EP1060348B1 - Device for actively regulating air/gas ratio in a burner comprising a differential pressure measuring device - Google Patents

Device for actively regulating air/gas ratio in a burner comprising a differential pressure measuring device Download PDF

Info

Publication number
EP1060348B1
EP1060348B1 EP99937976A EP99937976A EP1060348B1 EP 1060348 B1 EP1060348 B1 EP 1060348B1 EP 99937976 A EP99937976 A EP 99937976A EP 99937976 A EP99937976 A EP 99937976A EP 1060348 B1 EP1060348 B1 EP 1060348B1
Authority
EP
European Patent Office
Prior art keywords
air
gas
pressure
output
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99937976A
Other languages
German (de)
French (fr)
Other versions
EP1060348A1 (en
Inventor
Christophe Pechoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A Theobald SA
Original Assignee
A Theobald SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A Theobald SA filed Critical A Theobald SA
Publication of EP1060348A1 publication Critical patent/EP1060348A1/en
Application granted granted Critical
Publication of EP1060348B1 publication Critical patent/EP1060348B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/188Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05181Controlling air to fuel ratio by using a single differential pressure detector

Definitions

  • the present invention relates to a device for active regulation of the air / gas ratio of a mixture of air and combustible gas admitted to a burner, using at least one differential pressure measuring device.
  • a differential pressure device comprising a differential pressure sensor, the two inputs of which are respectively connected to two pressure taps.
  • these two pressure taps are respectively located on either side of a diaphragm placed in the duct where the fluid circulates.
  • the two pressure taps are connected respectively to the conduits where the two fluids flow respectively.
  • the accuracy of the flow rate or pressure difference measurement depends on the accuracy of the differential pressure sensor, in particular for low flow rates or low differential pressures.
  • differential pressure sensor used for flow measurement must therefore be very precise and very stable to be able to provide a reliable value at output for low bit rates.
  • the differential pressure measuring device shown in the FIG. 1 essentially comprises a differential pressure sensor 1 of which the inlet ports 2 and 3 are connected respectively to a socket pressure 4, where a pressure P1 prevails in service, and on the common track 5 of a three-way valve 6.
  • the other two channels 7 and 8 of valve 6 are respectively connected to a pressure tap 9, where a pressure P2 (P2 ⁇ P1), and to the inlet orifice 2 of the sensor 1 by a conduit 11.
  • the sensor 1 provides on its output 12 a signal which is representative of the pressure difference P1 - P2. This signal is applied to the input of a means of switching 13, an output 14 of which is connected to a first memory 15 and another output 16 of which is connected to a second memory 17.
  • memories 15 and 17 are represented here, these two memories could be constituted respectively by separate memory locations of a single memory.
  • the outputs 18 and 19 of memories 15 and 17 are connected respectively to the positive and negative inputs of a means of subtraction or algebraic adder 21, which delivers on its output 22 a measurement signal whose the value corresponds to the difference of the values of the output signal from sensor 1 which are respectively stored in memories 15 and 17.
  • the valve 6 is in a state such that it puts the orifice input 3 of sensor 1 in communication with pressure tap 9 and the switching means 13 is in a state such that it connects output 12 of sensor 1 at the entry of the memory 15.
  • the memory 15 records the value of the output signal from sensor 1, which corresponds to the difference pressures P1 and P2. If the pressures P1 and P2 are equal, the value of the signal sensor 1 output should normally be zero. However, as noted higher, inexpensive differential pressure sensors often have thermal drift and long-term drift. Because of these drifts the value of the output signal from sensor 1 is not always zero when the pressures P1 and P2 applied to the inlet ports 2 and 3 are equal.
  • a unit of command 23 sends for a short time to valve 6 and by means of switching 13, respectively by lines 24 and 25, of the control which temporarily pass the valve 6 into a state such that it interrupts communication between input port 3 of sensor 1 and the socket pressure 9 and establishes communication between the inlet ports 2 and 3 of the sensor 1, and the switching means 13 in a state such that it connects the output 12 from sensor 1 to memory input 17.
  • the same pressure P1 is applied to the two inlet ports 2 and 3 of sensor 1 and any measurement error from sensor 1 is stored in the memory 17.
  • the subtraction means 21 uses the subtraction means 21 to subtracted from the value of the output signal from sensor 1 stored in memory 15.
  • the measurement error of sensor 1 is periodically updated in the memory 17 and a signal is obtained at the output 22 of the subtraction means 21 corrected measurement whose value corresponds to the exact value of the difference of pressures P1 and P2.
  • the elements 13, 15, 17 and 22 form a circuit for measure 26 which, in combination with the three-way valve. 6 and with the command 23, allows an automatic zero calibration of sensor 1.
  • the known differential pressure measurement device which has been described with reference to FIG. 1 gives all satisfaction from the point of view of sensor zero calibration. However, it has the disadvantage of using a three-way valve, which is a relatively expensive item.
  • Ratio regulation devices air / gas are for example described in the Japanese publication already cited more top and in the report published by the Technical Association of the Gas Industry in France, during the 113th Gas Congress in Paris, September 10-13, 1996, “Collection of Communications", Volume 2, page 245 - 251, article "Regulation active air / gas ratio of a burner "by C. PECHOUX et al.
  • the device regulation of the air / gas ratio described in the aforementioned Japanese publication uses a unique differential pressure sensor that measures the difference between the air pressure Pa upstream of the air diaphragm in the supply line in pressurized air and the gas pressure Pg upstream of the gas diaphragm in the gas supply line.
  • a three-way valve and a circuit measurement similar to those described above with reference to Figure 1 allows perform an automatic zero calibration of the pressure sensor differential.
  • the device for regulating the air / gas ratio described in the aforementioned report uses two differential pressure sensors, one for measure the difference between the air pressure Pa and the gas pressure Pg, as in the aforementioned Japanese publication, the other to measure the air flow in the pressurized air supply line. Although in the latter device regulating the air / gas ratio.
  • the object of the present invention is to provide a device for the active regulation of the air / gas ratio of a burner using at least one device differential pressure measurement according to the invention.
  • the differential pressure measurement device used in the regulating device according to the invention, uses a pressure sensor differential, likely to exhibit thermal drifts and in the long term, and includes a measurement circuit for performing a calibration automatic sensor zero, said pressure measuring device differential being less expensive than the known measuring device described more high.
  • This differential pressure measurement device includes a sensor differential pressure having first and second inlet ports connected respectively to first and second pressure taps, and a output which, in service, delivers an output signal representative of a difference pressure between the first and second inlet ports, and a valve which is connected to the first and second sensor inlet ports and which, in a first state, isolates the two inlet ports from each other and, in a second state, the puts into communication with each other storage means connected to the sensor output to store at least two values of the output signal from the sensor.
  • It also includes a control unit connected to the valve and the storage means for switching the valve and controlling the storage of a first value of the sensor output signal in the memorization means when the valve is in its first state, and the storage of a second value of the sensor output signal in the storage means when the valve is in its second state. He understands finally measuring means for performing an automatic zero calibration of the sensor.
  • the measurement means are constituted by memory circuits forming the storage means and by a means of subtraction to calculate the difference between the first and second values of the sensor output signal.
  • the measuring circuit delivers in output a measurement signal representing the exact value of the difference in pressures respectively applied to the first and second inlet ports of the sensor.
  • the pressure measuring device also has an orifice calibrated throttle, which is inserted into one of the first and second sockets pressure.
  • the valve is a two-way valve, a first way of which is connected to that of the first and second pressure taps in which is inserted the calibrated throttle orifice, between this calibrated orifice and the inlet orifice correspondent of the sensor.
  • a second channel is connected to the other of the first and second pressure taps.
  • the calibrated orifice has a passage section significantly smaller than that of said two-way valve.
  • a first embodiment of the device for regulating the air / gas ratio to measure the air flow in the air line and to measure the difference of the air and gas pressures in the air line respectively and in the gas line it is possible to use two devices for measuring differential pressure according to the invention, which each include a differential pressure, a calibrated throttle orifice, a two-way valve and a measurement circuit.
  • two two-way valves are used which are simpler and less expensive than two three-way valves it would take use with previously used differential pressure measurement devices known.
  • ratio regulation device air / gas according to the invention for measuring the air flow and for measuring the difference air and gas pressures it is possible to use two measuring devices differential pressure according to the invention which have in common a single orifice calibrated throttle and a single two-way valve to perform zero calibration for each of the two differential pressure sensors.
  • the device for regulating the air / gas ratio for measuring the air flow and for measuring the difference in air and gas pressures or gas flow it is possible to use a single differential pressure measurement device according to the invention, through the use of an additional two-way valve and a switching means for sending the output signal from the measuring circuit of the differential pressure measuring device selectively at the unit of air flow control and to the gas supply control unit, this last regulating unit which can be designed either as a unit air / gas pressure regulator if, the differential pressure sensor of the differential pressure measuring device is provided to measure the difference in air and gas pressures, either as a unit of gas flow regulation if said differential pressure sensor is provided to measure the gas flow.
  • the differential pressure measuring device according to the invention which is shown in figure 2 is largely similar to the measuring device known which has already been described above with reference to FIG. 1.
  • the elements of the differential pressure measuring device according to the invention which are identical to those of the known device of FIG. 1 are designated by the same reference numbers and will not be described in new in detail.
  • the differential pressure measurement device used in the device for regulating the air / gas ratio according to the invention differs from the device basically known by the fact that instead of the three-way valve 6 it is provided a calibrated throttle orifice 27 and a two-way valve 28.
  • the hole calibrated 27 is located in one of the two pressure taps 4 and 9, for example in the pressure tap 9 as shown in Figure 2, and it is made of so as to have a significantly smaller passage cross-section than that of the valve 28 when the latter is open.
  • the valve 28 is inserted in the conduit 11 in such a way that one of the channels of the valve 28 is connected to the outlet pressure 4 connected to the inlet port 2 of the sensor 1, and the other channel of the valve 28 is connected to the pressure tap 9 connected to the inlet port 3 of the sensor 1, the conduit 11 being connected between this inlet orifice 3 and the orifice calibrated 27.
  • the valve 28 In service, the valve 28 is normally closed and the means of switching 13 connects the output 12 of the sensor 1 to the input of the memory 15.
  • the memory 15 stores the value of the pressure difference P1 - P2, possibly marred by a measurement error if sensor 1 exhibits thermal drift and / or long-term drift.
  • the control unit 23 transmits on line 24 a control signal which briefly opens the valve 28, and, simultaneously, the control unit 23 transmits on line 25 a signal control which switches the switching means 13 in such a way that the latter briefly connects the output of sensor 1 to the input of memory 17. Since, when the valve 28 is open, it has a passage section much larger than that of the calibrated orifice 27, it is capable of debit consideration more than the calibrated orifice 27. As a result, the loss of load P1 - P3 of valve 28 is negligible compared to the pressure drop P2 - P3 of the calibrated orifice 27. So, when the valve 28 is opened, the pressure P3 is practically equal to the pressure P1.
  • the measurement circuits 26 are likely to take various configurations, hardware and / or software.
  • a microprocessor is generally associated with memory means internal and / or external (registers, random access memory, etc.). The operation of subtraction can be performed by the arithmetic and logical unit of which is provided with the microprocessor. All operations can be under the command of a specific program.
  • the control unit 23 can be confused with this same microprocessor. It is only necessary to provide specific electronic input and output interface circuits, receiving the sensor output signals and transmitting signals from control at valve 28. These circuits (not shown) provide in particular analog-to-digital conversions or vice versa, and adaptations required levels.
  • Figure 3 shows an example of a device for regulating the air / gas ratio of a burner 29, according to a first embodiment of the invention, for example the burner of a boiler 30.
  • the reference number 31 designates a fan, which is powered by an electric motor 32 with variable speed and which is connected by an air line 33 containing a calibrated diaphragm of air 34 at a first inlet 35 of an air / gas mixer 36 located upstream of the burner 29.
  • the air / gas mixer 36 is here represented as a separate element from the burner 29, it can also be integrated into the latter as is well known.
  • a supply line in gas 38 which contains a calibrated diaphragm of gas 39 and, upstream of this diaphragm, a proportional valve 41 whose inlet side is connected to a source of pressurized combustible gas (not shown), for example at a pressurized fuel gas distribution network.
  • Valve proportional 41 adjusts the pressure Pg of the gas in the line 38 upstream of the calibrated orifice 39 and, consequently, the quantity of gas sent to the mixer 36.
  • Pa denotes the air pressure in the air line 33 in upstream of the air diaphragm 34 and Pm denotes the pressure of the air / gas mixture in the mixer 36.
  • the pressure prevailing in the air line 33 downstream of the air diaphragm 34 and the pressure in the gas line 38 in downstream of the gas diaphragm 39 are equal to the pressure Pm when there is a flow of air in line 33 and a gas flow in line 38.
  • Reference numbers 42a and 42b designate two differential pressure measurement which are intended to measure respectively the pressure difference Pa - Pm and the pressure difference Pa - Pg.
  • Each of the two differential pressure measuring devices 42a and 42b is produced and works in the same way as the pressure measuring device differential described with reference to Figure 2. This is why their elements are designated by the same reference numbers as those of the elements correspondents of the differential pressure measurement device of FIG. 2, these reference numbers being assigned the letter "a” for the elements of the differential pressure measuring device 42a and the letter “b” for elements of the differential pressure measuring device 42b. Both differential pressure measuring devices 42a and 42b will therefore not described again in detail.
  • the inlet ports 2a and 2b of sensors la and 1b are connected to a single outlet pressure 4 connected to the air line 33 upstream of the air diaphragm 34. So, by giving the same inside diameter and the same length to the conduits which respectively connect the two inlet ports 2a and 2b to the socket pressure common 4, it is thus ensured that the same pressure value Pa is applied to the two inlet ports 2a and 2b.
  • the inlet ports 2a and 2b of sensors 1a and 1b could be connected to separate pressure taps connected to the air line 33 upstream of the air diaphragm 34.
  • the other inlet port 3a of the sensor 1a is connected to the pressure tap 9a which contains the calibrated throttle orifice 27a and which is connected to the air line 33 downstream of the air diaphragm 34.
  • the other orifice input 3b of the sensor 1b is connected to the pressure tap 9b which contains the calibrated throttle orifice 27b and which is connected to the gas pipe 38 upstream of the gas diaphragm 39.
  • one and the same control unit 23 can be provided to control, by lines 24a and 25a, the valve 28a and the measurement circuit 26a of the differential pressure measurement device 42a and, by lines 24b and 25b, the valve 28b and the measurement circuit 26b of the device differential pressure measuring device 42b.
  • the zero calibration of sensors 1a and 1b of the differential pressure measurement 42a and 42b is carried out at regular intervals, for example every minute, in exactly the same way as that described with reference to Figure 2.
  • zero calibration of the two sensors 1a and 1b is performed simultaneously, but it could be performed at different times if desired.
  • the measurement circuit 26a of the differential pressure measurement 42a therefore delivers a signal on its output 22a corrected measurement which represents the exact value of the pressure difference Pa - Pm.
  • the measurement circuit 26b of the pressure measurement device differential 42b delivers on its output 22b a corrected measurement signal which represents the exact value of the pressure difference Pa - Pg.
  • the device for regulating the air / gas ratio shown in FIG. 3 further comprises, in a manner known per se, a unit for regulating temperature 43 which receives on its input 44 a setpoint signal of temperature.
  • the temperature control unit 43 sends by a line 45 a request for ignition of the burner to the control unit 23 which, by a line 46, then controls an ignition device 47 in order to cause ignition of the burner 29.
  • the temperature regulation unit 43 delivers an air flow setpoint signal, the value of which depends on the temperature setpoint signal value applied to input 44.
  • the signal for air flow setpoint delivered by the temperature control unit 43 is sent to an inlet of a conventional air flow control unit 49 which also receives on another input the corrected measurement signal which is present on the output 22a of the measurement circuit 26a and which is indicative of the value of the air flow Qa in line 33.
  • a conventional air flow control unit 49 which also receives on another input the corrected measurement signal which is present on the output 22a of the measurement circuit 26a and which is indicative of the value of the air flow Qa in line 33.
  • the latter Based on the set point signal air flow and measurement signal which are applied to the inputs of the air flow regulation 49, the latter produces on its output 51 a signal of command which is sent to the motor 32 of the fan 31 in order to adjust the rotation speed.
  • the speed of rotation of the motor 32 is then adjusted in such a way so that the air flow Qa produced by the fan 31 in the line 33 becomes equal to the air flow setpoint sent to the control unit air flow 49 by the temperature regulation unit 43.
  • the device for regulating the air / gas ratio of FIG. 3 further comprises a conventional air / gas pressure regulating unit 52 receiving on an input the corrected measurement signal which is present on the output 22b of the measurement circuit 26b which represents the pressure difference Pa - Pg.
  • the air / gas pressure regulation unit 52 produces, in known manner, at its output 53 a control signal which is sent to the proportional valve 41 in order to regulate the gas pressure Pg in the gas line 38.
  • the gas pressure Pg is regulated by the air / gas pressure regulating unit 52 so that the pressure difference Pa - Pg has a predefined value, for example a null value.
  • the air / gas pressure regulating unit 52 acts on the proportional valve 41 until the gas pressure Pg becomes equal to the air pressure Pa, therefore until the value of the corrected measurement signal present on output 22b of measurement circuit 26b becomes zero.
  • a pressure regulation which regulates the gas pressure Pg so that it remains permanently equal to the air pressure Pa, which is itself regulated by the temperature regulation unit 43 and by l the air flow regulation unit 49 as a function of the value of the temperature setpoint applied to the input 44
  • the pressure regulating unit air / gas 52 can be designed so that the gas pressure Pg is controlled by the air pressure Pa, not so that these two pressures remain permanently equal to each other, but so that the pressure Pg is linked to the pressure Pa by a predetermined relationship which can vary depending on the power instant requested from the burner.
  • a given burner may have need, an air / gas ratio varying in a predetermined manner between the minimum power and maximum power of the burner to get good combustion whatever the instantaneous power requested from the burner.
  • it may also be necessary to have a special air / gas ratio during ignition.
  • the air / gas pressure regulation unit can for example be designed to adjust the gas pressure Pg so as to obtain the desired air / gas ratio by function of the instantaneous power requested from the burner and / or during a few seconds when the burner ignites.
  • Figure 4 shows a second embodiment of the device regulation of the air / gas ratio of a burner, in which a single one is provided calibrated throttle orifice and a single two-way valve to perform calibration of the two differential pressure sensors.
  • the elements of the air / gas ratio regulating device which are identical or which play the same role as those of the device regulating the air / gas ratio of the Figure 3 are designated by the same reference numbers and will not be described again in detail.
  • the device for regulating the air / gas ratio of the Figure 4 differs from that of Figure 3 essentially in that it includes a single calibrated throttle orifice 27, which is located in the common socket of pressure 4, and a single two-way valve 28.
  • One of the two routes of the valve 28 is directly connected to the inlet ports 2a and 2b of the sensors la and 1b and, through the calibrated throttle orifice 27, to the pressure tap 4.
  • the other channel of the valve 28 is connected to a pressure tap 54 connected to the air line 33 downstream of the air diaphragm 34, where there is an equal pressure at the pressure Pm.
  • the valve 28 could just as easily be connected either to the pressure tap 9a or to the plug pressure valve 54 'connected to mixer 36, i.e. still at the pressure tap 54 "connected to the gas line 38 downstream from the diaphragm 39, given that in all these places there prevails, in service, a pressure equal to the pressure Pm.
  • the pressure Pm is applied, through the pressure tap 54 and the valve 28, to the ports 2a and 2b of the pressure sensors 1a and 1b. At this time, the pressure Pm is also applied through the pressure tap 9a to the inlet port 3a of the sensor la. If, at this time, the proportional valve 41 is at least partially open, the pressure Pg is applied through the pressure tap 9b to the inlet port 3b of the sensor 1b. However, if, at the same time, the proportional valve 41 is closed, there is no gas flow through the gas diaphragm 39 and, consequently, the pressure Pg is equal to the pressure Pm and this pressure is applied through the pressure tap 9b to the inlet port 3b of sensor 1b.
  • the control unit 23 must cause the opening of the valve 28 for a short time by an appropriate command on line 24 and, simultaneously, it must cause the proportional valve to close 41 by sending him an appropriate command via line 55.
  • the control unit 23 must also send at the same time, by the lines 25a and 25b, control signals to the measurement circuits 26a and 26b so that they memorize in their respective memories (which correspond to the memory 17 of FIG. 2) the possible measurement error of the sensors 1a and 1b.
  • control unit 23 commands a brief instant the opening of the valve 28, without closing the valve 41, and at the same time, controls the measurement circuit 26a so that it stores in its memory the measurement error of the sensor la.
  • the unit of command 23 must not send any command via line 25b to the measure 26b, otherwise it would improperly store in its memory (17) as measurement error signal a signal corresponding to the pressure difference Pm - Pg.
  • the sensor measures the pressure difference Pa Pm and the sensor 1 b measures the pressure difference Pa - Pg.
  • the device of figure 4 works in the same way as that of figure 3 to regulate the air / gas ratio of the burner 29.
  • Figure 5 shows an alternative embodiment of the regulation device of the air / gas ratio of FIG. 4.
  • the elements of the device which are identical or which play the same role as those of the device of FIG. 4 are designated by the same reference numbers and will not be described in new in detail.
  • the device of FIG. 5 essentially differs from that of Figure 4 in that one of the two ways of the valve 28 which in the mode of embodiment of Figure 4 "was connected to the pressure tap 54, is here connected to the inlet 3b of the sensor 1b and to the pressure tap 9b.
  • the gas pressure Pg is applied through the intake pressure 9b directly at the inlet 3b of the sensor 1b and, when the valve 28 is open, through the latter, and the conduit 11 b.
  • control unit 23 should not send any control signal by line 25a at measurement circuit 26a, otherwise the difference in pressures Pg and Pm, which are respectively applied to the inlet ports 2a and 3a of the sensor la when valve 28 is open, would be recorded as an error of measurement in the memory (1 7) of the measurement circuit 26a.
  • sensor 1a measures the pressure difference Pa-Pm and the sensor 1 b measures the pressure difference Pa-Pg.
  • the device of FIG. 5 works in the same way as those of FIGS. 3 and 4 to regulate the air / gas ratio of burner 29.
  • FIG. 6 shows a preferred embodiment of the device for regulating the air / gas ratio of the burner of a boiler.
  • a single pressure measuring device is provided differential 42 to measure, on the one hand, the pressure difference Pa-Pm and, on the other hand, the pressure difference Pa-Pg.
  • the elements that are the same or play the same role as those of the embodiments precedents are designated by the same reference numbers and will not be described again in detail.
  • the inlet port 2 of the sensor 1 is connected to the pressure tap 4 connected to the air line 33 upstream of the air diaphragm 34.
  • the inlet port 3 of the sensor 1 is connected to the outlet pressure 9 connected to the gas line 38 upstream of the gas diaphragm 39 and the calibrated throttle orifice 27 is located in the pressure tap 9 as in the embodiment of FIG. 3.
  • One of the ways of the valve 28 two-way is connected to the pressure tap 4 and the inlet 2 of the sensor 1,
  • the other channel of valve 28 is connected to inlet port 3 of the sensor 1 via the conduit 11 and to one of the two paths of another two-way valve 56, the other way of which is connected to a pressure tap 57 where there is a pressure equal to the pressure Pm.
  • taking pressure 57 is connected to the mixer 36, but it could be connected on the air line 33 downstream of the air diaphragm 34 or on the gas line 38 downstream of the gas diaphragm 39.
  • the valve 56 is controlled by the control unit command 23 across a line 58.
  • the output 22 of the measurement circuit 26 is connected to the input of a means of switching 59 of which a first output is connected by a line 61 to the control unit air flow regulation 49 and a second outlet of which is connected by a line 62 to the air / gas pressure regulation unit 52.
  • the control unit 23 is connected to a control input of the switching means 59 by a line 63.
  • the measurement signal present on output 22 of measurement circuit 26 is sent by means of switching 59 either to the air flow regulation unit 49 via line 61 or to the air / gas pressure control unit 52 via line 62.
  • the outlet 51 of the air flow control unit 49 is connected to the motor 32 via a blocking sampler 64, which is controlled by the control unit 23 through a line 65.
  • the output 53 of the air / gas pressure regulating unit 52 is connected to the valve proportional 41 via a blocking sampler 66, which is controlled by the control unit 23 through a line 67.
  • each of the two samplers 64 and 66 can be carried out as shown in FIG. 7.
  • Each blocking sampler 64 or 66 has an input 68 connected by an electronic switch 69 to one of the armatures of a capacitor C, the other armature of which is connected to ground, and at the input of an amplifier 71 with high input impedance, whose output 72 forms the output of the blocking sampler and is connected to the motor 32 or to the proportional valve 41.
  • the electronic switch 69 is controlled by the control unit 23 by line 65 or 67.
  • the control signal delivered by the air flow control unit 49 or by the air / gas pressure regulating unit 52 at inlet 68 for example a control voltage, is stored in capacitor C and transmitted by amplifier 71 at output 72 and from there to motor 32 or to the valve proportional 41.
  • switch 69 When switch 69 is open, the command signal which has been stored in capacitor C is retained by it, due to the high input impedance of amplifier 71, and the control signal therefore continues to be present on the output 72 of the blocking sampler which whatever the state of its input 68.
  • valve 28 When valve 28 is closed and opened for a short time the valve 56, the pressure Pa is applied through the pressure tap 4 at the inlet port 2 of the sensor 1, while the pressure Pm is applied to the inlet orifice 3 of the sensor 1 through the pressure tap 57, the valve 56 and the conduit 11. Under these conditions, the sensor 1 measures the pressure difference Pa-Pm and the measuring circuit 26 provides on its output 22 a corrected measurement signal which represents the value of the air flow in the air line 33. At this time, under the action of an appropriate command issued by the control unit 23 on line 63, the output 22 of the measurement circuit 26 is connected by the switching means 59 to the air flow control unit 49. At the same time, the control unit 23 sends via line 65 a command to the blocking sampler 64 to close the switch 69 thereof.
  • control unit 43 can control the opening of the switch 69 of the blocking sampler 64.
  • the pressure Pa is applied through the pressure tap 4 to the inlet port 2 of the sensor 1 and the pressure Pg is applied through the pressure tap 9 and the calibrated orifice throttle 27 at the inlet port 3 of the sensor 1.
  • the sensor 1 measures the pressure difference Pa-Pg and the measurement circuit 26 delivers on its output 22 a corrected measurement signal which represents this pressure difference.
  • the output 22 of the measurement 26 is connected by the switching means 59 to the regulation regulating unit air / gas pressure 52.
  • the control unit 23 controls the closing of the switch 69 of the blocking sampler 66.
  • the air / gas pressure regulation unit 52 emits on its output 53 a new control signal, for example a control voltage having a new value, which is stored in capacitor C of the blocking sampler 66 and transmitted to the proportional valve 41 to adjust the pressure Pg in a direction such that it has the desired value.
  • the control unit 23 can order the opening of the switch 69 of the blocking sampler 66.
  • control unit 23 closes the valve 28 and opens the valve 56 so that the sensor 1 measures the air flow in the air line 33.
  • the control unit 23 acts on the switching means 59 to that it sends the measurement signal present on the output of the measurement circuit 26 to the air flow control unit 49, and it closes the switch 69 of the blocking sampler 64, so that the regulating unit 49 regulates the air flow in line 33 in accordance with the instruction supplied by the control unit temperature 43.
  • the unit control 23 blocks the control signal sent to motor 32 in opening the switch 69 of the blocker sampler 64, and it closes the valve 56 (at this time the valve 28 is already closed) so that the sensor 1 measures the pressure difference Pa-Pg.
  • control unit 23 acts on the switching means 59 so that it sends the measurement signal present on the output 22 of the measuring circuit 26 to the air / gas pressure regulation unit 52, and it closes the switch 69 of the blocking sampler 66, so that the signal present at output 53 of the air / gas pressure regulation unit 52 acts on the proportional valve 41 so as to regulate the gas pressure Pg, for example in such a way that it becomes equal to the air pressure Pa.
  • the unit of command 23 opens the switch 69 of the blocker sampler 66, closes the valve 28, opens valve 56, acts on switching means 59 so that it sends the output signal from the measuring circuit 26 to the flow control unit 49, and closes, for example for one second, the switch 69 of the blocking sampler 64.
  • the regulating unit 49 regulate, if necessary, the speed of the motor 32 so that the air flow in the air line 33 is equal to the air flow setpoint produced by the temperature control unit 43.
  • the control unit 23 resets the device for regulating the air / gas ratio in the state corresponding to the air / gas pressure regulation, in opening the switch 69 of the blocking sampler 64, closing the two valves 28 and 56, by acting on the switching means 59 so that it sends the output signal from the measuring circuit 26 to the pressure regulation unit air / gas 52 and by closing the switch 69 of the blocking sampler 66.
  • control unit 23 controls a zero pressure calibration of sensor 1, opening if necessary switch 69 of each of the two Mockers 64 and 66, by closing the valve 56, by opening the valve 28 for a short time, for example for a second, and acting on the measurement circuit 26 so that it stores in its memory (17) any measurement error present on output 12 of sensor 1.
  • Figure 8 shows yet another embodiment of the regulation of the air / gas ratio of a burner, variant of the embodiment prefer. According to this variant, a single measuring device is also provided. differential pressure.
  • FIG. 8 the elements of the device which are identical or which play the same role as those of the device of FIG. 6 are designated by the same reference numbers and will not be described again in detail.
  • the device of Figure 8 differs from that of Figure 6 in that the inlet 2 of the single differential pressure sensor 1 is connected, on the one hand, to the pressure 4 through the calibrated throttle orifice 27 and, on the other hand, at the outlet pressure 57 on the gas line via the valve 56, while that the inlet 3 of said sensor 1 is connected directly to the socket pressure 9 on the mixer 36 where a pressure equal to the pressure Pm prevails.
  • the output of the switching means 59 which is connected by line 61 to the air flow control unit 49 and also connected by a line 73 to a other blocking sampler 74 which can be produced in the same way as the Mockers 64 and 66 samplers (see Figure 7) and which is controlled by control unit 23 across line 75.
  • the switching means 59 sends at this time the measurement signal present on the output 22 of the measurement circuit 26 at the measurement unit air flow regulation 49, the latter can adjust, if necessary, the speed of the motor 32 so that the air flow in the air line 33 is equal to the air flow setpoint supplied by the temperature control unit 43 to the air flow control unit 49, in a manner similar to that described above about the embodiment of Figure 6.
  • the measurement signal which is present on the output 22 of the measurement circuit 26 and which is indicative of the air flow is also sent by switching means 59 and by line 73 to the sampler blocker 74 to be stored there and transmitted by line 76 to another control unit input 52.
  • the inlet ports 2 and 3 of the sensor 1 are respectively subjected to the pressure Pg and to the pressure Pm.
  • Kg Kg.Q 2 g in which Kg is a coefficient which depends in particular on the density of the gas used and on the diameter of the calibrated orifice of the gas diaphragm 39.
  • the measurement signal present on the output 22 of the measurement circuit 26 gives an indication of the gas flow in the gas line 38.
  • the control unit 23 acts on the switching means 59 so that it sends this measurement signal via the line 62 to the regulation unit 52, this the latter receives on its inputs, respectively by lines 76 and 62, a signal whose value is indicative of the air flow in line 33 and a signal whose value is indicative of the gas flow in line 38.
  • the regulation unit 52 is designed as a gas flow regulation unit, that is to say that it acts on the proportional valve 41 so as to regulate the gas flow Qg so that the ratio Qa / Qg, i.e. the air / gas ratio, has a predefined value e.
  • the sequence of operations controlled by unit 23 can be as follows.
  • control unit 23 performs the zero calibration of pressure from sensor 1 by closing valve 56 if it was open, by opening for a short time the valve 28, by sending by line 25 a signal of control to the measurement circuit 26 so that it stores in its memory (17) any measurement error present at this time on output 12 of the sensor 1.
  • control unit 23 closes the valve 28, acts on the means switch 59 so that it connects output 22 of measurement circuit 26 to the unit regulating the air flow 49 and the blocking sampler 74, closes the switch 69 of this blocking sampler 74 and also closes the switch 69 of the blocking sampler 64, so that the regulating unit 49 adjusts the air flow in the air line 33 to make it equal to the value of air flow setpoint delivered by the temperature control unit 43.
  • the control unit 23 opens the switch 69 of the sampler blocker 64, opens the blocker sampler 74 switch to keep in it the differential pressure value Pa - Pm representing the air flow, opens the valve 56 (at this time the valve 28 is already closed), acts on the switching means 59 so that it connects the output 22 of the measurement circuit 26 to the gas flow regulation unit 52 via line 62 and closes the switch 69 of the blocking sampler 66 so that the regulating unit 52 regulates the proportional valve 41 so as to obtain a gas pressure Pg such that the pressure difference Pg - Pm measured by sensor 1 is equal to the value of the differential pressure which has been stored in the blocking sampler 74.
  • This device works insofar as the sections Sa and Sg of the calibrated orifices of the air diaphragm 34 and the diaphragm gas 39 were chosen to obtain the desired air / gas ratio, in accordance with formula (3) indicated above.
  • the control unit 23 opens the switch 69 of the blocking sampler 66, closes valves 28 and 56 if they were open, acts on the means of switching 59 so that it directs the output signal from the measuring circuit 26 to the air flow control unit 49, closes the switch 69 of the sampler blocker 64 in order to adjust, if necessary, the air flow rate in the air line 33, closes the switch 69 of the blocking sampler 74 in order to set if necessary the value of the differential pressure representing the memorized air flow in the blocking sampler 74, opens the switch 69 of the sampler blocker 64, opens valve 56, acts on switching circuit 59 so that it directs the output signal from the measuring circuit 26 to the control unit 52 by line 62 and closes the switch 69 of the blocking sampler 66 in order to adjust the gas flow in the gas line 38 if necessary, then open the switch 69 of the blocker sampler 66 and closes the valve 56.
  • the unit of control performs sampling of sensor zero pressure 1 in performing the operations already described above.
  • the fan 31 is shown upstream of the orifice 34 for measuring the air flow but it is very well located between the mixer 36 and the burner 29 or even beyond the burner, after the boiler temperature exchanger for example.
  • the measurement circuits are likely to take different configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

La présente invention concerne un dispositif pour la régulation active du rapport air/gaz d'un mélange d'air et de gaz combustible admis à un brûleur, utilisant au moins un dispositif de mesure de pression différentielle.The present invention relates to a device for active regulation of the air / gas ratio of a mixture of air and combustible gas admitted to a burner, using at least one differential pressure measuring device.

Dans de nombreux appareils ou installation où circulent un ou plusieurs fluides, liquides ou gazeux, il est souvent nécessaire de pouvoir mesurer avec précision le débit d'un fluide de travail et/ou de mesurer avec précision la différence de pression entre deux fluides de travail distincts à des fins de contrôle et/ou de régulation et/ou de réglage d'un processus. A cet effet, on utilise habituellement un dispositif de pression différentielle comprenant capteur de pression différentielle dont les deux entrées sont respectivement raccordées à deux prises de pression. Dans le cas de la mesure du débit d'un fluide, ces deux prises de pression sont respectivement situées de part et autre d'un diaphragme placé dans le conduit où circule le fluide. Dans le cas où il s'agit de mesurer la différence de pression entre deux fluides distincts, les deux prises de pression sont branchées respectivement sur les conduits où circulent respectivement les deux fluides. Dans les deux cas, la précision de la mesure du débit ou de la différence de pression dépend de la précision du capteur de pression différentielle, en particulier pour les faibles débits ou les faibles pressions différentielles. Par exemple, dans le cas d'une mesure de débit, la différence de pression ΔP et le débit Q sont liés par la formule suivante : ΔP = KQ2    dans laquelle K est un coefficient dont la valeur dépend notamment de la densité du fluide dont on veut mesurer le débit, et de la section de l'orifice du diaphragme placé dans le conduit où circule ledit fluide. Lorsque l'on veut faire varier la valeur instantanée du débit d'un fluide sur une large plage, par exemple dans un rapport de 1 à 10, le débit du fluide varie dans ce rapport, alors que la pression varie dans un rapport de 1 à 100. In many devices or installations where one or more fluids, liquid or gaseous circulate, it is often necessary to be able to accurately measure the flow rate of a working fluid and / or to accurately measure the pressure difference between two working fluids separate for purposes of control and / or regulation and / or adjustment of a process. For this purpose, a differential pressure device is usually used comprising a differential pressure sensor, the two inputs of which are respectively connected to two pressure taps. In the case of the measurement of the flow rate of a fluid, these two pressure taps are respectively located on either side of a diaphragm placed in the duct where the fluid circulates. In the case where it is a question of measuring the pressure difference between two distinct fluids, the two pressure taps are connected respectively to the conduits where the two fluids flow respectively. In both cases, the accuracy of the flow rate or pressure difference measurement depends on the accuracy of the differential pressure sensor, in particular for low flow rates or low differential pressures. For example, in the case of a flow measurement, the pressure difference ΔP and the flow Q are linked by the following formula: ΔP = KQ 2 wherein K is a coefficient whose value depends in particular on the density of the fluid whose flow is to be measured, and on the section of the orifice of the diaphragm placed in the conduit where said fluid circulates. When you want to vary the instantaneous value of the flow rate of a fluid over a wide range, for example in a ratio of 1 to 10, the flow rate of the fluid varies in this ratio, while the pressure varies in a ratio of 1 100.

Autrement dit, à une faible variation du débit correspond une variation beaucoup plus faible de la pression. Le capteur de pression différentielle utilisé pour la mesure du débit doit donc être très précis et très stable pour pouvoir fournir en sortie une valeur fiable pour les faibles débits. De tels capteurs de pression différentielle existent, mais ils sont extrêmement coûteux et, par suite, inutilisables dans des appareils dont le coût total de fabrication doit rester relativement modéré, comme par exemple dans un dispositif pour la régulation du rapport air/gaz d'un brûleur, par exemple le brûleur d'une chaudière destinée à la production d'eau chaude sanitaire et/ou d'eau chaude pour un circuit de chauffage.In other words, a small variation in flow corresponds to a variation much lower pressure. The differential pressure sensor used for flow measurement must therefore be very precise and very stable to be able to provide a reliable value at output for low bit rates. Such sensors differential pressure exist but they are extremely expensive and as a result unusable in devices whose total manufacturing cost must remain relatively moderate, as for example in a device for regulation the air / gas ratio of a burner, for example the burner of a boiler intended for the production of domestic hot water and / or hot water for a heating circuit heater.

D'un autre côté, il existe des capteurs de pression différentielle qui sont relativement bon marché, mais ils présentent une dérive thermique et une dérive à long terme qui excèdent souvent quelques pour cents. On ne peut donc pas utiliser directement le signal de sortie de ces derniers capteurs pour faire des mesures précises de différence de pression sur une large plage, par exemple dans un rapport de 1 à 100. Lorsque l'on utilise un capteur bon marché, il est donc souvent nécessaire de prendre des dispositions pour effectuer à intervalles réguliers un étalonnage du zéro du capteur afin d'éliminer les dérives susmentionnées. A cet effet, une solution classique consiste à utiliser un dispositif de mesure tel que celui montré sur la figure 1 des dessins annexés (voir aussi la publication "Patent Abstracts of Japan", volume 009084, date de publication de l'abrégé 13-04-85 et la demande de brevet japonais JP59212622 au nom de MATSUSHITA DENKI SANGYO, publiée le 01-12-84).On the other hand, there are differential pressure sensors which are relatively inexpensive, but they have thermal drift and drift long-term that often exceed a few percent. So we cannot directly use the output signal of these latter sensors to make precise pressure difference measurements over a wide range, for example in a ratio of 1 to 100. When using an inexpensive sensor, it is so often necessary to make arrangements to perform at intervals regular sensor zero calibration to eliminate drift above. A classic solution for this is to use a measuring device such as that shown in Figure 1 of the accompanying drawings (see also the publication "Patent Abstracts of Japan", volume 009084, date of publication of abstract 13-04-85 and Japanese patent application JP59212622 on behalf of MATSUSHITA DENKI SANGYO, published on 01-12-84).

Le dispositif de mesure de pression différentielle représenté sur la figure 1 comprend essentiellement un capteur de pression différentielle 1 dont les orifices d'entrée 2 et 3 sont raccordés respectivement à une prise de pression 4, où règne en service une pression P1, et à la voie commune 5 d'une vanne 6 à trois voies. Les deux autres voies 7 et 8 de la vanne 6 sont raccordées respectivement à une prise de pression 9, où règne en service une pression P2 (P2 ≤ P1 ), et à l'orifice d'entrée 2 du capteur 1 par un conduit 11. En service, le capteur 1 fournit sur sa sortie 12 un signal qui est représentatif de la différence de pression P1 - P2. Ce signal est appliqué à l'entrée d'un moyen de commutation 13, dont une sortie 14 est reliée à une première mémoire 15 et dont une autre sortie 16 est reliée à une seconde mémoire 17. Bien que deux mémoires 15 et 17 soient ici représentées, ces deux mémoires pourraient être constituées respectivement par des emplacements de mémoire distincts d'une mémoire unique. Les sorties 18 et 19 des mémoires 15 et 17 sont reliées respectivement aux entrées positive et négative d'un moyen de soustraction ou additionneur algébrique 21, qui délivre sur sa sortie 22 un signal de mesure dont la valeur correspond à la différence des valeurs du signal de sortie du capteur 1 qui sont respectivement emmagasinées dans les mémoires 15 et 17.The differential pressure measuring device shown in the FIG. 1 essentially comprises a differential pressure sensor 1 of which the inlet ports 2 and 3 are connected respectively to a socket pressure 4, where a pressure P1 prevails in service, and on the common track 5 of a three-way valve 6. The other two channels 7 and 8 of valve 6 are respectively connected to a pressure tap 9, where a pressure P2 (P2 ≤ P1), and to the inlet orifice 2 of the sensor 1 by a conduit 11. In service, the sensor 1 provides on its output 12 a signal which is representative of the pressure difference P1 - P2. This signal is applied to the input of a means of switching 13, an output 14 of which is connected to a first memory 15 and another output 16 of which is connected to a second memory 17. Although two memories 15 and 17 are represented here, these two memories could be constituted respectively by separate memory locations of a single memory. The outputs 18 and 19 of memories 15 and 17 are connected respectively to the positive and negative inputs of a means of subtraction or algebraic adder 21, which delivers on its output 22 a measurement signal whose the value corresponds to the difference of the values of the output signal from sensor 1 which are respectively stored in memories 15 and 17.

Normalement, la vanne 6 est dans un état tel qu'elle met l'orifice d'entrée 3 du capteur 1 en communication avec la prise de pression 9 et le moyen de commutation 13 est dans un état tel qu'il relie la sortie 12 du capteur 1 à l'entrée de la mémoire 15. Dans ces conditions, la mémoire 15 enregistre la valeur du signal de sortie du capteur 1, qui correspond à la différence des pressions P1 et P2. Si les pressions P1 et P2 sont égales, la valeur du signal de sortie du capteur 1 devrait normalement être nulle. Toutefois, comme indiqué plus haut, les capteurs de pression différentielle bon marché présentent souvent une dérive thermique et une dérive à long terme. A cause de ces dérives la valeur du signal de sortie du capteur 1 n'est pas toujours nulle lorsque les pressions P1 et P2 appliquées aux orifices d'entrée 2 et 3 sont égales. Par suite, lorsque ces deux pressions sont différentes, la valeur du signal de sortie capteur 1 est entachée d'une erreur. Cette erreur peut être corrigée de la manière suivante. A intervalles réguliers, par exemple toutes les minutes, une unité de commande 23 envoie pendant un bref instant à la vanne 6 et au moyen de commutation 13, respectivement par des lignes 24 et 25, des signaux de commande qui font passer momentanément la vanne 6 dans un état tel qu'elle interrompt la communication entre l'orifice d'entrée 3 du capteur 1 et la prise de pression 9 et établit une communication entre les orifices d'entrée 2 et 3 du capteur 1, et le moyen de commutation 13 dans un état tel qu'il relie la sortie 12 du capteur 1 à l'entrée de la mémoire 17. Dans ces conditions, la même pression P1 est appliquée aux deux orifices d'entrée 2 et 3 du capteur 1 et l'éventuelle erreur de mesure du capteur 1 est emmagasinée dans la mémoire 17. A l'aide du moyen de soustraction 21 cette erreur est soustraite de la valeur du signal de sortie du capteur 1 emmagasinée dans la mémoire 15. Ainsi, l'erreur de mesure du capteur 1 est périodiquement mise à jour dans la mémoire 17 et l'on obtient sur la sortie 22 du moyen de soustraction 21 un signal de mesure corrigé dont la valeur correspond à la valeur exacte de la différence des pressions P1 et P2. Ainsi, les éléments 13, 15, 17 et 22 forment un circuit de mesure 26 qui, en combinaison avec la vanne.6 à trois voies et avec l'unité de commande 23, permet un étalonnage automatique du zéro du capteur 1.Normally, the valve 6 is in a state such that it puts the orifice input 3 of sensor 1 in communication with pressure tap 9 and the switching means 13 is in a state such that it connects output 12 of sensor 1 at the entry of the memory 15. Under these conditions, the memory 15 records the value of the output signal from sensor 1, which corresponds to the difference pressures P1 and P2. If the pressures P1 and P2 are equal, the value of the signal sensor 1 output should normally be zero. However, as noted higher, inexpensive differential pressure sensors often have thermal drift and long-term drift. Because of these drifts the value of the output signal from sensor 1 is not always zero when the pressures P1 and P2 applied to the inlet ports 2 and 3 are equal. As a result, when these two pressures are different, the value of the sensor output signal 1 has an error. This error can be corrected in the manner next. At regular intervals, for example every minute, a unit of command 23 sends for a short time to valve 6 and by means of switching 13, respectively by lines 24 and 25, of the control which temporarily pass the valve 6 into a state such that it interrupts communication between input port 3 of sensor 1 and the socket pressure 9 and establishes communication between the inlet ports 2 and 3 of the sensor 1, and the switching means 13 in a state such that it connects the output 12 from sensor 1 to memory input 17. Under these conditions, the same pressure P1 is applied to the two inlet ports 2 and 3 of sensor 1 and any measurement error from sensor 1 is stored in the memory 17. Using the subtraction means 21 this error is subtracted from the value of the output signal from sensor 1 stored in memory 15. Thus, the measurement error of sensor 1 is periodically updated in the memory 17 and a signal is obtained at the output 22 of the subtraction means 21 corrected measurement whose value corresponds to the exact value of the difference of pressures P1 and P2. Thus, the elements 13, 15, 17 and 22 form a circuit for measure 26 which, in combination with the three-way valve. 6 and with the command 23, allows an automatic zero calibration of sensor 1.

Le dispositif connu de mesure de pression différentielle qui a été décrit en référence à la figure 1 donne toute satisfaction de point de vue de l'étalonnage du zéro du capteur. Toutefois, il présente l'inconvénient d'utiliser une vanne à trois voies, qui est un élément relativement coûteux.The known differential pressure measurement device which has been described with reference to FIG. 1 gives all satisfaction from the point of view of sensor zero calibration. However, it has the disadvantage of using a three-way valve, which is a relatively expensive item.

Les dispositifs de mesure de pression différentielle du type décrit ci-dessus peuvent être utilisés dans des dispositifs permettant de réguler le rapport air/gaz du brûleur d'une chaudière. Des dispositifs de régulation du rapport air/gaz sont par exemple décrits dans la publication japonaise déjà citée plus haut et dans le rapport publié par l'Association Technique de l'industrie du Gaz en France, lors du 113ème Congrès du Gaz à Paris, 10-13 septembre 1996, "Recueil des Communications", Tome 2, page 245 - 251, article "Régulation active du rapport air/gaz d'un brûleur" par C. PECHOUX et al. Le dispositif de régulation du rapport air/gaz décrit dans la publication japonaise précitée utilise un unique capteur de pression différentielle qui mesure la différence entre la pression d'air Pa en amont du diaphragme d'air dans la conduite d'alimentation en air sous pression et la pression de gaz Pg en amont du diaphragme de gaz dans la conduite d'alimentation en gaz. Une vanne à trois voies et un circuit de mesure semblables à ceux décrits plus haut en référence à la figure 1 permet d'effectuer un étalonnage automatique du zéro du capteur de pression différentielle. D'autre part, le dispositif de régulation du rapport air/gaz décrit dans le rapport précité utilise deux capteurs de pression différentielle, l'un pour mesurer la différence entre la pression d'air Pa et la pression de gaz Pg, comme dans la publication japonaise précitée, l'autre pour mesurer le débit d'air dans la conduite d'alimentation en air sous pression. Bien que dans ce dernier dispositif de régulation du rapport air/gaz il. ne soit pas prévu d'effectuer un étalonnage automatique du zéro de chacun des deux capteurs de pression différentielle, on pourrait facilement effectuer un tel étalonnage en associant à chacun des deux capteurs une vanne à trois voies et un circuit de mesure tels que ceux qui ont été décrits plus haut en référence à la figure 1. Toutefois, une telle solution serait relativement coûteuse dans la mesure où elle nécessite l'utilisation de deux vannes à trois voies et de deux circuits de mesure, un pour chaque capteur.Differential pressure measuring devices of the type described above can be used in devices to regulate the ratio air / gas from a boiler burner. Ratio regulation devices air / gas are for example described in the Japanese publication already cited more top and in the report published by the Technical Association of the Gas Industry in France, during the 113th Gas Congress in Paris, September 10-13, 1996, "Collection of Communications", Volume 2, page 245 - 251, article "Regulation active air / gas ratio of a burner "by C. PECHOUX et al. The device regulation of the air / gas ratio described in the aforementioned Japanese publication uses a unique differential pressure sensor that measures the difference between the air pressure Pa upstream of the air diaphragm in the supply line in pressurized air and the gas pressure Pg upstream of the gas diaphragm in the gas supply line. A three-way valve and a circuit measurement similar to those described above with reference to Figure 1 allows perform an automatic zero calibration of the pressure sensor differential. On the other hand, the device for regulating the air / gas ratio described in the aforementioned report uses two differential pressure sensors, one for measure the difference between the air pressure Pa and the gas pressure Pg, as in the aforementioned Japanese publication, the other to measure the air flow in the pressurized air supply line. Although in the latter device regulating the air / gas ratio. no provision is made for calibration automatic zeroing of each of the two differential pressure sensors, we could easily perform such a calibration by associating with each of the two sensors a three-way valve and a measurement circuit such as those that have have been described above with reference to Figure 1. However, such a solution would be relatively expensive since it requires the use of two three-way valves and two measurement circuits, one for each sensor.

On connaít par ailleurs (Patent Abstracts of Japan, volume 008080, date de publication 12-04-84, et demande de brevet japonais JP58224226, publiée le 26-12-83 au nom de MATSUSHITA DENKI SANGYO) un dispositif de régulation du rapport air/gaz d'un brûleur, qui utilise un unique capteur de pression qui a un unique orifice d'entrée et qui est combiné à une vanne à trois voies de telle façon que le capteur mesure alternativement la pression d'air en amont du diaphragme d'air et la pression de gaz en amont du diaphragme de gaz. Dans cette dernière publication, le capteur de pression n'est pas utilisé comme un capteur de pression différentielle et aucun moyen n'est prévu pour effectuer un étalonnage automatique du zéro du capteur.We also know (Patent Abstracts of Japan, volume 008080, publication date 12-04-84, and Japanese patent application JP58224226, published on 26-12-83 in the name of MATSUSHITA DENKI SANGYO) a device for regulation of the air / gas ratio of a burner, which uses a single sensor pressure which has a single inlet port and which is combined with a three-way valve channels so that the sensor alternately measures the air pressure in upstream of the air diaphragm and gas pressure upstream of the diaphragm of gas. In this latest publication, the pressure sensor is not used as a differential pressure sensor and no means are provided for perform an automatic sensor zero calibration.

La présente invention a pour but de fournir un dispositif pour la régulation active du rapport air/gaz d'un brûleur utilisant au moins un dispositif de mesure de pression différentielle selon l'invention.The object of the present invention is to provide a device for the active regulation of the air / gas ratio of a burner using at least one device differential pressure measurement according to the invention.

Le dispositif de mesure de pression différentielle, mis en oeuvre dans le dispositif de régulation selon l'invention, utilise un capteur de pression différentielle, susceptible de présenter des dérives thermiques et à long terme, et comporte un circuit de mesure permettant d'effectuer un étalonnage automatique du zéro du capteur, ledit dispositif de mesure de pression différentielle étant moins coûteux que le dispositif connu de mesure décrit plus haut.The differential pressure measurement device, used in the regulating device according to the invention, uses a pressure sensor differential, likely to exhibit thermal drifts and in the long term, and includes a measurement circuit for performing a calibration automatic sensor zero, said pressure measuring device differential being less expensive than the known measuring device described more high.

Ce dispositif de mesure de pression différentielle comprend un capteur de pression différentielle ayant des premier et second orifices d'entrée raccordés respectivement à des première et seconde prises de pression, et une sortie qui, en service, délivre un signal de sortie représentatif d'une différence de pression entre les premier et second orifices d'entrée, et une vanne qui est reliée aux premier et second orifices d'entrée du capteur et qui, dans un premier état, isole l'un de l'autre les deux orifices d'entrée et, dans un second état, les met en communication l'un avec l'autre des moyens de mémorisation reliés à la sortie du capteur pour mémoriser au moins deux valeurs du signal de sortie du capteur. Il comprend également une unité de commande reliée à la vanne et aux moyens de mémorisation pour commuter la vanne et commander la mémorisation d'une première valeur du signal de sortie du capteur dans les moyens de mémorisation quand la vanne est dans son premier état, et la mémorisation d'une seconde valeur du signal de sortie du capteur dans les moyens de mémorisation quand la vanne est dans son second état. Il comprend enfin des moyens de mesure pour effectuer un calibrage automatique du zéro du capteur.This differential pressure measurement device includes a sensor differential pressure having first and second inlet ports connected respectively to first and second pressure taps, and a output which, in service, delivers an output signal representative of a difference pressure between the first and second inlet ports, and a valve which is connected to the first and second sensor inlet ports and which, in a first state, isolates the two inlet ports from each other and, in a second state, the puts into communication with each other storage means connected to the sensor output to store at least two values of the output signal from the sensor. It also includes a control unit connected to the valve and the storage means for switching the valve and controlling the storage of a first value of the sensor output signal in the memorization means when the valve is in its first state, and the storage of a second value of the sensor output signal in the storage means when the valve is in its second state. He understands finally measuring means for performing an automatic zero calibration of the sensor.

Dans une variante de réalisation préférée, les moyens de mesures sont constitués par des circuits mémoires formant les moyens de mémorisation et par un moyen de soustraction pour calculer la différence entre les première et seconde valeurs du signal de sortie du capteur. Le circuit de mesure délivre en sortie un signal de mesure représentant la valeur exacte de la différence des pressions respectivement appliquées aux premier et second orifices d'entrée du capteur.In a preferred embodiment, the measurement means are constituted by memory circuits forming the storage means and by a means of subtraction to calculate the difference between the first and second values of the sensor output signal. The measuring circuit delivers in output a measurement signal representing the exact value of the difference in pressures respectively applied to the first and second inlet ports of the sensor.

Le dispositif de mesure de pression comporte en outre un orifice d'étranglement calibré, qui est inséré dans l'une des première et seconde prises de pression. La vanne est une vanne à deux voies, dont une première voie est reliée à celle des première et seconde prises de pressions dans laquelle est inséré l'orifice d'étranglement calibré, entre cet orifice calibré et l'orifice d'entrée correspondant du capteur. Une seconde voie est reliée à l'autre des première et seconde prises de pression. L'orifice calibré a une section de passage nettement plus petite que celle de ladite vanne à deux voies.The pressure measuring device also has an orifice calibrated throttle, which is inserted into one of the first and second sockets pressure. The valve is a two-way valve, a first way of which is connected to that of the first and second pressure taps in which is inserted the calibrated throttle orifice, between this calibrated orifice and the inlet orifice correspondent of the sensor. A second channel is connected to the other of the first and second pressure taps. The calibrated orifice has a passage section significantly smaller than that of said two-way valve.

Avec un tel agencement, pour effectuer l'étalonnage du zéro du capteur de pression différentielle on utilise un orifice calibré d'étranglement et une simple vanne à deux voies qui sont plus faciles à réaliser et moins coûteux que la vanne à trois voies utilisée dans le dispositif de mesure de pression différentielle antérieurement connu.With such an arrangement, to perform the sensor zero calibration differential pressure we use a calibrated throttle orifice and a simple two-way valve which are easier to make and less expensive than the three-way valve used in the pressure measuring device previously known differential.

L'invention a donc pour but principal un dispositif pour la régulation active du rapport air/gaz d'un brûleur, comprenant un mélangeur air/gaz situé en amont du brûleur, une conduite d'air, contenant un diaphragme calibré d'air et connectée à une première entrée dudit mélangeur air/gaz, une conduite d'alimentation en gaz, contenant un diaphragme calibré de gaz et connectée à une seconde entrée dudit mélangeur air/gaz, disposés en amont desdits diaphragmes calibrés d'air et de gaz, des moyens de réglage des débits d'air et de gaz envoyés audit mélangeur air/gaz, et au moins un dispositif de mesure de pression différentielle branché de manière à délivrer un signal de mesure représentatif d'au moins un des paramètres que sont le débit d'air dans la conduite d'air, la différence des pressions d'air et de gaz dans les conduites d'air et de gaz, et le débit de gaz dans la conduite de gaz de manière à ce que la quantité de gaz envoyée au mélangeur air/gaz soit telle que le rapport air/gaz ait une valeur prédéfinie, caractérisé en ce que chacun des dispositifs de mesure de pression différentielle comprend :

  • un capteur de pression différentielle ayant des premier et second orifices d'entrée, raccordés respectivement à des première et seconde prises de pression, dont l'une comprend un orifice calibré d'étranglement, et une sortie qui, en service, délivre un signal représentatif d'une différence de pression entre les premier et second orifices d'entrée dudit capteur ;
  • une vanne à deux voies, dont une première voie est reliée à celle des première et seconde prises de pression dans laquelle est inséré ledit orifice calibré d'étranglement, entre cet orifice calibré et l'orifice d'entrée correspondant du capteur, et dont une seconde voie est reliée à l'autre des première et seconde prises de pression, ledit orifice calibré ayant une section de passage nettement plus petite que celle de ladite vanne à deux voies ; ladite vanne à deux voies isolant l'un de l'autre les deux orifices d'entrée, lorsqu'elle est dans un premier état, et les met en communication l'un avec l'autre, lorsqu'elle est dans un second état ;
  • des moyens de mémorisation reliés à la sortie de chaque capteur pour mémoriser au moins deux valeurs du signal de sortie de chaque capteur ;
  • une unité de commande reliée à ladite vanne à deux voies et aux moyens de mémorisation pour commuter ladite vanne à deux voies et commander la mémorisation d'une première valeur du signal de sortie du capteur dans lesdits moyens de mémorisation quand la vanne à deux voies est dans son premier état, et la mémorisation d'une seconde valeur du signal de sortie du capteur dans lesdits moyens de mémorisation quand la vanne à deux voies est dans son second état ; et
  • des moyens pour calculer la différence entre lesdites première et seconde valeurs du signal de sortie du capteur ; lesdits moyens de mémorisation et ledit moyen de calcul de la différence formant un circuit de mesure qui délivre en sortie un signal de mesure représentant la valeur exacte de la différence des pressions respectivement appliquées aux premier et second orifices d'entrée de chaque capteur.
The main object of the invention is therefore a device for active regulation of the air / gas ratio of a burner, comprising an air / gas mixer located upstream of the burner, an air line, containing a calibrated diaphragm of air and connected to a first inlet of said air / gas mixer, a gas supply pipe, containing a calibrated gas diaphragm and connected to a second inlet of said air / gas mixer, arranged upstream of said calibrated air and gas diaphragms, means for adjusting the air and gas flow rates sent to said air / gas mixer, and at least one differential pressure measurement device connected so as to deliver a measurement signal representative of at least one of the parameters that are the flow of air in the air line, the difference of air and gas pressures in the air and gas lines, and the gas flow in the gas line so that the amount of gas sent air / gas mixer either such that the air / gas ratio has a predefined value, characterized in that each of the differential pressure measurement devices comprises:
  • a differential pressure sensor having first and second inlet ports, connected respectively to first and second pressure taps, one of which comprises a calibrated throttle orifice, and an outlet which, in service, delivers a representative signal a pressure difference between the first and second inlet ports of said sensor;
  • a two-way valve, one of which is connected to that of the first and second pressure taps into which said calibrated throttle orifice is inserted, between this calibrated orifice and the corresponding inlet orifice of the sensor, and one of which second channel is connected to the other of the first and second pressure taps, said calibrated orifice having a passage section clearly smaller than that of said two-way valve; said two-way valve isolating the two inlet ports from one another, when it is in a first state, and puts them in communication with each other, when it is in a second state ;
  • storage means connected to the output of each sensor for storing at least two values of the output signal of each sensor;
  • a control unit connected to said two-way valve and to the storage means for switching said two-way valve and controlling the storage of a first value of the sensor output signal in said storage means when the two-way valve is in its first state, and storing a second value of the sensor output signal in said memorizing means when the two-way valve is in its second state; and
  • means for calculating the difference between said first and second values of the sensor output signal; said storage means and said difference calculation means forming a measurement circuit which outputs a measurement signal representing the exact value of the difference in pressures respectively applied to the first and second inlet ports of each sensor.

Dans un premier mode de réalisation du dispositif de régulation du rapport air/gaz, pour mesurer le débit d'air dans la conduite d'air et pour mesurer la différence des pressions d'air et de gaz respectivement dans la conduite d'air et dans la conduite de gaz, il est possible d'utiliser deux dispositifs de mesure de pression différentielle selon l'invention, qui comportent chacun un capteur de pression différentielle, un orifice calibré d'étranglement, une vanne à deux voies et un circuit de mesure. Dans ce cas, on utilise deux vannes à deux voies qui sont plus simples et moins coûteuses que deux vannes à trois voies qu'il faudrait utiliser avec des dispositifs de mesure de pression différentielle antérieurement connus.In a first embodiment of the device for regulating the air / gas ratio, to measure the air flow in the air line and to measure the difference of the air and gas pressures in the air line respectively and in the gas line it is possible to use two devices for measuring differential pressure according to the invention, which each include a differential pressure, a calibrated throttle orifice, a two-way valve and a measurement circuit. In this case, two two-way valves are used which are simpler and less expensive than two three-way valves it would take use with previously used differential pressure measurement devices known.

Dans un autre mode de réalisation du dispositif de régulation du rapport air/gaz selon l'invention, pour mesurer le débit d'air et pour mesurer la différence des pressions d'air et de gaz il est possible d'utiliser deux dispositifs de mesure de pression différentielle selon l'invention qui ont en commun un unique orifice calibré d'étranglement et une unique vanne à deux voies pour effectuer l'étalonnage du zéro de chacun des deux capteurs de pression différentielle. In another embodiment of the ratio regulation device air / gas according to the invention, for measuring the air flow and for measuring the difference air and gas pressures it is possible to use two measuring devices differential pressure according to the invention which have in common a single orifice calibrated throttle and a single two-way valve to perform zero calibration for each of the two differential pressure sensors.

Dans un mode de réalisation préféré du dispositif de régulation du rapport air/gaz selon l'invention, pour mesurer le débit d'air et pour mesurer la différence des pressions d'air et de gaz ou le débit de gaz, il est possible d'utiliser un unique dispositif de mesure de pression différentielle selon l'invention, moyennant l'utilisation d'une vanne additionnelle à deux voies et d'un moyen de commutation pour envoyer le signal de sortie du circuit de mesure du dispositif de mesure de pression différentielle sélectivement à l'unité de régulation de débit d'air et à l'unité de régulation d'alimentation en gaz, cette dernière unité de régulation pouvant être conçue soit sous la forme d'une unité de régulation de pression air/gaz si, le capteur de pression différentielle du dispositif de mesure de pression différentielle est prévu pour mesurer la différence des pressions d'air et de gaz, soit sous la forme d'une unité de régulation de débit de gaz si ledit capteur de pression différentielle est prévu pour mesurer le débit du gaz.In a preferred embodiment of the device for regulating the air / gas ratio according to the invention, for measuring the air flow and for measuring the difference in air and gas pressures or gas flow it is possible to use a single differential pressure measurement device according to the invention, through the use of an additional two-way valve and a switching means for sending the output signal from the measuring circuit of the differential pressure measuring device selectively at the unit of air flow control and to the gas supply control unit, this last regulating unit which can be designed either as a unit air / gas pressure regulator if, the differential pressure sensor of the differential pressure measuring device is provided to measure the difference in air and gas pressures, either as a unit of gas flow regulation if said differential pressure sensor is provided to measure the gas flow.

D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lecture de la description suivante du dispositif de mesure de pression différentielle et de divers modes de réalisation du dispositif de régulation du rapport air/gaz, qui sont donnés à titre d'exemple en faisant référence aux dessins annexés dans lesquels :

  • la figure 1 représente schématiquement un dispositif de mesure de pression différentielle antérieurement connu ;
  • la figure 2 représente schématiquement le dispositif de mesure de pression différentielle mis en oeuvre dans le dispositif de régulation du rapport air/gaz selon l'invention ;
  • la figure 3 représente schématiquement un premier mode de réalisation d'un dispositif de régulation du rapport air/gaz d'un brûleur selon l'invention, utilisant deux dispositifs de mesure de pression différentielle conformes à la figure 2 ;
  • la figure 4 représente schématiquement un second mode de réalisation du dispositif de régulation du rapport air/gaz d'un brûleur, avec deux dispositifs de mesure de pression différentielle utilisant en commun un orifice calibré d'étranglement et une vanne à deux voies ;
  • la figure 5 représente schématiquement une variante du dispositif de régulation de la figure 4 ;
  • la figure 6 représente schématiquement un troisième mode de réalisation, ou mode de réalisation préféré, du dispositif de régulation du rapport air/gaz d'un brûleur selon l'invention, utilisant un unique dispositif de mesure de pression différentielle selon l'invention pour mesurer le débit d'air et la différence des pressions d'air et de gaz ;
  • la figure 7 représente schématiquement un exemple de réalisation d'un échantillonneur bloqueur utilisable dans le dispositif de régulation de la figure 6 ; et
  • la figure 8 représente schématiquement un quatrième mode de réalisation d'un dispositif de régulation du rapport air/gaz d'un brûleur selon l'invention, utilisant également un unique dispositif de mesure de pression différentielle selon l'invention pour mesurer le débit d'air et le débit de gaz.
Other characteristics and advantages of the present invention will emerge more clearly on reading the following description of the differential pressure measurement device and of various embodiments of the device for regulating the air / gas ratio, which are given by way of example. with reference to the accompanying drawings in which:
  • FIG. 1 schematically represents a previously known differential pressure measurement device;
  • FIG. 2 schematically represents the differential pressure measuring device used in the device for regulating the air / gas ratio according to the invention;
  • FIG. 3 schematically represents a first embodiment of a device for regulating the air / gas ratio of a burner according to the invention, using two devices for measuring differential pressure in accordance with FIG. 2;
  • FIG. 4 schematically represents a second embodiment of the device for regulating the air / gas ratio of a burner, with two differential pressure measurement devices using in common a calibrated throttle orifice and a two-way valve;
  • FIG. 5 schematically represents a variant of the regulation device of FIG. 4;
  • FIG. 6 schematically represents a third embodiment, or preferred embodiment, of the device for regulating the air / gas ratio of a burner according to the invention, using a single differential pressure measurement device according to the invention for measuring air flow and difference in air and gas pressures;
  • FIG. 7 schematically represents an exemplary embodiment of a blocking sampler usable in the regulation device of FIG. 6; and
  • FIG. 8 schematically represents a fourth embodiment of a device for regulating the air / gas ratio of a burner according to the invention, also using a single differential pressure measurement device according to the invention for measuring the flow rate of air and gas flow.

Le dispositif de mesure de pression différentielle selon l'invention qui est montré sur la figure 2 est en grande partie semblable au dispositif de mesure connu qui a déjà été décrit plus haut en référence à la figure 1. En conséquence, les éléments du dispositif de mesure de pression différentielle selon l'invention qui sont identiques à ceux du dispositif connu de la figure 1 sont désignés par les mêmes numéros de référence et ne seront pas décrits à nouveau en détail. Le dispositif de mesure de pression différentielle utilisé dans le dispositif de régulation du rapport air/gaz selon l'invention diffère du dispositif connu essentiellement par le fait que, au lieu de la vanne 6 à trois voies, il est prévu un orifice calibré d'étranglement 27 et une vanne 28 à deux voies. L'orifice calibré 27 est situé dans l'une des deux prises de pression 4 et 9, par exemple dans la prise de pression 9 comme montré sur la figure 2, et il est réalisé de manière à avoir une section de passage nettement plus petite que celle de la vanne 28 lorsque celle-ci est ouverte. La vanne 28 est insérée dans le conduit 11 de telle façon que l'une des voies de la vanne 28 est reliée à la prise de pression 4 raccordée à l'orifice d'entrée 2 du capteur 1, et que l'autre voie de la vanne 28 est reliée à la prise de pression 9 raccordée à l'orifice d'entrée 3 du capteur 1, le conduit 11 étant branché entre cet orifice d'entrée 3 et l'orifice calibré 27.The differential pressure measuring device according to the invention which is shown in figure 2 is largely similar to the measuring device known which has already been described above with reference to FIG. 1. In consequence, the elements of the differential pressure measuring device according to the invention which are identical to those of the known device of FIG. 1 are designated by the same reference numbers and will not be described in new in detail. The differential pressure measurement device used in the device for regulating the air / gas ratio according to the invention differs from the device basically known by the fact that instead of the three-way valve 6 it is provided a calibrated throttle orifice 27 and a two-way valve 28. The hole calibrated 27 is located in one of the two pressure taps 4 and 9, for example in the pressure tap 9 as shown in Figure 2, and it is made of so as to have a significantly smaller passage cross-section than that of the valve 28 when the latter is open. The valve 28 is inserted in the conduit 11 in such a way that one of the channels of the valve 28 is connected to the outlet pressure 4 connected to the inlet port 2 of the sensor 1, and the other channel of the valve 28 is connected to the pressure tap 9 connected to the inlet port 3 of the sensor 1, the conduit 11 being connected between this inlet orifice 3 and the orifice calibrated 27.

En service, la vanne 28 est normalement fermée et le moyen de commutation 13 relie la sortie 12 du capteur 1 à l'entrée de la mémoire 15. Dans ces conditions, si l'on désigne par P3 la pression à l'orifice d'entrée 3 du capteur 1, ce dernier mesure la pression différentielle P1 - P3, avec P3 = P2, car à ce moment il n'y a pas de débit de fluide à travers de l'orifice calibré 27. En conséquence, la mémoire 15 emmagasine la valeur de la différence de pression P1 - P2, éventuellement entachée d'une erreur de mesure si le capteur 1 présente une dérive thermique et/ou une dérive à long terme.In service, the valve 28 is normally closed and the means of switching 13 connects the output 12 of the sensor 1 to the input of the memory 15. In these conditions, if we designate by P3 the pressure at the inlet port 3 of the sensor 1, the latter measures the differential pressure P1 - P3, with P3 = P2, because at this moment there is no fluid flow through the calibrated orifice 27. In consequence, the memory 15 stores the value of the pressure difference P1 - P2, possibly marred by a measurement error if sensor 1 exhibits thermal drift and / or long-term drift.

Pour effectuer l'étalonnage du zéro du capteur 1, à intervalles réguliers, par exemple toutes les minutes, l'unité de commande 23 émet sur la ligne 24 un signal de commande qui ouvre pendant un bref instant la vanne 28, et, simultanément, l'unité de commande 23 émet sur la ligne 25 un signal de commande qui commute le moyen de commutation 13 de telle façon que celui-ci relie pendant un bref instant la sortie du capteur 1 à l'entrée de la mémoire 17. Etant donné que, lorsque la vanne 28 est ouverte, elle a une section de passage beaucoup plus grande que celle de l'orifice calibré 27, elle est capable de débiter considération plus que l'orifice calibré 27. En conséquence, la perte de charge P1 - P3 de la vanne 28 est négligeable devant la perte de charge P2 - P3 de l'orifice calibré 27. Donc, lorsqu'on ouvre la vanne 28, la pression P3 est pratiquement égale à la pression P1. En conséquence, pendant le bref instant où la vanne 28 est ouverte, les deux orifices d'entrée 2 et 3 du capteur 1 sont court-circuités du point de vue pneumatique ou hydraulique et le capteur 1 mesure une différence de pression nulle. A ce moment, si le signal de sortie du capteur 1, qui devrait être nul, présente une dérive thermique ou une dérive à long terme, qui constitue une erreur de mesure, cette erreur de mesure est emmagasinée dans la mémoire 17 pour être ensuite soustraite, dans le moyen de soustraction 21, à la valeur du signal de sortie du capteur emmagasinée dans la mémoire 15. On obtient ainsi sur la sortie 22 du moyen de soustraction 21 un signal de mesure corrigé, qui représente la valeur exacte de la différence de pression P1 - P2. To perform the zero calibration of sensor 1, at regular intervals, for example every minute, the control unit 23 transmits on line 24 a control signal which briefly opens the valve 28, and, simultaneously, the control unit 23 transmits on line 25 a signal control which switches the switching means 13 in such a way that the latter briefly connects the output of sensor 1 to the input of memory 17. Since, when the valve 28 is open, it has a passage section much larger than that of the calibrated orifice 27, it is capable of debit consideration more than the calibrated orifice 27. As a result, the loss of load P1 - P3 of valve 28 is negligible compared to the pressure drop P2 - P3 of the calibrated orifice 27. So, when the valve 28 is opened, the pressure P3 is practically equal to the pressure P1. As a result, during the brief moment where the valve 28 is open, the two inlet ports 2 and 3 of the sensor 1 are shorted pneumatically or hydraulically and sensor 1 measures a zero pressure difference. At this time, if the output signal from the sensor 1, which should be zero, has a thermal drift or a drift to long term, which constitutes a measurement error, this measurement error is stored in memory 17 to be then subtracted, in the means subtraction 21, to the value of the sensor output signal stored in the memory 15. We thus obtain on the output 22 of the subtraction means 21 a corrected measurement signal, which represents the exact value of the difference in pressure P1 - P2.

Bien que décrits dans un mode de réalisation précis, il doit cependant être clair que les circuits de mesure 26 sont susceptibles de prendre des configurations diverses, matérielles et/ou logicielles. En particulier, on pourrait utiliser les ressources offertes par un microprocesseur (non représenté), soit dédié à cette tâche, soit déjà présent dans le dispositif de régulation. Un microprocesseur est généralement associé à des moyens de mémorisation internes et/ou externes (registres, mémoire vive, etc.). L'opération de soustraction peut être effectuée par l'unité arithmétique et logique dont est pourvu le microprocesseur. L'ensemble des opérations peut être sous la commande d'un programme spécifique. De même l'unité de commande 23 peut être confondue avec ce même microprocesseur. Il est seulement nécessaire de prévoir des circuits électroniques spécifiques d'interface en entrée et sortie, recevant les signaux de sortie du capteur et transmettant des signaux de commande à la vanne 28. Ces circuits (non représentés) assurent notamment des conversions de type analogique-numérique ou l'inverse, et les adaptations de niveaux nécessaires.Although described in a specific embodiment, it must however be clear that the measurement circuits 26 are likely to take various configurations, hardware and / or software. In particular, we could use the resources offered by a microprocessor (not shown), or dedicated to this task, already present in the regulatory system. A microprocessor is generally associated with memory means internal and / or external (registers, random access memory, etc.). The operation of subtraction can be performed by the arithmetic and logical unit of which is provided with the microprocessor. All operations can be under the command of a specific program. Similarly, the control unit 23 can be confused with this same microprocessor. It is only necessary to provide specific electronic input and output interface circuits, receiving the sensor output signals and transmitting signals from control at valve 28. These circuits (not shown) provide in particular analog-to-digital conversions or vice versa, and adaptations required levels.

La figure 3 montre un exemple de dispositif permettant de réguler le rapport air/gaz d'un brûleur 29, selon un premier mode de réalisation de l'invention, par exemple le brûleur d'une chaudière 30.Figure 3 shows an example of a device for regulating the air / gas ratio of a burner 29, according to a first embodiment of the invention, for example the burner of a boiler 30.

Sur la figure 3, le numéro de référence 31 désigne un ventilateur, qui est actionné par un moteur électrique 32 à vitesse variable et qui est relié par une conduite d'air 33 contenant un diaphragme calibré d'air 34 à une première entrée 35 d'un mélangeur air/gaz 36 situé en amont du brûleur 29. Bien que le mélangeur air/gaz 36 soit ici représenté comme un élément distinct du brûleur 29, il peut aussi être intégré à ce dernier comme cela est bien connu. A une seconde entrée 37 du mélangeur 36 est raccordée une conduite d'alimentation en gaz 38 qui contient un diaphragme calibré de gaz 39 et, en amont de ce diaphragme, une vanne proportionnelle 41 dont le côté entrée est raccordé à une source de gaz combustible sous pression (non montrée), par exemple à un réseau de distribution de gaz combustible sous pression. La vanne proportionnelle 41 permet de régler la pression Pg du gaz dans la conduite 38 en amont de l'orifice calibré 39 et, par suite, la quantité de gaz envoyée au mélangeur 36.In FIG. 3, the reference number 31 designates a fan, which is powered by an electric motor 32 with variable speed and which is connected by an air line 33 containing a calibrated diaphragm of air 34 at a first inlet 35 of an air / gas mixer 36 located upstream of the burner 29. Although the air / gas mixer 36 is here represented as a separate element from the burner 29, it can also be integrated into the latter as is well known. To one second input 37 of the mixer 36 is connected a supply line in gas 38 which contains a calibrated diaphragm of gas 39 and, upstream of this diaphragm, a proportional valve 41 whose inlet side is connected to a source of pressurized combustible gas (not shown), for example at a pressurized fuel gas distribution network. Valve proportional 41 adjusts the pressure Pg of the gas in the line 38 upstream of the calibrated orifice 39 and, consequently, the quantity of gas sent to the mixer 36.

Sur la figure 3, Pa désigne la pression d'air dans la conduite d'air 33 en amont du diaphragme d'air 34 et Pm désigne la pression du mélange air/gaz dans le mélangeur 36. La pression qui règne dans la conduite d'air 33 en aval du diaphragme d'air 34 et la pression qui règne dans la conduite de gaz 38 en aval du diaphragme de gaz 39 sont égales à la pression Pm lorsqu'il y a un débit d'air dans la conduite 33 et un débit de gaz dans la conduite 38.In FIG. 3, Pa denotes the air pressure in the air line 33 in upstream of the air diaphragm 34 and Pm denotes the pressure of the air / gas mixture in the mixer 36. The pressure prevailing in the air line 33 downstream of the air diaphragm 34 and the pressure in the gas line 38 in downstream of the gas diaphragm 39 are equal to the pressure Pm when there is a flow of air in line 33 and a gas flow in line 38.

Les numéros de référence 42a et 42b désignent deux dispositifs de mesure de pression différentielle qui sont destinés à mesurer respectivement la différence de pression Pa - Pm et la différence de pression Pa - Pg. Chacun des deux dispositifs de mesure de pression différentielle 42a et 42b est réalisé et fonctionne de la même manière que le dispositif de mesure de pression différentielle décrit en référence à la figure 2. C'est pourquoi leurs éléments sont désignés par les mêmes numéros de référence que ceux des éléments correspondants du dispositif de mesure de pression différentielle de la figure 2, ces numéros de référence étant affectés de la lettre "a" pour les éléments du dispositif de mesure de pression différentielle 42a et de la lettre "b" pour les éléments du dispositif de mesure de pression différentielle 42b. Les deux dispositifs de mesure de pression différentielle 42a et 42b ne seront donc pas décrits à nouveau en détail. On indiquera simplement que les orifices d'entrée 2a et 2b des capteurs la et 1 b sont raccordés à une seule et même prise de pression 4 branchée sur la conduite d'air 33 en amont du diaphragme d'air 34. Ainsi, en donnant le même diamètre intérieur et la même longueur aux conduits qui raccordent respectivement les deux orifices d'entrée 2a et 2b à la prise commune de pression 4, on est ainsi assuré que la même valeur de pression Pa est appliquée aux deux orifices d'entrée 2a et 2b. Toutefois, si on le désire, les orifices d'entrée 2a et 2b des capteurs 1a et 1 b pourraient être raccordés à des prises distinctes de pression branchées sur la conduite d'air 33 en amont du diaphragme d'air 34. L'autre orifice d'entré 3a du capteur 1a est raccordé à la prise de pression 9a qui contient l'orifice calibré d'étranglement 27a et qui est branchée sur la conduite d'air 33 en aval du diaphragme d'air 34. L'autre orifice d'entrée 3b du capteur 1b est raccordé à la prise de pression 9b qui contient l'orifice calibré d'étranglement 27b et qui est banchée sur la conduite de gaz 38 en amont du diaphragme de gaz 39.Reference numbers 42a and 42b designate two differential pressure measurement which are intended to measure respectively the pressure difference Pa - Pm and the pressure difference Pa - Pg. Each of the two differential pressure measuring devices 42a and 42b is produced and works in the same way as the pressure measuring device differential described with reference to Figure 2. This is why their elements are designated by the same reference numbers as those of the elements correspondents of the differential pressure measurement device of FIG. 2, these reference numbers being assigned the letter "a" for the elements of the differential pressure measuring device 42a and the letter "b" for elements of the differential pressure measuring device 42b. Both differential pressure measuring devices 42a and 42b will therefore not described again in detail. We will simply indicate that the inlet ports 2a and 2b of sensors la and 1b are connected to a single outlet pressure 4 connected to the air line 33 upstream of the air diaphragm 34. So, by giving the same inside diameter and the same length to the conduits which respectively connect the two inlet ports 2a and 2b to the socket pressure common 4, it is thus ensured that the same pressure value Pa is applied to the two inlet ports 2a and 2b. However, if desired, the inlet ports 2a and 2b of sensors 1a and 1b could be connected to separate pressure taps connected to the air line 33 upstream of the air diaphragm 34. The other inlet port 3a of the sensor 1a is connected to the pressure tap 9a which contains the calibrated throttle orifice 27a and which is connected to the air line 33 downstream of the air diaphragm 34. The other orifice input 3b of the sensor 1b is connected to the pressure tap 9b which contains the calibrated throttle orifice 27b and which is connected to the gas pipe 38 upstream of the gas diaphragm 39.

Comme montré sur la figure 3, une seule et même unité de commande 23 peut être prévue pour commander, par des lignes 24a et 25a, la vanne 28a et le circuit de mesure 26a du dispositif de mesure de pression différentielle 42a et, par des lignes 24b et 25b, la vanne 28b et le circuit de mesure 26b du dispositif de mesure de pression différentielle 42b. Sous la commande de l'unité de commande 23, l'étalonnage du zéro des capteurs 1a et 1b des dispositifs de mesure de pression différentielle 42a et 42b est effectué à intervalles réguliers, par exemple toutes les minutes, exactement de la même manière que celle décrite en référence à la figure 2. De préférence, l'étalonnage du zéro des deux capteurs 1a et 1b est effectué simultanément, mais il pourrait être effectué à des instants différents si on le désire. Le circuit de mesure 26a du dispositif de mesure de pression différentielle 42a délivre donc sur sa sortie 22a un signal corrigé de mesure qui représente la valeur exacte de la différence de pression Pa - Pm. De même, le circuit de mesure 26b du dispositif de mesure de pression différentielle 42b délivre sur sa sortie 22b un signal corrigé de mesure qui représente la valeur exacte de la différence pression Pa - Pg.As shown in Figure 3, one and the same control unit 23 can be provided to control, by lines 24a and 25a, the valve 28a and the measurement circuit 26a of the differential pressure measurement device 42a and, by lines 24b and 25b, the valve 28b and the measurement circuit 26b of the device differential pressure measuring device 42b. Under the control of the unit of command 23, the zero calibration of sensors 1a and 1b of the differential pressure measurement 42a and 42b is carried out at regular intervals, for example every minute, in exactly the same way as that described with reference to Figure 2. Preferably, zero calibration of the two sensors 1a and 1b is performed simultaneously, but it could be performed at different times if desired. The measurement circuit 26a of the differential pressure measurement 42a therefore delivers a signal on its output 22a corrected measurement which represents the exact value of the pressure difference Pa - Pm. Likewise, the measurement circuit 26b of the pressure measurement device differential 42b delivers on its output 22b a corrected measurement signal which represents the exact value of the pressure difference Pa - Pg.

Comme cela est bien connu, le débit d'air Qa dans la conduite d'air 33 est lié à la différence des pressions régnant de part et autre du diaphragme d'air 34, c'est-à-dire la différence de pression Pa - Pm, par la formule suivante: Pa - Pm = Ka.Q2a    dans laquelle Ka est un coefficient dont la valeur dépend du diamètre de l'orifice calibré du diaphragme d'air 34. En conséquence, pour un diaphragme d'air 34 ayant un diamètre donné, le signal de mesure présent à la sortie 22a du circuit de mesure 26a donne également une indication de la valeur du débit d'air Qa dans la conduite 33.As is well known, the air flow Qa in the air line 33 is related to the difference in pressures prevailing on either side of the air diaphragm 34, i.e. the pressure difference Pa - Pm, by the following formula: Pa - Pm = Ka.Q 2 at in which Ka is a coefficient whose value depends on the diameter of the calibrated orifice of the air diaphragm 34. Consequently, for an air diaphragm 34 having a given diameter, the measurement signal present at the output 22a of the circuit 26a also gives an indication of the value of the air flow rate Qa in line 33.

Le dispositif de régulation du rapport air/gaz montré sur la figure 3 comprend en outre, de façon connue en soi, une unité de régulation de température 43 qui reçoit sur son entrée 44 un signal de consigne de température. Lors de la mise en marche de la chaudière 30 ou si le brûleur 29 est éteint et doit être rallumé, l'unité de régulation de température 43 envoie par une ligne 45 une requête d'allumage du brûleur à l'unité de commande 23 qui, par une ligne 46, commande alors un dispositif d'allumage 47 afin de provoquer l'allumage du brûleur 29. Sur sa sortie-48, l'unité de régulation de température 43 délivre un signal de consigne de débit d'air, dont la valeur est fonction de la valeur de signal de consigne de température appliqué à l'entrée 44. Le signal de consigne de débit d'air délivré par l'unité de régulation de température 43 est envoyé à une entrée d'une unité classique de régulation de débit d'air 49 qui reçoit également sur une autre entrée le signal corrigé de mesure qui est présent sur la sortie 22a du circuit de mesure 26a et qui est indicatif de la valeur du débit d'air Qa dans la conduite 33. Sur la base du signal de consigne de débit d'air et du signal de mesure qui sont appliqués aux entrées de l'unité de régulation de débit d'air 49, cette dernière produit sur sa sortie 51 un signal de commande qui est envoyé au moteur 32 du ventilateur 31 afin d'en régler la vitesse de rotation. La vitesse de rotation du moteur 32 est alors réglée de telle sorte que le débit d'air Qa produit par le ventilateur 31 dans la conduite 33 devienne égal à la consigne de débit d'air envoyée à l'unité de régulation de débit d'air 49 par l'unité de régulation de température 43.The device for regulating the air / gas ratio shown in FIG. 3 further comprises, in a manner known per se, a unit for regulating temperature 43 which receives on its input 44 a setpoint signal of temperature. When switching on the boiler 30 or if the burner 29 is switched off and must be switched on again, the temperature control unit 43 sends by a line 45 a request for ignition of the burner to the control unit 23 which, by a line 46, then controls an ignition device 47 in order to cause ignition of the burner 29. On its output-48, the temperature regulation unit 43 delivers an air flow setpoint signal, the value of which depends on the temperature setpoint signal value applied to input 44. The signal for air flow setpoint delivered by the temperature control unit 43 is sent to an inlet of a conventional air flow control unit 49 which also receives on another input the corrected measurement signal which is present on the output 22a of the measurement circuit 26a and which is indicative of the value of the air flow Qa in line 33. Based on the set point signal air flow and measurement signal which are applied to the inputs of the air flow regulation 49, the latter produces on its output 51 a signal of command which is sent to the motor 32 of the fan 31 in order to adjust the rotation speed. The speed of rotation of the motor 32 is then adjusted in such a way so that the air flow Qa produced by the fan 31 in the line 33 becomes equal to the air flow setpoint sent to the control unit air flow 49 by the temperature regulation unit 43.

D'un autre côté, le dispositif de régulation du rapport air/gaz de la figure 3 comprend en outre une unité classique de régulation de pression air/gaz 52 recevant sur une entrée le signal corrigé de mesure qui est présent sur la sortie 22b du circuit de mesure 26b et qui représente la différence de pression Pa - Pg. Sur la base de ce signal corrigé de mesure, l'unité de régulation de pression air/gaz 52 produit, de façon connue, sur sa sortie 53 un signal de commande qui est envoyé à la vanne proportionnelle 41 afin de régler la pression de gaz Pg dans la conduite de gaz 38. La pression de gaz Pg est réglée par l'unité de régulation de pression air/gaz 52 de telle façon que la différence de pression Pa - Pg ait une valeur prédéfinie, par exemple une valeur nulle. Dans ce cas, l'unité de régulation de pression air/gaz 52 agit sur la vanne proportionnelle 41 jusqu'à ce que la pression de gaz Pg devienne égale à la pression d'air Pa, donc jusqu'à ce que la valeur du signal corrigé de mesure présent sur la sortie 22b du circuit de mesure 26b devienne égale à zéro. Avec une telle régulation de pression, qui règle la pression de gaz Pg de telle façon qu'elle reste en permanence égale à la pression d'air Pa, qui est elle-même réglée par l'unité de régulation de température 43 et par l'unité de régulation de débit d'air 49 en fonction de la valeur de la consigne de température appliquée à l'entrée 44, on obtient alors un rapport air/gaz qui est donné par la formule suivante : Rapport air/gaz = Qa/Qg = (d)1/2 .(Sa/Sg)    dans laquelle Qa et Qg sont respectivement le débit d'air dans la conduite d'air 33 et le débit de gaz dans la conduite de gaz 38, d est la densité du gaz, Sa et Sb sont respectivement l'aire de la section de l'orifice calibré du diaphragme d'air 34 et l'aire de la section de l'orifice calibré du diaphragme de gaz 39. D'après la formule (3), on voit que le rapport air/gaz est indépendant de la pression d'air Pa et de la pression de gaz Pg et que sa valeur est constante pour un gaz donné et pour des diaphragmes d'air et de gaz dont les orifices calibrés ont des sections données. Ainsi, en choisissant de manière appropriée les diamètres respectifs des orifices calibrés du diaphragme d'air 34 et du diaphragme de gaz 39, il est possible d'obtenir un rapport air/gaz qui a une valeur prédéfinie choisie en fonction de la nature du gaz utilisé et du type de brûleur utilisé, afin d'obtenir une bonne combustion, et ce rapport air/gaz est maintenu constant quelle que soit la valeur instantanée de la pression d'air Pa et de la pression de gaz Pg qui sont maintenues égales l'une à l'autre, donc quelle que soit la puissance instantanée demandée au brûleur.On the other hand, the device for regulating the air / gas ratio of FIG. 3 further comprises a conventional air / gas pressure regulating unit 52 receiving on an input the corrected measurement signal which is present on the output 22b of the measurement circuit 26b which represents the pressure difference Pa - Pg. On the basis of this corrected measurement signal, the air / gas pressure regulation unit 52 produces, in known manner, at its output 53 a control signal which is sent to the proportional valve 41 in order to regulate the gas pressure Pg in the gas line 38. The gas pressure Pg is regulated by the air / gas pressure regulating unit 52 so that the pressure difference Pa - Pg has a predefined value, for example a null value. In this case, the air / gas pressure regulating unit 52 acts on the proportional valve 41 until the gas pressure Pg becomes equal to the air pressure Pa, therefore until the value of the corrected measurement signal present on output 22b of measurement circuit 26b becomes zero. With such a pressure regulation, which regulates the gas pressure Pg so that it remains permanently equal to the air pressure Pa, which is itself regulated by the temperature regulation unit 43 and by l the air flow regulation unit 49 as a function of the value of the temperature setpoint applied to the input 44, an air / gas ratio is then obtained which is given by the following formula: Air / gas ratio = Qa / Qg = (d) 1/2 . (His / Sg) in which Qa and Qg are respectively the air flow in the air line 33 and the gas flow in the gas line 38, d is the density of the gas, Sa and Sb are respectively the area of the cross section of the calibrated orifice of the air diaphragm 34 and the cross-sectional area of the calibrated orifice of the gas diaphragm 39. From formula (3), it can be seen that the air / gas ratio is independent of the pressure air Pa and gas pressure Pg and that its value is constant for a given gas and for air and gas diaphragms whose calibrated orifices have given sections. Thus, by appropriately choosing the respective diameters of the calibrated orifices of the air diaphragm 34 and the gas diaphragm 39, it is possible to obtain an air / gas ratio which has a predefined value chosen according to the nature of the gas. used and the type of burner used, in order to obtain good combustion, and this air / gas ratio is kept constant whatever the instantaneous value of the air pressure Pa and the gas pressure Pg which are kept equal l '' to each other, therefore whatever the instantaneous power requested from the burner.

Ainsi que cela est également connu, l'unité de régulation de pression air/gaz 52 peut être conçue pour que la pression gaz Pg soit asservie à la pression d'air Pa, non pas pour que ces deux pressions restent en permanence égales l'une à l'autre, mais pour que la pression Pg soit liée à la pression Pa par une relation prédéterminée qui peut varier en fonction de la puissance instantanée demandée au brûleur. Par exemple, un brûleur donné peut avoir besoin, d'un rapport air/gaz variant d'une façon prédéterminée entre la puissance minimale et la puissance maximale du brûleur pour obtenir une bonne combustion quelle que soit la puissance instantanée demandée au brûleur. Pour faciliter l'allumage du brûleur en le démarrant à une puissance donnée, il peut être également nécessaire d'avoir un rapport air/gaz spécial pendant l'allumage. Par exemple, il peut être nécessaire d'augmenter la richesse du mélangeur air/gaz pendant les quelques secondes que dure le démarrage du brûleur. A cet effet, l'unité de régulation de pression air/gaz peut être par exemple conçue pour régler la pression de gaz Pg de façon à obtenir le rapport air/gaz désiré en fonction de la puissance instantanée demandée au brûleur et/ou pendant quelques secondes lors de l'allumage du brûleur.As is also known, the pressure regulating unit air / gas 52 can be designed so that the gas pressure Pg is controlled by the air pressure Pa, not so that these two pressures remain permanently equal to each other, but so that the pressure Pg is linked to the pressure Pa by a predetermined relationship which can vary depending on the power instant requested from the burner. For example, a given burner may have need, an air / gas ratio varying in a predetermined manner between the minimum power and maximum power of the burner to get good combustion whatever the instantaneous power requested from the burner. For facilitate the ignition of the burner by starting it at a given power, it can it may also be necessary to have a special air / gas ratio during ignition. For example, it may be necessary to increase the richness of the mixer air / gas during the few seconds that the burner starts. In this Indeed, the air / gas pressure regulation unit can for example be designed to adjust the gas pressure Pg so as to obtain the desired air / gas ratio by function of the instantaneous power requested from the burner and / or during a few seconds when the burner ignites.

La fïgure 4 montre un second mode de réalisation du dispositif de régulation du rapport air/gaz d'un brûleur, dans lequel il est prévu un unique orifice calibré d'étranglement et une unique vanne à deux voies pour effectuer l'étalonnage des deux capteurs de pression différentielle. Sur la figure 4, les éléments du dispositif de régulation du rapport air/gaz qui sont identiques ou qui jouent le même rôle que ceux du dispositif de régulation du rapport air/gaz de la figure 3 sont désignés par les mêmes numéros de référence et ne seront pas décrits à nouveau en détail. Le dispositif de régulation du rapport air/gaz de la figure 4 diffère de celui de la figure 3 essentiellement en ce qu'il comporte un unique orifice calibré d'étranglement 27, qui est situé dans la prise commune de pression 4, et une unique vanne 28 à deux voies. L'une des deux voies de la vanne 28 est raccordée directement aux orifices d'entrée 2a et 2b des capteurs la et 1 b et, à travers l'orifice calibré d'étranglement 27, à la prise de pression 4. L'autre voie de la vanne 28 est reliée à une prise de pression 54 branchée sur la conduite d'air 33 en aval du diaphragme d'air 34, où il règne une pression égale à la pression Pm. Au lieu d'être reliée à la prise de pression 54, la vanne 28 pourrait tout aussi bien être reliée soit à la prise de pression 9a, soit à la prise de pression 54' branchée sur le mélangeur 36, soit encore à la prise de pression 54" branchée sur la conduite de gaz 38 en aval du diaphragme 39, étant donné que, à tous ces endroits il règne, en service, une pression égale à la pression Pm. Figure 4 shows a second embodiment of the device regulation of the air / gas ratio of a burner, in which a single one is provided calibrated throttle orifice and a single two-way valve to perform calibration of the two differential pressure sensors. In Figure 4, the elements of the air / gas ratio regulating device which are identical or which play the same role as those of the device regulating the air / gas ratio of the Figure 3 are designated by the same reference numbers and will not be described again in detail. The device for regulating the air / gas ratio of the Figure 4 differs from that of Figure 3 essentially in that it includes a single calibrated throttle orifice 27, which is located in the common socket of pressure 4, and a single two-way valve 28. One of the two routes of the valve 28 is directly connected to the inlet ports 2a and 2b of the sensors la and 1b and, through the calibrated throttle orifice 27, to the pressure tap 4. The other channel of the valve 28 is connected to a pressure tap 54 connected to the air line 33 downstream of the air diaphragm 34, where there is an equal pressure at the pressure Pm. Instead of being connected to the pressure tap 54, the valve 28 could just as easily be connected either to the pressure tap 9a or to the plug pressure valve 54 'connected to mixer 36, i.e. still at the pressure tap 54 "connected to the gas line 38 downstream from the diaphragm 39, given that in all these places there prevails, in service, a pressure equal to the pressure Pm.

Avec l'arrangement décrit ci-dessus, lorsqu'on ouvre la vanne 28, la pression Pm est appliquée, à travers la prise de pression 54 et la vanne 28, aux orifices 2a et 2b des capteurs de pression 1a et 1 b. A ce moment, la pression Pm est également appliquée à travers la prise de pression 9a à l'orifice d'entrée 3a du capteur la. Si, à ce moment, la vanne proportionnelle 41 est au moins partiellement ouverte, la pression Pg est appliquée à travers la prise de pression 9b à l'orifice d'entrée 3b du capteur 1b. Par contre, si, au même moment, la vanne proportionnelle 41 est fermée, il n'y a pas de débit de gaz à travers le diaphragme de gaz 39 et, par suite, la pression Pg est égale à la pression Pm et cette pression est appliquée travers la prise de pression 9b à l'orifice d'entrée 3b du capteur 1b. On voit donc que, pour effectuer un étalonnage du zéro des deux capteurs 1a et 1b, l'unité de commande 23 doit provoquer l'ouverture de la vanne 28 pendant un bref instant par une commande appropriée sur la ligne 24 et, simultanément, elle doit provoquer la fermeture de la vanne proportionnelle 41 en lui envoyant une commande appropriée par la ligne 55. Bien entendu, l'unité de commande 23 doit aussi envoyer dans le même temps, par les lignes 25a et 25b, des signaux de commande aux circuits de mesure 26a et 26b afin qu'ils mémorisent dans leurs mémoires respectives (qui correspondent à la mémoire 17 de la figure 2) l'éventuelle erreur de mesure des capteurs 1a et 1b. D'un autre côté, si on désire seulement effectuer l'étalonnage du zéro du capteur 1 a, il suffit que l'unité de commande 23 commande un bref instant l'ouverture de la vanne 28, sans fermer la vanne 41, et en même temps, commande le circuit de mesure 26a pour qu'il mémorise dans sa mémoire l'erreur de mesure du capteur la. Toutefois, dans ce dernier cas, l'unité de commande 23 ne doit envoyer aucune commande par la ligne 25b au circuit de mesure 26b, sinon celui-ci enregistrerait indûment dans sa mémoire (17) à titre de signal d'erreur de mesure un signal correspondant à la différence de pression Pm - Pg.With the arrangement described above, when the valve 28 is opened, the pressure Pm is applied, through the pressure tap 54 and the valve 28, to the ports 2a and 2b of the pressure sensors 1a and 1b. At this time, the pressure Pm is also applied through the pressure tap 9a to the inlet port 3a of the sensor la. If, at this time, the proportional valve 41 is at least partially open, the pressure Pg is applied through the pressure tap 9b to the inlet port 3b of the sensor 1b. However, if, at the same time, the proportional valve 41 is closed, there is no gas flow through the gas diaphragm 39 and, consequently, the pressure Pg is equal to the pressure Pm and this pressure is applied through the pressure tap 9b to the inlet port 3b of sensor 1b. We therefore see that, to perform a zero calibration of the two sensors 1a and 1b, the control unit 23 must cause the opening of the valve 28 for a short time by an appropriate command on line 24 and, simultaneously, it must cause the proportional valve to close 41 by sending him an appropriate command via line 55. Of course, the control unit 23 must also send at the same time, by the lines 25a and 25b, control signals to the measurement circuits 26a and 26b so that they memorize in their respective memories (which correspond to the memory 17 of FIG. 2) the possible measurement error of the sensors 1a and 1b. On the other hand, if you only want to perform the zero calibration of the sensor 1 a, it suffices that the control unit 23 commands a brief instant the opening of the valve 28, without closing the valve 41, and at the same time, controls the measurement circuit 26a so that it stores in its memory the measurement error of the sensor la. However, in the latter case, the unit of command 23 must not send any command via line 25b to the measure 26b, otherwise it would improperly store in its memory (17) as measurement error signal a signal corresponding to the pressure difference Pm - Pg.

Par ailleurs, lorsque la vanne proportionnelle 41 est ouverte et que la vanne 28 est fermée, le capteur la mesure la différence de pression Pa Pm et le capteur 1 b mesure la différence de pression Pa - Pg. Dans ces conditions, le dispositif de la figure 4 fonctionne de la même manière que celui de la figure 3 pour réguler le rapport air/gaz du brûleur 29.Furthermore, when the proportional valve 41 is open and the valve 28 is closed, the sensor measures the pressure difference Pa Pm and the sensor 1 b measures the pressure difference Pa - Pg. Under these conditions, the device of figure 4 works in the same way as that of figure 3 to regulate the air / gas ratio of the burner 29.

La figure 5 montre une variante de réalisation du dispositif de régulation du rapport air/gaz de la figure 4. Sur la figure 5, les éléments du dispositif qui sont identiques ou qui jouent le même rôle que ceux du dispositif de la figure 4 sont désignés par les mêmes numéros de référence et ne seront pas décrits à nouveau en détail. Le dispositif de la figure 5 diffère essentiellement de celui de la figure 4 en ce que l'une des deux voies de la vanne 28 qui dans le mode de réalisation de la figure 4"était raccordée à la prise de pression 54, est ici raccordée à l'orifice d'entrée 3b du capteur 1 b et à la prise de pression 9b. Dans ces conditions, la pression de gaz Pg est appliquée à travers la prise de pression 9b directement à l'orifice d'entrée 3b du capteur 1b et, lorsque la vanne 28 est ouverte, à travers cette dernière, et le conduit 11 b. à l'orifice d'entrée 2b du capteur 1b et à l'orifice d'entrée 2a du capteur 1a. Si on ferme la vanne proportionnelle 41 en même temps que la vanne 28 est ouverte, il n'y a pas de débit de gaz dans la conduite de gaz 38 et la pression de gaz Pg est égale à la pression Pm. Dans ces conditions, la pression Pm est appliquée aux deux orifices d'entrée-2a et 3a du capteur la et aux deux orifices d'entrée 2b et 3b du capteur 1 b. Il est donc possible d'effectuer l'étalonnage du zéro de pression des deux capteurs 1 a et 1 b en réalisant l'unité de commande 23 de telle sorte qu'elle envoie à intervalles réguliers un signal de commande sur la ligne 24 pour ouvrir momentanément la vanne 28 et un signal de commande sur la ligne 55 pour fermer en même temps la vanne proportionnelle 41, et de telle sorte qu'elle envoie également des signaux de commande sur les lignes 25a et 25b afin que les circuits de mesure 26a et 26b emmagasinent dans leurs mémoires respectives (correspondant à la mémoire 17 de la figure 2) l'éventuelle erreur de mesure produite par les capteurs 1a et 1b. D'un autre côté, si l'on souhaite seulement réaliser l'étalonnage du zéro de pression du capteur lb, il suffit que l'unité de commande 23 commande par la ligne 24 l'ouverture de la vanne 28 et par la ligne 25b la mise en mémoire de l'erreur de mesure du capteur 1b. Dans ce cas, l'unité de commande 23 ne doit envoyer aucun signal de commande par la ligne 25a au circuit de mesure 26a, sinon la différence des pressions Pg et Pm, qui sont respectivement appliquées aux orifices d'entrée 2a et 3a du capteur la lorsque la vanne 28 est ouverte, serait enregistrée à titre d'erreur de mesure dans la mémoire (1 7) du circuit de mesure 26a.Figure 5 shows an alternative embodiment of the regulation device of the air / gas ratio of FIG. 4. In FIG. 5, the elements of the device which are identical or which play the same role as those of the device of FIG. 4 are designated by the same reference numbers and will not be described in new in detail. The device of FIG. 5 essentially differs from that of Figure 4 in that one of the two ways of the valve 28 which in the mode of embodiment of Figure 4 "was connected to the pressure tap 54, is here connected to the inlet 3b of the sensor 1b and to the pressure tap 9b. In these conditions, the gas pressure Pg is applied through the intake pressure 9b directly at the inlet 3b of the sensor 1b and, when the valve 28 is open, through the latter, and the conduit 11 b. at inlet 2b of sensor 1b and to the inlet port 2a of sensor 1a. If we close the valve proportional 41 at the same time as the valve 28 is open, there is no gas flow in the gas line 38 and the gas pressure Pg is equal to the pressure Pm. Under these conditions, the pressure Pm is applied to the two inlet ports-2a and 3a of the sensor la and the two inlet ports 2b and 3b of the sensor 1 b. It is therefore possible to calibrate the pressure zero of the two sensors 1 a and 1 b by making the control unit 23 such that it sends a command signal at regular intervals on line 24 to open momentarily valve 28 and a control signal on line 55 to close the proportional valve 41 at the same time, and so that it also sends control signals on lines 25a and 25b so that the measurement circuits 26a and 26b store in their memories respective (corresponding to the memory 17 of FIG. 2) the possible error of measurement produced by sensors 1a and 1b. On the other hand, if we wish only perform the zero calibration of the sensor lb pressure, it suffices that the control unit 23 controls through line 24 the opening of the valve 28 and by line 25b the storage of the measurement error of sensor 1b. In in this case, the control unit 23 should not send any control signal by line 25a at measurement circuit 26a, otherwise the difference in pressures Pg and Pm, which are respectively applied to the inlet ports 2a and 3a of the sensor la when valve 28 is open, would be recorded as an error of measurement in the memory (1 7) of the measurement circuit 26a.

Par ailleurs, lorsque la vanne proportionnelle 41 est ouverte et que la vanne 28 est fermée, le capteur 1a mesure la différence de pression Pa-Pm et le capteur 1 b mesure la différence de pression Pa-Pg. Dans ces conditions, le dispositif de la figure 5 fonctionne de la même manière que ceux des figures 3 et 4 pour réguler le rapport air/gaz du brûleur 29.Furthermore, when the proportional valve 41 is open and the valve 28 is closed, sensor 1a measures the pressure difference Pa-Pm and the sensor 1 b measures the pressure difference Pa-Pg. Under these conditions, the device of FIG. 5 works in the same way as those of FIGS. 3 and 4 to regulate the air / gas ratio of burner 29.

La figure 6 montre un mode de réalisation de réalisation préféré du dispositif de régulation du rapport air/gaz du brûleur d'une chaudière. Selon ce mode de réalisation, il est prévu un unique dispositif de mesure de pression différentielle 42 pour mesurer, d'une part, la différence de pression Pa-Pm et, d'autre part, la différence de pression Pa-Pg. Sur la figure 6, les éléments qui sont identiques ou qui jouent le même rôle que ceux des modes de réalisation précédents sont désignés par les mêmes numéros de référence et ne seront pas décrits à nouveau en détail. Sur la figure 6, l'orifice d'entrée 2 du capteur 1 est raccordé à la prise de pression 4 branchée sur la conduite d'air 33 en amont du diaphragme d'air 34. L'orifice d'entrée 3 du capteur 1 est raccordé à la prise de pression 9 branchée sur la conduite de gaz 38 en amont du diaphragme de gaz 39 et l'orifice calibré d'étranglement 27 est situé dans la prise de pression 9 comme dans le mode de réalisation de la figure 3. L'une des voies de la vanne 28 à deux voies est reliée à la prise de pression 4 et à l'orifice d'entrée 2 du capteur 1, L'autre voie de la vanne 28 est reliée à l'orifice d'entrée 3 du capteur 1 par le conduit 11 et à l'une des deux voies d'une autre vanne 56 à deux voies, dont l'autre voie est reliée à une prise de pression 57 où règne une pression égale à la pression Pm. Dans l'exemple de réalisation représenté, la prise de pression 57 est branchée sur le mélangeur 36, mais elle pourrait être branchée sur la conduite d'air 33 en aval du diaphragme d'air 34 ou sur la conduite de gaz 38 en aval du diaphragme de gaz 39. La vanne 56 est commandée par l'unité de commande 23 à travers une ligne 58.FIG. 6 shows a preferred embodiment of the device for regulating the air / gas ratio of the burner of a boiler. According to what embodiment, a single pressure measuring device is provided differential 42 to measure, on the one hand, the pressure difference Pa-Pm and, on the other hand, the pressure difference Pa-Pg. In Figure 6, the elements that are the same or play the same role as those of the embodiments precedents are designated by the same reference numbers and will not be described again in detail. In FIG. 6, the inlet port 2 of the sensor 1 is connected to the pressure tap 4 connected to the air line 33 upstream of the air diaphragm 34. The inlet port 3 of the sensor 1 is connected to the outlet pressure 9 connected to the gas line 38 upstream of the gas diaphragm 39 and the calibrated throttle orifice 27 is located in the pressure tap 9 as in the embodiment of FIG. 3. One of the ways of the valve 28 two-way is connected to the pressure tap 4 and the inlet 2 of the sensor 1, The other channel of valve 28 is connected to inlet port 3 of the sensor 1 via the conduit 11 and to one of the two paths of another two-way valve 56, the other way of which is connected to a pressure tap 57 where there is a pressure equal to the pressure Pm. In the embodiment shown, taking pressure 57 is connected to the mixer 36, but it could be connected on the air line 33 downstream of the air diaphragm 34 or on the gas line 38 downstream of the gas diaphragm 39. The valve 56 is controlled by the control unit command 23 across a line 58.

La sortie 22 du circuit de mesure 26 est reliée à l'entrée d'un moyen de commutation 59 dont une première sortie est reliée par une ligne 61 à l'unité de régulation de débit d'air 49 et dont une seconde sortie est reliée par une ligne 62 à l'unité de régulation de pression air/gaz 52. L'unité de commandé 23 est reliée à une entrée de commande du moyen de commutation 59 par une ligne 63. Selon l'état du signal de commande présent sur la ligne 63, le signal de mesure présent sur la sortie 22 du circuit de mesure 26 est envoyé par le moyen de commutation 59 soit à l'unité de régulation de débit d'air 49 par la ligne 61 soit à l'unité de régulation de pression air/gaz 52 par la ligne 62.The output 22 of the measurement circuit 26 is connected to the input of a means of switching 59 of which a first output is connected by a line 61 to the control unit air flow regulation 49 and a second outlet of which is connected by a line 62 to the air / gas pressure regulation unit 52. The control unit 23 is connected to a control input of the switching means 59 by a line 63. Depending on the state of the control signal present on line 63, the measurement signal present on output 22 of measurement circuit 26 is sent by means of switching 59 either to the air flow regulation unit 49 via line 61 or to the air / gas pressure control unit 52 via line 62.

De préférence, la sortie 51 de l'unité de régulation de débit d'air 49 est reliée au moteur 32 par l'intermédiaire d'un échantillonneur bloqueur 64, qui est commandé par l'unité de commande 23 à travers une ligne 65. De même, la sortie 53 de l'unité de régulation de pression air/gaz 52 est reliée à la vanne proportionnelle 41 par l'intermédiaire d'un échantillonneur bloqueur 66, qui est commandé par l'unité de commande 23 à travers une ligne 67.Preferably, the outlet 51 of the air flow control unit 49 is connected to the motor 32 via a blocking sampler 64, which is controlled by the control unit 23 through a line 65. Likewise, the output 53 of the air / gas pressure regulating unit 52 is connected to the valve proportional 41 via a blocking sampler 66, which is controlled by the control unit 23 through a line 67.

Dans le cas où l'unité de régulation de débit d'air 49 et l'unité de régulation de pression air/gaz 52 délivrent respectivement sur leurs sorties 51 et 53 des tensions variables pour commander respectivement le moteur 32 et la vanne proportionnelle 41, chacun des deux échantillonneurs 64 et 66 peut être réalisé comme montré sur la figure 7. Chaque échantillonneur bloqueur 64 ou 66 comporte une entrée 68 reliée par un interrupteur électronique 69 à l'une des armatures d'un condensateur C, dont l'autre armature est connectée à la masse, et à l'entrée d'un amplificateur 71 à haute impédance d'entrée, dont la sortie 72 forme la sortie de l'échantillonneur bloqueur et est reliée au moteur 32 ou à la vanne proportionnelle 41. L'interrupteur électronique 69 est commandé par l'unité de commande 23 par la ligne 65 ou 67. Lorsque l'interrupteur 69 est fermé, le signal de commande délivré par l'unité de régulation de débit d'air 49 ou par l'unité de régulation de pression air/gaz 52 à l'entrée 68, par exemple une tension de commande, est mémorisé dans le condensateur C et transmis par l'amplificateur 71 à la sortie 72 et, de là, au moteur 32 ou à la vanne proportionnelle 41. Lorsque l'interrupteur 69 est ouvert, le signal de commandé qui a été mémorisé dans le condensateur C est conservé par celui-ci, du fait de la haute impédance d'entrée de l'amplificateur 71, et le signal de commande continue donc à être présent sur la sortie 72 de l'échantillonneur bloqueur quel que soit l'état de son entrée 68.In the case where the air flow regulating unit 49 and the air / gas pressure regulation 52 deliver respectively to their outputs 51 and 53 of the variable voltages for controlling respectively the motor 32 and the proportional valve 41, each of the two samplers 64 and 66 can be carried out as shown in FIG. 7. Each blocking sampler 64 or 66 has an input 68 connected by an electronic switch 69 to one of the armatures of a capacitor C, the other armature of which is connected to ground, and at the input of an amplifier 71 with high input impedance, whose output 72 forms the output of the blocking sampler and is connected to the motor 32 or to the proportional valve 41. The electronic switch 69 is controlled by the control unit 23 by line 65 or 67. When the switch 69 is closed, the control signal delivered by the air flow control unit 49 or by the air / gas pressure regulating unit 52 at inlet 68, for example a control voltage, is stored in capacitor C and transmitted by amplifier 71 at output 72 and from there to motor 32 or to the valve proportional 41. When switch 69 is open, the command signal which has been stored in capacitor C is retained by it, due to the high input impedance of amplifier 71, and the control signal therefore continues to be present on the output 72 of the blocking sampler which whatever the state of its input 68.

En se référant à nouveau à la figure 6, on peut voir que, lorsque la vanne 56 est fermée et que l'on ouvre pendant un bref instant la vanne 28, la pression Pa est appliquée à travers la prise de pression 4 à l'orifice d'entrée 2 du capteur 1 et à travers la vanne 28 et le conduit 11 à l'orifice d'entrée 31 dudit capteur. Dans ces conditions, il est alors possible d'effectuer l'étalonnage du zéro de pression du capteur 1 en mémorisant l'éventuelle erreur de mesure présente à ce moment sur la sortie 12 du capteur 1 dans la mémoire (17) du circuit de mesure 26 grâce à une commande appropriée envoyée par l'unité de commande 23 sur la ligne 25. Lorsque la vanne 28 est fermée et que l'on ouvre pendant un bref instant la vanne 56, la pression Pa est appliquée à travers la prise de pression 4 à l'orifice d'entrée 2 du capteur 1, tandis que la pression Pm est appliquée à l'orifice d'entrée 3 du capteur 1 à travers la prise de pression 57, la vanne 56 et le conduit 11. Dans ces conditions, le capteur 1 mesure la différence de pression Pa-Pm et le circuit de mesure 26 fournit sur sa sortie 22 un signal corrigé de mesure qui représente la valeur du débit d'air dans la conduite d'air 33. A ce moment, sous l'action d'une commande appropriée émise par l'unité de commande 23 sur la ligne 63, la sortie 22 du circuit de mesure 26 est reliée par le moyen de commutation 59 à l'unité de régulation de débit d'air 49. En même temps, l'unité de commande 23 envoie par la ligne 65 une commande à l'échantillonneur bloqueur 64 pour fermer l'interrupteur 69 de celui-ci. Si la valeur du débit d'air mesuré n'est pas conforme à la valeur de consigne délivrée à ce moment par l'unité de régulation de température 43 à l'unité de régulation de débit d'air 49, cette dernière émet sur sa sortie 51 un nouveau signal de commande, par exemple une tension de commande ayant une nouvelle valeur, qui est mise en mémoire dans le condensateur C de l'échantillonneur bloqueur 64 et transmise au moteur 32 pour modifier sa vitesse, afin que le débit d'air produit par le ventilateur 31 devienne égal à la consigne de débit d'air. Lorsque la valeur mesurée du débit d'air a atteint la valeur de consigne de débit d'air, l'unité de commande peut commander l'ouverture de l'interrupteur 69 de l'échantillonneur bloqueur 64. Referring again to Figure 6, it can be seen that when the valve 56 is closed and valve 28 is opened for a short time, the pressure Pa is applied through the pressure tap 4 to the inlet 2 from sensor 1 and through valve 28 and conduit 11 to inlet port 31 of said sensor. Under these conditions, it is then possible to carry out the calibration of the sensor 1 pressure zero by memorizing any measurement error present at this time on output 12 of sensor 1 in the memory (17) of the measuring circuit 26 by means of an appropriate command sent by the measurement unit command 23 on line 25. When valve 28 is closed and opened for a short time the valve 56, the pressure Pa is applied through the pressure tap 4 at the inlet port 2 of the sensor 1, while the pressure Pm is applied to the inlet orifice 3 of the sensor 1 through the pressure tap 57, the valve 56 and the conduit 11. Under these conditions, the sensor 1 measures the pressure difference Pa-Pm and the measuring circuit 26 provides on its output 22 a corrected measurement signal which represents the value of the air flow in the air line 33. At this time, under the action of an appropriate command issued by the control unit 23 on line 63, the output 22 of the measurement circuit 26 is connected by the switching means 59 to the air flow control unit 49. At the same time, the control unit 23 sends via line 65 a command to the blocking sampler 64 to close the switch 69 thereof. If the value of the measured air flow does not comply with the set value delivered at this time by the temperature regulation unit 43 to the air flow regulation 49, the latter emits on its output 51 a new control signal, for example a control voltage having a new value, which is stored in capacitor C of the blocker sampler 64 and transmitted to the motor 32 to modify its speed, so that the air flow produced by the fan 31 becomes equal to the air flow setpoint. When the measured value of the air flow has reached the air flow setpoint, control unit can control the opening of the switch 69 of the blocking sampler 64.

Lorsque les deux vannes 28 et 56 sont fermées, la pression Pa est appliquée à travers la prise de pression 4 à l'orifice d'entrée 2 du capteur 1 et la pression Pg est appliquée à travers la prise de pression 9 et l'orifice calibré d'étranglement 27 à l'orifice d'entrée 3 du capteur 1. Dans ces conditions, le capteur 1 mesure la différence de pression Pa-Pg et le circuit de mesure 26 délivre sur sa sortie 22 un signal de mesure corrigé qui représente cette différence de pression. A ce moment, sous l'action d'une commande appropriée émise par l'unité de commande 23 sur la ligne 63, la sortie 22 du circuit de mesure 26 est reliée par le moyen de commutation 59 à l'unité de régulation de pression air/gaz 52. En même temps, l'unité de commande 23 commande la fermeture de l'interrupteur 69 de l'échantillonneur bloqueur 66. Si à ce moment la pression Pg n'a pas la valeur désirée, par exemple si elle n'est pas égale à la pression Pa, l'unité de régulation de pression air/gaz 52 émet sur sa sortie 53 un nouveau signal de commande, par exemple une tension de commande ayant une nouvelle valeur, qui est emmagasiné dans le condensateur C de l'échantillonneur bloqueur 66 et transmis à la vanne proportionnelle 41 pour régler la pression Pg dans un sens tel que celle-ci ait la valeur désirée. Quand la pression Pg a atteint la valeur désirée, l'unité de commande 23 peut commander l'ouverture de l'interrupteur 69 de l'échantillonneur bloqueur 66.When the two valves 28 and 56 are closed, the pressure Pa is applied through the pressure tap 4 to the inlet port 2 of the sensor 1 and the pressure Pg is applied through the pressure tap 9 and the calibrated orifice throttle 27 at the inlet port 3 of the sensor 1. Under these conditions, the sensor 1 measures the pressure difference Pa-Pg and the measurement circuit 26 delivers on its output 22 a corrected measurement signal which represents this pressure difference. At this time, under the action of an appropriate command emitted by the control unit 23 on line 63, the output 22 of the measurement 26 is connected by the switching means 59 to the regulation regulating unit air / gas pressure 52. At the same time, the control unit 23 controls the closing of the switch 69 of the blocking sampler 66. If at this time the pressure Pg does not have the desired value, for example if it is not equal to the pressure Pa, the air / gas pressure regulation unit 52 emits on its output 53 a new control signal, for example a control voltage having a new value, which is stored in capacitor C of the blocking sampler 66 and transmitted to the proportional valve 41 to adjust the pressure Pg in a direction such that it has the desired value. When the pressure Pg has reached the desired value, the control unit 23 can order the opening of the switch 69 of the blocking sampler 66.

On va maintenant décrire une séquence typique des commandes produites par l'unité de commande 23 du dispositif de la figure 6. Lorsque l'unité de régulation de température 43 envoie une requête d'allumage du brûleur à l'unité de commande 23, cette dernière ferme la vanne 56, ouvre la vanne 28 et envoie un signal de commande au circuit de mesure 26 pour qu'il effectue l'étalonnage du zéro de pression du capteur 1 en mémorisant dans sa mémoire (17) l'erreur de mesure éventuellement présente sur la sortie 12 du capteur 1.We will now describe a typical sequence of commands produced by the control unit 23 of the device of FIG. 6. When the unit regulator 43 sends a burner ignition request to the control unit 23, the latter closes the valve 56, opens the valve 28 and sends a control signal to the measurement circuit 26 so that it performs calibration of the pressure zero of sensor 1 by memorizing in its memory (17) the measurement error possibly present on output 12 of sensor 1.

Ensuite, l'unité de commande 23 ferme la vanne 28 et ouvre la vanne 56 pour que le capteur 1 mesure le débit d'air dans la conduite d'air 33. En même temps, l'unité de commande 23 agit sur le moyen de commutation 59 pour qu'il envoie le signal de mesure présent sur la sortie du circuit de mesure 26 à l'unité de régulation de débit d'air 49, et elle ferme l'interrupteur 69 de l'échantillonneur bloqueur 64, afin que l'unité de régulation 49 règle le débit d'air dans la conduite 33 conformément à la consigne fournie par l'unité de régulation de température 43. Lorsque le débit d'air a atteint la valeur de consigne, l'unité de commande 23 bloque le signal de commande envoyé au moteur 32 en ouvrant l'interrupteur 69 de l'échantillonneur bloqueur 64, et elle ferme la vanne 56 (à ce moment la vanne 28 est déjà fermée) afin que le capteur 1 mesure la différence de pression Pa-Pg. En même temps, l'unité de commande 23 agit sur le moyen de commutation 59 afin qu'il envoie le signal de mesure présent sur la sortie 22 du circuit de mesure 26 à l'unité de régulation de pression air/gaz 52, et elle ferme l'interrupteur 69 de l'échantillonneur bloqueur 66, afin que le signal de commande présent à la sortie 53 de l'unité de régulation de pression air/gaz 52 agisse sur la vanne proportionnelle 41 de manière à régler la pression de gaz Pg, par exemple de telle façon qu'elle devienne égale à la pression d'air Pa.Then, the control unit 23 closes the valve 28 and opens the valve 56 so that the sensor 1 measures the air flow in the air line 33. In at the same time, the control unit 23 acts on the switching means 59 to that it sends the measurement signal present on the output of the measurement circuit 26 to the air flow control unit 49, and it closes the switch 69 of the blocking sampler 64, so that the regulating unit 49 regulates the air flow in line 33 in accordance with the instruction supplied by the control unit temperature 43. When the air flow has reached the set value, the unit control 23 blocks the control signal sent to motor 32 in opening the switch 69 of the blocker sampler 64, and it closes the valve 56 (at this time the valve 28 is already closed) so that the sensor 1 measures the pressure difference Pa-Pg. At the same time, the control unit 23 acts on the switching means 59 so that it sends the measurement signal present on the output 22 of the measuring circuit 26 to the air / gas pressure regulation unit 52, and it closes the switch 69 of the blocking sampler 66, so that the signal present at output 53 of the air / gas pressure regulation unit 52 acts on the proportional valve 41 so as to regulate the gas pressure Pg, for example in such a way that it becomes equal to the air pressure Pa.

A intervalles réguliers, par exemple toutes les dix secondes, l'unité de commande 23 ouvre l'interrupteur 69 de l'échantillonneur bloqueur 66, ferme la vanne 28, ouvre la vanne 56, agit sur le moyen de commutation 59 pour qu'il envoie le signal de sortie du circuit de mesure 26 à l'unité de régulation de débit d'air 49, et ferme, par exemple pendant une seconde, l'interrupteur 69 de l'échantillonneur bloqueur 64. Dans ces conditions, l'unité de régulation 49 règle, si nécessaire, la vitesse du moteur 32 afin que le débit d'air dans la conduite d'air 33 soit égal à la valeur de consigne de débit d'air produite par l'unité de régulation de température 43.At regular intervals, for example every ten seconds, the unit of command 23 opens the switch 69 of the blocker sampler 66, closes the valve 28, opens valve 56, acts on switching means 59 so that it sends the output signal from the measuring circuit 26 to the flow control unit 49, and closes, for example for one second, the switch 69 of the blocking sampler 64. Under these conditions, the regulating unit 49 regulate, if necessary, the speed of the motor 32 so that the air flow in the air line 33 is equal to the air flow setpoint produced by the temperature control unit 43.

Ensuite, l'unité de commande 23 remet le dispositif de régulation du rapport air/gaz dans l'état correspondant à la régulation de pression air/gaz, en ouvrant l'interrupteur 69 de l'échantillonneur bloqueur 64, en fermant les deux vannes 28 et 56, en agissant sur le moyen de commutation 59 pour qu'il envoie le signal de sortie du circuit de mesure 26 à l'unité de régulation de pression air/gaz 52 et en fermant l'interrupteur 69 de l'échantillonneur bloqueur 66. Dans ces conditions, l'unité de régulation 52 agit sur la vanne proportionnelle 41 pour maintenir la pression de gaz Pg dans une relation prédéfinie avec la pression d'air Pa, par exemple Pg=Pa. A intervalles réguliers, par exemple toutes les minutes, l'unité de commande 23 commande un étalonnage du zéro de pression du capteur 1, en ouvrant si nécessaire l'interrupteur 69 de chacun des deux échantillonneurs Moqueurs 64 et 66, en fermant la vanne 56, en ouvrant la vanne 28 pendant un bref instant, par exemple pendant une seconde, et en agissant sur le circuit de mesure 26 pour qu'il mémorise dans sa mémoire (17) l'éventuelle erreur de mesure présente sur la sortie 12 du capteur 1.Then, the control unit 23 resets the device for regulating the air / gas ratio in the state corresponding to the air / gas pressure regulation, in opening the switch 69 of the blocking sampler 64, closing the two valves 28 and 56, by acting on the switching means 59 so that it sends the output signal from the measuring circuit 26 to the pressure regulation unit air / gas 52 and by closing the switch 69 of the blocking sampler 66. In these conditions, the regulating unit 52 acts on the proportional valve 41 to maintain the gas pressure Pg in a predefined relationship with the pressure of air Pa, for example Pg = Pa. At regular intervals, for example every minutes, the control unit 23 controls a zero pressure calibration of sensor 1, opening if necessary switch 69 of each of the two Mockers 64 and 66, by closing the valve 56, by opening the valve 28 for a short time, for example for a second, and acting on the measurement circuit 26 so that it stores in its memory (17) any measurement error present on output 12 of sensor 1.

La figure 8 montre encore un autre mode de réalisation du dispositif de régulation du rapport air/gaz d'un brûleur, variante du mode de réalisation préféré. Selon cette variante, il est également prévu un seul dispositif de mesure de pression différentielle.Figure 8 shows yet another embodiment of the regulation of the air / gas ratio of a burner, variant of the embodiment prefer. According to this variant, a single measuring device is also provided. differential pressure.

Sur la figure 8, les éléments du dispositif qui sont identiques ou qui jouent le même rôle que ceux du dispositif de la figure 6 sont désignés par les mêmes numéros de référence et ne seront pas décrits à nouveau en détail. Le dispositif de la figure 8 diffère de celui de la figure 6 en ce que l'orifice d'entrée 2 de l'unique capteur de pression différentielle 1 est relié, d'une part, à la prise de pression 4 à travers l'orifice calibré d'étranglement 27 et, d'autre part, à la prise de pression 57 sur la conduite de gaz par l'intermédiaire de la vanne 56, tandis que l'orifice d'entrée 3 dudit capteur 1 est relié directement à la prise de pression 9 sur le mélangeur 36 où règne une pression égale à la pression Pm. En outre, la sortie du moyen de commutation 59 qui est reliée par la ligne 61 à l'unité de régulation de débit d'air 49 et également reliée par une ligne 73 à un autre échantillonneur bloqueur 74 qui peut être réalisé de la même manière que les échantillonneurs Moqueurs 64 et 66 (voir la figure 7) et qui est commandé par l'unité de commande 23 à travers la ligne 75.In FIG. 8, the elements of the device which are identical or which play the same role as those of the device of FIG. 6 are designated by the same reference numbers and will not be described again in detail. The device of Figure 8 differs from that of Figure 6 in that the inlet 2 of the single differential pressure sensor 1 is connected, on the one hand, to the pressure 4 through the calibrated throttle orifice 27 and, on the other hand, at the outlet pressure 57 on the gas line via the valve 56, while that the inlet 3 of said sensor 1 is connected directly to the socket pressure 9 on the mixer 36 where a pressure equal to the pressure Pm prevails. In addition, the output of the switching means 59 which is connected by line 61 to the air flow control unit 49 and also connected by a line 73 to a other blocking sampler 74 which can be produced in the same way as the Mockers 64 and 66 samplers (see Figure 7) and which is controlled by control unit 23 across line 75.

Avec l'arrangement représenté sur la figure 8, lorsque la vanne 56 est fermée et que l'unité de commande 23 ouvre pendant un bref instant la vanne 28, les deux orifices d'entrée 2 et 3 du capteur 1 sont soumis à la même pression Pm. Dans ces conditions, l'étalonnage du zéro de pression du capteur 1 peut être effectué d'une manière semblable à celle décrite plus haut à propos des modes de réalisation précédents.With the arrangement shown in Figure 8, when the valve 56 is closed and the control unit 23 briefly opens the valve 28, the two inlet ports 2 and 3 of the sensor 1 are subjected to the same pressure Pm. Under these conditions, the calibration of the sensor pressure zero 1 can be performed in a similar manner to that described above about previous embodiments.

Lorsque les deux vannes 28 et 56 sont fermées, les orifices d'entrée 2 et 3 du capteur 1 sont respectivement soumis à la pression Pa et à la pression Pm, de sorte que le capteur 1 mesure la différence de pression Pa - Pm et donne, par conséquent, une indication du débit d'air dans la conduite d'air 33. Dans ces conditions, si le moyen de commutation 59 envoie à ce moment le signal de mesure présent sur la sortie 22 du circuit de mesure 26 à l'unité de régulation de débit d'air 49, cette dernière peut régler, si nécessaire, la vitesse du moteur 32 pour que le débit d'air dans la conduite d'air 33 soit égal à la consigne de débit d'air fournie par l'unité de régulation de température 43 à l'unité de régulation de débit d'air 49, d'une manière semblable à celle décrite plus haut à propos du mode de réalisation de la figure 6. Toutefois, dans le mode de réalisation de la figure 8, le signal de mesure qui est présent sur la sortie 22 du circuit de mesure 26 et qui est indicatif du débit d'air, est aussi envoyé par le moyen de commutation 59 et par la ligne 73 à l'échantillonneur bloqueur 74 pour y être mis en mémoire et transmis par la ligne 76 à une autre entrée de l'unité de régulation 52.When the two valves 28 and 56 are closed, the inlet ports 2 and 3 of sensor 1 are respectively subjected to pressure Pa and to pressure Pm, so that the sensor 1 measures the pressure difference Pa - Pm and therefore gives an indication of the air flow in the air duct 33. Under these conditions, if the switching means 59 sends at this time the measurement signal present on the output 22 of the measurement circuit 26 at the measurement unit air flow regulation 49, the latter can adjust, if necessary, the speed of the motor 32 so that the air flow in the air line 33 is equal to the air flow setpoint supplied by the temperature control unit 43 to the air flow control unit 49, in a manner similar to that described above about the embodiment of Figure 6. However, in the embodiment of FIG. 8, the measurement signal which is present on the output 22 of the measurement circuit 26 and which is indicative of the air flow, is also sent by switching means 59 and by line 73 to the sampler blocker 74 to be stored there and transmitted by line 76 to another control unit input 52.

Lorsque la vanne 28 est fermée et que l'on ouvre pendant un bref instant la vanne 56, les orifices d'entrée 2 et 3 du capteur 1 sont respectivement soumis à la pression Pg et à la pression Pm. Le capteur 1 mesure donc la différence de pression Pg - Pm qui, pour un diaphragme de gaz 39 déterminé, donne une indication du débit de gaz Qg dans la conduite de gaz 38, conformément à la formule suivante : Pg - Pm = Kg.Q2g    dans laquelle Kg est un coefficient qui dépend notamment de la densité du gaz utilisé et du diamètre de l'orifice calibré du diaphragme de gaz 39. Dans ces conditions, le signal de mesure présent sur la sortie 22 du circuit de mesure 26 donne une indication du débit du gaz dans la conduite de gaz 38. Si à ce moment l'unité de commande 23 agit sur le moyen de commutation 59 pour qu'il envoie ce signal de mesure par la ligne 62 à l'unité de régulation 52, cette dernière reçoit sur ses entrées, respectivement par les lignes 76 et 62, un signal dont la valeur est indicative du débit d'air dans la conduite 33 et un signal dont la valeur est indicative du débit de gaz dans la conduite 38. Dans ce cas, l'unité de régulation 52 est conçue comme une unité de régulation de débit de gaz, c'est-à-dire qu'elle agit sur la vanne proportionnelle 41 de manière à régler le débit de gaz Qg pour que le rapport Qa/Qg, c'est-à-dire le rapport air/gaz, ait une valeur prédéfinie.When the valve 28 is closed and the valve 56 is opened for a short time, the inlet ports 2 and 3 of the sensor 1 are respectively subjected to the pressure Pg and to the pressure Pm. The sensor 1 therefore measures the pressure difference Pg - Pm which, for a given gas diaphragm 39, gives an indication of the gas flow Qg in the gas line 38, according to the following formula: Pg - Pm = Kg.Q 2 g in which Kg is a coefficient which depends in particular on the density of the gas used and on the diameter of the calibrated orifice of the gas diaphragm 39. Under these conditions, the measurement signal present on the output 22 of the measurement circuit 26 gives an indication of the gas flow in the gas line 38. If at this moment the control unit 23 acts on the switching means 59 so that it sends this measurement signal via the line 62 to the regulation unit 52, this the latter receives on its inputs, respectively by lines 76 and 62, a signal whose value is indicative of the air flow in line 33 and a signal whose value is indicative of the gas flow in line 38. In this case , the regulation unit 52 is designed as a gas flow regulation unit, that is to say that it acts on the proportional valve 41 so as to regulate the gas flow Qg so that the ratio Qa / Qg, i.e. the air / gas ratio, has a predefined value e.

Lorsque l'unité de régulation de température 43 envoie une requête d'allumage du brûleur à l'unité de commande 23, la séquence des opérations commandées par l'unité 23 peut être la suivante.When the temperature control unit 43 sends a request ignition of the burner to the control unit 23, the sequence of operations controlled by unit 23 can be as follows.

Tout d'abord, l'unité de commande 23 réalise l'étalonnage du zéro de pression du capteur 1 en fermant la vanne 56 si elle était ouverte, en ouvrant pendant un bref instant la vanne 28, en envoyant par la ligne 25 un signal de commande au circuit de mesure 26 pour qu'il mémorise dans sa mémoire (17) l'éventuelle erreur de mesure présente à ce moment sur la sortie 12 du capteur 1.First, the control unit 23 performs the zero calibration of pressure from sensor 1 by closing valve 56 if it was open, by opening for a short time the valve 28, by sending by line 25 a signal of control to the measurement circuit 26 so that it stores in its memory (17) any measurement error present at this time on output 12 of the sensor 1.

Ensuite, l'unité de commande 23 ferme la vanne 28, agit sur le moyen de commutation 59 pour qu'il relie la sortie 22 du circuit de mesure 26 à l'unité de régulation de débit d'air 49 et à l'échantillonneur bloqueur 74, ferme l'interrupteur 69 de cet échantillonneur bloqueur 74 et ferme également l'interrupteur 69 de l'échantillonneur bloqueur 64, afin que l'unité de régulation 49 règle le débit d'air dans la conduite d'air 33 pour le rendre égal à la valeur de consigne de débit d'air délivrée par l'unité de régulation de température 43.Then, the control unit 23 closes the valve 28, acts on the means switch 59 so that it connects output 22 of measurement circuit 26 to the unit regulating the air flow 49 and the blocking sampler 74, closes the switch 69 of this blocking sampler 74 and also closes the switch 69 of the blocking sampler 64, so that the regulating unit 49 adjusts the air flow in the air line 33 to make it equal to the value of air flow setpoint delivered by the temperature control unit 43.

Lorsque le débit d'air dans la conduite 33 a atteint la valeur de consigne, l'unité de commande 23 ouvre l'interrupteur 69 de l'échantillonneur bloqueur 64, ouvre l'interrupteur de l'échantillonneur bloqueur 74 afin de conserver dans celui-ci la valeur de pression différentielle Pa - Pm représentant le débit d'air, ouvre la vanne 56 (à ce moment la vanne 28 est déjà fermée), agit sur le moyen de commutation 59 pour qu'il relie la sortie 22 du circuit de mesure 26 à l'unité de régulation du débit de gaz 52 par la ligne 62 et ferme l'interrupteur 69 de l'échantillonneur bloqueur 66 afin que l'unité de régulation 52 règle la vanne proportionnelle 41 de façon à obtenir une pression de gaz Pg telle que la différence de pression Pg - Pm mesurée par le capteur 1 soit égale à la valeur de la pression différentielle qui a été mise en mémoire dans l'échantillonneur bloqueur 74. Ce dispositif fonctionne dans la mesure où les sections Sa et Sg des orifices calibrés du diaphragme d'air 34 et du diaphragme de gaz 39 ont été choisies pour obtenir le rapport air/gaz souhaité, conformément à la formule (3) indiquée plus haut.When the air flow in line 33 has reached the value of setpoint, the control unit 23 opens the switch 69 of the sampler blocker 64, opens the blocker sampler 74 switch to keep in it the differential pressure value Pa - Pm representing the air flow, opens the valve 56 (at this time the valve 28 is already closed), acts on the switching means 59 so that it connects the output 22 of the measurement circuit 26 to the gas flow regulation unit 52 via line 62 and closes the switch 69 of the blocking sampler 66 so that the regulating unit 52 regulates the proportional valve 41 so as to obtain a gas pressure Pg such that the pressure difference Pg - Pm measured by sensor 1 is equal to the value of the differential pressure which has been stored in the blocking sampler 74. This device works insofar as the sections Sa and Sg of the calibrated orifices of the air diaphragm 34 and the diaphragm gas 39 were chosen to obtain the desired air / gas ratio, in accordance with formula (3) indicated above.

Ensuite, à intervalles réguliers, par exemple toutes les dix secondes, l'unité de commande 23 ouvre l'interrupteur 69 de l'échantillonneur bloqueur 66, ferme les Vannes 28 et 56 si elles étaient ouvertes, agit sur le moyen de commutation 59 pour qu'il dirige le signal de sortie du circuit de mesure 26 vers l'unité de régulation de débit d'air 49, ferme l'interrupteur 69 de l'échantillonneur bloqueur 64 afin de régler, si nécessaire, le débit d'air dans la conduite d'air 33, ferme l'interrupteur 69 de l'échantillonneur bloqueur 74 afin de mettre au besoin à jour la valeur de la pression différentielle représentant le débit d'air mémorisé dans l'échantillonneur bloqueur 74, ouvre l'interrupteur 69 de l'échantillonneur bloqueur 64, ouvre la vanne 56, agit sur le circuit de commutation 59 pourqu'il dirige le signal de sortie du circuit de mesure 26 vers l'unité de régulation 52 par la ligne 62 et ferme l'interrupteur 69 de l'échantillonneur bloqueur 66 afin de régler au besoin le débit de gaz dans la conduite de gaz 38, puis ouvre l'interrupteur 69 de l'échantillonneur bloqueur 66 et ferme la vanne 56.Then, at regular intervals, for example every ten seconds, the control unit 23 opens the switch 69 of the blocking sampler 66, closes valves 28 and 56 if they were open, acts on the means of switching 59 so that it directs the output signal from the measuring circuit 26 to the air flow control unit 49, closes the switch 69 of the sampler blocker 64 in order to adjust, if necessary, the air flow rate in the air line 33, closes the switch 69 of the blocking sampler 74 in order to set if necessary the value of the differential pressure representing the memorized air flow in the blocking sampler 74, opens the switch 69 of the sampler blocker 64, opens valve 56, acts on switching circuit 59 so that it directs the output signal from the measuring circuit 26 to the control unit 52 by line 62 and closes the switch 69 of the blocking sampler 66 in order to adjust the gas flow in the gas line 38 if necessary, then open the switch 69 of the blocker sampler 66 and closes the valve 56.

A intervalles réguliers, par exemple toutes les minutes, l'unité de commande réalise l'échantillonnage du zéro de pression du capteur 1 en effectuant les opérations déjà décrites plus haut.At regular intervals, for example every minute, the unit of control performs sampling of sensor zero pressure 1 in performing the operations already described above.

Il va de soi que les modes de réalisation de l'invention qui ont été décrits ci-dessus ont été donnés à titre indicatif et nullement limitatif et que de nombreuses modifications peuvent être facilement apportées par l'homme de l'art sans pour autant sortir du cadre de l'invention. Par exemple, au moins une partie des fonctions réalisées par les différents circuits qui ont été décrits ci-dessus, par exemple le ou les circuits de mesure 26, l'unité de commande 23, le moyen de commutation 59, les unités de régulation 43, 49 et 52, les échantillonneurs bloqueurs 64, 66 et 74, peuvent être réalisées soit par des circuits électroniques discrets comme ceux qui ont été décrits plus haut, soit par un microprocesseur convenablement programmé.It goes without saying that the embodiments of the invention which have been described above were given as an indication and in no way limitative and that many modifications can be easily made by the man of art without departing from the scope of the invention. For example, at least one part of the functions performed by the various circuits which have been described above, for example the measurement circuit (s) 26, the control unit 23, the switching means 59, the regulation units 43, 49 and 52, the blocking samplers 64, 66 and 74, can be carried out either by discrete electronic circuits such as those described above, either by a suitably programmed microprocessor.

De même, sur les figures 3, 4, 5, 6 et 8, le ventilateur 31 est représenté en amont de l'orifice 34 de mesure du débit d'air mais il beut très bien se situer entre le mélangeur 36 et le brûleur 29 ou même au-delà du brûleur, après l'échangeur de température de la chaudière par exemple.Similarly, in Figures 3, 4, 5, 6 and 8, the fan 31 is shown upstream of the orifice 34 for measuring the air flow but it is very well located between the mixer 36 and the burner 29 or even beyond the burner, after the boiler temperature exchanger for example.

Dans le cas ou le ventilateur se trouve en amont de l'orifice 34, représenté par les figures 3 à 8, le débit d'air se trouve "poussé" par le ventilateur. Si, en revanche, le ventilateur se trouve entre le mélangeur et le brûleur ou lorsqu'il se trouve au-delà du brûleur, dans ce cas, le ventilateur aspire le débit de mélange.In the case where the fan is located upstream from the orifice 34, shown in Figures 3 to 8, the air flow is "pushed" by the fan. If, on the other hand, the fan is between the mixer and the burner or when it is beyond the burner, in this case the fan draws in the mixing flow.

A la lecture de ce qui précède, on constate aisément que l'invention atteint bien les buts qu'elle s'est fixés.On reading the above, it can easily be seen that the invention achieves the goals it has set for itself.

Il doit être clair cependant que l'invention n'est pas limitée aux seuls exemples de réalisations explicitement décrits, notamment en relation avec les figures 2 à 8.It should be clear, however, that the invention is not limited to only examples of achievements explicitly described, in particular in relation to Figures 2 to 8.

Notamment, comme il a été indiqué, les circuits de mesure sont susceptibles de prendre différentes configurations.In particular, as indicated, the measurement circuits are likely to take different configurations.

Il doit être clair aussi que, bien que particulièrement adaptée à régulation d'un brûleur de chaudière destinée à la production d'eau chaude sanitaire et/ou d'eau chaude pour un circuit de chauffage, on ne saurait cantonner l'invention à ce seul type .d'applications. Elle s'applique de façon plus générale toutes les fois que l'on désire réaliser la régulation active du rapport air/gaz d'un mélange d'air et de gaz combustible admis à un brûleur, en utilisant au moins un dispositif de mesure de pression différentielle.It should also be clear that, although particularly suitable for regulation of a boiler burner intended for the production of hot water sanitary and / or hot water for a heating circuit, we cannot confine the invention to this single type of application. It applies more general whenever you want to achieve active regulation of the ratio air / gas of a mixture of air and combustible gas admitted to a burner, using at least one differential pressure measuring device.

Claims (11)

  1. System for active regulation of the air/gas ratio of a burner (29), comprising an air/gas mixer (36) upstream of the burner (29), an air pipe (33) containing a calibrated air diaphragm (34) and connected to a first inlet (35) of the said air/gas mixer (36), a gas supply pipe (38) containing a calibrated gas diaphragm (39) and connected to a second inlet (37) of the said air/gas mixer, and, arranged upstream of the said calibrated air diaphragm (34) and the said calibrated gas diaphragm (39), means for varying the flow rate of air (49, 32, 31) and means for varying the flow rate of gas (52, 41) sent to the said air/gas mixer (36), and at least one differential pressure measuring system (42a, 42b) connected to deliver a measurement signal representative of at least one of the following parameters: the air flow rate in the air pipe (33), the difference between the air and gas pressures in the air pipe (33) and the gas pipe (38), and the gas flow rate in the gas pipe (38) in such a way that the quantity of gas sent to the air/gas mixer (36) is such that the air/gas ratio has a predefined value, characterized in that each of the differential pressure measuring systems (42a-42b) comprises:
    a differential pressure sensor (1a-1b) having first and second inlet orifices (2a-2b, 3a-3b) respectively connected to first and second pressure ports (4, 9a-9b), one of which comprises a calibrated throttling orifice (27a-27b), and an output (12a-12b) which, in service, delivers a signal representative of a pressure difference between the first and second inlet orifices (2a-2b, 3a-3b) of the said sensor (1a-1b);
    a 2-channel valve (28a-28b), a first channel of which is connected to whichever of the first and second pressure ports (4, 9a-9b) contains the said calibrated throttling orifice (27a-27b), between this calibrated orifice and the corresponding inlet orifice (3a-3b) of the sensor (1a-1b), and a second channel of which is connected to the other of the first and second pressure ports (4, 9a-9b), the said calibrated orifice (27a-27b) having a flow section significantly smaller than that of the said 2-channel valve (28a-28b); the said 2-channel valve (28a-28b) isolating one of the two inlet orifices (2a-2b, 3a-3b) from the other when it is in a first state and connecting them to each other when it is in a second state,
    memory means (13-17) connected to the output of each sensor (1a-1b) to store at least two values of the output signal of each sensor (1a-1b),
    a control unit (23) connected to the said 2-channel valve (28a-28b) and to the memory means (13-17) to switch the said 2-channel valve (28a-28b) and command storage of a first value of the output signal of the sensor (1a-1b) in the said memory means (13-17) when the 2-channel valve (28a-28b) is in its first state and storage of a second value of the output signal of the sensor (1a-1b) in the said memory means (13-17) when the 2-channel valve (28a-28b) is in its second state, and
    means (21) for calculating the difference between the said first and second values of the output signal of the sensor (1a-1b); the said memory means (13-17) and the said difference calculating means (21) forming a measurement circuit (26) which delivers at its output (22) a measurement signal representing the exact value of the difference between the respective pressures at the first and second inlet orifices (2a-2b and 3a-3b) of each sensor (1a-1b).
  2. System according to Claim 1, characterized in that the said means for varying the flow rate of air and gas sent to the said air/gas mixer (36) comprise a fan (31) driven by a variable speed electric motor (32), a temperature regulator unit (43) delivering at its output (48) an air flow rate set point signal whose value depends on a required temperature value, an air flow rate regulator unit (49) which receives at a first input a first measurement signal representative of the air flow rate in the air pipe (33) and at a second input the said air flow rate set point signal, and which produces at its output (51) a control signal for the said electric motor (32) of the fan (31) such that the air flow rate produced by this fan (31) is equal to the said air flow rate set point, a gas supply regulator unit (52), which receives at its input at least a second measurement signal representative of one of the following parameters: the difference between the air and gas pressures in the air and gas pipes (33 and 38), respectively, and the gas flow rate in the gas pipe (38), and which produces at its output (53) a control signal for a proportional valve (41) varying the quantity of gas sent to the air/gas mixer so as to make the said air/gas ratio equal to a predefined value.
  3. System according to Claim 1 or 2, characterized in that the said measurement circuit (26) comprises a switch (13) with two output channels (14, 16) receiving at its input the said output signal (12) of a differential pressure sensor (1), two memory circuits (15, 17), each connected to one of the output channels (14, 16) of the said switch (13), and a two-input subtractor circuit (21), each input of which receives output signals from one of the said memory circuits (15, 17) and which delivers at its output (22) the said measurement signal representing the exact value of the difference between the respective pressures at the first (2) and second (3) inlet orifices of the said sensor (1); switching from one of the output channels (14) to the other channel (16) being controlled by the said control unit (23).
  4. System according to any one of Claims 1 to 3 for active regulation of the air/gas ratio of a burner, characterized in that it comprises a first differential pressure measuring system (42a) including a differential pressure sensor (1a) whose two inlet orifices (2a, 3a) are respectively connected to first and second pressure ports (4, 9a) on the air pipe (33) and respectively upstream of and downstream of the air diaphragm (34) and a first measurement circuit (26a), which is connected to the output (12a) of the first sensor (1a) and which delivers at its output (22a) the said first measurement signal, which is representative of the air flow rate in the air pipe (33), and a second differential pressure measuring system (42b) including a differential pressure sensor (1b) whose two inlet orifices (2b, 3b) are respectively connected to_a third pressure port (4) on the air pipe (33) upstream of the air diaphragm (34) and a fourth pressure port (9b) on the gas pipe (38) upstream of the gas diaphragm (39); and a second measurement circuit (26b), which is connected to the output (12b) of the second sensor (1b) and which delivers at its output (22b) the said second measurement signal, which is representative of the difference between the air and gas pressures.
  5. System according to Claim 4 for active regulation of the air/gas ratio of a burner, characterized in that the first and third pressure ports consist of one and the same pressure port (4), which forms a pressure port common to the first and second differential pressure measuring systems (42a, 42b).
  6. System according to Claim 5 for active regulation of the air/gas ratio of a burner, characterized in that each of the first and second differential pressure measuring systems (42a, 42b) includes its own 2-channel valve (28a-28b) and its own calibrated throttling orifice (27a, 27b), the calibrated throttling orifice (27a) of the first differential pressure measuring system (42a) being in the said second pressure port (9a) and the calibrated throttling orifice (27b) of the second differential pressure measuring system (42b) being in the fourth pressure port (9b).
  7. System according to Claim 5 for active regulation of the air/gas ratio of a burner, characterized in that the first and second differential pressure measuring systems (42a, 42b) have a common calibrated throttling orifice (27), which is in the said common pressure port (4), and a common 2-channel valve (28), one of whose two channels is connected to the common pressure port (4) between the throttling orifice (27) and the inlet orifices (2a, 2b) of the first and second sensors (1a-1b), which are connected to the common pressure port (4), and the other of whose two channels is connected to the second pressure port or to a pressure port (54) at which the pressure is equal to that at the second pressure port (9a).
  8. System according to Claim 5 for active regulation of the air/gas ratio of a burner, characterized in that the first and second differential pressure measuring systems (42a, 42b) have a common calibrated throttling orifice (27), which is in the said common pressure port (4), and a common 2-channel valve (28), one of whose two channels is connected to the common pressure port (4) between the common throttling orifice (27) and the inlet orifices (2a, 2b) of the first and second sensors (1a, 1b), which are connected to the common pressure port (4), and the other of whose two channels is connected to the fourth pressure port (9b).
  9. System according to Claim 3 for active regulation of the air/gas ratio of a burner, characterized in that it comprises a single differential pressure measuring system (42), whose first pressure port (4) is on the air pipe (33) upstream of the air diaphragm (34) and whose second pressure port (9) is on the gas pipe (38) upstream of the gas diaphragm (39), and in that it furthermore comprises another 2-channel valve (56), which is controlled by the control unit (23) of the differential pressure measuring system (42) and one of whose two channels is connected to whichever of the first and second pressure ports (4, 9) contains the said calibrated throttling orifice (27), between this calibrated orifice and the corresponding inlet orifice of the sensor (1), and the other of whose two channels is connected to a third pressure port (57), in which the pressure is equal to the pressure in the air/gas mixer (36), and a switching means (59) having an input connected to the output (22) of the measurement circuit (26) of the differential pressure measuring system (42) and two outputs (61, 62) respectively connected to the first input of the said air flow rate regulator unit (49) and to the input of the said gas supply regulator unit (52), the said switching means (59) being controlled by the said control unit (23) in such a way as to connect the output (22) of the said measurement circuit (26) selectively to the first input of the said air flow rate regulator unit (49) when the said control unit (23) closes the 2-channel valve (28) of the differential pressure measuring system (42) and opens the said other 2-channel valve (56) and to the inlet of the said gas supply regulator unit (52) when the said control unit (23) closes the two 2-channel valves (28, 56).
  10. System according to Claim 3 for active regulation of the air/gas ratio of a burner, characterized in that it comprises a single differential pressure measuring system (42), whose first pressure port (4) is on the air pipe (33) upstream of the air diaphragm (34) and contains the said calibrated throttling orifice (27) and whose second pressure port (9) is connected to a point at which the pressure is equal to the pressure in the air/gas mixer (36), and in that it furthermore comprises another 2-channel valve (56), which is controlled by the control unit (23) of the differential pressure measuring system (42) and one of whose two channels is connected to the first inlet orifice (2) of the differential pressure sensor (1) of the differential pressure measuring system (42) and the other of whose two channels is connected to a third pressure port (57) on the gas pipe (38) upstream of the gas diaphragm (39), and a switching means (59) having an input connected to the output (22) of the measurement circuit (26) of the differential pressure measuring system (42) and two outputs (61, 62), one of which is connected to the first input of the said air flow rate regulator unit (49) and via a sample and hold circuit (74) to a first input of the said gas supply regulator unit (52) and the other output (62) of which is connected to a second input of the said gas supply regulator unit (52), the said switching means (59) and the said sample and hold circuit (74) being controlled by the said control unit (23) in such a way that the output (22) of the said measurement circuit (26) is connected to the first input of the said air flow rate regulator unit (49) and to the said sample and hold circuit (74) when the said control unit (23) closes the 2-channel valve (28) of the differential pressure measuring system (42) and closes the said other 2-channel valve (56) and in such a way that the output (22) of the said measurement circuit (26) is connected to the second input of the said gas supply regulator unit (52) when the said control unit (23) closes the 2-channel valve (28) of the differential pressure measuring system (42) and opens the said other 2-channel valve (56).
  11. System according to Claim 9 or 10 for active regulation of the air/gas ratio of a burner, characterized in that the output (51) of the said air flow rate regulator unit (49) is connected to the motor (32) of the fan (31) via a sample and hold circuit (64) which is controlled by the said control unit (23) in such a way that the control signal produced by the said air flow rate regulator unit (49) is updated and stored in the said sample and hold circuit (64) each time that the output (22) of the said measurement circuit (26) is connected by the switching means (59) to the first input of the air flow rate regulator unit (49), and in that the said gas supply regulator unit (52) is connected to the proportional valve (41) via another sample and hold circuit (66), which is controlled by the said control unit (23) in such a way that the control signal produced by the said gas supply regulator unit (52) is updated and stored in the said other sample and hold circuit (66) each time the output (22) of the said measurement circuit (26) is connected by the switching means (59) to the second input of the gas supply regulator unit (52).
EP99937976A 1998-03-06 1999-03-05 Device for actively regulating air/gas ratio in a burner comprising a differential pressure measuring device Expired - Lifetime EP1060348B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9802794A FR2775782B1 (en) 1998-03-06 1998-03-06 DIFFERENTIAL PRESSURE MEASURING DEVICE AND DEVICE FOR ACTIVE REGULATION OF THE AIR / GAS RATIO OF A BURNER USING SUCH A MEASURING DEVICE
FR9802794 1998-03-06
PCT/FR1999/000505 WO1999045325A1 (en) 1998-03-06 1999-03-05 Device for actively regulating air/gas ratio in a burner comprising a differential pressure measuring device

Publications (2)

Publication Number Publication Date
EP1060348A1 EP1060348A1 (en) 2000-12-20
EP1060348B1 true EP1060348B1 (en) 2004-01-07

Family

ID=9523768

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99937976A Expired - Lifetime EP1060348B1 (en) 1998-03-06 1999-03-05 Device for actively regulating air/gas ratio in a burner comprising a differential pressure measuring device

Country Status (7)

Country Link
US (1) US6533574B1 (en)
EP (1) EP1060348B1 (en)
JP (1) JP2002506190A (en)
CA (1) CA2322677A1 (en)
DE (1) DE69914063D1 (en)
FR (1) FR2775782B1 (en)
WO (1) WO1999045325A1 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531030B2 (en) 1999-06-15 2009-05-12 Heath Rodney T Natural gas dehydrator and system
US6866202B2 (en) * 2001-09-10 2005-03-15 Varidigm Corporation Variable output heating and cooling control
DE10145592C1 (en) * 2001-09-14 2003-06-18 Rational Ag Method for setting the power of gas-operated cooking appliances and cooking appliance using this method
US7905722B1 (en) * 2002-02-08 2011-03-15 Heath Rodney T Control of an adjustable secondary air controller for a burner
US7048536B2 (en) * 2003-04-25 2006-05-23 Alzeta Corporation Temperature-compensated combustion control
DE10340045A1 (en) * 2003-08-28 2005-03-24 Karl Dungs Gmbh & Co. Kg Ratio controller with dynamic ratio formation
US20060292505A1 (en) * 2003-09-08 2006-12-28 Massimo Giacomelli System for controlling the delivery of a fuel gas to a burner apparatus
US20070287111A1 (en) * 2004-06-01 2007-12-13 Roberts-Gordon Llc Variable input radiant heater
FR2875289B1 (en) * 2004-09-14 2006-11-10 Theobald Sa Sa A METHOD FOR REGULATING THE AIR / GAS RATIO OF A BURNER AND BURNER USING THIS METHOD
US9353315B2 (en) 2004-09-22 2016-05-31 Rodney T. Heath Vapor process system
KR100742351B1 (en) 2005-01-28 2007-07-24 주식회사 경동네트웍 boiler and control method of unnormal burning situation using air pressure sensor and flame detector
KR100599170B1 (en) 2005-04-29 2006-07-12 주식회사 경동네트웍 Boiler and method for controlling air and fuel ratio using air pressure sensor
NL1031520C2 (en) * 2006-04-05 2007-10-08 Eco Heating Systems B V Heating device.
KR100805630B1 (en) * 2006-12-01 2008-02-20 주식회사 경동나비엔 Combustion apparatus for a gas boiler
DE102007032483A1 (en) * 2007-07-12 2009-01-22 Karl Dungs Gmbh & Co. Kg Operating equipment for a high power surface burner and method of operation therefor
FR2921461B1 (en) * 2007-09-24 2010-03-12 Theobald Sa A DEVICE FOR CONTROLLING GAS FLOWS SUPPLYING A BURNER EQUIPPED WITH SUCH A DEVICE
US8529215B2 (en) 2008-03-06 2013-09-10 Rodney T. Heath Liquid hydrocarbon slug containing vapor recovery system
US8864887B2 (en) 2010-09-30 2014-10-21 Rodney T. Heath High efficiency slug containing vapor recovery
US20120107752A1 (en) * 2010-11-03 2012-05-03 Yokogawa Corporation Of America Systems, methods, and apparatus for determining airflow through a burner
KR101322616B1 (en) 2011-09-29 2013-10-29 린나이코리아 주식회사 Gas pressure drop detecting method using differential pressure sensor
FR2982007B1 (en) * 2011-11-02 2013-12-20 Bosch Gmbh Robert METHOD FOR CONTROLLING THE COMPOSITION OF A COMBUSTIBLE AIR / GAS MIXTURE SUPPLYING THE BURNER OF A GAS BOILER AND DEVICE FOR CARRYING OUT SAID METHOD
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US9846440B2 (en) * 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
WO2013170190A1 (en) 2012-05-10 2013-11-14 Heath Rodney T Treater combination unit
ES2646213T3 (en) * 2012-07-04 2017-12-12 Vaillant Gmbh Procedure for monitoring a burner that works with flue gas
US10317076B2 (en) 2014-09-12 2019-06-11 Honeywell International Inc. System and approach for controlling a combustion chamber
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US9234661B2 (en) * 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
US9528712B2 (en) * 2012-11-05 2016-12-27 Pat Caruso Modulating burner system
US9527786B1 (en) 2013-03-15 2016-12-27 Rodney T. Heath Compressor equipped emissions free dehydrator
US9291409B1 (en) 2013-03-15 2016-03-22 Rodney T. Heath Compressor inter-stage temperature control
ITPD20130186A1 (en) * 2013-07-02 2015-01-03 Sit La Precisa S P A Con Socio Uni Co METHOD OF MONITORING THE OPERATION OF A BURNER
US9932989B1 (en) 2013-10-24 2018-04-03 Rodney T. Heath Produced liquids compressor cooler
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
JP6383310B2 (en) * 2015-03-18 2018-08-29 アズビル株式会社 Combustion control device and combustion system
CN106642711B (en) * 2015-09-22 2022-09-16 艾欧史密斯(中国)热水器有限公司 Dual sensing combustion system
US10274195B2 (en) * 2016-08-31 2019-04-30 Honeywell International Inc. Air/gas admittance device for a combustion appliance
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
EP3404326B1 (en) * 2017-05-19 2020-07-22 Honeywell International Inc. System and approach for controlling a combustion chamber
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
CN110319463B (en) * 2019-08-09 2024-03-19 中山市铧禧电子科技有限公司 System and method for calculating heat load by using air
CN111121872B (en) * 2019-12-27 2022-07-15 液化空气(中国)投资有限公司 Device and method capable of monitoring and adjusting combustion condition in furnace in real time

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2437574A1 (en) * 1978-09-26 1980-04-25 Saunier Duval Gas burner diaphragm control valve - having diaphragm to shut off fuel when air flow ceases
JPS58224226A (en) 1982-06-21 1983-12-26 Matsushita Electric Ind Co Ltd Combustion control device
JPS59212621A (en) * 1983-05-18 1984-12-01 Matsushita Electric Ind Co Ltd Gas combustion controller
JPS59212622A (en) * 1983-05-18 1984-12-01 Matsushita Electric Ind Co Ltd Gas combustion controller
US4645450A (en) * 1984-08-29 1987-02-24 Control Techtronics, Inc. System and process for controlling the flow of air and fuel to a burner
DE59304310D1 (en) * 1993-09-16 1996-11-28 Honeywell Bv Control device for gas burners
JP3147280B2 (en) * 1995-01-26 2001-03-19 横河電機株式会社 Equalizing piping system

Also Published As

Publication number Publication date
JP2002506190A (en) 2002-02-26
WO1999045325A1 (en) 1999-09-10
DE69914063D1 (en) 2004-02-12
CA2322677A1 (en) 1999-09-10
EP1060348A1 (en) 2000-12-20
FR2775782B1 (en) 2000-05-05
FR2775782A1 (en) 1999-09-10
US6533574B1 (en) 2003-03-18

Similar Documents

Publication Publication Date Title
EP1060348B1 (en) Device for actively regulating air/gas ratio in a burner comprising a differential pressure measuring device
EP2387454B1 (en) Mixing device for mixing at least two gaseous components
CA2760378C (en) Method and device for feeding a turbine engine combustion chamber with a controlled fuel flow
BE1012415A3 (en) Hydraulic balancing device for a heating system.
EP0326494B1 (en) Apparatus for measuring the calorific power carried by a flow of combustible matter
CA3069609A1 (en) Fuel metering circuit and method with compensation for fuel-density variability
EP0427585B1 (en) Control device and operating cycle for a flow rate regulating system of a ventilation system of a room with controlled atmosphere
FR2957661A1 (en) Installation for ventilating room in flats of building, has air flow modulating unit modulating flow of air in air injection system based on determination of occurrence of operating divergence in air injection system
EP1346215B1 (en) Method and device for evaluating a fuel gas wobbe index
WO2017129906A1 (en) Pressure control system, fuel cell assembly and use of said control system
WO2014096593A1 (en) Flow meter for two-phase fluid using a mass flow meter and a three-way valve
FR3074363A1 (en) FUEL CELL COMPRISING A PRESSURE REGULATION DEVICE AND A PRESSURE REGULATION METHOD
EP1635117A1 (en) Method for regulating the air/fuel ratio of a burner and burner using this method
FR2724160A1 (en) Multi-user circulating fluid heating installation e.g. for office or apartment central heating
FR3130638A1 (en) Installation and process for conditioning a gas mixture
BE1025665B1 (en) ADVANCED HYDRAULIC SATELLITE GROUP
EP0063530A1 (en) Method of controlling the flow of a fluid circulating in a central heating system, and apparatus therefor
WO2021185972A1 (en) Instrumented device for a mixing valve, as well as a mixing valve comprising such an instrumented device
FR3042516A1 (en) DEVICE FOR CONTROLLING THE WATER CONSUMPTION OF A WATER DISPENSER
FR3038368B1 (en) DEVICE FOR CONTROLLING SANITARY WATER TEMPERATURE AND METHOD FOR REGULATING THE SUPPLY OF A POISING POINT
EP0316496A1 (en) Method for regulating the temperature of a central heating installation
FR3135139A1 (en) Ultrasonic fluid meter incorporating a pressure sensor
EP0884532A1 (en) Method and device for controlling the temperature of a fluid heated by a burner
FR2663118A1 (en) METHOD FOR MEASURING THE ADJUSTMENT OF THE FLOW RATE OF CONDUIT TRANSPORTING A THERMAL CONTROL FLUID, AND DEVICE FOR IMPLEMENTING THE METHOD.
FR3047844A1 (en) METHOD FOR REGULATING THE TEMPERATURE OF A FUEL CELL AND ASSOCIATED SYSTEM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES GB IT LI LU NL PT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES GB IT LI LU NL PT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040107

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040107

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040107

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69914063

Country of ref document: DE

Date of ref document: 20040212

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040418

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040107

BERE Be: lapsed

Owner name: A THEOBALD S.A.

Effective date: 20040331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20041008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040607