EP1030319B1 - Toroidal core - Google Patents

Toroidal core Download PDF

Info

Publication number
EP1030319B1
EP1030319B1 EP99123475A EP99123475A EP1030319B1 EP 1030319 B1 EP1030319 B1 EP 1030319B1 EP 99123475 A EP99123475 A EP 99123475A EP 99123475 A EP99123475 A EP 99123475A EP 1030319 B1 EP1030319 B1 EP 1030319B1
Authority
EP
European Patent Office
Prior art keywords
toroidal core
air gap
toroidal
core
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99123475A
Other languages
German (de)
French (fr)
Other versions
EP1030319A1 (en
Inventor
Aloys Wobben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1030319A1 publication Critical patent/EP1030319A1/en
Application granted granted Critical
Publication of EP1030319B1 publication Critical patent/EP1030319B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons

Definitions

  • Ring cores are widely used in electrical engineering, in particular in coils for increasing the inductance.
  • a choke coil whose ohmic resistance is low in comparison to the inductive reactance.
  • a toroidal core such as a laminated iron core
  • the inductance of such a choke coil is substantially increased (iron chokes). If the iron path is closed, it often receives air gaps to reduce the influence of iron saturation (throttle air gap).
  • the magnetization characteristics of coils or inductors can be set to a desired value.
  • Such inductors are increasingly used in modern power electronics in the higher power range.
  • an application such as the smoothing of pulsating DC, DC filtering, decoupling of systems or for voltage regulator (buck converter, boost converter) may be mentioned.
  • Further fields of application for inductors with a toroidal core are short-circuit reactors in an inverter branch or filter throttles.
  • different magnetization characteristics as shown by way of example in FIG. 1, can then be set. These magnetization characteristics are then also called hysteresis loops.
  • the toroidal core has no air gap.
  • the toroid In the hysteresis magnetization characteristic of type b, the toroid has a relatively small air gap, and in the hysteresis magnetization characteristic of type c, the toroid has a very large air gap.
  • the air gap of a toroidal core can be concentrated in one place, so that one can see and measure the gap (macroscopic air gap). But it can also be divided over the magnetic circuit or the ring core several small air gaps. Then one speaks of a so-called "microscopic air gap". For this purpose, the effective air gap is distributed over the entire circumference of iron powder cores by admixing non-magnetic substances. Embodiments for a macroscopic and microscopic air gap are shown in FIG. 2.
  • a ring band core with a macroscopic air gap usually takes place as follows. First, you wrap a Dynamo sheet on a core, which is removed after the winding process again. Then you cut an air gap in the ring by means of a saw, a laser or a similar tool. Very small gaps can be made with this method, however, difficult and cumbersome, since the air gap width always depends directly on the tool width.
  • the object of the invention is to provide a toroidal core, which does not have the disadvantages described above and can be produced more easily and inexpensively. This results in further advantages such as a precise definition of the course of the magnetization characteristic and very low stray fields.
  • GB-A-2 133 932 discloses a toroidal core according to the preamble of claim 1.
  • the invention is based on the approach to produce the toroidal core from at least two layers of material / layers wound on top of each other, wherein the first layer is of a magnetically and electrically conductive material and the second layer consists of a non-magnetic and non-electrically conductive material.
  • a dynamo sheet may be used as the first laminated layer, while paper or film may be used for the second layer.
  • the desired magnetization characteristics can be adjusted. For example, when using very thin layer material, such as very thin paper, one obtains only a very slightly sheared characteristic, which corresponds to a very, very small air gap. If the shearing of the characteristic curve is to be greater, a correspondingly thicker, non-conductive layer material can be used.
  • toroidal cores Since only one winding process is necessary and no special materials must be used as in previous toroidal cores with microscopic air gap can be produced with conventional materials available on the market ring cores, which have a desired magnetization depending on the choice of materials and in particular the material thicknesses.
  • the production of toroidal cores with a very slightly sheared characteristic is easy to perform by using only very thin, non-conductive material. This has the consequence that an inductance with such a toroidal core with very slightly sheared characteristic also has very little stray fields, so that no stray fields occur in very powerful applications in power electronics.
  • Such a ring core undergoes no deformation even at high currents / magnetic fields and is therefore also preferably suitable for power electronics.
  • FIG. 1 shows three different types of characteristics.
  • the characteristic of type a shows a hysteresis loop of an inductance with a toroidal core without an air gap.
  • the characteristic is slightly sheared and the toroidal core has a relatively small air gap.
  • the characteristic of type c the characteristic is sheared very far and the toroid has a very large air gap.
  • Figure 2 shows the basic structure of a toroidal core with a macroscopic air gap - type 1 - and a toroidal core with a microscopic air gap - type 2.
  • the ring core of type 1 consists for example of a magnetically and electrically conductive material such as dynamo plate.
  • the ring core type 2 is also made of a magnetically and electrically conductive material, which, however, are mixed with non-magnetic substances.
  • Figure 3 shows a two-layer, wound toroidal core.
  • the first layer or position - solid line - consists here of a dynamo plate and the second layer / layer - dashed line - consists of a magnetically and electrically non-conductive material, such as paper or a film.
  • the desired magnetization characteristic can be determined in such a wound toroidal core by the number of windings and by the choice of material and layer thickness. If one chooses a relatively small thickness for the non-conductive material compared to the dynamo sheet, the result is a slightly sheared characteristic, with which an inductance in a toroidal core with a very small air gap can be achieved.
  • the magnetization characteristic can also be adjusted by the appropriate choice for the thickness of the conductive material, which always depends on the relation of the layer thicknesses of conductive and non-conductive material.
  • the dynamo plate may have a thickness of about 0.05 to 0.6 mm for low frequency applications, eg 50 Hertz. For applications with higher operating frequencies, sheet thicknesses of 0.1 to 0.3 mm can be used. When using the ring core in a short-circuit reactor or in a boost converter, the thickness of 0.23 mm for the material thickness of the dynamo plate is very suitable. For the thickness of the magnetically non-conductive material layer thicknesses of about 0.01 to 0.5 mm come into question. This material thickness reflects the amount of maximum flow of the throttle in the application. For short-circuit reactors, a layer thickness of 0.1 mm is very well suited for the non-conductive material layer.
  • Figure 5 shows such a known arrangement in which in addition to the main flow and the leakage flux is applied.
  • Magnetic field lines always try to take the easiest route. You should in the drawn geometry ( Figure 5) flow through the legs and the two yokes. However, the magnetic field lines must overcome 4 air gaps (magnetically non-conductive paths). This geometry will easily form stray fields as they represent an alternative to the desired path.
  • Figure 4 shows a toroidal core according to the invention and the associated Hauptfluß- or leakage flux distribution. Since the effective air gap is uniformly distributed over the entire circumference in the ring core shown in Figure 4, the magnetic conductivity is homogeneous over the entire magnetic length. There are no distinct barriers, such as a concentrated air gap, in the arrangement shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)

Description

Ringkerne finden in der Elektrotechnik, insbesondere in Spulen zur Erhöhung der Induktivität, vielfach Verwendung. Beispielhaft sei hier erwähnt eine Drosselspule, deren Ohmscher Widerstand niedrig ist im Vergleich zum induktiven Blindwiderstand. Durch Einbau eines Ringkerns, beispielsweise eines lamellierten Eisenkerns, wird die Induktivität einer solchen Drosselspule wesentlich erhöht (Eisendrosseln). Ist der Eisenpfad geschlossen, so erhält er häufig Luftspalte, um den Einfluß der Eisensättigung zu vermindern (Luftspalt drosseln).Ring cores are widely used in electrical engineering, in particular in coils for increasing the inductance. By way of example, mention should be made here of a choke coil whose ohmic resistance is low in comparison to the inductive reactance. By incorporating a toroidal core, such as a laminated iron core, the inductance of such a choke coil is substantially increased (iron chokes). If the iron path is closed, it often receives air gaps to reduce the influence of iron saturation (throttle air gap).

Mittels des Ringkerns lassen sich die Magnetisierungskennlinien von Spulen bzw. Induktivitäten auf einen gewünschten Wert einstellen. Solche Induktivitäten werden zunehmend in der modernen Leistungselektronik im höheren Leistungsbereich eingesetzt. Nur beispielhaft sei ein Anwendungsbereich wie z.B. die Glättung von pulsierendem Gleichstrom, Filtern von Gleichstrom, Entkoppeln von Systemen oder für Spannungsregler (Tiefsetzsteller, Hochsetzsteller) erwähnt. Weitere Anwendungsgebiete für Induktivitäten mit einem Ringkern sind Kurzschlußdrosseln bei einem Wechselrichterzweig oder Filterdrosseln. Je nach Größe des Ringkern-Luftspaltes lassen sich dann verschiedene Magnetisierungskennlinien, wie sie beispielhaft in Figur 1 dargestellt sind, einstellen. Diese Magnetisierungskennlinien werden dann auch Hysteresisschleifen genannt.By means of the toroidal core, the magnetization characteristics of coils or inductors can be set to a desired value. Such inductors are increasingly used in modern power electronics in the higher power range. By way of example only, an application such as the smoothing of pulsating DC, DC filtering, decoupling of systems or for voltage regulator (buck converter, boost converter) may be mentioned. Further fields of application for inductors with a toroidal core are short-circuit reactors in an inverter branch or filter throttles. Depending on the size of the toroidal air gap, different magnetization characteristics, as shown by way of example in FIG. 1, can then be set. These magnetization characteristics are then also called hysteresis loops.

Bei der Hysteresiskennlinie in Figur 1 vom Typ a weist der Ringkern keinen Luftspalt auf. Bei der Hysteresis-Magnetisierungskennlinie vom Typ b weist der Ringkern einen relativ kleinen Luftspalt auf und bei der Hysteresis-Magnetisierungskennlinie vom Typ c weist der Ringkern einen sehr großen Luftspalt auf.In the case of the hysteresis characteristic curve in FIG. 1 of the type a, the toroidal core has no air gap. In the hysteresis magnetization characteristic of type b, the toroid has a relatively small air gap, and in the hysteresis magnetization characteristic of type c, the toroid has a very large air gap.

Der Luftspalt eines Ringkerns kann an einer Stelle konzentriert sein, so daß man den Spalt sehen und auch ausmessen kann (makroskopischer Luftspalt). Es können aber auch mehrere kleine Luftspalte über den magnetischen Kreis bzw. den Ringkern aufgeteilt sein. Dann spricht man von einem sog. "mikroskopischen Luftspalt". Hierzu wird bei Eisenpulverkernen durch Beimischen von nichtmagnetischen Stoffen der effektive Luftspalt auf den ganzen Umfang verteilt. Ausführungsformen für einen makroskopischen und mikroskopischen Luftspalt zeigt Figur 2.The air gap of a toroidal core can be concentrated in one place, so that one can see and measure the gap (macroscopic air gap). But it can also be divided over the magnetic circuit or the ring core several small air gaps. Then one speaks of a so-called "microscopic air gap". For this purpose, the effective air gap is distributed over the entire circumference of iron powder cores by admixing non-magnetic substances. Embodiments for a macroscopic and microscopic air gap are shown in FIG. 2.

Aus EP 0 401 805 ist ein Ringkern bekannt, bei dem sehr dünnschichtige Materialien im Bereich von wenigen pm zu einem Ringkern verarbeitet werden. Allerdings ist die Herstellung dieser Ringkerne sehr kompliziert, aufwendig und die Ringkerne sind für einen Einsatz in der Leistungselektronik wenig geeignet.From EP 0 401 805 a toroidal core is known in which very thin-layered materials in the range of a few pm are processed into a toroidal core. However, the production of these toroidal cores is very complicated, expensive and the toroidal cores are not very suitable for use in power electronics.

Die Herstellung eines Ringbandkerns mit makroskopischem Luftspalt geschieht in der Regel wie folgt. Zunächst wickelt man ein Dynamoblech auf einen Kern, welcher nach dem Wickelvorgang wieder entfernt wird. Dann schneidet man einen Luftspalt in den Ring mittels einer Säge, einem Laser oder einem ähnlichen Werkzeug. Sehr kleine Spalte lassen sich mit dieser Methode allerdings nur schwer und umständlich herstellen, da die Luftspaltbreite immer direkt von der Werkzeugbreite abhängt.The production of a ring band core with a macroscopic air gap usually takes place as follows. First, you wrap a Dynamo sheet on a core, which is removed after the winding process again. Then you cut an air gap in the ring by means of a saw, a laser or a similar tool. Very small gaps can be made with this method, however, difficult and cumbersome, since the air gap width always depends directly on the tool width.

Bei der Herstellung von Ringkernen mit mikroskopischem Luftspalt ergeben sich ebenfalls Schwierigkeiten bei der genauen Definition des Luftspaltwertes, da die Verteilung der magnetischen und nichtmagnetischen Materialien über den Umfang in der Regel nicht zu 100% homogen erfolgt.Difficulties in the exact definition of the air gap value also arise in the production of toroidal cores with a microscopic air gap, since the distribution of the magnetic and nonmagnetic materials over the circumference is generally not 100% homogeneous.

Aufgabe der Erfindung ist es, einen Ringkern vorzusehen, welcher die vorbeschriebenen Nachteile nicht aufweist und sich leichter und kostengünstiger herstellen läßt. Dabei ergeben sich weitere Vorteile wie eine genaue Definition des Verlaufs der Magnetisierungskennlinie und sehr geringe Streufelder.The object of the invention is to provide a toroidal core, which does not have the disadvantages described above and can be produced more easily and inexpensively. This results in further advantages such as a precise definition of the course of the magnetization characteristic and very low stray fields.

Erfindungsgemäß wird die gestellte Aufgabe durch einen Ringkern mit den Merkmalen nach Anspruch 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen beschrieben.According to the invention the object is achieved by a toroidal core with the features of claim 1. Advantageous developments are described in the subclaims.

GB-A-2 133 932 offenbart einen Ringkern gemäß dem Oberbegriff des Anspruchs 1.GB-A-2 133 932 discloses a toroidal core according to the preamble of claim 1.

Die Erfindung basiert auf dem Ansatz, den Ringkern aus wenigstens zwei aufeinander aufgewickelten Materiallagen/Schichten herzustellen, wobei die erste Schicht aus einen magnetisch und elektrisch leitendes Material ist und die zweite Schicht aus einem nicht magnetischen und nicht elektrisch leitenden Material besteht. Als erste lamellierte Schicht kann beispielsweise ein Dynamoblech verwendet werden, während für die zweite Schicht Papier oder Folie verwendet werden kann. Durch die Wahl der Dicke des nicht leitenden Materials, also der zweiten Schicht, lassen sich die gewünschten Magnetisierungskennlinien einstellen. Beispielsweise erhält man bei der Verwendung von sehr dünnem Schichtmaterial, wie sehr dünnem Papier, eine nur sehr leicht gescherte Kennlinie, was einem sehr, sehr kleinem Luftspalt entspricht. Soll die Scherung der Kennlinie größer ausfallen, kann entsprechend dickeres, nicht leitendes Schichtmaterial verwendet werden.The invention is based on the approach to produce the toroidal core from at least two layers of material / layers wound on top of each other, wherein the first layer is of a magnetically and electrically conductive material and the second layer consists of a non-magnetic and non-electrically conductive material. For example, a dynamo sheet may be used as the first laminated layer, while paper or film may be used for the second layer. By choosing the thickness of the non-conductive material, ie the second layer, the desired magnetization characteristics can be adjusted. For example, when using very thin layer material, such as very thin paper, one obtains only a very slightly sheared characteristic, which corresponds to a very, very small air gap. If the shearing of the characteristic curve is to be greater, a correspondingly thicker, non-conductive layer material can be used.

Die Vorteile des erfindungsgemäßen Ringkerns liegen auf der Hand. Da nur ein Wickelvorgang notwendig ist und auch keine Spezialmaterialien wie bei bisherigen Ringkernen mit mikroskopischem Luftspalt verwendet werden müssen, lassen sich mit üblichen auf dem Markt erhältlichen Materialien Ringkerne herstellen, die je nach Wahl der Materialien und insbesondere der Materialdicken eine gewünschte Magnetisierungskennlinie aufweisen. Insbesondere die Fertigung von Ringkernen mit einer sehr leicht gescherten Kennlinie ist einfach durchzuführen, indem nur sehr dünnes, nicht leitendes Material verwendet wird. Dies hat zur Folge, daß eine Induktivität mit einem solchen Ringkern mit sehr leicht gescherter Kennlinie auch nur sehr geringe Streufelder aufweist, so daß bei sehr leistungsstarken Anwendungen in der Leistungselektronik keine Streufelder auftreten. Ein solcher Ringkern erfährt auch bei hohen Strömen/Magnetfeldern keine Verformung und ist daher ebenfalls für die Leistungselektronik bevorzugt geeignet.The advantages of the toroidal core according to the invention are obvious. Since only one winding process is necessary and no special materials must be used as in previous toroidal cores with microscopic air gap can be produced with conventional materials available on the market ring cores, which have a desired magnetization depending on the choice of materials and in particular the material thicknesses. In particular, the production of toroidal cores with a very slightly sheared characteristic is easy to perform by using only very thin, non-conductive material. This has the consequence that an inductance with such a toroidal core with very slightly sheared characteristic also has very little stray fields, so that no stray fields occur in very powerful applications in power electronics. Such a ring core undergoes no deformation even at high currents / magnetic fields and is therefore also preferably suitable for power electronics.

Die Erfindung wird nachfolgend anhand eines Teil des dargestellten Ausführungsbeispieles näher erläutert. Die Figuren stellen dar:

Figur 1
Magnetisierungskennlinien fürverschiedene Ringkerntypen;
Figur 2
Ausführungsform von Ringkernen mit makroskopischen und mikroskopischen Luftspalten;
Figur 3
Darstellung eines erfindungsgemäßen Ringkerns;
Figur 4
Darstellung eines erfindungsgemäßen Ringkerns.
The invention will be explained in more detail with reference to a part of the illustrated embodiment. The figures represent:
FIG. 1
Magnetization characteristics for various toroidal types;
FIG. 2
Embodiment of toroidal cores with macroscopic and microscopic air gaps;
FIG. 3
Representation of a toroidal core according to the invention;
FIG. 4
Representation of a toroidal core according to the invention.

Figur 1 zeigt drei verschiedene Kennlinientypen. Die Kennlinie vom Typ a zeigt eine Hystereseschleife einer Induktivität mit einem Ringkern ohne Luftspalt. Bei der Kennlinie vom Typ b ist die Kennlinie leicht geschert und der Ringkern weist einen relativ kleinen Luftspalt auf. Bei der Kennlinie vom Typ c ist die Kennlinie sehr weit geschert und der Ringkern weist einen sehr großen Luftspalt auf. Figur 2 zeigt den prinzipiellen Aufbau eines Ringkerns mit einem makroskopischen Luftspalt - Typ 1 - und eines Ringkerns mit einem mikroskopischen Luftspalt - Typ 2. Der Ringkern vom Typ 1 besteht beispielsweise aus einem magnetisch und elektrisch leitenden Material wie Dynamoblech. Der Ringkern vom Typ 2 besteht ebenfalls aus einem magnetisch und elektrisch leitenden Material, dem jedoch nicht magnetische Stoffe beigemischt sind.FIG. 1 shows three different types of characteristics. The characteristic of type a shows a hysteresis loop of an inductance with a toroidal core without an air gap. In the Characteristic of type b, the characteristic is slightly sheared and the toroidal core has a relatively small air gap. In the characteristic of type c, the characteristic is sheared very far and the toroid has a very large air gap. Figure 2 shows the basic structure of a toroidal core with a macroscopic air gap - type 1 - and a toroidal core with a microscopic air gap - type 2. The ring core of type 1 consists for example of a magnetically and electrically conductive material such as dynamo plate. The ring core type 2 is also made of a magnetically and electrically conductive material, which, however, are mixed with non-magnetic substances.

Figur 3 zeigt einen aus zwei Schichten bestehenden, aufgewickelten Ringkern. Die erste Schicht bzw. Lage - durchgezogene Linie - besteht hierbei aus einem Dynamoblech und die zweite Schicht/Lage - gestrichelte Linie - besteht aus einem magnetisch und elektrisch nicht leitenden Material, beispielsweise aus Papier oder einer Folie. Die gewünschte Magnetisierungskennlinie läßt sich bei einem solchen gewickelten Ringkern durch die Zahl der Wicklungen und durch die Material- und Lagendickenwahl bestimmen. Wählt man für das nicht leitende Material eine relativ geringe Dicke im Vergleich zum Dynamoblech, erhält man im Ergebnis eine leicht gescherte Kennlinie, womit eine Induktivität in einem Ringkern mit sehr kleinem Luftspalt erreicht werden kann. Soll sich die Scherung der Kennlinie vergrößern, wird statt sehr dünnem nicht leitenden Material entsprechend dickeres nicht leitendes Material verwendet. Selbstverständlich läßt sich die Magnetisierungskennlinie auch durch die entsprechende Wahl für die Dicke des leitenden Materials einstellen, wobei es stets auf die Relation der Schichtdicken von leitendem und nicht leitendem Material ankommt.Figure 3 shows a two-layer, wound toroidal core. The first layer or position - solid line - consists here of a dynamo plate and the second layer / layer - dashed line - consists of a magnetically and electrically non-conductive material, such as paper or a film. The desired magnetization characteristic can be determined in such a wound toroidal core by the number of windings and by the choice of material and layer thickness. If one chooses a relatively small thickness for the non-conductive material compared to the dynamo sheet, the result is a slightly sheared characteristic, with which an inductance in a toroidal core with a very small air gap can be achieved. If the shear of the characteristic curve is to increase, thicker non-conductive material is used instead of very thin non-conductive material. Of course, the magnetization characteristic can also be adjusted by the appropriate choice for the thickness of the conductive material, which always depends on the relation of the layer thicknesses of conductive and non-conductive material.

Das Dynamoblech kann für Anwendungen für niedrige Frequenzen, z.B. 50 Hertz, eine Dicke von etwa 0,05 bis 0,6 mm aufweisen. Für Anwendungen mit höheren Betriebsfrequenzen können Blechstärken von 0,1 bis 0,3 mm zur Anwendung kommen. Bei der Anwendung des Ringkerns in einer Kurzschlußdrossel bzw. in einem Hochsetzsteller ist die Dicke von 0,23 mm für die Materialschichtdicke des Dynamoblechs sehr geeignet. Für die Dicke des magnetisch nicht leitenden Materials kommen Schichtdicken von etwa 0,01 bis 0,5 mm in Frage. Diese Materialdicke gibt bei der Anwendung die Höhe des maximalen Stromes der Drossel wieder. Für Kurzschlußdrosseln ist eine Schichtdicke von 0,1 mm für die nicht leitende Materiallage sehr gut geeignet.The dynamo plate may have a thickness of about 0.05 to 0.6 mm for low frequency applications, eg 50 Hertz. For applications with higher operating frequencies, sheet thicknesses of 0.1 to 0.3 mm can be used. When using the ring core in a short-circuit reactor or in a boost converter, the thickness of 0.23 mm for the material thickness of the dynamo plate is very suitable. For the thickness of the magnetically non-conductive material layer thicknesses of about 0.01 to 0.5 mm come into question. This material thickness reflects the amount of maximum flow of the throttle in the application. For short-circuit reactors, a layer thickness of 0.1 mm is very well suited for the non-conductive material layer.

Bekanntlich erzeugen Drosseln mit Luftspalten ein Streufeld. Figur 5 zeigt eine solche bekannte Anordnung, in welcher neben dem Hauptfluß auch der Streufluß aufgetragen ist. Magnetische Feldlinien versuchen stets, den leichtesten Weg zu nehmen. Sie sollten in der gezeichneten Geometrie (Figur 5) die Schenkel und die beiden Joche durchfließen. Dabei müssen die magnetischen Feldlinien aber 4 Luftspalte (magnetisch nicht leitende Strecken) überwinden. Bei dieser Geometrie werden sich leicht Streufelder ausbilden, da sie eine Alternative zum gewünschten Weg darstellen.As is known, chokes with air gaps produce a stray field. Figure 5 shows such a known arrangement in which in addition to the main flow and the leakage flux is applied. Magnetic field lines always try to take the easiest route. You should in the drawn geometry (Figure 5) flow through the legs and the two yokes. However, the magnetic field lines must overcome 4 air gaps (magnetically non-conductive paths). This geometry will easily form stray fields as they represent an alternative to the desired path.

Figur 4 zeigt einen erfindungsgemäßen Ringkern und die zugehörige Hauptfluß- bzw. Streuflußverteilung. Da der effektive Luftspalt bei dem in Figur 4 dargestellten Ringkern gleichmäßig über den gesamten Umfang verteilt ist, ist die magnetische Leitfähigkeit homogen über die gesamte magnetische Länge gleich. Es gibt keine ausgeprägten Barrieren, wie einen konzentrierten Luftspalt, bei der in Figur 5 dargestellten Anordnung.Figure 4 shows a toroidal core according to the invention and the associated Hauptfluß- or leakage flux distribution. Since the effective air gap is uniformly distributed over the entire circumference in the ring core shown in Figure 4, the magnetic conductivity is homogeneous over the entire magnetic length. There are no distinct barriers, such as a concentrated air gap, in the arrangement shown in FIG.

Streufelder entstehen nur dann, wenn partiell der magnetische Widerstand kleiner ist, als der magnetische Widerstand des Hauptweges. Bei der normalen Ausführungsform mit konzentrierten Luftspalten (Figur 5) ist dies der Fall. Bei einem Ringkern mit einem homogen verteilten Luftspalt ist dies weniger stark ausgeprägt. ' Daher ist die Streuung (der Streufluß) bei dem in Figur 4 dargestellten Ringkern wesentlich geringer. Eine größere Streuung würde bedeuten, daß die wirksame Induktivität verkleinert wird. Das bedeutet, daß der erfindungsgemäße Ringkern weniger Windungen und weniger Kupfer benötigt, so daß sein Wirkungsgrad höher ist als von Ringkernen nach dem Stand der Technik.Stray fields only arise if the magnetic resistance is partially smaller than the magnetic resistance of the main path. In the normal embodiment with concentrated air gaps (Figure 5) this is the case. In a ring core with a homogeneously distributed air gap, this is less pronounced. 'Therefore, the scattering (the leakage flux) in the ring core shown in Figure 4 is much lower. Greater dispersion would mean that the effective inductance is reduced. This means that the toroidal core according to the invention requires fewer turns and less copper, so that its efficiency is higher than that of ring cores according to the prior art.

Claims (3)

  1. A toroidal core comprising materials which are wound on with at least two layers, wherein the first material layer comprises a magnetically and electrically conducting material and the second material layer comprises a non-magnetic and non-electrically conducting material, characterized in that the second material layer is composed of paper or a foil of film having a thickness of about 0.1 mm and the thickness of the first material layer is 0.23 mm.
  2. A toroidal core according to claim 1, wherein dynamo sheet is used for the first material layer.
  3. Use of a toroidal core according to one of the preceding claims in an inductor for power electronics.
EP99123475A 1999-02-20 1999-11-25 Toroidal core Expired - Lifetime EP1030319B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19907320A DE19907320C2 (en) 1999-02-20 1999-02-20 Toroidal core and its use
DE19907320 1999-02-20

Publications (2)

Publication Number Publication Date
EP1030319A1 EP1030319A1 (en) 2000-08-23
EP1030319B1 true EP1030319B1 (en) 2004-04-28

Family

ID=7898272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99123475A Expired - Lifetime EP1030319B1 (en) 1999-02-20 1999-11-25 Toroidal core

Country Status (9)

Country Link
EP (1) EP1030319B1 (en)
JP (1) JP3648425B2 (en)
AR (1) AR022629A1 (en)
AT (1) ATE265736T1 (en)
BR (1) BR0000298B1 (en)
DE (2) DE19907320C2 (en)
DK (1) DK1030319T3 (en)
ES (1) ES2217676T3 (en)
PT (1) PT1030319E (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314265A1 (en) * 2003-03-29 2004-10-07 J. Pröpster GmbH Blitzschutzmaterial Metallwarenfabrik De-coupling element for over-voltage protection devices for building installation has annular band layers of soft magnetic material around conductor section with at least 4 windings
ES2343930B1 (en) * 2008-05-22 2011-06-28 Universidad Carlos Iii De Madrid INDUCTANCE FOR CONTINUOUS CURRENT.
JP5555725B2 (en) * 2012-01-13 2014-07-23 本田技研工業株式会社 Electric load control device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2495167A (en) * 1945-05-19 1950-01-17 Westinghouse Electric Corp Wound core
GB1115507A (en) * 1964-09-10 1968-05-29 Mini Of The Ministerul Ind Con Manufacturing processes of magnetic cores of stratified strips and sheets
DE2062694B2 (en) * 1970-09-08 1975-05-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen Residual current circuit breaker
DE2913741A1 (en) * 1979-04-05 1980-10-09 Philips Patentverwaltung Toroidal core for LF transformer - consists of amorphous ferromagnetic tape coated in adhesive and wound into desired shape
DE3031257A1 (en) * 1980-08-19 1982-03-18 Vacuumschmelze Gmbh, 6450 Hanau METHOD FOR PRODUCING RING TAPE CORES FOR CURRENT CURRENT PROTECTION SWITCHES AND USE OF THESE CORES
US4366520A (en) * 1981-03-25 1982-12-28 Magnetic Metals Corporation Differential transformer core for pulse currents
GB2105522A (en) * 1981-09-05 1983-03-23 Gen Motors Ltd Laminated core structure
US4558297A (en) * 1982-10-05 1985-12-10 Tdk Corporation Saturable core consisting of a thin strip of amorphous magnetic alloy and a method for manufacturing the same
GB2133932A (en) * 1982-12-31 1984-08-01 Int Research & Dev Co Ltd Improvements to strip wound magnetic cores
JPH0311603A (en) * 1989-06-08 1991-01-18 Toshiba Corp Magnetic core
US5091253A (en) * 1990-05-18 1992-02-25 Allied-Signal Inc. Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
JPH07201549A (en) * 1994-01-11 1995-08-04 Nippon Steel Corp Inductor element

Also Published As

Publication number Publication date
DK1030319T3 (en) 2004-08-09
ATE265736T1 (en) 2004-05-15
BR0000298A (en) 2000-09-12
DE59909327D1 (en) 2004-06-03
BR0000298B1 (en) 2013-05-14
ES2217676T3 (en) 2004-11-01
DE19907320A1 (en) 2000-08-31
AR022629A1 (en) 2002-09-04
JP3648425B2 (en) 2005-05-18
DE19907320C2 (en) 2001-03-08
JP2000243616A (en) 2000-09-08
EP1030319A1 (en) 2000-08-23
PT1030319E (en) 2004-09-30

Similar Documents

Publication Publication Date Title
EP1609159B1 (en) Magnet core, method for the production of such a magnet core, uses of such a magnet core especially in current transformers and current-compensated inductors, and alloys and bands used for producing such a magnet core
DE102017205004B4 (en) circuit breaker
DE10260246B4 (en) Coil arrangement with variable inductance
DE102017205003B4 (en) circuit breaker
DE2424131B2 (en) throttle
DE19714977B4 (en) Device with inverter
DE112018001496T5 (en) Choke coil and power supply circuit
DE102015101211A1 (en) THROTTLE
DE102009036396A1 (en) Current-compensated choke and method for producing a current-compensated choke
EP2546842A2 (en) Coil for limiting energy
DE3703561C2 (en)
DE60304460T2 (en) Current sensor with a magnetic core having an air gap and thus equipped power supply circuit
EP2614510B1 (en) Current-compensated inductor with increased leakage inductance
EP1030319B1 (en) Toroidal core
DE102015101125A1 (en) throttle
DE102013204638A1 (en) Device for detecting fault currents
DE4019636C2 (en) Process for increasing the magnetic induction values and lowering the coercive field strength of ferromagnetic materials
EP0504674B1 (en) Instrument transformer for electronic devices rapidly detecting short-circuits
DE102019213154A1 (en) Circuit breaker
DE4030124A1 (en) Mfg. coil core for inductive component - winding wound strip of permeable material into toroidal core, impregnating with resin and forming slit in core
CH678773A5 (en)
DE102022111654A1 (en) Magnetic field-sensitive component, use of a magnetic field-sensitive component and transformer
DE102014223797A1 (en) Core for a transformer or choke and transformer or choke and method of making same
EP0521176A1 (en) Circuit for temperature compensation of coil quality factor
DE19704232C2 (en) Medium frequency coil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010223

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020923

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040428

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ZIMMERLI, WAGNER & PARTNER AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59909327

Country of ref document: DE

Date of ref document: 20040603

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20040401601

Country of ref document: GR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040723

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2217676

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: WOBBEN, ALOYS

Free format text: WOBBEN, ALOYS#ARGESTRASSE 19#26607 AURICH (DE) -TRANSFER TO- WOBBEN, ALOYS#ARGESTRASSE 19#26607 AURICH (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WAGNER PATENT AG, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20171122

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20171124

Year of fee payment: 19

Ref country code: DE

Payment date: 20171205

Year of fee payment: 19

Ref country code: FI

Payment date: 20171117

Year of fee payment: 19

Ref country code: NL

Payment date: 20171122

Year of fee payment: 19

Ref country code: FR

Payment date: 20171124

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20171124

Year of fee payment: 19

Ref country code: PT

Payment date: 20171113

Year of fee payment: 19

Ref country code: GR

Payment date: 20171121

Year of fee payment: 19

Ref country code: IT

Payment date: 20171122

Year of fee payment: 19

Ref country code: GB

Payment date: 20171124

Year of fee payment: 19

Ref country code: IE

Payment date: 20171123

Year of fee payment: 19

Ref country code: ES

Payment date: 20171201

Year of fee payment: 19

Ref country code: BE

Payment date: 20171122

Year of fee payment: 19

Ref country code: CH

Payment date: 20171124

Year of fee payment: 19

Ref country code: AT

Payment date: 20171117

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20171123

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59909327

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20181130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 265736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181125

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181125

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181125

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190527

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181126

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190605

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181125

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181125

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181125

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181125

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181126