EP1063485B1 - Vorrichtung und Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation - Google Patents

Vorrichtung und Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation Download PDF

Info

Publication number
EP1063485B1
EP1063485B1 EP00401768A EP00401768A EP1063485B1 EP 1063485 B1 EP1063485 B1 EP 1063485B1 EP 00401768 A EP00401768 A EP 00401768A EP 00401768 A EP00401768 A EP 00401768A EP 1063485 B1 EP1063485 B1 EP 1063485B1
Authority
EP
European Patent Office
Prior art keywords
pressure column
low
sent
column
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00401768A
Other languages
English (en)
French (fr)
Other versions
EP1063485A1 (de
Inventor
François De Bussy
Frédéric Judas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1063485A1 publication Critical patent/EP1063485A1/de
Application granted granted Critical
Publication of EP1063485B1 publication Critical patent/EP1063485B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"

Definitions

  • the invention proposed here relates to the field of gas distillation air and especially to a device and proceeds from air separation by cryogenic distillation. It improves the extraction efficiency of oxygen and so the energy performance on the patterns of distillation which does not ordinarily include a supply of liquefied air columns and whose cooling production is ensured by an air release (oil brake turbine, generator or auto-boosted).
  • the gains of this invention when it is implanted on an air separation unit are of 3.5% (see case below) in oxygen separation energy.
  • the basic distillation processes on which the invention can be used are processes that do not ordinarily involve feeding of liquid air in the distillation columns.
  • These basic processes are processes for separating gases from the air with air compression, pre-cooling of compressed air, air cleaning, cooling of air in a main exchanger, separation of air in a distillation column comprising at least one medium pressure column and a column low pressure and subcooling liquids coming in reflux of the medium pressure column to the low pressure column.
  • Double column (single cycle) producing low oxygen outlet pressure cold box.
  • An application case production of impure oxygen with medium pressure MP column and low pressure BP under pressure (recovery of the waste).
  • the loss of efficiency due to the reflux decline (more difficult distillation in the MP column) is sorely feel.
  • This invention will improve the efficiency in this case.
  • EP-A-0381319 discloses a column system in which an air flow rate vaporizes against a flow containing 95 vol.% oxygen.
  • US-A-5765396 relates to a conventional pump process in which a air flow condenses against liquid containing between 98 and 100 mol%.
  • US-A-5582035 and US-A-5291737 disclose separation methods of air with mixing column in which all the air enters the columns in gaseous form.
  • US-A-3754406 proposes to vaporize rich liquid from the column medium pressure of a double column against medium nitrogen gas pressure. Air is liquefied by heat exchange with liquid oxygen pumped and sent to the low pressure column.
  • an air separation apparatus according to claim 1.
  • At least partially condensed air sent to the Low pressure column is the only flow of liquefied air to the system of columns.
  • the apparatus comprises means for relaxing the air with production work before sending it to the second vaporizer-condenser and / or means to cool the air to its dew point before sending it to second vaporizer-condenser.
  • At least partially condensed air can be sent to the column low pressure and / or medium pressure column and / or other column of the column system.
  • the apparatus comprises a powered mixing column at the top by a rich oxygen liquid from the column tank-fed by a more volatile gas than the liquid rich in oxygen.
  • the low pressure column has no overhead condenser.
  • Gaseous air coming out of a turbine can be condensed into the second vaporizer / condenser against a part of the rich liquid coming out of the MP. This fraction of the latter vaporizes at the pressure of the BP and is then introduced into BP in a section under the rich liquid supply main.
  • the liquefied air is, for its part, introduced, for example, in the BP to a Intermediate section between the rich liquid and the poor liquid. (see diagram attached).
  • FIG. 1 is a diagram of an apparatus according to the prior art
  • FIG. 2 is a device diagram according to the invention.
  • an air flow rate of 5.25 bar is divided in two to form a flow 2 of 188135 Nm3 / h and a flow 81 of 12900 Nm3 / h.
  • Flow 2 is cools in exchanger 100 and is sent to the middle column vessel pressure 104.
  • the flow 81 is boosted to 8.7 bars, cooled partially in the exchanger 100 and relaxed in the insufflation turbine 103 before being sent in low pressure column 105.
  • the medium pressure column 104 operates at 5 bar and the low column pressure 105 operates at 1.3 bar.
  • the columns are thermally connected by a first condenser vaporizer 111.
  • the apparatus produces liquid oxygen 46 and liquid nitrogen 36.
  • rich liquid from the medium pressure column 104 is sent to the column low pressure 105 above the level of insufflation air.
  • Liquid oxygen 50 withdrawn into the bottom of the low pressure column is sent to the top of the mixing column 107 after being pumped to 5.1 bars.
  • a third air flow 90 cools completely in the exchanger 100 and feeds the mixing column into the tank.
  • a tank liquid 93 and optionally at least one intermediate liquid withdrawn from the column of mixture are sent to the low pressure column while a flow of oxygen containing 54 to 95 mol% oxygen is withdrawn at the top of the mixing column and warms up in exchanger 100 with 3100 Nm3 / h of medium nitrogen pressure and the low pressure residual.
  • the rich liquid 18 sent to the second vaporizer-condenser 109 constitutes 37% of the total flow of rich liquid and vaporizes in that one for then be sent to the low pressure column a few theoretical plateaus above the first vaporizer-condenser 111.
  • the apparatus may comprise an argon column or a pressure column intermediate between the medium and low pressures.
  • the frigories necessary for the apparatus can be produced by a Claude turbine or a nitrogen turbine or a combination of several turbines.
  • the low pressure column can contain at least two vaporizers condensers, the vessel vaporizer being supplied for example with nitrogen compressed.
  • the mixing column can operate at equal pressure, higher or less than average pressure.
  • a liquid coming from the apparatus and rich in nitrogen or oxygen can be pressurized, for example by a pump, and vaporized in the exchanger 100 or another exchanger, for example by heat exchange with air for supply a gaseous product under pressure.
  • the low pressure column can operate at a pressure between 1.5 and 10 bars. To produce oxygen directly under pressure, the column low pressure operates at between 4 and 10 bar.
  • Some of the air from the insufflation turbine can be sent to the mixing column.
  • the medium and low pressure columns can be built side by side side.
  • the process can allow gaseous oxygen production by drawing off a flow of gaseous oxygen in the bottom of the low pressure column.
  • the gas heats in the exchanger 100 and can optionally be compressed once warmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (13)

  1. Vorrichtung zur Luftzerlegung, umfassend ein System von Kolonnen, das mindestens eine Doppelkolonne umfasst, die eine Mitteldruckkolonne (104) und eine Niederdruckkolonne (105) umfasst, die thermisch miteinander verbunden sind über einen ersten Verdampfer-Kondensator (111), wo das Kopfgas der Mitteldruckkolonne kondensiert wird, Mittel, um gereinigte Druckluft einem Wärmetauscher (100) zuzuführen, wo sie abgekühlt wird, Mittel (2), um die abgekühlte Luft gasförmig der Mitteldruckkolonne zuzuführen, Mittel, um eine mit Sauerstoff angereicherte Flüssigkeit von der Mitteldruckkolonne der Niederdruckkolonne zuzuführen, wo sie durch Tieftemperaturrektifikation aufgetrennt wird, Mittel, um eine mit Stickstoff angereicherte Flüssigkeit von der Mitteldruckkolonne der Niederdruckkolonne zuzuführen, Mittel, um eine stickstoffreiche Flüssigkeit und eine sauerstoffreiche Flüssigkeit aus der Niederdruckkolonne abzuziehen, einen zweiten Verdampfer-Kondensator (109), Mittel (86), um Luft dem zweiten Verdampfer-Kondensator zuzuführen, wo sie zumindest teilweise kondensiert, und Mittel, um die mindestens teilweise kondensierte Luft der Niederdruckkolonne zuzuführen und wobei die mindestens teilweise kondensierte Luft, die der Niederdruckkolonne (104) zugeführt wird den einzigen Strom verflüssigter Luft umfasst, der dem Kolonnensystem zugeführt wird, wobei die Flüssigkeit, die dem zweiten Verdampfer-Kondensator zugeführt wird, von der Mitteldruckkolonne kommt, wobei die Anlage Mittel umfasst, um einen Teil der Sumpfflüssigkeit der Mitteldruckkolonne (104) direkt der Niederdruckkolonne (105) auf einer ersten Höhe zuzuführen, und einen anderen Teil (18) der Sumpfflüssigkeit der Mitteldruckkolonne dem zweiten Verdampfer-Kondensator (109) zuzuführen, und Mittel, um die im zweiten verdampfer-Kondensator verdampfte Flüssigkeit auf einer geringeren als der ersten Höhe der Niederdruckkolonne zuzuführen, wobei die Flüssigkeit (18), die dem zweiten Verdampfer-Kondensator zugeführt wird, zwischen 22 und 70 mol%, eventuell zwischen 22 und 35 mol% Sauerstoff enthält.
  2. Vorrichtung nach Anspruch 1, die Mittel (103) umfasst, um die Luft unter Arbeitsleistung zu entspannen, bevor sie dem zweiten Verdampfer-Kondensator (109) zugeführt wird.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche, die Mittel umfasst, um die Luft bis zum Taupunkt abzukühlen, bevor sie dem zweiten verdampfer-Kondensator (109) zugeführt wird.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, die eine Mischkolonne (107) umfasst, in die am Kopf eine sauerstoffreiche Flüssigkeit (50) eingespeist wird, die von der Niederdruckkolonne kommt, und in die im Sumpf ein Gas (90) eingespeist wird, das flüchtiger ist als die sauerstoffreiche Flüssigkeit.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, die Mittel (30) umfasst, um ein stickstoffreiches Gas am Kopf der Mitteldruckkolonne abzuziehen.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Niederdruckkolonne keinen Kopfkondensator hat.
  7. Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation in einer Vorrichtung, die mindestens eine Doppelkolonne mit einer Mitteldruckkolonne (104) und einer Niederdruckkolonne (105) umfasst, die thermisch miteinander durch einen ersten Verdampfer-Kondensator (111) verbunden sind, wobei ein gereinigter, abgekühlter Druckluftstrom (2) gasförmig der Mitteldruckkolonne zugeführt wird, eine mit Sauerstoff angereicherte Flüssigkeit von der Mitteldruckkolonne der Niederdruckkolonne zugeführt wird, wo sie durch Tieftemperaturrektifikation aufgetrennt wird, eine mit Stickstoff angereicherte Flüssigkeit von der Mitteldruckkolonne der Niederdruckkolonne zugeführt wird, eine sauerstoffreiche Flüssigkeit und eine stickstoffreiche Flüssigkeit aus der Niederdruckkolonne abgezogen werden, ein zweiter gereinigter und abgekühlter Druckluftstrom (86) einem zweiten Verdampfer-Kondensator (109) zugeführt wird, wo er zumindest teilweise kondensiert durch Wärmeaustausch mit einer Flüssigkeit (18), die aus der Mitteldruckkolonne (104) kommt, die mindestens teilweise kondensierte Luft der Niederdruckkolonne zugeführt wird, wobei die Flüssigkeit (18), die dem zweiten Verdampfer-Kondensator zugeführt wird, zwischen 22 und 70 mol% Sauerstoff enthält, eventuell zwischen 22 und 35 mol% Sauerstoff, wobei die im zweiten Verdampfer-Kondensator verflüssigte Luft den einzigen Strom verflüssigter Luft darstellt, der dem Kolonnensystem zugeführt wird, wobei ein Teil der Sumpfflüssigkeit der Mitteldruckkolonne direkt der Niederdruckkolonne auf einer ersten Höhe zugeführt wird, wobei ein anderer Teil der Sumpfflüssigkeit dem zweiten verdampfer-Kondensator zugeführt wird, wo sie verdampft, und die verdampfte Flüssigkeit der Niederdruckkolonne auf einer geringeren als der ersten Höhe zugeführt wird.
  8. Verfahren nach Anspruch 7, wobei der zweite Strom in einer Turbine (103) entspannt wird, bevor mindestens ein Teil davon dem zweiten Verdampfer-Kondensator (109) zugeführt wird.
  9. Verfahren nach Anspruch 7 oder 8, wobei eine sauerstoffreiche Flüssigkeit (50), die von der Niederdruckkolonne kommt, einer Mischkolonne (109) am Kopf zugeführt wird, und ein Gas (90), das flüchtiger ist als die Flüssigkeit, dem Sumpf der Mischkolonne (107) zugeführt wird.
  10. Verfahren nach Anspruch 7,8 oder 9, wobei vom Kopf der Mitteldruckkolonne (104) Stickstoff (30), eventuell gasförmig, abgezogen wird.
  11. Verfahren nach einem der Ansprüche 7 bis 10, wobei eine sauerstoffreiche Flüssigkeit und/oder ein sauerstoffreiches Gas aus dem Sumpf der Niederdruckkolonne abgezogen werden, eventuell als Produkt(e).
  12. Verfahren nach einem der Ansprüche 7 bis 11, wobei die Niederdruckkolonne zwischen 1,5 und 10 bar abs. betrieben wird, eventuell zwischen 3 und 10 bar abs.
  13. Verfahren nach einem der Ansprüche 7 bis 12, wobei das Kopfgas der Niederdruckkolonne (105) nicht in einem Kondensator kondensiert wird.
EP00401768A 1999-06-22 2000-06-21 Vorrichtung und Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation Expired - Lifetime EP1063485B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9907931 1999-06-22
FR9907931A FR2795496B1 (fr) 1999-06-22 1999-06-22 Appareil et procede de separation d'air par distillation cryogenique

Publications (2)

Publication Number Publication Date
EP1063485A1 EP1063485A1 (de) 2000-12-27
EP1063485B1 true EP1063485B1 (de) 2005-04-06

Family

ID=9547139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00401768A Expired - Lifetime EP1063485B1 (de) 1999-06-22 2000-06-21 Vorrichtung und Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation

Country Status (4)

Country Link
US (1) US6339938B1 (de)
EP (1) EP1063485B1 (de)
DE (1) DE60019198T2 (de)
FR (1) FR2795496B1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830928B1 (fr) * 2001-10-17 2004-03-05 Air Liquide Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede
US7296437B2 (en) * 2002-10-08 2007-11-20 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for separating air by cryogenic distillation and installation for implementing this process
GB0422635D0 (en) * 2004-10-12 2004-11-10 Air Prod & Chem Process for the cryogenic distillation of air
FR2930629B1 (fr) * 2008-04-23 2010-05-07 Air Liquide Appareil et procede de separation d'air par distillation cryogenique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682219A1 (de) * 1994-05-10 1995-11-15 Praxair Technology, Inc. Luftkochendes kryogenes Rektifikationsverfahren zur Herstellung von Hochdrucksauerstoff

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895583A (en) * 1989-01-12 1990-01-23 The Boc Group, Inc. Apparatus and method for separating air
FR2680114B1 (fr) * 1991-08-07 1994-08-05 Lair Liquide Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie.
US5257504A (en) * 1992-02-18 1993-11-02 Air Products And Chemicals, Inc. Multiple reboiler, double column, elevated pressure air separation cycles and their integration with gas turbines
EP0636845B1 (de) * 1993-04-30 1999-07-28 The BOC Group plc Lufttrennung
US5765396A (en) * 1997-03-19 1998-06-16 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682219A1 (de) * 1994-05-10 1995-11-15 Praxair Technology, Inc. Luftkochendes kryogenes Rektifikationsverfahren zur Herstellung von Hochdrucksauerstoff

Also Published As

Publication number Publication date
EP1063485A1 (de) 2000-12-27
DE60019198D1 (de) 2005-05-12
DE60019198T2 (de) 2006-03-09
FR2795496A1 (fr) 2000-12-29
US6339938B1 (en) 2002-01-22
FR2795496B1 (fr) 2001-08-03

Similar Documents

Publication Publication Date Title
EP0713069B1 (de) Verfahren und Anlage zur Lufttrennung
EP1623172A1 (de) Verfahren und system zur herstellung von druckluftgas durch kryogene destillation von luft
EP1189003B1 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturdestillation
EP1143216B1 (de) Verfahren und Vorrichtung zur Erzeugung von sauerstoffreicher Flüssigkeit durch kryogenische Luftzerlegung
JP2000310481A (ja) 極低温空気分離方法及び設備
EP1063485B1 (de) Vorrichtung und Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
CA2830826A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
EP3069091A2 (de) Verfahren und vorrichtung zur lufttrennung durch kryogene destillation
EP3058297B1 (de) Verfahren und vorrichtung zur trennung von luft durch kryogene destillation
EP0699884A1 (de) Sauerstoffherstellungsverfahren und Einrichtung durch kryogene Destillation
EP1106945B1 (de) Verfahren zur Luftzerlegung durch Tieftemperaturdestillation
EP1132700B1 (de) Verfahren und Vorrichtung zur kryogenischen Luftzerlegung
US20040244416A1 (en) Method for separating air by cryogenic distillation and installation therefor
FR2787559A1 (fr) Procede et installation de separation d'air par distillation cryogenique
FR2787561A1 (fr) Procede de separation d'air par distillation cryogenique
FR2972794A1 (fr) Appareil et procede de separation d'air par distillation cryogenique
FR2819046A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
EP3913310A1 (de) Verfahren und gerät zur trennung von luft durch kryogene destillation
FR2861841A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR2974890A1 (fr) Procede et appareil de separation d'air par distillation cryogenique.
FR2854232A1 (fr) Procede de distillation d'air pour produire de l'argon
FR2874249A1 (fr) Procede et installation de separation d'air par distillation cryogenique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010627

AKX Designation fees paid

Free format text: DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

17Q First examination report despatched

Effective date: 20030319

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DE BUSSY, FRANEOIS

Inventor name: JUDAS, FREDERIC

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60019198

Country of ref document: DE

Date of ref document: 20050512

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080523

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080521

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090621

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080513

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101