EP1051566B1 - Drosselklappenstutzen - Google Patents

Drosselklappenstutzen Download PDF

Info

Publication number
EP1051566B1
EP1051566B1 EP99960987A EP99960987A EP1051566B1 EP 1051566 B1 EP1051566 B1 EP 1051566B1 EP 99960987 A EP99960987 A EP 99960987A EP 99960987 A EP99960987 A EP 99960987A EP 1051566 B1 EP1051566 B1 EP 1051566B1
Authority
EP
European Patent Office
Prior art keywords
throttle valve
butterfly valve
metal cylinder
throttle
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99960987A
Other languages
English (en)
French (fr)
Other versions
EP1051566A1 (de
Inventor
Thomas Hannewald
Armin Seeger
Wilhelm Bock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1051566A1 publication Critical patent/EP1051566A1/de
Application granted granted Critical
Publication of EP1051566B1 publication Critical patent/EP1051566B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/104Shaping of the flow path in the vicinity of the flap, e.g. having inserts in the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1065Mechanical control linkage between an actuator and the flap, e.g. including levers, gears, springs, clutches, limit stops of the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Definitions

  • the invention relates to a throttle valve assembly with a throttle valve housing made of plastic according to the features of the preamble of Claim 1.
  • Throttle body of throttle body are usually made of die-cast aluminum. However, this has the Disadvantage that an elaborate and careful post-processing is required is, with the fact that such a throttle body are heavy and have poor corrosion resistance.
  • throttle body Manufacture plastic by injection molding.
  • Such throttle body made of plastic have the advantage that they are lighter in weight have compared to aluminum housings that the manufacturing material is cheaper and also that in the molded during the injection molding process Openings inserts, for example for storage, are pressed can, so that postprocessing is no longer necessary at all is or can be significantly minimized.
  • throttle body made of plastic have the Disadvantage on that during and after the injection molding process can shrink and warp after removal from the mold.
  • is the drive motor of the vehicle is not in operation and there is little Outside temperature, very low temperatures are reached (for example around freezing or even below); on the other hand, at Operation of the internal combustion engine a very high temperature (in particular reached over 100 ° C). Therefore, it comes especially because of this strong temperature fluctuations to disadvantageous deformations in the swivel area the throttle valve, so that the high leakage air requirements, especially in the idle position of the throttle valve and around these around, cannot be met.
  • the main disadvantage is that the annular insert after the injection molding process is completely surrounded by plastic, so that the throttle valve is again a large area in its swivel range plastic inner contour of the intake wall. Due to the high requirements with regard to environmental protection (exhaust gas quality) and fuel consumption is still required Dimensional accuracy, even if it has already been improved somewhat, not given, so that the plastic Deform suction wall despite ring-shaped insert, pull together or can expand, so that the high Leakage air requirements are still not met.
  • This Insert can for example be made of metal and has at least one on its outer and / or inner wall cylindrical section.
  • This ring-shaped insert is also very good because of its geometric design costly to manufacture.
  • more Elements of the throttle body in which the insert surrounding plastic can be attached This also means this throttle body the necessary dimensional accuracy of Components not given to each other.
  • the invention is therefore based on the object Throttle body further improve, so that the posed Requirements regarding the exhaust gas quality of the Fuel consumption, but also in terms of an even response of the internal combustion engine to accelerating, be fulfilled.
  • the advantages of a plastic throttle body are said to be not be abandoned.
  • a metal cylinder in the throttle valve Line section is provided.
  • the throttle valve at least in the relevant partial swivel range always a precisely defined and dimensionally stable inner wall is presented, which changes even with temperature fluctuations and over for a long period of time or in negligible Changed way so that the required dimensional accuracy given is.
  • the metal cylinder can be in the injection mold be inserted and then extrusion-coated with plastic that its inner wall remains free, so that the Throttle valve is presented with a metallic surface.
  • the throttle body made of plastic and then the metal cylinder use The metal cylinder is also conceivable to manufacture from several parts, for example two Halves in the plane in which the throttle valve shaft is located, can collide.
  • the Metal cylinder also for holding further elements of the throttle valve body such as for holding a throttle potentiometer or a drive motor.
  • Other elements of the throttle valve assembly can also Shafts for a gearbox over which the throttle valve shaft from is driven by an electric motor.
  • Holes can also be used be provided in the metal cylinder on which the other elements, such as a carrier plate of the Throttle potentiometer, after the manufacture of the throttle body be screwed on.
  • the metal cylinder can also Stops, for example for a final position of the Have throttle valve or the throttle valve.
  • the metal cylinder is in Flow direction below and / or above the throttle valve supporting throttle valve shaft provided. Just that Area around the plane in which the throttle valve shaft is arranged is particularly important as this is the area acts in which the idle speed with the throttle valve is set. Therefore, it is particularly in this area good dimensional accuracy is required with the metal cylinder is achieved. In addition, the metal cylinder but also over a larger swiveling range Throttle valve and possibly extend beyond.
  • the metal cylinder is Recording designed for the throttle shaft bearings. A further increased strength is thereby achieved the manufacturing process is also simplified. It can First the metal cylinder is made, which then with the bearings for the throttle valve and then is encapsulated with plastic. Another advantage is in it to see that in the same shape and the throttle body different metal cylinders (especially with different ones Longitudinal extension and / or different Diameter) can be used, whereby the variety of parts, in particular the number of shapes for the throttle body, can be reduced.
  • the metal cylinder has a Inner contour to achieve a specifiable characteristic for the Volume throughput depending on the pivoting of the Throttle valve open.
  • a corresponding metal cylinder for example made of die-cast aluminum or magnesium, (including other materials and manufacturing processes are possible) and one that may become necessary Finishing is through the inner contour of the metal cylinder a characteristic curve for the volume flow through the Line section achievable, which depends on the Swiveling of the throttle valve adjusts.
  • an inner contour cause that in the closed position the throttle valve has no or almost no volume throughput through the line section.
  • the one end position which was previously referred to as the closed position, must Do not necessarily completely close the line section, but it can be with this End position also act as a minimum position at which a defined Leakage air flows through the line section.
  • the minimum throughput takes the volume throughput as a function of inner contour used further until another end position, in particular represents a complete opening of the line section, is achieved.
  • the throttle valve assembly according to the invention can be a act so-called coupled system, in which the throttle valve about connecting elements such as Bowden cables or the like with a Accelerator pedal is connected to the power request. It is the same with such Systems conceivable, in addition in some areas (especially in Idle range) via an actuator (especially an electric motor) superimposed control (especially idle control).
  • the throttle body is also found in so-called drive-bywire systems Application where the performance requirement (for Example of operating an accelerator pedal) converted into electrical signals is, the signals are fed to a control unit, which in turn controls an actuator which then at least in the throttle valve Dependence of the performance requirement and, if necessary, further parameters established.
  • the present invention is based on the example of a throttle valve assembly explained, this field of application is regarded as preferred; however, the present invention is not based on this embodiment limited, but can also in a corresponding manner, if necessary under first name minor modifications, in other areas of application be used.
  • FIG. 1 shows a throttle valve 1 in a three-dimensional sectional view.
  • Such throttle body are used for the injection device an internal combustion engine, in particular for a vehicle, air or supply a fuel-air mixture.
  • the Throttle body 1 a throttle body 2 on that Plastic, especially in an injection molding process, is produced.
  • this throttle valve housing 2 there is a line section 3, the air or the injection device, not shown the fuel-air mixture is supplied.
  • a throttle valve 5 arranged, the rotation of the throttle valve shaft 4 also Throttle valve 5 is pivoted and the cross section in the line section 3 more or less enlarged or reduced and thus regulates the volume throughput.
  • the throttle body 1 is one end the throttle valve shaft 4, for example, connected to a rope pulley, this pulley in turn via a Bowden cable with an adjusting device for a performance request, the Adjustment device is, for example, the accelerator pedal of a vehicle, so that by operating this adjustment device by the driver
  • the throttle valve 5 from a position of minimal opening, in particular a closed position, up to a position of maximum opening can be brought to the power output of the internal combustion engine to be able to adjust.
  • the throttle valve connector 1 shown in FIG. 1 is such a throttle body, in which the throttle valve 5 either in a partial area, for example the idle area, by one Actuator, otherwise via the accelerator pedal, is adjustable or at which the throttle valve 5 over the entire adjustment range by an actuator is adjustable.
  • the performance requirement is, for example, by depressing of the accelerator pedal converted into an electrical signal, wherein this signal is fed to a control unit, which is then a control signal generated for the actuator. That is, with these systems mentioned there is no mechanical connection between the setpoint specification (Accelerator pedal) and the throttle valve 5.
  • the throttle body 2 of the throttle body 1 a gear housing 6 and a drive housing 7, wherein in preferred Embodiment, the throttle valve housing 2, the transmission housing 6 and the drive housing 7 form an integral unit and be produced in the same manufacturing process. It is also conceivable such an arrangement in which individual housings are assembled can be.
  • the drive housing 7 is designed as an actuator Electric motor (not shown in Figure 1) housed the one Reduction gear (also not shown in Figure 1) on the throttle valve shaft 4 acts, so that by driving the electric motor Throttle valve 5 is pivoted.
  • the control of the electric motor takes place via a plug 8 arranged in the gear housing 6, wherein the throttle valve connector 1 via the connector 8 with a control unit connected is.
  • a feedback is also provided via the connector 8 the respective position of the throttle valve 5 to the control unit, wherein this control unit by comparing the target value (accelerator pedal) with the Actual value for the position of the throttle valve 5 controls the electric motor until the difference between the setpoint and actual value is zero.
  • the actual position the throttle valve 5 can, in particular, by a corresponding sensor a so-called throttle valve potentiometer, in which the Wiper of the potentiometer is connected to the throttle valve shaft 4, be recorded.
  • the gear housing 6 including the drive housing 7 is from closed a housing cover 9.
  • the design and assembly of the housing cover 9 is described in more detail in Figures 2 and 3.
  • the throttle body 1 is usually in a suction system Internal combustion engine is arranged and assembled as a module, for which the in Figure 1 shown throttle body 1 has a flange 10 with which he has a suction line, not shown, with an intake air filter can be connected or connected directly to this intake air filter is.
  • an intake air filter can be connected or connected directly to this intake air filter is.
  • bores 11 provided with which the throttle valve body 1 sealing to the injector can be screwed on.
  • the type of attachment is only by way of example and not essential to the invention.
  • the three-dimensional sectional view of the throttle valve assembly 1 a dashed metal cylinder 12 in the line section 3 arranged.
  • the outer peripheral surface of the metal cylinder 12 is completely made of the plastic of the throttle valve housing 2 surround, the metal inner wall of the metal cylinder itself over the pivoting range of the throttle valve 5, possibly something less or a little more than this pivoting range.
  • Various Embodiments of the metal cylinder 12 are in the following Figures recognizable.
  • FIG. 2 shows the throttle valve 1 according to Figure 1 in section removed housing cover 9. Very good in this cross section Location of the metal cylinder 12 recognizable, the one piece in simple form Is tube that has bushings 13 for the throttle valve shaft 4.
  • the inner wall of the metal cylinder 12 can be machined with a contour, by predetermined characteristics for the volume throughput through the line section 3 depending on the position of the throttle valve 5 to be able to.
  • FIG. 2 shows an embodiment of the metal cylinder 12 shown, in which the metal cylinder 12 in the region of the bushings 13 each has an extension 14, these extensions 14 bearings 15, 19th for throttle valve shaft 4. This increases the ease of installation, since after the overmolding of the metal cylinder 12 with Plastic for molding the entire throttle body 2 also the bearings for the throttle valve shaft 4 are already available.
  • the Throttle valve shaft 4 ends - when viewing FIG. 2 on the left Side - in a room 16, in which, for example, so-called return springs and emergency springs can be accommodated.
  • the return spring causes the throttle valve shaft 4 to be preloaded in the closing direction, so that the actuator works against the force of this return spring.
  • a so-called emergency running spring causes that in the event of actuator failure Throttle valve 5 is brought into a defined position, which is usually is slightly above the idle speed.
  • Throttle valve shaft 4 beyond the space 16 from the Throttle body 2 protrude, then at this end Throttle valve shaft 4, for example, a pulley is mounted, the is connected to an accelerator pedal via a Bowden cable, with which a mechanical setpoint is implemented.
  • the throttle valve housing 2 also points in the direction of the housing cover 9 shows a circumferential flattening 17 with a circumferential web of the housing cover 9 corresponds. So far it was so that the housing cover 9 by screwing or by means of clip connections with the interposition of a seal with the throttle body 2 was connected. This meant a lot of effort there in the manufacture of the mold for the throttle body 2 and the housing cover 9 corresponding training can be provided had. In addition, the presence of the seal meant another Component and associated the insertion of the seal another Installation step, which is currently happening in the series production of throttle body turned out to be disadvantageous.
  • FIG 3 shows the throttle valve assembly 1 according to Figure 1 in cross section with the housing cover 9 attached.
  • the web 18 now lies all around the flat 17, which both overlap. To this area this overlap is now directed all around a laser beam 20 which is aligned and dimensioned in terms of its intensity so that the two facing surfaces of the flat 17 and the web 18 warm up and begin to melt.
  • This will fuse at this point, the throttle valve housing 2 with the housing cover 9, so that the gear housing located under the housing cover 9 6 and the drive housing 7 are sealed.
  • the housing cover 9 is non-detachably connected to the throttle valve housing 2 means that it cannot move off without destroying the components involved the throttle body 2 are solved. This has besides the absolute Tightness still has the advantage that all components in this room are arranged, are protected from manipulation. This is particularly so then advantageous if covered in the throttle valve housing 2 an electronic control unit housed by the housing cover 9 is.
  • the housing cover 9 shown in FIG. 3 also has a counter bearing 21 with which the drive shaft of the electric motor, not shown, is mounted is.
  • the throttle valve shaft can also be used by means of a counter bearing 22 4 be counter-positioned.
  • Figure 4 shows the throttle body 1 in longitudinal section according to the Figure 1. It can be seen here that the metal cylinder 12 as a simple cylinder is formed, the outer peripheral surface and at least part of the end faces surrounded by the plastic of the throttle valve housing 2 is.
  • the inward facing inner wall of the metal cylinder 12 is straightforward, but can also be specified for implementation Characteristic curves for volume throughput must be contoured. Such configurations are shown for example in FIG.
  • Figure 4 is the throttle valve 5 shown in its closed position and can be turned by twisting clockwise to an open position with a rotation of about 90 ° (i.e. up to one when viewed 4 roughly vertical position) corresponds to the full load position.
  • FIG. 5 shows the throttle valve connector 1 according to FIG. 1 in a sectioned, three-dimensional view, again the arrangement of the metal cylinder 12 is visible in the throttle valve housing 2.
  • the throttle valve shaft 4 has a slot, into which the throttle valve 5 can be inserted, the throttle valve 5 after alignment in their target position on the throttle valve shaft 4 immovable is fixed. This can be done, for example, with pins or screws done by the throttle valve shaft 4 and the throttle valve 5 can be inserted.
  • the throttle valve 5 can also in the Slot caulked with the throttle valve shaft 4 or glued.
  • Figure 6 shows the throttle valve connector 1 in section in a modified Version compared to Figure 1, wherein it can be seen that the metal cylinder 12 not only the extensions 14 for receiving the bearings 15, 19 for the throttle valve shaft 4, but also a bearing plate 23 includes one end of the actuator designed as an electric motor receives. This increases strength, with another advantage It should be mentioned that one over the end shield 23 during operation of the Electric motor generates heat loss on the inner wall of the metal cylinder 12 is performed, at which point the heat loss through the air flowing through the line section 3 (or the fuel / air mixture) is dissipated. The bearing plate 23 also improved the thermal properties of the throttle valve body 1.
  • FIG. 7 shows the throttle valve connector 1 in longitudinal section according to FIG. 1, here the metal cylinder 12 is shown with an inner contour.
  • the metal cylinder 12 in the plastic throttle body is used or is surrounded by the plastic such that the metal cylinder 12th is held securely in the throttle body 2 while the inner wall of the metal cylinder 12 is not covered by plastic, that is metallic properties are retained.
  • the throttle valve 5 is by rotating the throttle valve shaft 4 - when looking at Figure 7 in Clockwise - in a pivoting direction 24 from that shown in Figure 7 Minimum position in which the line section 3 is completely or almost is completely closed, pivotable.
  • the line section 3 Air flowing through (or the fuel-air mixture) has a direction of flow 24.
  • the aim should be that in the transition area between the inner wall the line section 3 and the inner wall of the metal cylinder 12 there is no paragraph to avoid turbulence in the air or Avoid fuel air mixture in the flow direction 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Lift Valve (AREA)

Description

Die Erfindung betrifft einen Drosselklappenstutzen mit einem Drosselklappengehäuse aus Kunststoff gemäß den Merkmalen des Oberbegriffes des Patentanspruches 1.
Drosselklappengehäuse von Drosselklappenstutzen werden in der Regel aus Aluminium in Druckgußtechnik hergestellt. Dies hat jedoch den Nachteil, daß eine aufwendige und sorgfältige Nachbearbeitung erforderlich ist, wobei noch dazu kommt, daß solche Drosselklappengehäuse ein hohes Gewicht aufweisen und eine schlechte Korrosionsfestigkeit haben.
Deshalb ist schon daran gedacht worden, die Drosselklappengehäuse aus Kunststoff im Spritzgußverfahren herzustellen. Solche Drosselklappengehäuse aus Kunststoff haben den Vorteil, daß sie ein geringeres Gewicht aufweisen gegenüber Aluminiumgehäusen, daß das Herstellungsmaterial kostengünstiger ist und auch daß in beim Spritzgußvorgang mitgeformten Öffnungen Einsätze, beispielsweise für die Lagerung, eingepreßt werden können, so daß eine Nachbearbeitung entweder gar nicht mehr erforderlich ist oder deutlich minimiert werden kann.
Jedoch weisen aus Kunststoff hergestellte Drosselklappengehäuse den Nachteil auf, daß sie während und nach dem Spritzgußvorgang schrumpfen und sich nach dem Entformen verziehen können. Gleiches gilt für Temperatur- und Krafteinwirkungen, zumal solche Drosselklappenstutzen im Motorraum von Fahrzeugen angeordnet sind, wo sie sehr großen Temperaturschwankungen unterworfen sind. Ist zum Beispiel der Antriebsmotor des Fahrzeuges nicht in Betrieb und herrscht eine geringe Außentemperatur, werden sehr niedrige Temperaturen erreicht (zum Beispiel um den Gefrierpunkt oder sogar darunter); andererseits wird beim Betrieb der Brennkraftmaschine eine sehr hohe Temperatur (insbesondere über 100° C) erreicht. Daher kommt es insbesondere aufgrund dieser starken Temperaturschwankungen zu nachteiligen Verformungen im Verschwenkbereich der Drosselklappe, so daß die hohen Leckluft-Anforderungen, insbesondere in der Leerlaufstellung der Drosselklappe und um diese herum, nicht eingehalten werden können. Gerade dieser Bereich ist aber besonders wichtig, da er einen großen Einfluß auf den Kraftstoffverbrauch und auch auf die Abgasqualität ausübt. Daher ist es besonders wichtig, daß die Ansaugwandung des Drosselklappenstutzens sowohl bei den genannten Bedingungen als auch über eine lange Zeit, insbesondere mehrere Jahre hinweg, ihre Maßhaltigkeit beibehält.
Deshalb ist in der DE 43 34 180 A1 schon vorgeschlagen worden, daß in den aus Kunststoff hergestellten Drosselklappenstutzen ein ringförmiges Einlegeteil quer zum Ansaugkanal eingebettet ist, wobei dieses Einlegeteil abgewinkelte Laschen aufweist, durch die die Drosselklappenwelle ragt und die Laschen mit jeweils einer der Drosselklappe abgewandten Laschenfläche an einer der Drosselklappe zugewandten Lagerstirnfläche der Lagereinrichtungen anliegen. Zunächst hat dieses ringförmige Einlegeteil aufgrund seiner geometrischen Ausbildung den Nachteil, daß es kostenintensiv bei der Herstellung, insbesondere bei einer Serienproduktion von Drosselklappenstutzen, ist.
Der wesentliche Nachteil ist jedoch der, daß das ringförmige Einlegeteil nach dem Spritzgußvorgang vollständig von Kunststoff umgeben ist, so daß sich der Drosselklappe in ihrem Schwenkbereich wieder eine großflächige aus Kunststoff bestehende Innenkontur der Ansaugwandung bietet. Aufgrund der hohen Anforderungen in Bezug auf Umweltschutz (Abgasqualität) und Kraftstoffverbrauch ist weiterhin die erforderlich Maßhaltigkeit, auch wenn sie schon etwas verbessert wurde, nicht gegeben, so dass sich die aus Kunststoff bestehende Ansaugwandung trotz ringförmigem Einlegeteil verformen, zusammenziehen beziehungsweise ausdehnen kann, so dass die hohen Leckluft-Anforderungen nach wie vor nicht erfüllt werden.
Ebenfalls ist aus der FR-A-2 762 374 bekannt, in der Höhe der Lagerung der Drosselklappe ein Einlegeteil anzuordnen. Dieses Einlegeteil kann beispielsweise aus Metall gefertigt sein und hat an seiner äußeren und/oder inneren Wandung zumindest einen zylindrischen Abschnitt. Dieses ringförmige Einlegeteil ist ebenfalls aufgrund seiner geometrischen Ausbildung sehr kostenintensiv in der Herstellung. Weiterhin müssen weitere Elemente des Drosselklappenstutzens in dem das Einlegeteil umgebenden Kunststoff befestigt werden. Damit ist auch bei diesem Drosselklappenstutzen die notwendige Maßhaltigkeit der Bauteile zueinander nicht gegeben.
Der Erfindung liegt daher die Aufgabe zugrunde, einen solchen Drosselklappenstutzen weiter zu verbessern, so dass die gestellten Anforderungen hinsichtlich der Abgasqualität des Kraftstoffverbrauchs, gleichzeitig aber auch im Hinblick auf ein gleichmäßiges Ansprechen der Brennkraftmaschine auf Gasgeben, erfüllt werden. Dabei sollen die Vorteile eines Kunststoff-Drosselklappenstutzens nicht aufgegeben werden.
Diese Aufgabe ist durch die Merkmale des Patentanspruchs 1 gelöst.
Erfindungsgemäß ist vorgesehen, dass zumindest in einem Teilschwenkbereich der Drosselklappe ein Metallzylinder in dem Leitungsabschnitt vorgesehen ist.
Aufgrund der Stabilität eines Metallzylinders wird der Drosselklappe zumindest in dem betreffenden Teilschwenkbereich immer eine genau definierte und maßhaltige Innenwandung dargeboten, die sich auch bei Temperaturschwankungen und über einen großen Zeitraum hinweg nicht oder in zu vernachlässigender Weise verändert, so dass die geforderte Maßhaltigkeit gegeben ist. Der Metallzylinder kann in die Spritzgussform eingelegt werden und anschließend so mit Kunststoff umspritzt werden, dass seine Innenwandung frei bleibt, so dass also der Drosselklappe eine metallene Oberfläche dargeboten wird. Alternativ dazu ist es auch möglich, erst das Drosselklappengehäuse aus Kunststoff herzustellen und anschließend den Metallzylinder einzusetzen. Denkbar ist auch, den Metallzylinder aus mehreren Teilen herzustellen, wobei zum Beispiel zwei Hälften in der Ebene, in der sich die Drosselklappenwelle befindet, aneinander stoßen können. Man könnte auch daran denken, die Innenwandung des Metallzylinders mit einer dünnen Schutzschicht (zum Beispiel aus dem gleichen Kunststoff, aus dem auch das Drosselklappengehäuse besteht) zu überziehen, deren Dicken keinen Einfluss auf die Maßhaltigkeit hat. Eine solche Schutzschicht verhindert wirksam die Ablagerung von störenden Partikeln auf der Innenwandung. Weiterhin ist der Metallzylinder auch zur Aufnahme weiterer Elemente des Drosselklappenstutzens wie zum Beispiel zur Aufnahme eines Drosselklappen-Potentiometers oder eines Antriebsmotors ausgebildet. Weitere Elemente des Drosselklappenstutzens können auch Wellen für ein Getriebe, über das die Drosselklappenwelle von einem Elektromotor angetrieben wird, sein. Ebenso können Bohrungen in dem Metallzylinder vorgesehen sein, an denen die weiteren Elemente, wie beispielsweise eine Trägerplatte des Drosselklappen-Potentiometers, nach der Herstellung des Drosselklappengehäuses angeschraubt werden. Ebenso kann der Metallzylinder Anschläge, zum Beispiel für eine Endstellung der Drosselklappe beziehungsweise der Drosselklappe aufweisen.
In Weiterbildung der Erfindung ist der Metallzylinder in Strömungsrichtung unterhalb und/oder oberhalb der Drosselklappe tragenden Drosselklappenwelle vorgesehen. Gerade der Bereich um die Ebene, in der die Drosselklappenwelle angeordnet ist, ist besonders wichtig, da es sich hierbei um den Bereich handelt, in dem mit der Drosselklappe die Leerlaufdrehzahl eingestellt wird. Daher ist besonders in diesem Bereich eine gute Maßhaltigkeit erforderlich, die mit dem Metallzylinder erzielt wird. Darüber hinaus kann sich der Metallzylinder aber auch über einen größeren Verschwenkbereich der Drosselklappe und gegebenenfalls auch darüber hinaus erstrecken.
In Weiterbildung der Erfindung ist der Metallzylinder zur Aufnahme für die Lager der Drosselklappenwelle ausgebildet. Dadurch wird eine weiterhin erhöhte Festigkeit erreicht, wodurch auch der Herstellungsprozess vereinfacht wird. Es kann zunächst der Metallzylinder hergestellt werden, der dann mit den Lagern für die Drosselklappe versehen und anschließend mit Kunststoff umspritzt wird. Ein weiterer Vorteil ist darin zu sehen, dass in ein und derselben Form und das Drosselklappengehäuse verschiedene Metallzylinder (insbesondere mit unterschiedlicher Längserstreckung und/oder unterschiedlichem Durchmesser) einsetzbar sind, wodurch die Teilevielfalt, insbesondere die Zahl der Formen für das Drosselklappengehäuse, verringert werden kann.
In Weiterbildung der Erfindung weist der Metallzylinder eine Innenkontur zur Erzielung einer vorgebbaren Kennlinie für den Volumendurchsatz in Abhängigkeit von der Verschwenkung der Drosselklappe auf. Durch Herstellung eines entsprechenden Metallzylinders, zum Beispiel aus Aluminium- oder Magnesium-Druckguss, (wobei auch andere Materialien und Herstellverfahren möglich sind) und einer gegebenenfalls erforderlich werdenden Nachbearbeitung ist durch die Innenkontur des Metallzylinders eine Kennlinie für den Volumendurchsatz durch den Leitungsabschnitt erzielbar, die sich in Abhängigkeit von der Verschwenkung der Drosselklappe einstellt. Somit kann zum Beispiel eine Innenkontur bewirken, dass in der Schließstellung der Drosselklappe kein oder nahezu kein Volumendurchsatz durch den Leitungsabschnitt erfolgt. Die eine Endstellung, die bisher als Schließstellung bezeichnet wurde, muss den Leitungsabschnitt nicht zwangsweise vollständig schließen, sondern es kann sich bei dieser Endstellung auch um eine Minimalstellung handeln, bei der eine definierte Leckluftmenge den Leitungsabschnitt durchströmt. Mit zunehmender Verschwenkung der Drosselklappe aus der Schließstellung beziehungsweise der Minimalstellung nimmt der Volumendurchsatz in Abhängigkeit der verwendeten Innenkontur weiter zu, bis eine weitere Endstellung, die insbesondere eine vollständige Öffnung des Leitungsabschnittes darstellt, erreicht wird.
Zusammenfassend ist also festzustellen, daß mit der Erfindung die Vorteile eines Drosselklappengehäuses aus Kunststoff (wie niedriges Gewicht und geringe Materialkosten) beibehalten werden, jedoch die bei einem Drosselklappengehäuse aus Kunststoff bestehenden Nachteile wie nicht ausreichende Maßhaltigkeit durch Einsatz des Metallzylinders beseitigt werden, so daß die gewünschte Kennlinie auch bei Temperaturschwankungen und über einen langen Zeitraum (mehrere Jahre) sicher einstellbar ist und beibehalten wird.
Bei dem erfindungsgemäßen Drosselklappenstutzen kann es sich um ein sogenanntes gekoppeltes System handeln, bei dem die Drosselklappe über Verbindungselemente wie Bowdenzüge oder dergleichen mit einem Gaspedal zur Leistungsanforderung verbunden ist. Ebenso ist es bei solchen Systemen denkbar, zusätzlich in Teilbereichen (insbesondere im Leerlaufbereich) über einen Stellantrieb (insbesondere Elektromotor) eine überlagerte Regelung (insbesondere Leerlaufregelung) vorzunehmen. Genausogut findet der Drosselklappenstutzen bei sogenannten Drive-bywire-Systemen Anwendung, bei denen die Leistungsanforderung (zum Beispiel Betätigen eines Gaspedales) in elektrische Signale umgesetzt wird, wobei die Signale einer Steuereinheit zugeführt werden, die wiederum einen Stellantrieb ansteuert, der dann die Drosselklappe zumindest in Abhängigkeit der Leistungsanforderung und gegebenenfalls weiterer Parameter einstellt.
Die vorliegende Erfindung wird am Beispiel eines Drosselklappenstutzens erläutert, wobei dieses Anwendungsgebiet als bevorzugt angesehen wird; dabei ist die vorliegende Erfindung jedoch nicht auf dieses Ausführungsbeispiel beschränkt, sondern kann auch in entsprechender Weise, gegebenenfalls unter Vorname geringfügiger Modifikationen, auf anderen Anwendungsgebieten eingesetzt werden.
Es zeigen:
Figur 1:
einen Drosselklappenstutzen in dreidimensionaler Schnittdarstellung,
Figur 2:
den Drosselklappenstutzen gemäß Figur 1 im Querschnitt mit abgenommenem Deckel,
Figur 3:
den Drosselklappenstutzen gemäß Figur 1 im Querschnitt mit aufgesetztem Deckel,
Figur 4:
den Drosselklappenstutzen im Längsschnitt gemäß Figur 1,
Figur 5:
den Drosselklappenstutzen gemäß Figur 1 in geschnittener, dreidimensionaler Ansicht,
Figur 6:
den Drosselklappenstutzen im Schnitt in einer abgewandelten Ausführung gegenüber Figur 1,
Figur 7:
den Drosselklappenstutzen im Längsschnitt gemäß Figur 1, mit einem Metallzylinder mit Innenkontur.
Figur 1 zeigt einen Drosselklappenstutzen 1 in dreidimensionaler Schnittdarstellung. Solche Drosselklappenstutzen dienen dazu, der Einspritzeinrichtung einer Brennkraftmaschine, insbesondere für ein Fahrzeug, Luft oder ein Kraftstoffluftgemisch zuzuführen. Zu diesem Zweck weist der Drosselklappenstutzen 1 ein Drosselklappengehäuse 2 auf, das aus Kunststoff, insbesondere in einem Spritzgußverfahren, hergestellt ist. In diesem Drosselklappengehäuse 2 ist ein Leitungsabschnitt 3 vorhanden, über den der nicht gezeigten Einspritzvorrichtung die Luft beziehungsweise das Kraftstoffluftgemisch zugeführt wird. Zur Einstellung des zuzuführenden Volumens ist auf einer Drosselklappenwelle 4 eine Drosselklappe 5 angeordnet, wobei durch Drehung der Drosselklappenwelle 4 auch die Drosselklappe 5 verschwenkt wird und den Querschnitt im Leitungsabschnitt 3 mehr oder weniger vergrößert beziehungsweise verkleinert und somit den Volumendurchsatz reguliert.
In einer einfachen Ausführung des Drosselklappenstutzens 1 ist ein Ende der Drosselklappenwelle 4 zum Beispiel mit einer Seilscheibe verbunden, wobei diese Seilscheibe wiederum über einen Bowdenzug mit einer Einstellvorrichtung für eine Leistungsanforderung verbunden ist, wobei die Einstellvorrichtung zum Beispiel das Gaspedal eines Fahrzeuges ist, so daß durch Betätigung dieser Einstellvorrichtung durch den Fahrer eines Fahrzeuges die Drosselklappe 5 von einer Stellung minimaler Öffnung, insbesondere einer Schließstellung, bis in eine Stellung maximaler Öffnung gebracht werden kann, um damit die Leistungsabgabe der Brennkraftmaschine einstellen zu können.
Bei dem in Figur 1 gezeigten Drosselklappenstutzen 1 handelt es sich um einen solchen Drosselklappenstutzen, bei dem die Drosselklappe 5 entweder in einem Teilbereich, zum Beispiel dem Leerlaufbereich, von einem Stellantrieb, ansonsten über das Gaspedal, einstellbar ist oder bei dem die Drosselklappe 5 über den gesamten Verstellbereich von einem Stellantrieb einstellbar ist. Bei diesen sogenannten "E-Gas"- oder "Drive-bywire"-Systemen wird die Leistungsanforderung zum Beispiel durch Niederdrücken des Gaspedales in ein elektrisches Signal umgesetzt, wobei dieses Signal einer Steuereinheit zugeführt wird, die dann ein Ansteuersignal für den Stellantrieb erzeugt. Das heißt, bei diesen genannten Systemen gibt es keine mechanische Verbindung zwischen der Sollwertvorgabe (Gaspedal) und der Drosselklappe 5.
Daher weist das Drosselklappengehäuse 2 des Drosselklappenstutzens 1 ein Getriebegehäuse 6 sowie ein Antriebsgehäuse 7 auf, wobei in bevorzugter Ausführungsform das Drosselklappengehäuse 2, das Getriebegehäuse 6 und das Antriebsgehäuse 7 eine einstückige Baueinheit bilden und im gleichen Herstellungsgang produziert werden. Denkbar ist auch eine solche Anordnung, bei der einzelne Gehäuse zusammengesetzt werden können. In dem Antriebsgehäuse 7 ist ein als Stellantrieb ausgebildeter Elektromotor (in Figur 1 nicht gezeigt) untergebracht, der über ein Untersetzungsgetriebe (in Figur 1 ebenfalls nicht gezeigt) auf die Drosselklappenwelle 4 wirkt, so daß durch Ansteuerung des Elektromotors die Drosselklappe 5 verschwenkt wird. Die Ansteuerung des Elektromotors erfolgt über einen in dem Getriebegehäuse 6 angeordneten Stecker 8, wobei der Drosselklappenstutzen 1 über den Stecker 8 mit einer Steuereinheit verbunden ist. Über den Stecker 8 erfolgt auch eine Rückmeldung der jeweiligen Position der Drosselklappe 5 an die Steuereinheit, wobei diese Steuereinheit durch Vergleich des Sollwertes (Gaspedal) mit dem Istwert für die Position der Drosselklappe 5 den Elektromotor regelt, bis die Differenz zwischen Sollwert und Istwert gleich Null ist. Die Ist-Position der Drosselklappe 5 kann durch einen entsprechenden Sensor, insbesondere ein sogenanntes Drosselklappen-Potentiometer, bei dem der Schleifer des Potentiometers mit der Drosselklappenwelle 4 verbunden ist, erfaßt werden.
Das Getriebegehäuse 6 einschließlich des Antriebsgehäuses 7 wird von einem Gehäusedeckel 9 verschlossen. Die Ausgestaltung und Montage des Gehäusedeckels 9 wird in den Figuren 2 und 3 noch näher beschrieben.
Der Drosselklappenstutzen 1 ist in der Regel in einer Sauganlage der Brennkraftmaschine angeordnet und wird als Modul montiert, wozu der in Figur 1 gezeigte Drosselklappenstutzen 1 einen Flansch 10 aufweist, mit dem er über eine nicht gezeigte Saugleitung mit einem Ansaugluftfilter verbunden werden kann oder direkt mit diesem Ansaugluftfilter verbunden ist. Zur Befestigung des Drosselklappenstutzens 1 an der Einspritzvorrichtung mit der dem Flansch 10 abgewandten Seite sind Bohrungen 11 vorgesehen, mit dem der Drosselklappenstutzen 1 dichtend an die Einspritzvorrichtung angeschraubt werden kann. Die Art der Befestigung ist nur beispielhaft und nicht erfindungswesentlich.
Weiterhin ist in der dreidimensionalen Schnittdarstellung des Drosselklappenstutzens 1 ein gestrichelt gezeichneter Metallzylinder 12 in dem Leitungsabschnitt 3 angeordnet. Die Außenumfangsfläche des Metallzylinders 12 ist vollständig von dem Kunststoff des Drosselklappengehäuses 2 umgeben, wobei die metallene Innenwandung des Metallzylinders sich über den Verschwenkbereich der Drosselklappe 5, gegebenenfalls etwas weniger oder etwas mehr als dieser Verschwenkbereich, erstreckt. Verschiedene Ausgestaltungen des Metallzylinders 12 sind in den folgenden Figuren erkennbar.
Figur 2 zeigt den Drosselklappenstutzen 1 gemäß Figur 1 im Schnitt mit abgenommenem Gehäusedeckel 9. Sehr gut in diesem Querschnitt ist die Lage des Metallzylinders 12 erkennbar, der in einfacher Form ein Stück Rohr ist, das Durchführungen 13 für die Drosselklappenwelle 4 aufweist. Die Innenwandung des Metallzylinders 12 kann konturiert bearbeitet sein, um vorgegebene Kennlinien für den Volumendurchsatz durch den Leitungsabschnitt 3 in Abhängigkeit der Stellung der Drosselklappe 5 einstellen zu können. In Figur 2 ist eine Ausgestaltung des Metallzylinders 12 gezeigt, bei der der Metallzylinder 12 im Bereich der Durchführungen 13 jeweils einen Fortsatz 14 aufweist, wobei diese Fortsätze 14 Lager 15, 19 für die Drosselklappenwelle 4 aufnehmen. Damit erhöht sich die Montagefreundlichkeit, da nach dem Umspritzen des Metallzylinders 12 mit Kunststoff zur Formung des gesamten Drosselklappengehäuses 2 auch schon die Lager für die Drosselklappenwelle 4 zur Verfügung stehen. Die Drosselklappenwelle 4 endet - bei Betrachtung der Figur 2 auf der linken Seite - in einem Raum 16, in dem beispielsweise sogenannte Rückstellfedern und Notlauffedern untergebracht sein können. Die Rückstellfeder bewirkt eine Vorspannung der Drosselklappenwelle 4 in Schließrichtung, so daß der Stellantrieb gegen die Kraft dieser Rückstellfeder arbeitet. Eine sogenannte Notlauffeder bewirkt, daß bei Ausfall des Stellantriebes die Drosselklappe 5 in eine definierte Position gebracht wird, die in der Regel etwas oberhalb der Leerlaufdrehzahl liegt. Alternativ oder ergänzend dazu kann auch die Drosselklappenwelle 4 über den Raum 16 hinaus aus dem Drosselklappengehäuse 2 hervorstehen, wobei dann an diesem Ende der Drosselklappenwelle 4 zum Beispiel eine Seilscheibe montiert wird, die über einen Bowdenzug mit einem Gaspedal in Verbindung steht, womit eine mechanische Sollwertvorgabe realisiert ist. Das dem Raum 16 abgewandte Ende des Fortsatzes 14 (dessen Stirnfläche) kann zur Aufnahme weiterer Elemente wie zum Beispiel der Befestigung einer Trägerplatte des Drosselklappen-Potentiometers eingesetzt werden. Ebenso kann die Stirnfläche dieses Fortsatzes 14 oder weitere Fortsätze, deren Stirnflächen in das Getriebegehäuse 6 ragen, zur Aufnahme weiterer Elemente, wie zum Beispiel Steckwellen für Zahnräder oder Zahnsegmente des nicht gezeigten Getriebes, eingesetzt werden.
Das Drosselklappengehäuse 2 weist weiterhin in Richtung des Gehäusedeckels 9 zeigend eine umlaufende Abflachung 17 auf, die mit einem umlaufenden Steg des Gehäusedeckels 9 korrespondiert. Bisher war es so, daß der Gehäusedeckel 9 durch Verschrauben oder mittels Clipsverbindungen unter Zwischenlegung einer Dichtung mit dem Drosselklappengehäuse 2 verbunden wurde. Dies bedeutete einen hohen Aufwand, da bei der Herstellung der Form für das Drosselklappengehäuse 2 und den Gehäusedeckel 9 entsprechende Ausbildungen vorgesehen sein mußten. Außerdem bedeutete das Vorhandensein der Dichtung ein weiteres Bauteil und damit verbunden das Einlegen der Dichtung einen weiteren Montageschritt, was sich gerade bei der Serienproduktion von Drosselklappenstutzen als nachteilig herausstellte. Durch die umlaufende Abflachung 17 an dem Drosselklappengehäuse 2 und den umlaufenden Steg 18 an dem Gehäusedeckel 9 (oder umgekehrt), die schon bei der Herstellung für die Form des Drosselklappengehäuses 2 und des Gehäusedeckels 9 aus Kunststoff vorgesehen werden können, wird zunächst erreicht, daß nach dem Aufsetzen des Gehäusedeckels 9 eine definierte Lage auf dem Drosselklappengehäuse 2, gegebenenfalls unter leichtem Spiel, erzielt wird.
Figur 3 zeigt den Drosselklappenstutzen 1 gemäß Figur 1 im Querschnitt mit aufgesetztem Gehäusedeckel 9. Der Steg 18 liegt nun umlaufend über der Abflachung 17, die sich damit beide überlappen. Auf diesen Bereich dieser Überlappung wird jetzt umlaufend ein Laserstrahl 20 gerichtet, der so ausgerichtet und von seiner Intensität her so dimensioniert ist, daß die beiden einander zugewandten Flächen der Abflachung 17 und des Steges 18 sich erwärmen und zu schmelzen beginnen. Dadurch verschmelzen an dieser Stelle umlaufend das Drosselklappengehäuse 2 mit dem Gehäusedeckel 9, so daß das unter dem Gehäusedeckel 9 liegende Getriebegehäuse 6 sowie das Antriebsgehäuse 7 dichtend verschlossen werden. Das Einlegen und Montieren einer Dichtung kann entfallen. Der Gehäusedeckel 9 ist mit dem Drosselklappengehäuse 2 unlösbar verbunden, das heißt, er kann ohne Zerstörung der beteiligten Bauteile nicht wieder von dem Drosselklappengehäuse 2 gelöst werden. Dies hat neben der absoluten Dichtheit noch den Vorteil, daß alle Bauteile, die in diesem Räumen angeordnet sind, vor Manipulationen geschützt sind. Dies ist insbesondere dann von Vorteil, wenn in dem Drosselklappengehäuse 2, abgedeckt von dem Gehäusedeckel 9, eine elektronische Steuereinheit untergebracht ist.
Der in Figur 3 gezeigte Gehäusedeckel 9 weist noch ein Gegenlager 21 auf, mit dem die Antriebswelle des nicht gezeigten Elektromotors gelagert ist. Genauso kann mittels eines Gegenlagers 22 auch die Drosselklappenwelle 4 gegengelagert sein.
Figur 4 zeigt den Drosselklappenstutzen 1 im Längsschnitt gemäß der Figur 1. Hier ist erkennbar, daß der Metallzylinder 12 als einfacher Zylinder ausgebildet ist, dessen Außenumfangsfläche und zumindest ein Teil der Stirnflächen von dem Kunststoff des Drosselklappengehäuses 2 umgeben ist. Die nach innen weisende Innenwandung des Metallzylinders 12 ist gradlinig ausgebildet, kann aber auch zur Realisierung vorgebbarer Kennlinien für den Volumendurchsatz konturiert sein. Solche Ausgestaltungen sind zum Beispiel in der Figur 7 gezeigt. In Figur 4 ist die Drosselklappe 5 in ihrer Schließstellung gezeigt und kann durch Verdrehen entgegen dem Uhrzeigersinn in eine geöffnete Stellung gebracht werden, wobei eine Drehung um etwa 90° (das heißt bis in eine bei Betrachtung der Figur 4 in etwa senkrechte Position) der Voll-Laststellung entspricht.
Figur 5 zeigt den Drosselklappenstutzen 1 gemäß Figur 1 in geschnittener, dreidimensionaler Ansicht, wobei wiederum die Anordnung des Metallzylinders 12 in dem Drosselklappengehäuse 2 sichtbar ist. Ebenfalls erkennbar ist eine Möglichkeit der Montage der Drosselklappe 5 an der Drosselklappenwelle 4. Die Drosselklappenwelle 4 weist einen Schlitz auf, in den die Drosselklappe 5 einsteckbar ist, wobei die Drosselklappe 5 nach Ausrichtung in ihrer Sollposition an der Drosselklappenwelle 4 unbewegbar fixiert wird. Dies kann beispielsweise durch Stifte oder Schrauben erfolgen, die durch die Drosselklappenwelle 4 und die Drosselklappe 5 gesteckt werden. Alternativ dazu kann die Drosselklappe 5 auch in dem Schlitz mit der Drosselklappenwelle 4 verstemmt oder verklebt werden.
Figur 6 zeigt den Drosselklappenstutzen 1 im Schnitt in einer abgewandelten Ausführung gegenüber Figur 1, wobei erkennbar ist, daß der Metallzylinder 12 nicht nur die Fortsätze 14 zur Aufnahme der Lager 15, 19 für die Drosselklappenwelle 4 aufnimmt, sondern auch einen Lagerschild 23 umfaßt, der ein Ende des als Elektromotor ausgebildeten Stellantriebes aufnimmt. Dadurch erhöht sich die Festigkeit, wobei als weiterer Vorteil zu nennen ist, daß über das Lagerschild 23 eine beim Betrieb des Elektromotors entstehend Verlustwärme an die Innenwandung des Metallzylinders 12 geführt wird, wobei an dieser Stelle die Verlustwärme durch die den Leitungsabschnitt 3 durchströmende Luft (oder das Kraftstoffluftgemisch) abgeführt wird. Somit werden durch das Lagerschild 23 auch die thermischen Eigenschaften des Drosselklappenstutzens 1 verbessert.
Figur 7 zeigt den Drosselklappenstutzen 1 im Längsschnitt gemäß Figur 1, wobei hier der Metallzylinder 12 mit einer Innenkontur gezeigt ist. In der Figur 7 ist nochmals deutlich zu erkennen, daß der Metallzylinder 12 in das Drosselklappengehäuse aus Kunststoff so eingesetzt ist beziehungsweise derart von dem Kunststoff umgeben ist, daß der Metallzylinder 12 sicher in dem Drosselklappengehäuse 2 gehalten ist, während die Innenwandung des Metallzylinders 12 nicht von Kunststoff bedeckt ist, also die metallischen Eigenschaften beibehalten werden. Die Drosselklappe 5 ist durch Drehung der Drosselklappenwelle 4 - bei Betrachtung der Figur 7 im Uhrzeigersinn - in eine Schwenkrichtung 24 aus der in Figur 7 gezeigten Minimalstellung, in der der Leitungsabschnitt 3 vollständig oder nahezu vollständig verschlossen ist, verschwenkbar. Die den Leitungsabschnitt 3 durchströmende Luft (oder das Kraftstoffluftgemisch) hat eine Strömungsrichtung 24. Durch Verschwenken der Drosselklappe 5 in Schwenkrichtung 24 wird der Leitungsabschnitt 3 mit zunehmender Verschwenkung weiter geöffnet, so daß durch eine Innenkontur 26 des Metallzylinders 12 eine Kennlinie des den Leitungsabschnitt 3 durchströmenden Volumens in Abhängigkeit von dem Öffnungswinkel der Drosselklappe 5 einstellbar ist. Durch unterschiedliche Innenkonturen 26, die mit verschiedenen Metallzylindern 12 realisierbar sind, können somit bei Beibehaltung eines standardisierten Drosselklappengehäuses 2 auf einfache Art und Weise unterschiedliche, dem jeweiligen Brennkraftmaschinen-Typ angepaßte Kennlinien realisiert werden. Die in Figur 7 gezeigte Innenkontur 26 des Metallzylinders 12 ist oberhalb und unterhalb der Drosselklappenwelle 4 symmetrisch, wobei in Schwenkrichtung 24, ausgehend von der in Figur 7 gezeigten Minimalstellung (oder auch Nullstellung) der Drosselklappe 5 die Innenkontur 26 zunächst einen geradzylindrischen Abschnitt aufweist, dem sich ein kreisbogenförmiger Abschnitt anschließt.
Es ist anzustreben, daß im Übergangsbereich zwischen der Innenwandung des Leitungsabschnittes 3 und der Innenwandung des Metallzylinders 12 kein Absatz vorhanden ist, um Verwirbelungen der Luft oder des Kraftstoffluftgemisches in Strömungsrichtung 25 zu vermeiden.
Es wird jedoch darauf hingewiesen, daß die in Figur 7 gezeigte Innenkontur 26 des Metallzylinders 12 nur beispielhaft ist und beliebige andere Konturen (auch oberhalb und unterhalb der Ebene der Drosselklappenwelle 4 asymmetrische Konturen) beim Herstellen und/oder beim Bearbeiten des Metallzylinders 12 erzielbar sind.
Bezugszeichenliste
1.
Drosselklappenstutzen
2.
Drosselklappengehäuse
3.
Leitungsabschnitt
4.
Drosselklappenwelle
5.
Drosselklappe
6.
Getriebegehäuse
7.
Antriebsgehäuse
8.
Stecker
9.
Gehäusedeckel
10.
Flansch
11.
Bohrung
12.
Metallzylinder
13.
Durchführung
14.
Fortsatz
15.
Lager
16.
Raum
17.
Abflachung
18.
Steg
19.
Lager
20.
Laserstrahl
21.
Gegenlager
22.
Gegenlager
23.
Lagerschild
24.
Schwenkrichtung
25.
Strömungsrichtung
26.
Innenkontur

Claims (5)

  1. Drosselklappenstutzen (1), aufweisend ein Drosselklappengehäuse (2) aus Kunststoff, wobei in einem Leitungsabschnitt (3) des Drosselklappengehäuses (2) eine Drosselklappe (5) verschwenkbar gelagert ist, und wobei zumindest in einem Teilschwenkbereich der Drosselklappe (5) ein ringförmiges Einlegeteil in dem Leitungsabschnitt (3) vorgesehen ist, dadurch gekennzeichnet, dass das Einlegeteil als Metallzylinder (12) und zur Aufnahme weiterer Elemente des Drosselklappenstutzens (1) ausgebildet ist.
  2. Drosselklappenstutzen (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Metallzylinder (12) in dem Kunststoff des Drosselklappengehäuses (2) eingesetzt ist, wobei im Bereich des Leitungsabschnittes (3) die metallene Innenwandung des Metallzylinders (12) freiliegt.
  3. Drosselklappenstutzen (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Metallzylinder (12) in einer Strömungsrichtung (25) unterhalb und/oder oberhalb einer die Drosselklappe (5) tragende Drosselklappenwelle (4) vorgesehen ist.
  4. Drosselklappenstutzen (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Metallzylinder (12) zur Aufnahme für die Lager (15, 19) der Drosselklappenwelle (4) ausgebildet ist.
  5. Drosselklappenstutzen (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Metallzylinder (12) eine Innenkontur (26) zur Erzielung einer vorgebbaren Kennlinie für den Volumendurchsatz durch den Leitungsabschnitt (3) in Abhängigkeit von der Verschwenkung der Drosselklappe (5) aufweist.
EP99960987A 1998-11-26 1999-11-19 Drosselklappenstutzen Expired - Lifetime EP1051566B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19854595A DE19854595A1 (de) 1998-11-26 1998-11-26 Drosseklappenstutzen
DE19854595 1998-11-26
PCT/EP1999/008884 WO2000031396A1 (de) 1998-11-26 1999-11-19 Drosselklappenstutzen

Publications (2)

Publication Number Publication Date
EP1051566A1 EP1051566A1 (de) 2000-11-15
EP1051566B1 true EP1051566B1 (de) 2004-05-12

Family

ID=7889114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99960987A Expired - Lifetime EP1051566B1 (de) 1998-11-26 1999-11-19 Drosselklappenstutzen

Country Status (8)

Country Link
US (1) US6352241B1 (de)
EP (1) EP1051566B1 (de)
JP (1) JP2002530587A (de)
KR (1) KR20010034386A (de)
BR (1) BR9907249A (de)
DE (2) DE19854595A1 (de)
MY (1) MY119769A (de)
WO (1) WO2000031396A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY119769A (en) * 1998-11-26 2005-07-29 Mannesmann Vdo Ag Butterfly valve body

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936456A1 (de) * 1999-08-03 2001-02-08 Mann & Hummel Filter Ventil
DE10007611A1 (de) * 2000-02-18 2001-08-23 Mannesmann Vdo Ag Drosselklappenstutzen
US6386178B1 (en) * 2000-07-05 2002-05-14 Visteon Global Technologies, Inc. Electronic throttle control mechanism with gear alignment and mesh maintenance system
US6557523B1 (en) * 2000-07-05 2003-05-06 Visteon Global Technologies, Inc. Electronic throttle body with insert molded actuator motor
DE10044294A1 (de) 2000-09-07 2002-05-16 Siemens Ag Drosselklappenstutzen
DE10050408A1 (de) 2000-10-12 2002-04-18 Siemens Ag Drosselklappenstutzen
DE10050393A1 (de) * 2000-10-12 2002-04-18 Siemens Ag Drosselklappenstutzen
US6508455B2 (en) * 2000-12-28 2003-01-21 Visteon Global Technologies, Inc. Electronic throttle body gear train module
DE10104747A1 (de) * 2001-02-02 2002-08-08 Siemens Ag Verfahren zur Herstellung eines Gehäuses für einen Drosselklappenstutzen
US6789526B2 (en) * 2001-02-08 2004-09-14 Denso Corporation Apparatus for controlling throttle valve and manufacturing method for the same and motor
DE10147333A1 (de) * 2001-09-26 2003-04-24 Bosch Gmbh Robert Variantenreduzierte Drosseleinrichtung mit austauschbaren Gehäuseteilen
JP3935926B2 (ja) * 2002-05-30 2007-06-27 愛三工業株式会社 内燃機関の吸気装置
US20050139800A1 (en) * 2002-08-22 2005-06-30 Siegfried Deiss Butterfly valve unit
JP2004132237A (ja) * 2002-10-09 2004-04-30 Aisan Ind Co Ltd スロットル制御装置
JP2004339995A (ja) * 2003-05-14 2004-12-02 Aisan Ind Co Ltd 吸気弁装置
DE102004056764B4 (de) * 2003-11-25 2009-10-08 Aisan Kogyo Kabushiki Kaisha, Obu Drosselkörper und Verfahren zum Herstellen solcher Drosselkörper
JP2006017005A (ja) * 2004-06-30 2006-01-19 Denso Corp 内燃機関用スロットル装置
JP2006017080A (ja) * 2004-07-05 2006-01-19 Denso Corp 内燃機関用吸気制御装置
DE102005052362A1 (de) * 2005-11-02 2007-05-03 Siemens Ag Drosselklappenstutzen
US7472885B2 (en) * 2006-03-06 2009-01-06 Honeywell International, Inc. Compact, lightweight cabin pressure control system butterfly outflow valve with redundancy features
JP4551351B2 (ja) * 2006-04-18 2010-09-29 株式会社デンソー スロットル弁装置
US7694937B2 (en) * 2006-08-09 2010-04-13 Honeywell International Inc. Outflow valve
US7513823B1 (en) * 2007-06-06 2009-04-07 Dale Amos Dix Linear VAV box
DE102008027888A1 (de) * 2008-06-11 2009-12-17 Apel, Helga Drosselklappenstutzen mit Drosselklappe
FR2997745B1 (fr) * 2012-11-06 2014-11-07 Sonceboz Automotive Sa Vanne motorisee surmoulee a etancheite amelioree
KR101327038B1 (ko) * 2013-06-03 2013-11-07 주식회사 현대케피코 전자식 스로틀밸브 어셈블리
DE102013113060B4 (de) * 2013-11-26 2017-03-16 Pierburg Gmbh Brenngasversorgungssystem für eine Verbrennungskraftmaschine
US9222592B2 (en) * 2014-01-02 2015-12-29 Shie Yu Machine Parts Ind. Co., Ltd. Composite structure of rotary valve
CN205225467U (zh) * 2015-11-19 2016-05-11 大陆汽车电子(芜湖)有限公司 一种电子节气门
CN106194444B (zh) * 2016-08-26 2023-05-16 重庆隆鑫机车有限公司 发动机节气门阀体、节气门及发动机
CN107642418B (zh) * 2017-10-31 2019-12-10 潍柴动力股份有限公司 节流阀及发动机
JP2019085902A (ja) * 2017-11-02 2019-06-06 株式会社ニッキ 電動式空気量調整装置
CN208900224U (zh) * 2018-09-17 2019-05-24 大陆汽车电子(芜湖)有限公司 节气门以及车辆
JP7083746B2 (ja) * 2018-12-26 2022-06-13 愛三工業株式会社 吸気装置
JP7410414B2 (ja) * 2021-06-29 2024-01-10 株式会社デンソーダイシン 絞り弁装置及び絞り弁装置の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7400300A (nl) * 1973-07-07 1975-01-09 Steinmueller Gmbh L & C Inrichting voor het sluiten van een rond hete- lucht- of uitlaatgaskanaal.
US3958595A (en) * 1974-11-22 1976-05-25 Dresser Industries, Inc. Corrosion resistant valve construction
FR2575518B1 (fr) 1984-12-28 1989-04-07 Inst Francais Du Petrole Ensemble logement et papillon d'un dispositif de controle de debit de gaz
EP0449808B1 (de) * 1988-12-24 1995-03-29 Robert Bosch Gmbh Adaptive regelung des klopfens während einer beschleunigungsphase
US5111775A (en) * 1989-12-06 1992-05-12 Mitsubishi Denki K.K. Cooling water temperature controlling apparatus
FR2663710B1 (fr) * 1990-06-22 1992-10-16 Solex Corps de papillon a ouverture progressive.
DE4126386A1 (de) * 1991-08-09 1993-02-11 Philips Patentverwaltung Empfaenger mit dynamikkompression
DE4126366A1 (de) 1991-08-09 1993-02-11 Vdo Schindling Drosselvorrichtung fuer brennkraftmaschinen
FR2694963B1 (fr) * 1992-08-21 1994-10-21 Solex Corps de papillon à conduit d'admission de forme évolutive et procédé de fabrication d'un tel corps.
DE4234460A1 (de) * 1992-10-13 1994-04-14 Hella Kg Hueck & Co Einrichtung zur Steuerung der Frischgasmenge einer Brennkraftmaschine
DE4334180A1 (de) * 1993-10-07 1995-04-13 Bosch Gmbh Robert Drosselvorrichtung
DE19604009C2 (de) 1995-02-06 2001-08-16 Aisan Ind Drosselventilbaugruppe
US5711271A (en) 1995-05-05 1998-01-27 Robert Bosch Gmbh Throttle apparatus for an internal combustion engine
US5876015A (en) * 1995-08-03 1999-03-02 Schaeffer; J. Michael Butterfly damper
ZA979032B (en) * 1996-10-09 1998-04-23 Mann & Hummel Filter Throttle for liquid or gaseous media.
FR2762374B1 (fr) 1997-04-18 1999-06-04 Coutier Moulage Gen Ind Vanne papillon pour la regulation du debit d'un fluide et ses procedes de fabrication
DE19854595A1 (de) * 1998-11-26 2000-06-08 Mannesmann Vdo Ag Drosseklappenstutzen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY119769A (en) * 1998-11-26 2005-07-29 Mannesmann Vdo Ag Butterfly valve body

Also Published As

Publication number Publication date
WO2000031396A1 (de) 2000-06-02
DE19854595A1 (de) 2000-06-08
BR9907249A (pt) 2000-10-17
EP1051566A1 (de) 2000-11-15
DE59909471D1 (de) 2004-06-17
US6352241B1 (en) 2002-03-05
MY119769A (en) 2005-07-29
KR20010034386A (ko) 2001-04-25
JP2002530587A (ja) 2002-09-17

Similar Documents

Publication Publication Date Title
EP1051566B1 (de) Drosselklappenstutzen
EP1051567B1 (de) Drosselklappenstutzen
DE69300115T2 (de) Drosseldrehschieber für die Kraftstoffversorgungsanlage einer Brennkraftmaschine und seine Anwendung in einem Drosselklappengehäuse.
EP2003343B1 (de) Kunststoffverdichtergehäuse und Verfahren zur Herstellung eines Kunststoffverdichtergehäuses
DE69921875T2 (de) Zweiteiliger Drosselklappenstutzen
DE102004036983B4 (de) Verfahren zur Herstellung eines Drosselgeräts für eine Brennkraftmaschine und Drossel
DE602005004579T2 (de) Multifunktionales Modul, Fahrzeug enthaltend ein solches Modul und Verfahren zur Herstellung eines solchen Moduls
EP1186763B1 (de) Drosselklappenstutzen
DE112005001222B4 (de) Verfahren zur Herstellung eines Drosselkörpers und Drosselkörper
AT410245B (de) Aus kunststoff bestehender formkörper
EP0915237B1 (de) Kühlsystem für Kraftfahrzeuge
DE102004056764B4 (de) Drosselkörper und Verfahren zum Herstellen solcher Drosselkörper
DE4334180A1 (de) Drosselvorrichtung
DE102006008511A1 (de) Ansaugkrümmer
DE19615438A1 (de) Ventil
DE102005026685A1 (de) Einlasskrümmer und Verfahren zu dessen Herstellung
DE10351382B4 (de) Drosselklappen mit motorisch betätigten Drosselventilen
EP1200721A1 (de) Ventil
DE4221913C1 (de) Ansaugkrümmer für eine Verbrennungskraftmaschine mit einem Zylinderkopf
EP1328715B1 (de) Drosselklappe
EP0991885B1 (de) Drosselklappenstutzen
EP1328743B1 (de) Drosselklappenstutzen
DE60100875T2 (de) Gehäuse einer elektronisch gesteuerten Drosselklappe mit einsatzgeformtem Antriebsmotor
DE202010012100U1 (de) Auspuff, Klappengehäuse und motorisiertes Fahrzeug
DE60117603T2 (de) Vorrichtung zum Schließen von Motorlufteinlassleitungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20030430

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59909471

Country of ref document: DE

Date of ref document: 20040617

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040723

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081117

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091119

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121130

Year of fee payment: 14

Ref country code: DE

Payment date: 20121130

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59909471

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202