV
WO2001040447A1 (en) Hiv-1 protease inhibitor resistance assay
US20030181375A1 (en) Rapid phenotypic cell-based HIV assay

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20001222;LT PAYMENT 20001222;LV PAYMENT 20001222;MK PAYMENT 20001222;RO PAYMENT 20001222;SI PAYMENT 20001222

A4 Supplementary search report drawn up and despatched

Effective date: 20020306

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20031117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040328