EP1021505A1 - Liquid bleaching compositions with improved safety to fabrics and colors - Google Patents

Liquid bleaching compositions with improved safety to fabrics and colors

Info

Publication number
EP1021505A1
EP1021505A1 EP98953321A EP98953321A EP1021505A1 EP 1021505 A1 EP1021505 A1 EP 1021505A1 EP 98953321 A EP98953321 A EP 98953321A EP 98953321 A EP98953321 A EP 98953321A EP 1021505 A1 EP1021505 A1 EP 1021505A1
Authority
EP
European Patent Office
Prior art keywords
fabrics
composition
alkyl
compositions
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98953321A
Other languages
German (de)
French (fr)
Inventor
Valerio Del Duca
Stefano Giunti
Sabina Antonioli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP98953321A priority Critical patent/EP1021505A1/en
Publication of EP1021505A1 publication Critical patent/EP1021505A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/92Sulfobetaines ; Sulfitobetaines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/364Organic compounds containing phosphorus containing nitrogen

Definitions

  • the present invention relates to the bleaching of fabrics.
  • Peroxygen bleach-containing compositions have been described in laundry applications as laundry detergents, laundry additives or even laundry pretreaters.
  • peroxygen bleach-containing compositions comprising surfactants like zwittehonic betaine surfactants in laundry applications to boost the removal of encrustated stains/soils which are otherwise particularly difficult to remove, such as grease, coffee, tea, grass, mud/clay-containing soils and the like.
  • compositions may damage fabrics and/or colors, resulting in loss of tensile strength and/or color change/decoloration, especially when used in laundry pretreatment application, e.g., when applied directly (neat) onto the fabrics, and left to act onto said fabrics for prolonged periods of time before rinsing the fabrics, or washing and then rinsing the fabrics.
  • a liquid bleaching composition comprising a peroxygen bleach and a salt free zwitterionic betaine surfactant. Indeed, it is by combining these ingredients that a liquid bleaching composition is provided which exhibits a great flexibility in the soils it may clean while being safe to the fabrics bleached therewith as well as to colors. Indeed using such salts free zwitterionic betaine surfactants instead of conventional zwitterionic betaine surfactants provides improved color and fabric safety.
  • the present compositions also provide effective stain removal performance on various stains including greasy stains and effective bleaching performance.
  • these salts free zwitterionic betaine surfactants are used in combination with ethoxyiated nonionic surfactants. It has been found that the addition of such an ethoxyiated nonionic surfactant in the compositions of the present invention further boosts the removal of various types of stains including greasy stains like mayonnaise, vegetal oil, sebum, make-up, and more surprisingly boost the bleaching performance.
  • compositions of the present invention provide excellent stain removal performance on a broad range of stains and soils and excellent bleachable performance when used in any laundry application, e.g., as a laundry detergent or a laundry additive, and especially when used as a laundry pretreater, or even in other household applications like in hard surface cleaning applications.
  • compositions herein are physically and chemically stable upon prolonged periods of storage.
  • compositions according to the present invention are able to perform in a variety of conditions, i.e., in hard and soft water as well as when used neat or diluted.
  • the present invention encompasses a liquid bleaching composition comprising a peroxygen bleach and a salt free zwitterionic betaine surfactant.
  • the present invention also encompasses the use of a salt free zwitterionic betaine surfactant, in a liquid peroxygen bleach-containing composition, for the bleaching of fabrics, for reducing the loss of tensile strength in said fabrics.
  • the present invention also encompasses the use of a salt free zwitterionic betaine surfactant, in a liquid peroxygen bleach-containing composition, for the bleaching of fabrics, for reducing color damage to said fabrics.
  • the present invention further encompasses processes of bleaching fabrics starting from a liquid composition as defined herein.
  • the processes of bleaching fabrics include the steps of contacting said fabrics with the liquid composition herein neat or diluted, and subsequently rinsing said fabrics.
  • the composition is applied neat on the fabrics, and the fabrics are subsequently washed in a normal wash cycle.
  • the liquid cleaning composition is a liquid cleaning composition
  • compositions according to the present invention are liquid compositions as opposed to a solid or a gas.
  • liquid includes “pasty” compositions.
  • the liquid compositions herein are preferably aqueous compositions.
  • the liquid compositions according to the present invention preferably have a pH up to 7, more preferably from 1 to 6, and even more preferably from 1.5 to 5.5. Formulating the compositions according to the present invention in the acidic pH range contributes to the chemical stability of the compositions and to the stain removal performance of the compositions.
  • the pH of the compositions may be adjusted by any acidifying agents known to those skilled in the art. Examples of acidifying agents are organic acids such as citric acid and inorganic acids such as sulphuric acid.
  • Peroxygen bleach As a first essential element the compositions according to the present invention comprise a peroxygen bleach or a mixture thereof. Indeed, the presence of peroxygen bleach contributes to the excellent bleaching benefits of said compositions.
  • Suitable peroxygen bleaches to be used herein are hydrogen peroxide, water soluble sources thereof, or mixtures thereof.
  • a hydrogen peroxide source refers to any compound which produces perhydroxyl ions when said compound is in contact with water.
  • Suitable water-soluble sources of hydrogen peroxide for use herein include percarbonates, persilicates, persulphates such as monopersulfate, perborates, peroxyacids such as diperoxydodecandioic acid (DPDA), magnesium perphtalic acid, perlauric acid, perbenzoic and alkylperbenzoic acids, hydroperoxides, aliphatic and aromatic diacyl peroxides, and mixtures thereof.
  • Preferred peroxygen bleaches herein are hydrogen peroxide, hydroperoxide and/or diacyl peroxide. Hydrogen peroxide is the most preferred peroxygen bleach herein.
  • Suitable hydroperoxides for use herein are tert-butyl hydroperoxide, cumyl hydroperoxide, 2,4,4-trimethylpentyl-2-hydroperoxide, di-isopropylbenzene- monohydroperoxide, tert-amyl hydroperoxide and 2,5-dimethyl-hexane-2,5- dihydroperoxide.
  • Such hydroperoxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
  • Suitable aliphatic diacyl peroxides for use herein are dilauroyl peroxide, didecanoyl peroxide, dimyristoyl peroxide, or mixtures thereof.
  • Suitable aromatic diacyl peroxide for use herein is for example benzoyl peroxide.
  • Such diacyl peroxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
  • compositions herein comprise from 0.01 % to 20% by weight of the total composition of said peroxygen bleach or mixtures thereof, preferably from 1 % to 15% and more preferably from 2% to 10%.
  • compositions according to the present invention comprise a salt free zwitterionic betaine surfactant or a mixture thereof.
  • compositions of the present invention comprise from 0.001 % to 20% by weight of the total composition of a salt free zwitterionic betaine surfactant or a mixture thereof, preferably from 0.01 % to 10% by weight, more preferably from 0.5% to 8% and most preferably from 1 % to 5%.
  • salt free zwitterionic betaine surfactants it is meant herein that the zwitterionic betaine surfactant (raw material) herein contains less than 5% by weight of salts, preferably less than 3%, more preferably less than 2%, even more preferably less than 1% and most preferably from 0.01% to 0.5%.
  • salts is in meant herein any material having as base unit, a couple made of positive ion (or positive molecular ion) and negative ion (or negative molecular ion) containing one or more halogen atoms.
  • Such salts include sodium chloride, potassium chloride, sodium bromide and the like.
  • Such salts free zwitterionic betaine surfactants are obtainable by conventional manufacturing processes like inverse osmosis or fractionated precipitation.
  • inverse osmosis is based on the principle of contacting the zwitterionic betaine surfactant raw material (commercially available ) with a polar solvent (it is to be understood that such a solvent is free of salts) separated by a semi-permeable membrane for example acetate-cellulose.
  • An adequate pressure is applied on the system to allow the salts to migrate from the surfactant raw material to the polar solvent phase. This way the zwitterionic betaine surfactant raw material is purified, i.e. the salts is subtracted from the raw material.
  • Suitable salt free zwitterionic betaine surfactants for use herein contain both a cationic hydrophilic group, i.e., a quaternary ammonium group, and anionic hydrophilic group on the same molecule at a relatively wide range of pH's.
  • the typical anionic hydrophilic groups are carboxylates and sulfonates, although other groups like sulfates, phosphonates, and the like can be used.
  • a generic formula for the zwitterionic betaine surfactants to be used herein is :
  • is a hydrophobic group
  • R 2 is hydrogen, Ci-C ⁇ alkyl, hydroxy alkyl or other substituted C-i-C ⁇ alkyl group
  • R3 is C-
  • R4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms
  • X is the hydrophilic group which is a carboxylate or sulfonate group.
  • Preferred hydrophobic groups R-j are aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chains that can contain linking groups such as amido groups, ester groups. More preferred
  • is an alkyl group containing from 1 to 24 carbon atoms, preferably from 8 to 18, and more preferably from 10 to 16. These simple alkyl groups are preferred for cost and stability reasons.
  • the hydrophobic group R1 can also be an amido radical of the formula Ra-C(O)-NH-(C(Rb) 2 ) m , wherein R a is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16,
  • Rb is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(Rb) 2 ) moiety.
  • Preferred R 2 is hydrogen, or a C1-C3 alkyl and more preferably methyl.
  • Preferred R3 is C1-C4 sulfonate group, or a C1-C3 alkyl and more preferably methyl.
  • Preferred R4 is (CH2) n wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably is from 1 to 3.
  • alkyldimethyl betaines examples include coconut- dimethyl betaine, lauryl dimethyl betaine, decyl dimethyl betaine, 2-(N-decyl- N, N-dimethyl-ammonia)acetate, 2-(N-coco N, N-dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine.
  • amidobetaines include cocoamidoethylbetaine, cocoamidopropyl betaine or C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine.
  • All these zwitterionic betaine surfactants contains less than 5% of salts.
  • salt free zwitterionic betaine surfactants reduce color damage (i.e., color change and/or decoloration) when used instead of conventional zwitterionic betaine surfactants in a liquid peroxygen bleach-containing composition to bleach fabrics.
  • the halides like CI-, Br- and the like catalyses the radical decomposition of peroxygen bleaches like hydrogen peroxide and oxidation.
  • peroxygen bleaches like hydrogen peroxide and oxidation.
  • a radical reaction occurs on the surface of the fabrics with generation of free radicals, which results in loss of tensile strength and/or colour damage.
  • free zwitterionic betaine surfactants reduces the radical and oxidative decomposition of the peroxygen bleach, and thus results in reduced tensile strength loss and reduced colour damage.
  • the tensile strength in a fabric may be measured by stretching said fabric until it breaks.
  • the force needed to break the fabric is the "Ultimate Tensile Stress” and may be measured with a stress-strain INSTRON ® machine available from INSTRON.
  • the loss of tensile strength is the difference between the tensile strength of a fabric taken as a reference, e.g. a fabric which has not been bleached, and the tensile strength of the same fabric after having been bleached with a composition of the present invention.
  • a tensile strength loss of zero means that no fabric damage is observed.
  • the colour safety can be evaluated visually by comparing side by side fabrics pretreated with a composition of the present invention and the reference composition. Differences and graduations in colour can be visually assessed and ranked according to Panel Score Units (PSU) using any suitable scale. PSU data can be handled statistically using conventional techniques. Alternatively, various types of optical apparatus and procedures can be used to assess the improvement in colour safety afforded by the present invention. For example when evaluating colour safety on fabrics measurements with Hunterlab colour Quest 45/0 apparatus can be used.
  • liquid compositions herein are clear and transparent compositions.
  • the appearance of a composition can be evaluated via turbidimetric analysis.
  • the transparency of a composition can be evaluated by measuring its absorbency via a spectrophotometer at 800 nm wave length.
  • Chemical stability of the compositions herein may be evaluated by measuring the concentration of available oxygen (often abbreviated to AvO2) at given storage time after having manufactured the compositions.
  • concentration of available oxygen can be measured by chemical titration methods known in the art, such as the iodometric method, thiosulphatimetric method, the permanganometric method and the cerimetric method. Said methods and the criteria for the choice of the appropriate method are described for example in "Hydrogen Peroxide", W. C. Schumb, C. N. Satterfield and R. L. Wentworth, Reinhold Publishing Corporation, New York, 1955 and Organic Peroxides", Daniel Swern, Editor Wiley Int. Science, 1970.
  • compositions herein may further comprise a variety of other optional ingredients such as chelating agents, builders, other surfactants, stabilisers, bleach activators, soil suspenders, soil suspending polyamine polymers, polymeric soil release agents, radical scavengers, catalysts, dye transfer agents, solvents, brighteners, perfumes, pigments and dyes.
  • compositions of the present invention may further comprise other surfactants than the ones mentioned hereinbefore including nonionic surfactants, anionic surfactants, cationic surfactants and/or amphoteric surfactants.
  • compositions according to the present invention may comprise from 0.01 % to 30% by weight of the total composition of another surfactant on top of the salt free zwitterionic betaine surfactant, preferably from 0.1 % to 25 % and more preferably from 0.5% to 20%.
  • Particularly preferred surfactants herein are nonionic surfactants like alkoxylated nonionic surfactants.
  • Suitable ethoxyiated nonionic surfactants herein are ethoxyiated nonionic surfactants according to the formula RO- (C H4O) n H, wherein R is a Cg to C 22 alkyl chain or a CQ to C 2 8 alkyl benzene chain, and wherein n is from 0 to 20, preferably from 1 to 15 and, more preferably from 2 to 15 and most preferably from 2 to 12.
  • the preferred R chains for use herein are the C ⁇ to C 22 alkyl chains.
  • Propoxylated nonionic surfactants and ethoxy/propoxylated ones may also be used herein instead of the ethoxyiated nonionic surfactants as defined herein above or together with said surfactants
  • Preferred ethoxyiated nonionic surfactants are according to the formula above and have an HLB (hydrophilic-lipophilic balance) below 16, preferably below 15, and more preferably below 14. Those ethoxyiated nonionic surfactants have been found to provide good grease cutting properties.
  • 2 to C15 alkyl chain length, n is 3), or Dobanol R 23-3 (HLB 8.1 ; R is a mixture of C ⁇
  • 2 and C13 alkyl chains, n is 3), or Dobanol R 23-2 (HI_B 6.2; R is a mixture of C ⁇
  • 2 and C-13 alkyl chains, n is 2), or Dobanol R 45-7 (HLB HLB
  • Dobanol R 91-2.5 or Lutensol R TO3, or Lutensol R AO3, or Tergitol R 25L3, or Dobanol R 23-3, or Dobanol R 23-2, or mixtures thereof.
  • These Dobanol R surfactants are commercially available from SHELL.
  • These Lutensol R surfactants are commercially available from BASF and these Tergitol R surfactants are commercially available from UNION CARBIDE.
  • Suitable chemical processes for preparing the ethoxyiated nonionic sur actants for use herein include condensation of corresponding alcohols with alkylene oxide, in the desired proportions. Such processes are well- known to the man skilled in the art and have been extensively described in the art.
  • compositions herein may desirably comprise one of those ethoxyiated nonionic surfactants or a mixture of those ethoxyiated nonionic surfactants having different HLBs (hydrophilic-lipophilic balance).
  • the compositions herein comprise an ethoxyiated nonionic surfactant according to the above formula and having an HLB up to 10 (i.e., a so called hydrophobic ethoxyiated nonionic surfactant), preferably below 10, more preferably below 9, and an ethoxyiated nonionic surfactant according to the above formula and having an HLB above 10 to 16 (i.e., a so called hydrophilic ethoxyiated nonionic surfactant), preferably from 11 to 14.
  • compositions of the present invention typically comprise from 0.01 % to 15% by weight of the total composition of said hydrophobic ethoxyiated nonionic surfactant, preferably from 0.5% to 10% and from 0.01 % to 15% by weight of said hydrophilic ethoxyiated nonionic surfactant, preferably from 0.5% to 10%.
  • Such mixtures of ethoxyiated nonionic surfactants with different HLBs may be desired as they allow optimum grease cleaning removal performance on a broader range of greasy soils having different hydrophobic/hydrophilic characters.
  • the ethoxyiated nonionic surfactants herein have the ability to further boost the stain removal performance delivered by the salt free betaine zwitterionic surfactants herein on greasy stains, while providing improved bleaching performance to the liquid peroxygen bleach-containing compositions of the present invention comprising them.
  • optimum stain removal performance and bleaching performance are obtained when the ethoxyiated nonionic surfactant and the salt free zwitterionic betaine surfactant are present in the compositions of the present invention comprising a peroxygen bleach (pH up to 7), at weight ratio of the ethoxyiated nonionic surfactant to the salt free zwitterionic betaine surfactant of from 0.01 to 20, preferably from 0.1 to 15, more preferably from 0.5 to 5 and most preferably from 0.8 to 3.
  • a peroxygen bleach pH up to 7
  • compositions herein at low total level of surfactants.
  • the compositions herein comprise from 0.01 % to 35% by weight of the total composition of ethoxyiated nonionic surfactant and salt free zwitterionic betaine surfactant, preferably from 0.1 % to 15%, more preferably from 0.5% to 10%, even more preferably below 10% and most preferably from 1 % to 8%.
  • ethoxyiated nonionic surfactant on top of the salt free zwitterionic betaine surfactant, in a liquid aqueous composition comprising a peroxygen bleach (pH up to 7), boosts the bleaching performance and the removal of various types of stains including greasy stains (e.g., lipstick, olive oil, mayonnaise, vegetal oil, sebum, make-up), as compared to the bleaching and stain removal performance delivered by the same composition based only on one of these surfactants (i.e., ethoxyiated nonionic surfactant or zwitterionic betaine surfactant) at equal total level of surfactants.
  • greasy stains e.g., lipstick, olive oil, mayonnaise, vegetal oil, sebum, make-up
  • the stain removal performance may be evaluated by the following test methods on various type of stains.
  • a suitable test method for evaluating the stain removal performance on a soiled fabric for example under pretreatment condition is the following: A composition according to the present invention is applied neat to a fabric preferably to the soiled portion of the fabric, left to act from 1 to 10 minutes, and said pretreated fabric is then washed according to common washing conditions, at a temperature of from 30° to 70°C for from 10 to 100 minutes. The stain removal is then evaluated by comparing side by side the soiled fabric pretreated with the composition of the present invention with those pretreated with the reference, e.g., the same composition but comprising only an alkoxylated nonionic surfactant or only a salt free zwitterionic betaine surfactant as the sole surfactant.
  • a visual grading may be used to assign difference in panel units (psu) in a range from 0 to 4.
  • the bleaching performance may be evaluated as for the stain removal performance but the stains used are bleachable stains like coffee, tea and the like.
  • nonionic surfactants include polyhydroxy fatty acid amide surfactants, or mixtures thereof, according to the formula:
  • R1 is H, or C-
  • R2 is 05.031 hydrocarbyl
  • Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R 1 is C1.C4 alkyl, more preferably C1 or C alkyl and most preferably methyl
  • R 2 is a straight chain C7.C19 alkyl or alkenyl, preferably a straight chain Cg.Cis alkyl or alkenyl, more preferably a straight chain C ⁇
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl. Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose and xylose. As raw materials, high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilised as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials. Z preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH, -
  • R 2 - C(O) - N(R 1 ) - Z R can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
  • R 2 - C(O) - N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide and the like.
  • Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1- deoxygalactityl, 1-deoxymannityl, 1-deoxymaltotriotityl and the like.
  • Suitable polyhydroxy fatty acid amide surfactants to be used herein may be commercially available under the trade name HOE® from Hoechst.
  • polyhydroxy fatty acid amide surfactants are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N- alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
  • compositions containing polyhydroxy fatty acid amides are disclosed for example in GB patent specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd., US patent 2,965,576, issued December 20, 1960 to E.R. Wilson, US patent 2,703,798, Anthony M. Schwartz, issued March 8, 1955, US patent 1 ,985,424, issued December 25, 1934 to Piggott and WO92/06070, each of which is incorporated herein by reference.
  • Suitable anionic surfactants to be used in the compositions herein include water-soluble salts or acids of the formula ROSO3M wherein R preferably is a C-
  • 2 -16 are preferred for lower wash temperatures (e.g., below about 50°C) and C-
  • Suitable anionic surfactants for use herein are water-soluble salts or acids of the formula RO(A) m SO3M wherein R is an unsubstituted C-
  • R is an unsubstituted C-
  • Alkyl ethoxyiated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
  • Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl- ammonium and quaternary ammonium cations, such as tetramethyl- ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • Exemplary surfactants are C-
  • anionic surfactants useful for detersive purposes can also be used herein. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, Cg-C 2 rj linear alkylbenzenesulfonat.es, Cs- C 22 primary or secondary alkanesulfonates, C8-C 2 4 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts
  • Cg-C 2 rj linear alkylbenzenesulfonat.es Cs- C 22 primary or secondary alkanesulfonates
  • alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl ester sulfonates such as C ⁇
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975, to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
  • acyl sarcosinate or mixtures thereof, in its acid and/or salt form preferably long chain acyl sarcosinates having the following formula:
  • M is hydrogen or a cationic moiety and wherein R is an alkyl group of from 11 to 15 carbon atoms, preferably of from 11 to 13 carbon atoms.
  • M are hydrogen and alkali metal salts, especially sodium and potassium.
  • Said acyl sarcosinate surfactants are derived from natural fatty acids and the amino-acid sarcosine (N-methyl glycine). They are suitable to be used as aqueous solution of their salt or in their acidic form as powder. Being derivatives of natural fatty acids, said acyl sarcosinates are rapidly and completely biodegradable and have good skin compatibility.
  • acyl sarcosinates to be used herein include C-
  • 2 acyl sarcosinate is commercially available, for example, as Hamposyl L-30® supplied by Hampshire.
  • C14 acyl sarcosinate is commercially available, for example, as Hamposyl M-30® supplied by Hampshire.
  • Suitable amphoteric surfactants to be used herein include amine oxides having the following formula R-
  • Preferred amine oxide surfactants to be used according to the present invention are amine oxides having the following formula R ⁇
  • R1 may be a saturated substituted or unsubstituted linear or branched hydrocarbon chain.
  • Suitable amine oxides for use herein are for instance natural blend C8-C10 amine oxides as well as C12-C16 amine oxides commercially available from Hoechst.
  • the ionic strength of the compositions is higher than 1.10"4 M, preferably higher than 5.10"3 M, and more preferably higher than 1.10 " 3 M. Indeed, it has been observed that formulating the compositions of the present invention with such high ionic strength further contributes to improved stain removal performance and improved bleaching performance. The higher the ionic strength the better the stain removal and bleaching performance. Indeed, it is speculated that under the preferred pH conditions of the present compositions (acidic to neutral), especially when the pH of the composition is higher than the pka of the salt free zwitterionic betaine surfactant present therein, said surfactant is in a dipolar form and its packing is strongly influenced by the ionic strength.
  • compositions of the present invention may comprise a chelating agent as a preferred optional ingredient.
  • Suitable chelating agents may be any of those known to those skilled in the art such as the ones selected from the group comprising phosphonate chelating agents, amino carboxylate chelating agents, other carboxylate chelating agents, polyfunctionally-substituted aromatic chelating agents, ethylenediamine N,N'- disuccinic acids, or mixtures thereof.
  • a chelating agent may be desired in the compositions of the present invention as it allows to increase the ionic strength of the compositions herein and thus their stain removal and bleaching performance on various surfaces.
  • the presence of chelating agents may also contribute to the benefits of the present compositions, i.e., to reduce the tensile strength loss of fabrics and/or color damage, especially in a laundry pretreatment application. Indeed, the chelating agents inactivate the metal ions present on the surface of the fabrics and/or in the cleaning compositions (neat or diluted) that otherwise would contribute to the radical decomposition of the peroxygen bleach.
  • Suitable phosphonate chelating agents to be used herein may include alkali metal ethane 1 -hydroxy diphosphonates (HEDP), alkylene poly (alkylene phosphonate), as well as amino phosphonate compounds, including amino aminotri(methylene phosphonic acid) (ATMP), nitrilo trimethylene phosphonates (NTP), ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates (DTPMP).
  • the phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
  • Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonate (DTPMP) and ethane 1 -hydroxy diphosphonate (HEDP).
  • DTPMP diethylene triamine penta methylene phosphonate
  • HEDP ethane 1 -hydroxy diphosphonate
  • Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®-
  • Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,812,044, issued May 21 , 1974, to Connor et al. Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1 ,2-dihydroxy -3,5-disulfobenzene.
  • a preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof.
  • Ethylenediamine N,N'- disuccinic acids especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins.
  • Ethylenediamine N,N'- disuccinic acids is, for instance, commercially available under the tradename ssEDDS® from Palmer Research Laboratories.
  • Suitable amino carboxylates to be used herein include ethylene diamine tetra acetates, diethylene triamine pentaacetates, diethylene triamine pentaacetate (DTPA),N- hydroxyethylethylenediamine triacetates, nitrilotri- acetates, ethylenediamine tetrapropionates, triethylenetetraaminehexa- acetates, ethanol-diglycines, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms.
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • Particularly suitable amino carboxylates to be used herein are diethylene triamine penta acetic acid, propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Trilon FS® and methyl glycine di-acetic acid (MGDA).
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • carboxylate chelating agents to be used herein include salicylic acid, aspartic acid, glutamic acid, glycine, malonic acid or mixtures thereof.
  • Another chelating agent for use herein is of the formula:
  • , R 2 , R3, and R4 are independently selected from the group consisting of -H, alkyl, alkoxy, aryl, aryloxy, -Cl, -Br, -NO 2 , -C(O)R', and -
  • R' is selected from the group consisting of -H, -OH, alkyl, alkoxy, aryl, and aryloxy
  • R" is selected from the group consisting of alkyl, alkoxy, aryl, and aryloxy
  • R5, R , R7, and Rs are independently selected from the group consisting of -H and alkyl.
  • Particularly preferred chelating agents to be used herein are amino aminotri(methylene phosphonic acid), di-ethylene-triamino-pentaacetic acid, diethylene triamine penta methylene phosphonate, 1 -hydroxy ethane diphosphonate, ethylenediamine N, N'-disuccinic acid, and mixtures thereof.
  • compositions according to the present invention comprise up to 5% by weight of the total composition of a chelating agent, or mixtures thereof, preferably from 0.01 % to 1.5% by weight and more preferably from 0.01 % to 0.5%.
  • compositions of the present invention may comprise a radical scavenger or a mixture thereof.
  • Suitable radical scavengers for use herein include the well-known substituted mono and dihydroxy benzenes and their analogs, alkyl and aryl carboxylates and mixtures thereof.
  • Preferred such radical scavengers for use herein include di-tert-butyl hydroxy toluene (BHT), hydroquinone, di-tert-butyl hydroquinone, mono-tert-butyl hydroquinone, tert- butyl-hydroxy anysole, benzoic acid, toluic acid, catechol, t-butyl catechol, benzylamine, 1 ,1 ,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-propyl- gallate or mixtures thereof and highly preferred is di-tert-butyl hydroxy toluene.
  • BHT di-tert-butyl hydroxy toluene
  • hydroquinone di-tert-butyl hydroquinone
  • mono-tert-butyl hydroquinone tert- butyl-hydroxy anysole
  • benzoic acid toluic acid
  • catechol t-butyl catechol
  • radical scavengers like N-propyl-gallate may be commercially available from Nipa Laboratories under the trade name Nipanox S1 ®. Radical scavengers when used, are typically present herein in amounts ranging from up to 10% by weight of the total composition and preferably from 0.001 % to 0.5% by weight.
  • radical scavengers may contribute to the benefits of the present compositions, i.e., to reduce tensile strength loss of fabrics and/or color damage when the compositions of the present invention are used in any laundry application, especially in a laundry pretreatment application.
  • compositions according to the present invention may further comprise an antioxidant or mixtures thereof.
  • the compositions herein comprise up to 10% by weight of the total composition of an antioxidant or mixtures thereof, preferably from 0.002% to 5%, more preferably from 0.005% to 2%, and most preferably from 0.01 % to 1 %.
  • Suitable antioxidants to be used herein include organic acids like citric acid, ascorbic acid, tartaric acid, adipic acid and sorbic acid, or amines like lecithin, or aminoacids like glutamine, methionine and cysteine, or esters like ascorbil palmitate, ascorbil stearate and triethylcitrate, or mixtures thereof.
  • Preferred antioxidants for use herein are citric acid, ascorbic acid, ascorbil palmitate, lecithin or mixtures thereof.
  • the compositions of the present invention may comprise a bleach activator or mixtures thereof.
  • bleach activator it is meant herein a compound which reacts with hydrogen peroxide to form a peracid.
  • the peracid thus formed constitutes the activated bleach.
  • Suitable bleach activators to be used herein include those belonging to the class of esters, amides, imides, or anhydrides. Examples of suitable compounds of this type are disclosed in British Patent GB 1 586 769 and GB 2 143 231 and a method for their formation into a prilled form is described in European Published Patent Application EP-A-62 523.
  • Suitable examples of such compounds to be used herein are tetracetyl ethylene diamine (TAED), sodium 3,5,5 trimethyl hexanoyloxybenzene sulphonate, diperoxy dodecanoic acid as described for instance in US 4 818 425 and nonylamide of peroxyadipic acid as described for instance in US 4 259 201 and n- nonanoyloxybenzenesulphonate (NOBS).
  • TAED tetracetyl ethylene diamine
  • NOBS n- nonanoyloxybenzenesulphonate
  • N-acyl caprolactams selected from the group consisting of substituted or unsubstituted benzoyl caprolactam, octanoyl caprolactam, nonanoyl caprolactam, hexanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, formyl caprolactam, acetyl caprolactam, propanoyl caprolactam, butanoyl caprolactam pentanoyl caprolactam or mixtures thereof.
  • a particular family of bleach activators of interest was disclosed in EP 624 154, and particularly preferred in that family is acetyl triethyl citrate (ATC).
  • Acetyl triethyl citrate has the advantage that it is environmental- friendly as it eventually degrades into citric acid and alcohol. Furthermore, acetyl triethyl citrate has a good hydrolytical stability in the product upon storage and it is an efficient bleach activator. Finally, it provides good building capacity to the composition.
  • the compositions according to the present invention may comprise from 0.01 % to 20% by weight of the total composition of said bleach activator, or mixtures thereof, preferably from 1 % to 10%, and more preferably from 3% to 7%
  • the liquid composition of the present invention is applied neat onto at least a portion of a soiled fabric, optionally left to act onto said fabric, typically for a period of time of a few seconds to several hours, before the fabric is rinsed, or washed then rinsed.
  • the neat compositions can optionally be left to act onto said fabrics for a period of time ranging from 10 seconds to 1 hour, preferably 1 minute to 15 minutes, more preferably 1 minute to 5 minutes before the fabrics are rinsed, or washed then rinsed, provided that the composition is not left to dry onto said fabrics.
  • stains it may be appropriate to further rub or brush said fabrics by means of a sponge or a brush, or by rubbing two pieces of fabrics against each other.
  • washing it is to be understood herein that the fabrics are contacted with a conventional detergent composition comprising at least one surface active agent in an aqueous bath, this washing may occur by means of a washing machine or simply by hands.
  • liquid compositions are applied directly onto the fabrics to be pretreated without undergoing any dilution, i.e. the liquid compositions herein are applied onto the fabrics as described herein.
  • the liquid aqueous compositions herein should preferably not be left to dry onto the fabrics. It has been found that water evaporation contributes to increase the concentration of free radicals onto the surface of the fabrics and, consequently, the rate of chain reaction. It is also speculated that an auto-oxidation reaction occurs upon evaporation of water when the liquid compositions are left to dry onto the fabrics. Said reaction of auto-oxidation generates peroxy-radicals which may contribute to the degradation of cellulose.
  • compositions herein may also be used in a "soaking mode” where a composition, as defined herein, is first diluted in an aqueous bath and the fabrics are immersed and soaked in the bath, before they are rinsed, or in a "through the wash mode", where a composition, as defined herein, is added on top of a wash liquor formed by dissolution or dispersion of a typical laundry detergent. It is also essential in both cases, that the fabrics be rinsed after they have been contacted with said composition, before said composition has completely dried off.
  • the process comprises the steps of diluting said liquid composition in its neat form in an aqueous bath so as to form a diluted composition.
  • the dilution level of the liquid composition in an aqueous bath is typically up to 1 :85, preferably up to 1 :50 and more preferably about 1 :25 (composition:water).
  • the fabrics are then contacted with the aqueous bath comprising the liquid composition, and the fabrics are finally rinsed, or washed then rinsed.
  • the fabrics are immersed in the aqueous bath comprising the liquid composition, and also preferably, the fabrics are left to soak therein for a period of time ranging from 1 minute to 48 hours, preferably from 1 hour to 24 hours.
  • the liquid composition is used as a so-called laundry additive.
  • the aqueous bath is formed by dissolving or dispersing a conventional laundry detergent in water.
  • the liquid composition in its neat form is contacted with the aqueous bath, and the fabrics are then contacted with the aqueous bath containing the liquid composition. Finally, the fabrics are rinsed.
  • the compositions herein can be packaged in a variety of containers including conventional bottles, bottles equipped with roll-on, sponge, brusher or sprayers.
  • compositions were made by mixing the listed ingredients in the listed proportions (weight % unless otherwise specified).
  • HEDP 1-hydroxy-ethane diphosphonate
  • DTPMP is diethylene triamine penta methylene phosphonate.
  • BHT is di-tert-butyl hydroxy toluene
  • Salt-free Betaine* is Lauryl di-methyl betaine containing 0.3% by weight of sodium chloride. This betaine is obtainable by purification from commercially 20 available Lauryl di-methyl betaine GENAGEN LAB® (Hoechst) (which contains 7.5% of sodium chloride). Compositions I to VIII when used to bleach soiled coloured fabrics exhibit excellent overall stain removal performance especially on greasy stains like lipstick, make-up, olive oil, mayonnaise, sebum and the like, and excellent bleaching performance while being safe to both the fabrics and colors.
  • any of the compositions I to VIII is applied neat on the stained portion of a fabric and left to act thereon for 5 minutes. Then the fabric is washed with a conventional detergent and rinsed.
  • any of the compositions I to VIM is contacted with an aqueous bath formed by dissolution of a conventional detergent in water. Fabrics are then contacted with the aqueous bath comprising the liquid detergent, and the fabrics are rinsed. They can also be used in a soaking mode, where 100 ml of the liquid compositions are diluted in 10 litres of water. The fabrics are then contacted with this aqueous bath containing the composition, and left to soak therein for a period of time of 24 hours. The fabrics are eventually rinsed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention relates to a liquid bleaching composition comprising a peroxygen bleach and a salt free zwitterionic betaine surfactant. These compositions are suitable to deliver excellent stain removal performance and bleaching performance on fabrics, with improved safety to the fabrics and colours especially under pretreatment conditions.

Description

LIQUID BLEACHING COMPOSITIONS WITH IMPROVED SAFETY TO
FABRICS AND COLORS
Technical field
The present invention relates to the bleaching of fabrics.
Background
Peroxygen bleach-containing compositions have been described in laundry applications as laundry detergents, laundry additives or even laundry pretreaters.
Indeed, it is known to use peroxygen bleach-containing compositions comprising surfactants like zwittehonic betaine surfactants in laundry applications to boost the removal of encrustated stains/soils which are otherwise particularly difficult to remove, such as grease, coffee, tea, grass, mud/clay-containing soils and the like. However, we have found that a drawback associated with such peroxygen bleach-containing compositions comprising such surfactants is that said compositions may damage fabrics and/or colors, resulting in loss of tensile strength and/or color change/decoloration, especially when used in laundry pretreatment application, e.g., when applied directly (neat) onto the fabrics, and left to act onto said fabrics for prolonged periods of time before rinsing the fabrics, or washing and then rinsing the fabrics.
It is thus an object of the present invention to provide improved fabric safety and color safety upon bleaching, especially in pretreatment applications where the compositions are left neat into contact with the fabrics for prolonged periods of time before rinsing the fabrics, or washing and then rinsing the fabrics.
It has now been found that improved fabric safety and color safety can be achieved by formulating a liquid bleaching composition comprising a peroxygen bleach and a salt free zwitterionic betaine surfactant. Indeed, it is by combining these ingredients that a liquid bleaching composition is provided which exhibits a great flexibility in the soils it may clean while being safe to the fabrics bleached therewith as well as to colors. Indeed using such salts free zwitterionic betaine surfactants instead of conventional zwitterionic betaine surfactants provides improved color and fabric safety.
Advantageously, the present compositions also provide effective stain removal performance on various stains including greasy stains and effective bleaching performance.
In a preferred embodiment these salts free zwitterionic betaine surfactants are used in combination with ethoxyiated nonionic surfactants. It has been found that the addition of such an ethoxyiated nonionic surfactant in the compositions of the present invention further boosts the removal of various types of stains including greasy stains like mayonnaise, vegetal oil, sebum, make-up, and more surprisingly boost the bleaching performance.
Advantageously, the compositions of the present invention provide excellent stain removal performance on a broad range of stains and soils and excellent bleachable performance when used in any laundry application, e.g., as a laundry detergent or a laundry additive, and especially when used as a laundry pretreater, or even in other household applications like in hard surface cleaning applications.
A further advantage is that the compositions herein are physically and chemically stable upon prolonged periods of storage.
Yet another advantage of the compositions according to the present invention is that they are able to perform in a variety of conditions, i.e., in hard and soft water as well as when used neat or diluted. Summary of the invention
The present invention encompasses a liquid bleaching composition comprising a peroxygen bleach and a salt free zwitterionic betaine surfactant.
The present invention also encompasses the use of a salt free zwitterionic betaine surfactant, in a liquid peroxygen bleach-containing composition, for the bleaching of fabrics, for reducing the loss of tensile strength in said fabrics.
The present invention also encompasses the use of a salt free zwitterionic betaine surfactant, in a liquid peroxygen bleach-containing composition, for the bleaching of fabrics, for reducing color damage to said fabrics.
The present invention further encompasses processes of bleaching fabrics starting from a liquid composition as defined herein. The processes of bleaching fabrics include the steps of contacting said fabrics with the liquid composition herein neat or diluted, and subsequently rinsing said fabrics. In the preferred embodiment, when the fabrics are "pretreated", the composition is applied neat on the fabrics, and the fabrics are subsequently washed in a normal wash cycle.
Detailed description of the invention
The liquid cleaning composition
The compositions according to the present invention are liquid compositions as opposed to a solid or a gas. As used herein "liquid" includes "pasty" compositions. The liquid compositions herein are preferably aqueous compositions. The liquid compositions according to the present invention preferably have a pH up to 7, more preferably from 1 to 6, and even more preferably from 1.5 to 5.5. Formulating the compositions according to the present invention in the acidic pH range contributes to the chemical stability of the compositions and to the stain removal performance of the compositions. The pH of the compositions may be adjusted by any acidifying agents known to those skilled in the art. Examples of acidifying agents are organic acids such as citric acid and inorganic acids such as sulphuric acid.
Peroxygen bleach: As a first essential element the compositions according to the present invention comprise a peroxygen bleach or a mixture thereof. Indeed, the presence of peroxygen bleach contributes to the excellent bleaching benefits of said compositions. Suitable peroxygen bleaches to be used herein are hydrogen peroxide, water soluble sources thereof, or mixtures thereof. As used herein a hydrogen peroxide source refers to any compound which produces perhydroxyl ions when said compound is in contact with water.
Suitable water-soluble sources of hydrogen peroxide for use herein include percarbonates, persilicates, persulphates such as monopersulfate, perborates, peroxyacids such as diperoxydodecandioic acid (DPDA), magnesium perphtalic acid, perlauric acid, perbenzoic and alkylperbenzoic acids, hydroperoxides, aliphatic and aromatic diacyl peroxides, and mixtures thereof. Preferred peroxygen bleaches herein are hydrogen peroxide, hydroperoxide and/or diacyl peroxide. Hydrogen peroxide is the most preferred peroxygen bleach herein.
Suitable hydroperoxides for use herein are tert-butyl hydroperoxide, cumyl hydroperoxide, 2,4,4-trimethylpentyl-2-hydroperoxide, di-isopropylbenzene- monohydroperoxide, tert-amyl hydroperoxide and 2,5-dimethyl-hexane-2,5- dihydroperoxide. Such hydroperoxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
Suitable aliphatic diacyl peroxides for use herein are dilauroyl peroxide, didecanoyl peroxide, dimyristoyl peroxide, or mixtures thereof. Suitable aromatic diacyl peroxide for use herein is for example benzoyl peroxide. Such diacyl peroxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
Typically, the compositions herein comprise from 0.01 % to 20% by weight of the total composition of said peroxygen bleach or mixtures thereof, preferably from 1 % to 15% and more preferably from 2% to 10%.
Salt free zwitterionic betaine surfactant:
As a second essential element the compositions according to the present invention comprise a salt free zwitterionic betaine surfactant or a mixture thereof.
Typically, the compositions of the present invention comprise from 0.001 % to 20% by weight of the total composition of a salt free zwitterionic betaine surfactant or a mixture thereof, preferably from 0.01 % to 10% by weight, more preferably from 0.5% to 8% and most preferably from 1 % to 5%.
By "salt free zwitterionic betaine surfactants", it is meant herein that the zwitterionic betaine surfactant (raw material) herein contains less than 5% by weight of salts, preferably less than 3%, more preferably less than 2%, even more preferably less than 1% and most preferably from 0.01% to 0.5%.
By "salts" is in meant herein any material having as base unit, a couple made of positive ion (or positive molecular ion) and negative ion (or negative molecular ion) containing one or more halogen atoms. Such salts include sodium chloride, potassium chloride, sodium bromide and the like.
Such salts free zwitterionic betaine surfactants are obtainable by conventional manufacturing processes like inverse osmosis or fractionated precipitation. For example inverse osmosis is based on the principle of contacting the zwitterionic betaine surfactant raw material (commercially available ) with a polar solvent (it is to be understood that such a solvent is free of salts) separated by a semi-permeable membrane for example acetate-cellulose. An adequate pressure is applied on the system to allow the salts to migrate from the surfactant raw material to the polar solvent phase. This way the zwitterionic betaine surfactant raw material is purified, i.e. the salts is subtracted from the raw material.
Suitable salt free zwitterionic betaine surfactants for use herein contain both a cationic hydrophilic group, i.e., a quaternary ammonium group, and anionic hydrophilic group on the same molecule at a relatively wide range of pH's. The typical anionic hydrophilic groups are carboxylates and sulfonates, although other groups like sulfates, phosphonates, and the like can be used. A generic formula for the zwitterionic betaine surfactants to be used herein is :
R1-N+(R2)(R3)R4X-
wherein R-| is a hydrophobic group; R2 is hydrogen, Ci-Cβ alkyl, hydroxy alkyl or other substituted C-i-Cβ alkyl group; R3 is C-|-C6 alkyl, hydroxy alkyl or other substituted Ci-Cβ alkyl group which can also be joined to R2 to form ring structures with the N, or a C1-C5 sulfonate group; R4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms; and X is the hydrophilic group which is a carboxylate or sulfonate group.
Preferred hydrophobic groups R-j are aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chains that can contain linking groups such as amido groups, ester groups. More preferred
R-| is an alkyl group containing from 1 to 24 carbon atoms, preferably from 8 to 18, and more preferably from 10 to 16. These simple alkyl groups are preferred for cost and stability reasons. However, the hydrophobic group R1 can also be an amido radical of the formula Ra-C(O)-NH-(C(Rb)2)m, wherein Ra is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16,
Rb is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(Rb)2) moiety. Preferred R2 is hydrogen, or a C1-C3 alkyl and more preferably methyl. Preferred R3 is C1-C4 sulfonate group, or a C1-C3 alkyl and more preferably methyl. Preferred R4 is (CH2)n wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably is from 1 to 3.
Examples of particularly suitable alkyldimethyl betaines include coconut- dimethyl betaine, lauryl dimethyl betaine, decyl dimethyl betaine, 2-(N-decyl- N, N-dimethyl-ammonia)acetate, 2-(N-coco N, N-dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine.
Examples of amidobetaines include cocoamidoethylbetaine, cocoamidopropyl betaine or C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine.
All these zwitterionic betaine surfactants contains less than 5% of salts.
It has now been found that these salt free zwitterionic betaine surfactants reduce the tensile strenght loss when used instead of conventional zwitterionic betaine surfactants in a liquid peroxygen bleach-containing composition to bleach fabrics.
It has further been found that these salt free zwitterionic betaine surfactants reduce color damage (i.e., color change and/or decoloration) when used instead of conventional zwitterionic betaine surfactants in a liquid peroxygen bleach-containing composition to bleach fabrics.
The reduced tensile strenght loss and reduced color damage are observed even if the composition is left onto the soiled coloured fabrics upon prolonged periods of time before rinsing or washing then rinsing the fabrics, e.g. 24 hours. Actually, the presence of these salt free zwitterionic betaine surfactants in a peroxygen bleach-containing composition prevents the decomposition (oxidation) of dyes generally present on the surface of coloured fabrics such as bleach sensitive dyes and/or metallized dyes including copper-formazan dyes and/or metal-azo dyes. It is speculated that the presence of salts in the zwitterionic betaine surfactants, i.e. the halides like CI-, Br- and the like, catalyses the radical decomposition of peroxygen bleaches like hydrogen peroxide and oxidation. Thus, it is believed that a radical reaction occurs on the surface of the fabrics with generation of free radicals, which results in loss of tensile strength and/or colour damage. Using the salts free zwitterionic betaine surfactants reduces the radical and oxidative decomposition of the peroxygen bleach, and thus results in reduced tensile strength loss and reduced colour damage.
The tensile strength in a fabric may be measured by stretching said fabric until it breaks. The force needed to break the fabric is the "Ultimate Tensile Stress" and may be measured with a stress-strain INSTRON ® machine available from INSTRON. The loss of tensile strength is the difference between the tensile strength of a fabric taken as a reference, e.g. a fabric which has not been bleached, and the tensile strength of the same fabric after having been bleached with a composition of the present invention. A tensile strength loss of zero means that no fabric damage is observed.
The colour safety can be evaluated visually by comparing side by side fabrics pretreated with a composition of the present invention and the reference composition. Differences and graduations in colour can be visually assessed and ranked according to Panel Score Units (PSU) using any suitable scale. PSU data can be handled statistically using conventional techniques. Alternatively, various types of optical apparatus and procedures can be used to assess the improvement in colour safety afforded by the present invention. For example when evaluating colour safety on fabrics measurements with Hunterlab colour Quest 45/0 apparatus can be used.
Importantly, the liquid compositions herein are clear and transparent compositions.
The appearance of a composition can be evaluated via turbidimetric analysis. For example, the transparency of a composition can be evaluated by measuring its absorbency via a spectrophotometer at 800 nm wave length. An advantage of the liquid compositions of the present invention is that they are physically and chemically stable upon prolonged periods of storage.
Chemical stability of the compositions herein may be evaluated by measuring the concentration of available oxygen (often abbreviated to AvO2) at given storage time after having manufactured the compositions. The concentration of available oxygen can be measured by chemical titration methods known in the art, such as the iodometric method, thiosulphatimetric method, the permanganometric method and the cerimetric method. Said methods and the criteria for the choice of the appropriate method are described for example in "Hydrogen Peroxide", W. C. Schumb, C. N. Satterfield and R. L. Wentworth, Reinhold Publishing Corporation, New York, 1955 and Organic Peroxides", Daniel Swern, Editor Wiley Int. Science, 1970.
By "physically stable", it is meant herein that no phase separation occurs in the compositions for a period of 7 days at 50°C.
Optional ingredients
The compositions herein may further comprise a variety of other optional ingredients such as chelating agents, builders, other surfactants, stabilisers, bleach activators, soil suspenders, soil suspending polyamine polymers, polymeric soil release agents, radical scavengers, catalysts, dye transfer agents, solvents, brighteners, perfumes, pigments and dyes.
Surfactants
The compositions of the present invention may further comprise other surfactants than the ones mentioned hereinbefore including nonionic surfactants, anionic surfactants, cationic surfactants and/or amphoteric surfactants.
Typically, the compositions according to the present invention may comprise from 0.01 % to 30% by weight of the total composition of another surfactant on top of the salt free zwitterionic betaine surfactant, preferably from 0.1 % to 25 % and more preferably from 0.5% to 20%. Particularly preferred surfactants herein are nonionic surfactants like alkoxylated nonionic surfactants. Suitable ethoxyiated nonionic surfactants herein are ethoxyiated nonionic surfactants according to the formula RO- (C H4O)nH, wherein R is a Cg to C22 alkyl chain or a CQ to C28 alkyl benzene chain, and wherein n is from 0 to 20, preferably from 1 to 15 and, more preferably from 2 to 15 and most preferably from 2 to 12. The preferred R chains for use herein are the Cβ to C22 alkyl chains. Propoxylated nonionic surfactants and ethoxy/propoxylated ones may also be used herein instead of the ethoxyiated nonionic surfactants as defined herein above or together with said surfactants
Preferred ethoxyiated nonionic surfactants are according to the formula above and have an HLB (hydrophilic-lipophilic balance) below 16, preferably below 15, and more preferably below 14. Those ethoxyiated nonionic surfactants have been found to provide good grease cutting properties.
Accordingly suitable ethoxyiated nonionic surfactants for use herein are Dobanol R 91-2.5 (HLB= 8.1 ; R is a mixture of C9 and C-| -| alkyl chains, n is 2.5), or Lutensol R TO3 (HLB=8; R is a C13 alkyl chains, n is 3), or Lutensol R AO3 (HLB=8; R is a mixture of C-13 and C15 alkyl chains, n is 3), or Tergitol R 25L3 (HLB= 7.7; R is in the range of C-|2 to C15 alkyl chain length, n is 3), or Dobanol R 23-3 (HLB=8.1 ; R is a mixture of C<|2 and C13 alkyl chains, n is 3), or Dobanol R 23-2 (HI_B=6.2; R is a mixture of C<|2 and C-13 alkyl chains, n is 2), or Dobanol R 45-7 (HLB=11.6; R is a mixture of C-I4 and C15 alkyl chains, n is 7) Dobanol R 23-6.5 (HI_B=11.9; R is a mixture of C<| and C-13 alkyl chains, n is 6.5), or Dobanol R 25-7 (HLB=12; R is a mixture of C-|2 and C15 alkyl chains, n is 7), or Dobanol 91-5 (HLB=11.6; R is a mixture of Cg and C-j 1 alkyl chains, n is 5), or Dobanol R 91-6 (HLB=12.5 ; R is a mixture of Cg and C-| -| alkyl chains, n is 6), or Dobanol R 91-8 (HLB=13.7 ; R is a mixture of Cg and C11 alkyl chains, n is 8), Dobanol R 91-10 (HI_B=14.2 ; R is a mixture of Cg to C-j 1 alkyl chains, n is 10), or mixtures thereof. Preferred herein are Dobanol R 91-2.5 , or Lutensol R TO3, or Lutensol R AO3, or Tergitol R 25L3, or Dobanol R 23-3, or Dobanol R 23-2, or mixtures thereof. These DobanolR surfactants are commercially available from SHELL. These LutensolR surfactants are commercially available from BASF and these Tergitol R surfactants are commercially available from UNION CARBIDE. Suitable chemical processes for preparing the ethoxyiated nonionic sur actants for use herein include condensation of corresponding alcohols with alkylene oxide, in the desired proportions. Such processes are well- known to the man skilled in the art and have been extensively described in the art.
The compositions herein may desirably comprise one of those ethoxyiated nonionic surfactants or a mixture of those ethoxyiated nonionic surfactants having different HLBs (hydrophilic-lipophilic balance). In a preferred embodiment the compositions herein comprise an ethoxyiated nonionic surfactant according to the above formula and having an HLB up to 10 (i.e., a so called hydrophobic ethoxyiated nonionic surfactant), preferably below 10, more preferably below 9, and an ethoxyiated nonionic surfactant according to the above formula and having an HLB above 10 to 16 (i.e., a so called hydrophilic ethoxyiated nonionic surfactant), preferably from 11 to 14. Indeed, in this preferred embodiment the compositions of the present invention typically comprise from 0.01 % to 15% by weight of the total composition of said hydrophobic ethoxyiated nonionic surfactant, preferably from 0.5% to 10% and from 0.01 % to 15% by weight of said hydrophilic ethoxyiated nonionic surfactant, preferably from 0.5% to 10%. Such mixtures of ethoxyiated nonionic surfactants with different HLBs may be desired as they allow optimum grease cleaning removal performance on a broader range of greasy soils having different hydrophobic/hydrophilic characters.
The ethoxyiated nonionic surfactants herein have the ability to further boost the stain removal performance delivered by the salt free betaine zwitterionic surfactants herein on greasy stains, while providing improved bleaching performance to the liquid peroxygen bleach-containing compositions of the present invention comprising them.
Indeed, a significant cooperation has been observed between these ingredients to get optimum stain removal performance on a variety of soils, from particulate to non-particulate soils from hydrophobic to hydrophilic soils under any household application and especially laundry application on both hydrophilic and hydrophobic fabrics. In a preferred embodiment herein optimum stain removal performance and bleaching performance are obtained when the ethoxyiated nonionic surfactant and the salt free zwitterionic betaine surfactant are present in the compositions of the present invention comprising a peroxygen bleach (pH up to 7), at weight ratio of the ethoxyiated nonionic surfactant to the salt free zwitterionic betaine surfactant of from 0.01 to 20, preferably from 0.1 to 15, more preferably from 0.5 to 5 and most preferably from 0.8 to 3.
Advantageously, excellent stain removal performance and bleaching performance can be obtained with the compositions herein at low total level of surfactants. Typically, the compositions herein comprise from 0.01 % to 35% by weight of the total composition of ethoxyiated nonionic surfactant and salt free zwitterionic betaine surfactant, preferably from 0.1 % to 15%, more preferably from 0.5% to 10%, even more preferably below 10% and most preferably from 1 % to 8%.
The use of ethoxyiated nonionic surfactant on top of the salt free zwitterionic betaine surfactant, in a liquid aqueous composition comprising a peroxygen bleach (pH up to 7), boosts the bleaching performance and the removal of various types of stains including greasy stains (e.g., lipstick, olive oil, mayonnaise, vegetal oil, sebum, make-up), as compared to the bleaching and stain removal performance delivered by the same composition based only on one of these surfactants (i.e., ethoxyiated nonionic surfactant or zwitterionic betaine surfactant) at equal total level of surfactants. For example, it is only at very high levels of salt free zwitterionic betaine surfactants, as compared the total level of ethoxyiated nonionic surfactants and salt free zwitterionic betaine surfactants present in the compositions of the present invention that similar grease cleaning benefit is observed.
The stain removal performance may be evaluated by the following test methods on various type of stains.
A suitable test method for evaluating the stain removal performance on a soiled fabric for example under pretreatment condition is the following: A composition according to the present invention is applied neat to a fabric preferably to the soiled portion of the fabric, left to act from 1 to 10 minutes, and said pretreated fabric is then washed according to common washing conditions, at a temperature of from 30° to 70°C for from 10 to 100 minutes. The stain removal is then evaluated by comparing side by side the soiled fabric pretreated with the composition of the present invention with those pretreated with the reference, e.g., the same composition but comprising only an alkoxylated nonionic surfactant or only a salt free zwitterionic betaine surfactant as the sole surfactant. A visual grading may be used to assign difference in panel units (psu) in a range from 0 to 4.
The bleaching performance may be evaluated as for the stain removal performance but the stains used are bleachable stains like coffee, tea and the like.
Other suitable nonionic surfactants to be used herein include polyhydroxy fatty acid amide surfactants, or mixtures thereof, according to the formula:
R2 - C(O) - N(R1 ) - Z,
wherein R1 is H, or C-|_C-4 alkyl, Cι_C4 hydrocarbyl, 2-hydroxy ethyl, 2- hydroxy propyl or a mixture thereof, R2 is 05.031 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
Preferably, R1 is C1.C4 alkyl, more preferably C1 or C alkyl and most preferably methyl, R2 is a straight chain C7.C19 alkyl or alkenyl, preferably a straight chain Cg.Cis alkyl or alkenyl, more preferably a straight chain C<| -|_
C18 alkyl or alkenyl, and most preferably a straight chain C-| -|_C<|4 alkyl or alkenyl, or mixtures thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl. Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose and xylose. As raw materials, high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilised as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials. Z preferably will be selected from the group consisting of -CH2-(CHOH)n-CH2OH, -
CH(CH2OH)-(CHOH)n_ι-CH2OH, -CH2-(CHOH)2-(CHOR')(CHOH)-CH2OH, where n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly CH2-(CHOH)4-CH2OH.
In formula R2 - C(O) - N(R1 ) - Z, R can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl. R2 - C(O) - N< can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide and the like. Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1- deoxygalactityl, 1-deoxymannityl, 1-deoxymaltotriotityl and the like.
Suitable polyhydroxy fatty acid amide surfactants to be used herein may be commercially available under the trade name HOE® from Hoechst.
Methods for making polyhydroxy fatty acid amide surfactants are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N- alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product. Processes for making compositions containing polyhydroxy fatty acid amides are disclosed for example in GB patent specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd., US patent 2,965,576, issued December 20, 1960 to E.R. Wilson, US patent 2,703,798, Anthony M. Schwartz, issued March 8, 1955, US patent 1 ,985,424, issued December 25, 1934 to Piggott and WO92/06070, each of which is incorporated herein by reference.
Suitable anionic surfactants to be used in the compositions herein include water-soluble salts or acids of the formula ROSO3M wherein R preferably is a C-|o_C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C-I Q- C o alkyl component, more preferably a C<|2-Ci8 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like). Typically, alkyl chains of C-|2-16 are preferred for lower wash temperatures (e.g., below about 50°C) and C-|6"18 a'kyl chains are preferred for higher wash temperatures (e.g., above about 50°C).
Other suitable anionic surfactants for use herein are water-soluble salts or acids of the formula RO(A)mSO3M wherein R is an unsubstituted C-| Q-C24 alkyl or hydroxyalkyl group having a C<|rj-C24 alkyl component, preferably a Cι2-C2Q alkyl or hydroxyalkyl, more preferably C<|2-C<|8 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation. Alkyl ethoxyiated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl- ammonium and quaternary ammonium cations, such as tetramethyl- ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like. Exemplary surfactants are C-|2-C-|8 alkyl polyethoxylate (1.0) sulfate, C-|2-C<|8E(1.0)M), C<|2-C<|8 alkyl polyethoxylate (2.25) sulfate, C-|2- C-| 8E(2.25)M), C-|2-Ci8 alkyl polyethoxylate (3.0) sulfate C<|2-C<|8E(3.0), and C-|2-C<| 8 alkyl polyethoxylate (4.0) sulfate C<|2-C<|8E(4.0)M), wherein M is conveniently selected from sodium and potassium.
Other anionic surfactants useful for detersive purposes can also be used herein. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, Cg-C2rj linear alkylbenzenesulfonat.es, Cs- C22 primary or secondary alkanesulfonates, C8-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1 ,082,179, Cs-C24 alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl ester sulfonates such as C<|4_-|6 methyl ester sulfonates; acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C-|2-C-|8 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated Cβ-Ci4 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), branched primary alkyl sulfates, alkyl polyethoxy carboxylates such as those of the formula RO(CH2CH2O)kCH2COO-M+ wherein R is a C8-C22 alkyl, k is an integer from 0 to 10, and M is a soluble salt-forming cation. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975, to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
Other suitable anionic surfactants to be used herein also include acyl sarcosinate or mixtures thereof, in its acid and/or salt form, preferably long chain acyl sarcosinates having the following formula:
wherein M is hydrogen or a cationic moiety and wherein R is an alkyl group of from 11 to 15 carbon atoms, preferably of from 11 to 13 carbon atoms. Preferred M are hydrogen and alkali metal salts, especially sodium and potassium. Said acyl sarcosinate surfactants are derived from natural fatty acids and the amino-acid sarcosine (N-methyl glycine). They are suitable to be used as aqueous solution of their salt or in their acidic form as powder. Being derivatives of natural fatty acids, said acyl sarcosinates are rapidly and completely biodegradable and have good skin compatibility.
Accordingly, suitable long chain acyl sarcosinates to be used herein include C-|2 acyl sarcosinate (i.e., an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 11 carbon atoms) and C14 acyl sarcosinate (i.e., an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 13 carbon atoms). C-|2 acyl sarcosinate is commercially available, for example, as Hamposyl L-30® supplied by Hampshire. C14 acyl sarcosinate is commercially available, for example, as Hamposyl M-30® supplied by Hampshire.
Suitable amphoteric surfactants to be used herein include amine oxides having the following formula R-| R2R3NO wherein each of R1 , R2 and R3 is independently a saturated substituted or unsubstituted, linear or branched hydrocarbon chains of from 1 to 30 carbon atoms. Preferred amine oxide surfactants to be used according to the present invention are amine oxides having the following formula R<| R2R3NO wherein R1 is an hydrocarbon chain comprising from 1 to 30 carbon atoms, preferably from 6 to 20, more preferably from 8 to 16, most preferably from 8 to 12, and wherein R2 and R3 are independently substituted or unsubstituted, linear or branched hydrocarbon chains comprising from 1 to 4 carbon atoms, preferably from 1 to 3 carbon atoms, and more preferably are methyl groups. R1 may be a saturated substituted or unsubstituted linear or branched hydrocarbon chain. Suitable amine oxides for use herein are for instance natural blend C8-C10 amine oxides as well as C12-C16 amine oxides commercially available from Hoechst.
Chelatinq agents:
In a preferred embodiment of the present invention the ionic strength of the compositions is higher than 1.10"4 M, preferably higher than 5.10"3 M, and more preferably higher than 1.10"3 M. Indeed, it has been observed that formulating the compositions of the present invention with such high ionic strength further contributes to improved stain removal performance and improved bleaching performance. The higher the ionic strength the better the stain removal and bleaching performance. Indeed, it is speculated that under the preferred pH conditions of the present compositions (acidic to neutral), especially when the pH of the composition is higher than the pka of the salt free zwitterionic betaine surfactant present therein, said surfactant is in a dipolar form and its packing is strongly influenced by the ionic strength.
The ionic strength of a composition may be increased by the addition of various ingredients like chelating agents or mixtures thereof. Accordingly, the compositions of the present invention may comprise a chelating agent as a preferred optional ingredient. Suitable chelating agents may be any of those known to those skilled in the art such as the ones selected from the group comprising phosphonate chelating agents, amino carboxylate chelating agents, other carboxylate chelating agents, polyfunctionally-substituted aromatic chelating agents, ethylenediamine N,N'- disuccinic acids, or mixtures thereof.
A chelating agent may be desired in the compositions of the present invention as it allows to increase the ionic strength of the compositions herein and thus their stain removal and bleaching performance on various surfaces. The presence of chelating agents may also contribute to the benefits of the present compositions, i.e., to reduce the tensile strength loss of fabrics and/or color damage, especially in a laundry pretreatment application. Indeed, the chelating agents inactivate the metal ions present on the surface of the fabrics and/or in the cleaning compositions (neat or diluted) that otherwise would contribute to the radical decomposition of the peroxygen bleach.
Suitable phosphonate chelating agents to be used herein may include alkali metal ethane 1 -hydroxy diphosphonates (HEDP), alkylene poly (alkylene phosphonate), as well as amino phosphonate compounds, including amino aminotri(methylene phosphonic acid) (ATMP), nitrilo trimethylene phosphonates (NTP), ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates (DTPMP). The phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities. Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonate (DTPMP) and ethane 1 -hydroxy diphosphonate (HEDP). Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®-
Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,812,044, issued May 21 , 1974, to Connor et al. Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1 ,2-dihydroxy -3,5-disulfobenzene. A preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof. Ethylenediamine N,N'- disuccinic acids, especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins. Ethylenediamine N,N'- disuccinic acids is, for instance, commercially available under the tradename ssEDDS® from Palmer Research Laboratories.
Suitable amino carboxylates to be used herein include ethylene diamine tetra acetates, diethylene triamine pentaacetates, diethylene triamine pentaacetate (DTPA),N- hydroxyethylethylenediamine triacetates, nitrilotri- acetates, ethylenediamine tetrapropionates, triethylenetetraaminehexa- acetates, ethanol-diglycines, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms. Particularly suitable amino carboxylates to be used herein are diethylene triamine penta acetic acid, propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Trilon FS® and methyl glycine di-acetic acid (MGDA).
Further carboxylate chelating agents to be used herein include salicylic acid, aspartic acid, glutamic acid, glycine, malonic acid or mixtures thereof.
Another chelating agent for use herein is of the formula:
wherein R-| , R2, R3, and R4 are independently selected from the group consisting of -H, alkyl, alkoxy, aryl, aryloxy, -Cl, -Br, -NO2, -C(O)R', and -
SO2R"; wherein R' is selected from the group consisting of -H, -OH, alkyl, alkoxy, aryl, and aryloxy; R" is selected from the group consisting of alkyl, alkoxy, aryl, and aryloxy; and R5, R , R7, and Rs are independently selected from the group consisting of -H and alkyl.
Particularly preferred chelating agents to be used herein are amino aminotri(methylene phosphonic acid), di-ethylene-triamino-pentaacetic acid, diethylene triamine penta methylene phosphonate, 1 -hydroxy ethane diphosphonate, ethylenediamine N, N'-disuccinic acid, and mixtures thereof.
Typically, the compositions according to the present invention comprise up to 5% by weight of the total composition of a chelating agent, or mixtures thereof, preferably from 0.01 % to 1.5% by weight and more preferably from 0.01 % to 0.5%.
Radical scavenger: The compositions of the present invention may comprise a radical scavenger or a mixture thereof. Suitable radical scavengers for use herein include the well-known substituted mono and dihydroxy benzenes and their analogs, alkyl and aryl carboxylates and mixtures thereof. Preferred such radical scavengers for use herein include di-tert-butyl hydroxy toluene (BHT), hydroquinone, di-tert-butyl hydroquinone, mono-tert-butyl hydroquinone, tert- butyl-hydroxy anysole, benzoic acid, toluic acid, catechol, t-butyl catechol, benzylamine, 1 ,1 ,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-propyl- gallate or mixtures thereof and highly preferred is di-tert-butyl hydroxy toluene. Such radical scavengers like N-propyl-gallate may be commercially available from Nipa Laboratories under the trade name Nipanox S1 ®. Radical scavengers when used, are typically present herein in amounts ranging from up to 10% by weight of the total composition and preferably from 0.001 % to 0.5% by weight.
The presence of radical scavengers may contribute to the benefits of the present compositions, i.e., to reduce tensile strength loss of fabrics and/or color damage when the compositions of the present invention are used in any laundry application, especially in a laundry pretreatment application.
Antioxidants
The compositions according to the present invention may further comprise an antioxidant or mixtures thereof. Typically, the compositions herein comprise up to 10% by weight of the total composition of an antioxidant or mixtures thereof, preferably from 0.002% to 5%, more preferably from 0.005% to 2%, and most preferably from 0.01 % to 1 %.
Suitable antioxidants to be used herein include organic acids like citric acid, ascorbic acid, tartaric acid, adipic acid and sorbic acid, or amines like lecithin, or aminoacids like glutamine, methionine and cysteine, or esters like ascorbil palmitate, ascorbil stearate and triethylcitrate, or mixtures thereof. Preferred antioxidants for use herein are citric acid, ascorbic acid, ascorbil palmitate, lecithin or mixtures thereof.
Bleach activators
As an optional ingredient, the compositions of the present invention may comprise a bleach activator or mixtures thereof. By "bleach activator", it is meant herein a compound which reacts with hydrogen peroxide to form a peracid. The peracid thus formed constitutes the activated bleach. Suitable bleach activators to be used herein include those belonging to the class of esters, amides, imides, or anhydrides. Examples of suitable compounds of this type are disclosed in British Patent GB 1 586 769 and GB 2 143 231 and a method for their formation into a prilled form is described in European Published Patent Application EP-A-62 523. Suitable examples of such compounds to be used herein are tetracetyl ethylene diamine (TAED), sodium 3,5,5 trimethyl hexanoyloxybenzene sulphonate, diperoxy dodecanoic acid as described for instance in US 4 818 425 and nonylamide of peroxyadipic acid as described for instance in US 4 259 201 and n- nonanoyloxybenzenesulphonate (NOBS). Also suitable are N-acyl caprolactams selected from the group consisting of substituted or unsubstituted benzoyl caprolactam, octanoyl caprolactam, nonanoyl caprolactam, hexanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, formyl caprolactam, acetyl caprolactam, propanoyl caprolactam, butanoyl caprolactam pentanoyl caprolactam or mixtures thereof. A particular family of bleach activators of interest was disclosed in EP 624 154, and particularly preferred in that family is acetyl triethyl citrate (ATC). Acetyl triethyl citrate has the advantage that it is environmental- friendly as it eventually degrades into citric acid and alcohol. Furthermore, acetyl triethyl citrate has a good hydrolytical stability in the product upon storage and it is an efficient bleach activator. Finally, it provides good building capacity to the composition. The compositions according to the present invention may comprise from 0.01 % to 20% by weight of the total composition of said bleach activator, or mixtures thereof, preferably from 1 % to 10%, and more preferably from 3% to 7%
Process of pretreatinq fabrics
In the present invention, the liquid composition of the present invention is applied neat onto at least a portion of a soiled fabric, optionally left to act onto said fabric, typically for a period of time of a few seconds to several hours, before the fabric is rinsed, or washed then rinsed.
In this mode, the neat compositions can optionally be left to act onto said fabrics for a period of time ranging from 10 seconds to 1 hour, preferably 1 minute to 15 minutes, more preferably 1 minute to 5 minutes before the fabrics are rinsed, or washed then rinsed, provided that the composition is not left to dry onto said fabrics. For particularly though stains, it may be appropriate to further rub or brush said fabrics by means of a sponge or a brush, or by rubbing two pieces of fabrics against each other.
By " washing", it is to be understood herein that the fabrics are contacted with a conventional detergent composition comprising at least one surface active agent in an aqueous bath, this washing may occur by means of a washing machine or simply by hands.
By "in its neat form", it is to be understood that the liquid compositions are applied directly onto the fabrics to be pretreated without undergoing any dilution, i.e. the liquid compositions herein are applied onto the fabrics as described herein.
According to the process of pretreating soiled fabrics of the present invention, the liquid aqueous compositions herein should preferably not be left to dry onto the fabrics. It has been found that water evaporation contributes to increase the concentration of free radicals onto the surface of the fabrics and, consequently, the rate of chain reaction. It is also speculated that an auto-oxidation reaction occurs upon evaporation of water when the liquid compositions are left to dry onto the fabrics. Said reaction of auto-oxidation generates peroxy-radicals which may contribute to the degradation of cellulose. Thus, not leaving the liquid compositions, as described herein, to dry onto the fabrics, in a process of pretreating soiled fabrics, contributes to reduce the tensile strength loss and/or colour damage when pretreating fabrics with liquid peroxygen bleach-containing compositions.
The compositions herein may also be used in a "soaking mode" where a composition, as defined herein, is first diluted in an aqueous bath and the fabrics are immersed and soaked in the bath, before they are rinsed, or in a "through the wash mode", where a composition, as defined herein, is added on top of a wash liquor formed by dissolution or dispersion of a typical laundry detergent. It is also essential in both cases, that the fabrics be rinsed after they have been contacted with said composition, before said composition has completely dried off.
In another mode, generally referred to as "soaking", the process comprises the steps of diluting said liquid composition in its neat form in an aqueous bath so as to form a diluted composition. The dilution level of the liquid composition in an aqueous bath is typically up to 1 :85, preferably up to 1 :50 and more preferably about 1 :25 (composition:water). The fabrics are then contacted with the aqueous bath comprising the liquid composition, and the fabrics are finally rinsed, or washed then rinsed. Preferably in that embodiment, the fabrics are immersed in the aqueous bath comprising the liquid composition, and also preferably, the fabrics are left to soak therein for a period of time ranging from 1 minute to 48 hours, preferably from 1 hour to 24 hours.
In yet another mode which can be considered as a sub-embodiment of "soaking", generally referred to as "bleaching through the wash", the liquid composition is used as a so-called laundry additive. And in that embodiment the aqueous bath is formed by dissolving or dispersing a conventional laundry detergent in water. The liquid composition in its neat form is contacted with the aqueous bath, and the fabrics are then contacted with the aqueous bath containing the liquid composition. Finally, the fabrics are rinsed. Depending on the end-use envisioned, the compositions herein can be packaged in a variety of containers including conventional bottles, bottles equipped with roll-on, sponge, brusher or sprayers.
5 The invention is further illustrated by the following examples.
Examples
10 Following compositions were made by mixing the listed ingredients in the listed proportions (weight % unless otherwise specified).
Compositions I II III IV V VI VII VIII
Dobanol® 91-10 - - - 1.6 _ _ 1.6 -
Dobanol® 45-7 - 2.0 1.6 - 2.6 1.6 - 2.0
Dobanol® 23-3 - - 2.0 2.0 1.0 2.0 2.0 -
Salt-free Betaine* 5.0 2.4 2.4 2.4 2.4 5.0 5.0 5.0
H2O2 7.0 7.0 6.0 7.0 5.8 7.0 7.0 7.0
HEDP 0.16 - 0.16 - 0.16 0.16 0.16 0.16
DTPMP - 0.18 - 0.18 - - - -
Propyl gallate 0.1 0.1 - - - 0.1 0.1 0.1
BHT - - 0.1 0.1 0.1 - - -
Citric acid 0.05 0.05 0.50 0.05 0.50 0.05 0.05 0.05
Water and minors I I Π fv-> ι rw _ _ H2SO4 up to pH 4 or 5
15 HEDP is 1-hydroxy-ethane diphosphonate.
DTPMP is diethylene triamine penta methylene phosphonate.
BHT is di-tert-butyl hydroxy toluene
Salt-free Betaine* is Lauryl di-methyl betaine containing 0.3% by weight of sodium chloride. This betaine is obtainable by purification from commercially 20 available Lauryl di-methyl betaine GENAGEN LAB® (Hoechst) (which contains 7.5% of sodium chloride). Compositions I to VIII when used to bleach soiled coloured fabrics exhibit excellent overall stain removal performance especially on greasy stains like lipstick, make-up, olive oil, mayonnaise, sebum and the like, and excellent bleaching performance while being safe to both the fabrics and colors.
When used in a pretreatment mode, any of the compositions I to VIII is applied neat on the stained portion of a fabric and left to act thereon for 5 minutes. Then the fabric is washed with a conventional detergent and rinsed.
When used in a bleaching-through-the-wash mode, any of the compositions I to VIM is contacted with an aqueous bath formed by dissolution of a conventional detergent in water. Fabrics are then contacted with the aqueous bath comprising the liquid detergent, and the fabrics are rinsed. They can also be used in a soaking mode, where 100 ml of the liquid compositions are diluted in 10 litres of water. The fabrics are then contacted with this aqueous bath containing the composition, and left to soak therein for a period of time of 24 hours. The fabrics are eventually rinsed.

Claims

WHAT IS CLAIMED IS:
1. A liquid bleaching composition comprising a peroxygen bleach and a salt free zwitterionic betaine surfactant.
2. A composition according to claim 1 wherein said composition comprises from 0.001 % to 20% by weight of the total composition of said salt free zwitterionic betaine surfactant or mixture thereof, preferably from 0.01 % to 10%, more preferably from 0.5% to 8% and most preferably from 1 % to 5%.
3. A composition according to any of the preceding claims wherein said salt free zwitterionic betaine surfactant contains less than 4% by weight of salts, preferably less than 3%, more preferably less than 2%, even more preferably less than 1 % and most preferably from 0.01% to 0.5%.
4. A composition according to any of the preceding claims wherein said salt free zwitterionic betaine surfactant is according to the formula:
R1-N+(R2)(R3)R4X-
wherein R-| is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain that can contain linking groups such as amido groups, ester groups, preferably an alkyl group containing from 1 to 24 carbon atoms, preferably from 8 to 18, and more preferably from 10 to 16, or an amido radical of the formula Ra- C(O)-NH-(C(Rb)2)m- wherein Ra is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16, Rb is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(Rb)2) moiety; R2 is hydrogen, C-I -CQ alkyl, hydroxy alkyl or other substituted C-j-Cg alkyl group;
R3 is C1-C6 alkyl, hydroxy alkyl or other substituted C-|-Cg alkyl group which can also be joined to R2 to form ring structures with the N, or a Ci-C╬▓ sulfonate group;
R4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms;
and X is a carboxylate or sulfonate group.
5. A composition according to any of the preceding claims wherein said peroxygen bleach is hydrogen peroxide or a water soluble source thereof typically selected from the group consisting of percarbonates, persilicates, persulphates, perborates, peroxyacids, hydroperoxides, aromatic and aliphatic diacyl peroxides and mixtures thereof, preferably is hydrogen peroxide, tert-butyl hydroperoxide, cumyl hydroperoxide, 2,4,4-trimethylpentyl-2-hydroperoxide,di- isopropylbenzenemonohydroperoxide, tert-amyl hydroperoxide, 2,5- dimethyl-hexane-2,5-dihydroperoxide, dilauroyl peroxide, didecanoyl peroxide, dimyristoyl peroxide, benzoyl peroxide or a mixture thereof, and more preferably is hydrogen peroxide.
6. A composition according to any of the preceding claims which comprises from 0.01 % to 20% by weight of the total composition of said peroxygen bleach or mixtures thereof, preferably from 1 % to 15% and more preferably from 2% to 10%.
7. A composition according to any of the preceding claims wherein said composition further comprises an ethoxyiated nonionic surfactant according to the formula RO-(C2H4╬╕)nH, wherein R is a CQ to C22 alkyl chain or a CQ to C28 alkyl benzene chain, and wherein n is an integer from 0 to 20, preferably from 1 to 15, more preferably from 2 to 15 and most preferably from 2 to 12, or mixture thereof, typically up to 30% by weight of the total composition, preferably from 0.1 % to 25 % and more preferably from 0.5% to 20%.
8. A composition according to any of the preceding claims wherein said composition further comprises a chelating agent or a mixture thereof typically up to 5% by weight of the total composition, preferably from 0.01 % to 1.5%.
9. A composition according to claim 8 wherein said chelating agent is a phosphonate chelating agent, an amino carboxylate chelating agent, another carboxylate chelating agent, a polyfunctionally-substituted aromatic chelating agent, ethylenediamine N, N'-disuccinic acid or mixtures thereof, and more preferably amino aminotri(methylene phosphonic acid), di-ethylene-triamino-pentaacetic acid, diethylene triamine penta methylene phosphonate, 1 -hydroxy ethane diphosphonate, ethylenediamine N, N'-disuccinic acid or mixtures thereof.
10. A composition according to any of the preceding claims wherein said composition is aqueous and has a pH up to 7, preferably from 1 to 6 and more preferably from 1.5 to 5.5.
11. A process of bleaching fabrics which includes the steps of diluting in an aqueous bath a liquid composition according to any of the preceding claims, in its neat form, contacting said fabrics with said aqueous bath comprising said liquid composition, and subsequently rinsing, or washing then rinsing said fabrics.
12. A process according to claim 11 , wherein the fabrics are left to soak in said aqueous bath comprising said liquid composition for a period of time ranging from 1 minute to 48 hours, preferably from 1 hour to 24 hours.
13. A process according to claims 12 or 11 , wherein said aqueous bath is formed by dissolving or dispersing a conventional laundry detergent in water.
14. A process of pretreating fabrics which comprises the steps of applying a liquid composition according to any of the claims 1 to 10, in its neat form, onto said fabrics, preferably only soiled portions thereof, before rinsing said fabrics, or washing then rinsing said fabrics.
15. The use of a salt free zwitterionic betaine surfactant containing less than 5% by its total weight of salts, in a liquid peroxygen bleach- containing composition for the bleaching of fabrics, for reducing the loss of tensile strength in said fabrics.
16. The use of a salt free zwitterionic betaine surfactant containing less than 5% by its total weight of salts, in a liquid peroxygen bleach- containing composition for the bleaching of fabrics, for reducing color damage to said fabrics.
EP98953321A 1997-10-08 1998-10-07 Liquid bleaching compositions with improved safety to fabrics and colors Withdrawn EP1021505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98953321A EP1021505A1 (en) 1997-10-08 1998-10-07 Liquid bleaching compositions with improved safety to fabrics and colors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP97870151A EP0908510A1 (en) 1997-10-08 1997-10-08 Liquid bleaching compositions with improved safety to fabrics and colors
EP97870151 1997-10-08
EP98953321A EP1021505A1 (en) 1997-10-08 1998-10-07 Liquid bleaching compositions with improved safety to fabrics and colors
PCT/US1998/021240 WO1999018179A1 (en) 1997-10-08 1998-10-07 Liquid bleaching compositions with improved safety to fabrics and colors

Publications (1)

Publication Number Publication Date
EP1021505A1 true EP1021505A1 (en) 2000-07-26

Family

ID=8231048

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97870151A Withdrawn EP0908510A1 (en) 1997-10-08 1997-10-08 Liquid bleaching compositions with improved safety to fabrics and colors
EP98953321A Withdrawn EP1021505A1 (en) 1997-10-08 1998-10-07 Liquid bleaching compositions with improved safety to fabrics and colors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP97870151A Withdrawn EP0908510A1 (en) 1997-10-08 1997-10-08 Liquid bleaching compositions with improved safety to fabrics and colors

Country Status (9)

Country Link
EP (2) EP0908510A1 (en)
JP (1) JP2001519458A (en)
AR (1) AR013976A1 (en)
AU (1) AU1072699A (en)
BR (1) BR9812902A (en)
CA (1) CA2305323A1 (en)
MA (1) MA24672A1 (en)
MX (1) MXPA00003519A (en)
WO (1) WO1999018179A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060073B2 (en) 2013-05-23 2018-08-28 Washing Systems, Llc Method of laundering industrial garments
JP6448939B2 (en) * 2014-07-25 2019-01-09 竹本油脂株式会社 Purification method for betaine surfactant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852210A (en) * 1972-08-11 1974-12-03 Flow Pharma Inc Stable liquid detergent concentrates containing active oxygen
US4490536A (en) * 1983-07-11 1984-12-25 Mona Industries, Inc. Salt free phosphobetaines
JPH08120295A (en) * 1994-10-26 1996-05-14 Kao Corp Liquid bleaching agent composition
JPH0995473A (en) * 1995-09-29 1997-04-08 Henkel Japan Kk Production of betaine type amphoteric surfactant having low salt content
TR199801336T2 (en) * 1996-02-23 1998-10-21 The Procter & Gamble Company Disinfecting compositions.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9918179A1 *

Also Published As

Publication number Publication date
AU1072699A (en) 1999-04-27
BR9812902A (en) 2000-08-08
MXPA00003519A (en) 2005-09-08
WO1999018179A1 (en) 1999-04-15
CA2305323A1 (en) 1999-04-15
EP0908510A1 (en) 1999-04-14
AR013976A1 (en) 2001-01-31
JP2001519458A (en) 2001-10-23
MA24672A1 (en) 1999-07-01

Similar Documents

Publication Publication Date Title
US6482786B1 (en) Liquid bleaching compositions comprising hydrogen peroxide, betaine, and ethoxylated nonionic surfactant
EP0908511B1 (en) Liquid multipurpose-cleaning compositions with effective foam control
US6448214B1 (en) Liquid aqueous bleaching compositions
EP0856577B1 (en) Liquid aqueous cleaning compositions
EP0908512A2 (en) Liquid aqueous bleaching compositions
US6495501B1 (en) Laundry bleaching compositions
EP0925350A1 (en) Laundry pretreatment process and bleaching compositions
US6316400B1 (en) Liquid bleaching composition with improved safety to fabrics and colors
US6235699B1 (en) Liquid aqueous cleaning compositions
US6569826B1 (en) Radical scavenger
WO1999018179A1 (en) Liquid bleaching compositions with improved safety to fabrics and colors
EP0916721B1 (en) Laundry bleaching compositions
US6586382B1 (en) Process of bleaching fabrics
WO2000023554A1 (en) Process of bleaching fabrics
EP1222243B1 (en) Cleaning composition
EP1001008A1 (en) Liquid aqueous bleaching compositions comprising a sulphonated anionic surfactant
US6566320B1 (en) Bleaching composition containing chromotropic compound
AU6251998A (en) Liquid aqueous cleaning compositions
MXPA99007179A (en) Liquid aqueous cleaning compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030501