EP1018031B1 - Device for testing circuit boards - Google Patents

Device for testing circuit boards Download PDF

Info

Publication number
EP1018031B1
EP1018031B1 EP98954273A EP98954273A EP1018031B1 EP 1018031 B1 EP1018031 B1 EP 1018031B1 EP 98954273 A EP98954273 A EP 98954273A EP 98954273 A EP98954273 A EP 98954273A EP 1018031 B1 EP1018031 B1 EP 1018031B1
Authority
EP
European Patent Office
Prior art keywords
electrode
component
field
electrodes
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98954273A
Other languages
German (de)
French (fr)
Other versions
EP1018031A1 (en
Inventor
Manfred Buks
Karim Hosseini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scorpion Technologies AG
Original Assignee
Scorpion Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scorpion Technologies AG filed Critical Scorpion Technologies AG
Publication of EP1018031A1 publication Critical patent/EP1018031A1/en
Application granted granted Critical
Publication of EP1018031B1 publication Critical patent/EP1018031B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/303Contactless testing of integrated circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/304Contactless testing of printed or hybrid circuits

Definitions

  • the invention relates to a device mentioned in the preamble of claim 1 Art.
  • a device of the generic type is known from US Pat. No. 5,254,953.
  • the first electrode and the component to be tested serve as plates Capacitor, its capacity with the device by changing the charge is determined on the capacitor.
  • the measuring amplifier must carry out a current measurement perform, in a connecting line between the first Electrode and the second electrode than that of the known generic Device serves the mass of the circuit to be tested on a circuit board. The Measuring device is therefore galvanically connected to the circuit.
  • An advantage of generic devices is the unnecessary galvanic, thus mechanical contact between the first electrode and the Component. There are no good conductive contact surfaces on the component required. Oxide layers interfere e.g. Not. Can also through insulating layers or non-conductive housings are measured.
  • a disadvantage of the known device is the capacitive measuring method for the charge shift on the capacitor requires current flow in the circuit. This current also flows regularly in more complicated circuits through other components, their possible error deviations in the measurement result received. Since the measuring amplifier the current against the circuit ground determined, there is also always a capacitance between the first electrode and the circuit ground parallel to the measuring capacitance. This disruptive parallel capacity but is regularly larger than the measuring capacity, so that deviations in the parallel capacitance to mass cause larger deviations. Moreover a high level of measurement sensitivity is required to detect the small deviations the measuring capacity in the large total capacity (measuring capacity + much larger capacity against mass).
  • Another, not generic test device is from the DE 26 39 831 A1 known.
  • the field generated by the component upon electrical application by means of a stimulation device is measured in a generic manner with a field probe.
  • a coil serves as a field probe, which responds exclusively to the magnetic field component of the electromagnetic field generated by the component.
  • magnetic fields are only generated when current flows in the component. Consequently, the stimulation device must be designed so that a current flow is generated in the component. This again results in disadvantages similar to the capacitive measuring method described above. All neighboring, also current-carrying components of an assembled circuit can, for example, interfere. Components that for certain reasons cannot be connected correctly and therefore cannot be traversed by electricity cannot be tested at all. Furthermore, the local resolution of the test method is limited by the size of the coil due to the design.
  • a generic test device is known from US-A-5 218 294. According to The alternative "monopole antennas" mentioned in column 2, line 38 is here the electrical generated by a component when stimulus is applied Field near the component determined with an electrode. Essentially however, this document describes the determination of electromagnetic Field with an inductive which determines the magnetic field component Antenna as shown in Figure 5. As in column 1, row 67 specified, the quality, shape and dimension of component components determined become.
  • the contactless measuring method in which the component is not, is advantageous here must be contacted with probe tips.
  • a disadvantage of this construction is however, the extremely complex described in columns 4 to 6 of the document Evaluation method to make usable statements from the measured signals receive. Spectrum analyzers are required and special ones Frequency band bands are examined and spectral densities are analyzed or Phase shifts are examined. The stimulus signal must determine this Have signal patterns whose recognition in the received signal is used to obtain usable statements.
  • a device for determination is known from US-A-4-588993, which is not of the generic type known from interference fields in the vicinity of electrical devices.
  • the probe arrangement is the electrical and the at a point in space measure magnetic field according to magnitude and solid angle. This arrangement serves completely different purposes on the one hand and is already on the other the required probe size to measure the field with millimeter precision close proximity of components unsuitable.
  • the object of the present invention is a generic device with greater sensitivity to detection of deviations on the test item Component and with reduced requirements for the evaluation method create.
  • the two electrodes are connected to a measuring amplifier of the measuring device, which from Component and thus in particular of the galvanically contacted with this Stimulation device is electrically isolated. Therefore, a simple one Voltage measurement of the field differential voltage between the electrodes highly accurate value that is an accurate representation of the field geometry and thus an exact statement about the geometry and arrangement of the neighboring component allows. Due to the galvanic isolation of the measuring device Influences caused by the component avoided. With e.g. closely adjacent Smallest field differences with a suitable measuring amplifier can be measured with high informative value. A single voltage measurement (DC voltage or AC voltage) is sufficient for determining one Measuring point.
  • each is omitted Contacting of the circuit by the electrodes. They are not easily contactable Surfaces necessary. It can be over insulated surfaces or through plastic enclosures measured through, e.g. inside one in a plastic case embedded ICs.
  • the stimulation device can be separate Apply voltages to the component, e.g. DC voltages with which problems through capacitors are avoidable in the circuit. There are also impulses, e.g. AC voltages any frequency, usable. It can even be electrical Field are determined, which are about components in the intended Operation of the circuit results. Therefore, the device according to the invention also use as a function tester.
  • the field probe according to the invention has one suitable geometric resolution, the switching processes even germinate Be considered inside an IC.
  • the second electrode can be anywhere in the electrical field, e.g. far outside of the measuring location. Then only the first electrode from the measuring location is required to be moved to the measurement site. However, the features of the claim are advantageous 2 provided. If both electrodes are adjacent to the component to be tested, so the electric field is in the close range, in which very high field strength differences available, measured very precisely, without being influenced by Fields of other components.
  • the field probe can be arranged at the end a shielded cable according to claim 3. It can be this enables field measurements with a geometric resolution of less than 1 mm.
  • the first electrode can advantageously also have several components capture at the same time.
  • suitable stimulation e.g. of the individual components one after the other, the other components, e.g. with the Stimulator are grounded with only one positioning of the first Electrode a larger number of components can be measured. This is particularly so with geometrically and electrically essentially the same components advantageous, e.g. with contact pins of a plug or with the connection pins of an IC.
  • the stimulating device can apply a DC voltage, its electrostatic Field can be precisely measured by the device according to the invention.
  • a pulsed voltage is applied, e.g. a pulsed DC voltage or an AC voltage from the measuring amplifier is more detectable.
  • pulse sequences of low frequency are advantageously used, which are outside the usual frequency range, in the neighboring Radiate measuring devices and computers.
  • a triangular shape is preferably used as the pulse shape. This has the advantage that it increases the capacities of the measuring arrangement Rectangles are differentiated, which can be better processed by the measuring amplifier are.
  • the measuring amplifier suppresses DC voltage. Electrostatic fields, e.g. by electrostatic charge in close to the measurement location and which can lead to incorrect measurements, are suppressed.
  • the measuring amplifier is designed in such a way that suppresses occurring interference frequencies, e.g. Line frequencies in the 50th Hertz range, which are generated by neighboring power supplies or other interfering frequencies which are emitted in the vicinity of the measuring location, e.g. through computer CPUs in the 100 megahertz range, from robot control motors and like.
  • interference frequencies e.g. Line frequencies in the 50th Hertz range, which are generated by neighboring power supplies or other interfering frequencies which are emitted in the vicinity of the measuring location, e.g. through computer CPUs in the 100 megahertz range, from robot control motors and like.
  • the features of claim 11 are preferably provided. As from other transmitters and receivers known, can be on this Suppress interference from the environment particularly well.
  • the features of claim 12 are preferably provided.
  • the electric field in the vicinity of one or more components e.g. over one assembled circuit board, by moving the electrode in its geometric Arrangement measured.
  • first electrode matrix electrodes in large numbers, e.g. flat parallel arranged to a circuit board to be tested, with a suitable device are successively connected to the measuring amplifier and in this way with a static, not moving structure a geometric resolution of the from Enable component generated field.
  • each crossed by two with the measuring amplifier can be connected, for which purpose a conventional multiplex control can be used is, a flat resolution of the field can be achieved, since with connection two electrodes of the matrix field, only these are currently sensitive, namely with the highest sensitivity at their crossing point, so that this is a statement about the field strength there.
  • By multiplex control of all lines and Column electrodes one after the other can be the field strengths at all crossing points determine.
  • Fig. 1a shows a typical test situation on a non-conductive circuit board 1 on which a metal pin 2, e.g. one of several pins of a plug contact strip is attached with a conductor track 3 on the board through a solder joint 4 is contacted.
  • a metal pin 2 e.g. one of several pins of a plug contact strip is attached with a conductor track 3 on the board through a solder joint 4 is contacted.
  • the conductor track 3 is connected to a suitable contact point 5 with a stimulation device 6 a voltage, e.g. a DC voltage of a few volts, with a contact tip 7, which is connected to a voltage source 8 is.
  • a voltage e.g. a DC voltage of a few volts
  • a contact tip 7 which is connected to a voltage source 8 is.
  • a conductor 10 With the second contact tip 9 of the voltage source 8 is a conductor 10 contacted, which is at a distance from the conductor track 3.
  • the conductor 10 can it is earth, mass of the circuit on the circuit board 1 or are a field plate that is suspended somewhere freely in the room.
  • the pin 2 is electrically isolated here from the conductor track 3.
  • the one from the stimulator 6 voltage applied to the conductor track 3 is not present at pin 2.
  • the Pin 2 is only exposed as a conductor in the electrical field. It affects the field due to influence, i.e. charge shift on pin 2 slightly. It results a completely different formation of the field lines, as shown in the area of the pen 2. In particular, the strong divergence in the area of the top tip of pin 2.
  • a geometric deviation of the pin 2 can be detected e.g. a bending of the pin, a length that is too short or the like.
  • the field probe shown can with its electrode 11 e.g. designed as a field plate be connected via a line 12 to an input of a measuring amplifier 13 connected is.
  • a second line 14 is the other input of the measuring amplifier 13 connected to a second electrode in the form of a field plate 15, which is somewhere else in the room.
  • the electric field in The near field of the pin 2 is determined solely by the positioning of the first electrode 11, while the second electrode 15 is preferably in one of the circuit undisturbed area lies on the circuit board 1.
  • the through the electrodes 11 and The dipole formed can, however, also be very small-scale, that is to say with closely adjacent ones very small electrodes 11 and 15 can be formed and then determined with high precision the local field strength at the location of the field probe 11. Since such a dipole depends on the direction measures, i.e. a higher in the direction of the field lines shown The direction of the field lines can be sensitive to this determine and thus detect the electric field very precisely.
  • Figures 2a and 2b show another typical measurement problem on the board 1, which is shown in plan view this time.
  • Two conductor tracks 20 and 21 are located parallel and are from the stimulation device 6 with a voltage difference applied.
  • an electrical one is formed between them Field with parallel field lines. This can be done with the Electrode 11 of the field probe can be determined, which otherwise correspond to that of FIG. 1 can.
  • the conductor track 21 with a break 22 is divided into the two Sections 21a and 21b. Only the section 21a is from the stimulation device 6 supplied with voltage, while the separated section 21b is free of stress is.
  • Figures 3a and 3b show an extraordinarily difficult test case the circuit board 1 (shown in section), namely an electrolytic capacitor 30, which is shown schematically in an older design for explanatory purposes.
  • the electrolytic capacitor 30 has an outer cup-shaped one that forms the housing Electrode 31, which is in contact with a lead 32 and one with a lead 33 contacted inner electrode 34.
  • the electrolytic capacitor 30 is provided in the correct installation position in FIG. 3a. In Fig. 3b he sits the wrong way round, that is with reverse polarity. This must be from the Test device can be recognized.
  • the capacitor 30 is subjected to voltage for the test, by contacting the leads 32 and 33 with one, not shown Stimulator, e.g. the stimulation device 6 of FIG. 1. It results there is an electrical one in the vicinity of the electrolytic capacitors 30 Field with field lines, as shown in Figures 3a and 3b.
  • Stimulator e.g. the stimulation device 6 of FIG. 1.
  • Fig. 4 shows an example of a field probe with a spatially very small, ie the field geometry high-resolution dipole.
  • the field probe is shielded at the end Cable 40 provided.
  • the two poles of the dipole of the outer shield 41 and that from the end of the shielded cable 40 protruding inner conductor 42 is formed.
  • Fig. 4 also shows a positioning device 43, the devices, not shown is adjustable in the three spatial directions shown and with an arm 44 and a bracket 45 the end portion of the shielded cable 40, i.e. the field probe.
  • the positioning device 43 With the positioning device 43, the field probe be positioned precisely in the electrical field around components.
  • the shielded cable 40 is at its end facing away from the field probe its shield 41 and its inner conductor 42 to the two inputs of the already mentioned measuring amplifier 13 connected, the voltage between co-determined with electrodes 42 and 41, its input being very high-impedance must, in order not to overload the field too much.
  • FIG. 5 shows a perspective view of a commercially available IC 50 with connecting pins 51, which are arranged in a row. It should be tested whether the Pins 51.1 - 51.6 are properly soldered to conductor tracks 52 of circuit board 1, wherein the solder joints are designed according to the solder joints 4 in Fig. 1a can.
  • Pin 51.4 is currently being tested for proper soldering. It the stimulation device 6 already described is applied, which is connected to a Contact tip 7 contacted the conductor to pin 51.4 and with its other Pole with a series of parallel contact tips 9.1 - 9.5 all other conductor tracks 52 connects to the other pole of the voltage source 8. Pin 51.4 so a voltage is applied to all other pins.
  • the test device has two electrodes 53 and 54, which are separated by insulation 55 and via twisted leads are connected to the measuring amplifier 13 already discussed. How from 5, the two electrodes 53 and 54 extend over a large area over the entire IC 50, all pins 51.1 - 51.6 are equally adjacent. This by applying a voltage to the stimulation device 6 electrical field generated by the pins can be detected by electrodes 53 and 54 and can be detected with the measuring amplifier 13. 5 shows essentially the same field with different wiring of the pins. It can therefore each of the pins 51.1 - 51.6 in succession with the contact tip 7 of the Stimulation device 6 can be connected, with all the remaining pins the contact tips 9.1 - 9.5, ie the other output of the voltage source 8, are connected.
  • the measuring amplifier 13 described in the discussed embodiments must be designed to measure very small field strengths. So he must be very small Tensions, e.g. can prove in the ⁇ V range.
  • the measuring amplifier 13 advantageously also suppresses DC voltage.
  • the stimulation device 6 is thereby designed to apply pulses in the form of DC voltage pulses.
  • AC voltage pulses or as a sinusoidal AC voltage are usable. These then preferably have frequencies in the lower frequency range, i.e. below e.g. 100,000 Hz because in this low Frequency range fewer interference frequencies occur.
  • the stimulation device is preferably used 6 synchronized with the measuring amplifier 13 in a suitable way, for example, by self-synchronization of the measuring amplifier on the received Signal. This can further suppress interference from external fields become.
  • the stimulation device delivers 6 triangular pulses, the rectangular pulses after differentiation of capacities in the measurement setup result, which are particularly easy to detect by the measuring amplifier 13 are.
  • the very small-scale Measurement of the electric field is suitable in the close range testing component, e.g. of the pin 2 in Fig. 1a, is positioned and that Field in the immediate vicinity of the component should be determined, it can be Incorrect positioning for galvanic contact of the electrode 42 with the pin 2 come. This would lead to incorrect measurements. Therefore, in not shown Way this electrode or both electrodes 42 and 41 with an insulating coating be provided, which does not interfere with the field measurement, but is electrically conductive Contact prevented.
  • the first electrode for measuring the from Component or of several components generated electric field this e.g. 5 can determine over a large area or e.g. according to the embodiment of FIG. 4 punctiform with a movement device which moves the electrode through the field to measure the field.
  • the field is also measured at a point, but with a static, non-moving electrode arrangement.
  • Fig. 6 shows the circuit board 1 with a capacitor 30, in the vicinity of which the electrical Field to be determined. This is parallel and adjacent to the board the capacitor 30 has a non-conductive electrode plate 60 on it, in execution example arranged in a rectangular matrix, arranged electrodes 61. In the exemplary embodiment, nine electrodes 61 are provided. These are connected via nine lines 62 to a changeover switch 63 which connects the electrodes one after the other connects to the measuring amplifier 13.
  • the field around the capacitor 30 can be successively can be determined at the locations of the individual electrodes 61, as well as if the first electrode 11 according to FIG. 3a is close to the capacitor 30 moved to the matrix points in its field.
  • Fig. 7 shows a variant of the embodiment of Fig. 6, which is also for Measurement of the field around the capacitor 30 on the board 1 is used.
  • the electrode matrix consists of three row electrodes 71 and three column electrodes 72, which are arranged crosswise and via changeover switches 73 and 74 are connected to the measuring amplifier 13.
  • the field is determined at the point of intersection of these two electrodes.
  • the electrodes 71c and 72c connected, so on their Crossing point determines the field.
  • the two measurements perform, which are shown in Figs. 3a and 3b. Will be a very much larger number of row and column electrodes can be used determine the field over a very large circuit area with a resolution, which depends on the distance between the electrodes.
  • test devices With the test devices shown, all types of components, such as individual switches, capacitors, ICs and. Like. And in particular also unequipped Boards are tested, the latter in particular for wire breaks. Furthermore, electrical circuits with multiple components, e.g. assembled boards, to be tested.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Monitoring And Testing Of Exchanges (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

An instrument to test electronic components, the instrument including a drive unit electrically connecting the component and electrically driving the component to generate a field in the nearby space. The instrument also includes a test device electrically insulated from the component and mounted in its vicinity in order to measure the field generated by the component. The drive unit is designed to apply a voltage to the component. The test device includes an instrument amplifier measuring the voltage differential of two electrodes positioned at two sites in the electric field generated by the component. One of the electrodes is positioned near the component.

Description

Die Erfindung betrifft eine Vorrichtung der im Oberbegriff des Anspruchs 1 genannten Art.The invention relates to a device mentioned in the preamble of claim 1 Art.

Eine nicht gattungsgemäße Vorrichtung ist aus der US-PS 5,254,953 bekannt. Dabei dienen die erste Elektrode und das zu testende Bauelement als Platten eines Kondensators, dessen Kapazität mit der Vorrichtung durch Ladungsänderung auf dem Kondensator bestimmt wird. Dazu muß der Meßverstärker eine Strommessung ausführen, und zwar in einer Verbindungsleitung zwischen der ersten Elektrode und der zweiten Elektrode, als die bei der bekannten gattungsgemäßen Vorrichtung die Masse der zu testenden Schaltung auf einer Platine dient. Die Meßvorrichtung ist also galvanisch mit der Schaltung verbunden.A device of the generic type is known from US Pat. No. 5,254,953. The first electrode and the component to be tested serve as plates Capacitor, its capacity with the device by changing the charge is determined on the capacitor. To do this, the measuring amplifier must carry out a current measurement perform, in a connecting line between the first Electrode and the second electrode than that of the known generic Device serves the mass of the circuit to be tested on a circuit board. The Measuring device is therefore galvanically connected to the circuit.

Mit dieser Vorrichtung können Bauelemente z.B. mit einer elektrischen Schaltung bestückte Platinen auf korrekte Bestückung überprüft werden. Ist das zu testende Bauelement z.B. durch mangelnde Verlötung oder Leitungsunterbrechung nicht ordnungsgemäß kontaktiert, so wird nur die wesentlich kleinere Kapazität gegenüber weiter entfernten Bauelementen, z.B. der Zuführungsleitung, jenseits der Unterbrechung bestimmt.With this device components e.g. with an electrical circuit assembled boards are checked for correct assembly. Is that to be tested Component e.g. due to insufficient soldering or open circuit not properly contacted, so only the much smaller capacity to more distant components, e.g. the supply line, beyond the interruption.

Vorteilhaft bei gattungsgemäßen Vorrichtungen ist die nicht erforderliche galvanische, also mechanische Kontaktierung zwischen der ersten Elektrode und dem Bauelement. Es sind keine gut leitenden Kontaktflächen auf dem Bauelement erforderlich. Oxydschichten stören z.B. nicht. Auch kann durch Isolierschichten oder nicht leitende Gehäuse hindurch gemessen werden.An advantage of generic devices is the unnecessary galvanic, thus mechanical contact between the first electrode and the Component. There are no good conductive contact surfaces on the component required. Oxide layers interfere e.g. Not. Can also through insulating layers or non-conductive housings are measured.

Da der Meßabstand in die gemessene Kapazität eingeht, können bei exakter Positionierung der ersten Elektrode geometrische Abweichungen des zu testenden Bauelementes bestimmt werden, z.B. durch Verbiegen, schiefe Bestückung oder dergleichen. Es können auch Steckkontakte gemessen werden, die nur für einmalige Kontaktierung ausgelegt sind und daher nicht z.B. mit einem Teststecker mechanisch belastet werden dürfen.Since the measuring distance is included in the measured capacitance, exact positioning can be carried out of the first electrode, geometric deviations of the one to be tested Component can be determined, e.g. by bending, crooked assembly or like. Plug contacts can also be measured, which are only for one-time use Contacts are designed and therefore not e.g. with a mechanical test plug may be charged.

Nachteilig bei der bekannten Vorrichtung ist das kapazitive Meßverfahren, das zur Ladungsverschiebung auf dem Kondensator Stromfluß in der Schaltung voraussetzt. Dieser Strom fließt bei komplizierteren Schaltungen regelmäßig auch durch andere Bauelemente, deren mögliche Fehlerabweichungen in das Meßergebnis eingehen. Da der Meßverstärker den Strom gegen die Schaltungsmasse bestimmt, liegt außerdem immer eine Kapazität zwischen der ersten Elektrode und der Schaltungsmasse parallel zur Meßkapazität. Diese störende Parallelkapazität ist aber regelmäßig größer als die Meßkapazität, so daß Abweichungen in der parallelen Kapazität gegen Masse größere Abweichungen hervorrufen. Außerdem ist eine große Meßempfindlichkeit erforderlich, um die kleinen Abweichungen der Meßkapazität in der großen Gesamtkapazität (Meßkapazität + viel größere Kapazität gegen Masse) bestimmen zu können. A disadvantage of the known device is the capacitive measuring method for the charge shift on the capacitor requires current flow in the circuit. This current also flows regularly in more complicated circuits through other components, their possible error deviations in the measurement result received. Since the measuring amplifier the current against the circuit ground determined, there is also always a capacitance between the first electrode and the circuit ground parallel to the measuring capacitance. This disruptive parallel capacity but is regularly larger than the measuring capacity, so that deviations in the parallel capacitance to mass cause larger deviations. Moreover a high level of measurement sensitivity is required to detect the small deviations the measuring capacity in the large total capacity (measuring capacity + much larger capacity against mass).

Eine weitere, nicht gattungsgemäße Testvorrichtung ist aus der
   DE 26 39 831 A1
bekannt. Bei dieser bekannten Vorrichtung wird in gattungsgemäßer Weise das bei elektrischer Beaufschlagung mittels einer Stimuliereinrichtung vom Bauelement erzeugte Feld mit einer Feldsonde ausgemessen. Als Feldsonde dient bei dieser bekannten Konstruktion eine Spule, die ausschließlich auf die magnetische Feldkomponente des vom Bauelement erzeugten elektromagnetischen Feldes anspricht. Magnetische Felder werden aber nur bei Stromfluß im Bauelement erzeugt. Folglich muß die Stimuliereinrichtung so ausgebildet sein, daß im Bauelement ein Stromfluß erzeugt wird. Damit ergeben sich wieder ähnliche Nachteile wie bei der zuvor beschriebenen kapazitiven Meßmethode. Alle benachbarten, ebenfalls stromdurchflossenen Bauelemente einer bestückten Schaltung können z.B. stören. Bauelemente, die aus bestimmten Gründen nicht korrekt angeschlossen und somit nicht von Strom durchflossen werden können, können überhaupt nicht getestet werden. Ferner ist durch die bauartbedingte Größe der Spule die örtliche Auflösung des Testverfahrens begrenzt.
Another, not generic test device is from the
DE 26 39 831 A1
known. In this known device, the field generated by the component upon electrical application by means of a stimulation device is measured in a generic manner with a field probe. In this known construction, a coil serves as a field probe, which responds exclusively to the magnetic field component of the electromagnetic field generated by the component. However, magnetic fields are only generated when current flows in the component. Consequently, the stimulation device must be designed so that a current flow is generated in the component. This again results in disadvantages similar to the capacitive measuring method described above. All neighboring, also current-carrying components of an assembled circuit can, for example, interfere. Components that for certain reasons cannot be connected correctly and therefore cannot be traversed by electricity cannot be tested at all. Furthermore, the local resolution of the test method is limited by the size of the coil due to the design.

Eine gattungsgemäße Testvorrichtung ist aus US-A-5 218 294 bekannt. Gemäß der in Spalte 2, Zeile 38 erwähnten Alternative "monopole antennas" wird hier das von einem Bauelement bei Stimulus-Beaufschlagung erzeugte elektrische Feld in der Nähe des Bauelementes mit einer Elektrode bestimmt. Im wesentlichen beschreibt diese Schrift jedoch die Bestimmung des elektromagnetischen Feldes mit einer die magnetische Feldkomponente bestimmenden induktiven Antenne, wie sie in Figur 5 dargestellt ist. Es sollen dabei, wie in Spalte 1, Zeile 67 angegeben, die Qualität, Form und Abmessung von Bauteilkomponenten ermittelt werden. A generic test device is known from US-A-5 218 294. According to The alternative "monopole antennas" mentioned in column 2, line 38 is here the electrical generated by a component when stimulus is applied Field near the component determined with an electrode. Essentially however, this document describes the determination of electromagnetic Field with an inductive which determines the magnetic field component Antenna as shown in Figure 5. As in column 1, row 67 specified, the quality, shape and dimension of component components determined become.

Vorteilhaft dabei ist die kontaktlose Meßmethode, bei der das Bauelement nicht mit Sondenspitzen kontaktiert werden muß. Nachteilig bei dieser Konstruktion ist jedoch das in den Spalten 4 bis 6 der Schrift beschriebene äußerst aufwendige Auswertverfahren, um aus den gemessenen Signalen verwertbare Aussagen zu erhalten. Es sind Spektrumanalysatoren erforderlich und es müssen spezielle Freequenzbandbänder untersucht werden und spektrale Dichten analysiert bzw. Phasenverschiebungen untersucht werden. Das Stimulussignal muß dazu bestimmte Signalmuster aufweisen, deren Wiedererkennung im empfangenen Signal verwendet wird, um verwertbare Aussagen zu erhalten.The contactless measuring method, in which the component is not, is advantageous here must be contacted with probe tips. A disadvantage of this construction is however, the extremely complex described in columns 4 to 6 of the document Evaluation method to make usable statements from the measured signals receive. Spectrum analyzers are required and special ones Frequency band bands are examined and spectral densities are analyzed or Phase shifts are examined. The stimulus signal must determine this Have signal patterns whose recognition in the received signal is used to obtain usable statements.

Eine ähnliche Konstruktion beschreibt die US-A-5 406 209, bei der Drahtelektroden in der Nähe des Bauelementes angeordnet werden. Auch hier wird das Bauelement mit bestimmten Signalformen beaufschlagt und es werden die empfangenen Signale mit Signalanalysatoren ausgewertet. Auch hier wird also mit Signalformerkennung gearbeitet, um verwertbare Aussagen zu erhalten.A similar construction is described in US-A-5 406 209, in which wire electrodes are used be arranged in the vicinity of the component. Here too Device applied with certain waveforms and it will be the received Signals evaluated with signal analyzers. So here too Waveform recognition worked to get usable statements.

Bei den beiden letztgenannten bekannten Konstruktionen liefert die einfache Bestimmung der Signalintensität keine Ergebnisse, an denen aussagekräftig über Fehler auf dem Bauelement entschieden werden kann. Nur die diskutierten hochkomplexen Auswertalgorithmen führen zu entscheidungskräftigen Werten.In the latter two known constructions, the simple determination provides the signal intensity no results that are meaningful about Faults on the component can be decided. Only the highly complex ones discussed Evaluation algorithms lead to decisive values.

Aus der nicht gattungsgemäßen US-A-4-588993 ist eine Vorrichtung zur Bestimmung von Störfeldern in der Umgebung elektrischer Geräte bekannt. Mit einer aus drei elektrischen (Dipol) und drei magnetischen (Schleife) Antennen gebildeten Sondenanordnung werden an einem Raumpunkt das elektrische und das magnetische Feld nach Betrag und Raumwinkel vermessen. Diese Anordnung dient zum einen völlig anderen Zwecken und ist zum anderen schon auf Grund der erforderlichen Sondengröße zur millimetergenauen Ausmessung des Feldes in enger Nachbarschaft von Bauelementen ungeeignet.A device for determination is known from US-A-4-588993, which is not of the generic type known from interference fields in the vicinity of electrical devices. With a formed from three electrical (dipole) and three magnetic (loop) antennas The probe arrangement is the electrical and the at a point in space measure magnetic field according to magnitude and solid angle. This arrangement serves completely different purposes on the one hand and is already on the other the required probe size to measure the field with millimeter precision close proximity of components unsuitable.

Die Aufgabe der vorliegenden Erfindung besteht darin, eine gattungsgemäße Vorrichtung mit größerer Nachweisempfindlichkeit von Abweichungen am zu testenden Bauelement und mit verringerten Anforderungen an die Auswertmethode zu schaffen.The object of the present invention is a generic device with greater sensitivity to detection of deviations on the test item Component and with reduced requirements for the evaluation method create.

Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruches 1 gelöst.This object is achieved with the features of claim 1.

Bei der erfindungsgemäßen Vorrichtung wird mit den beiden Elektroden eine Spannung zwischen zwei Punkten in dem elektrischen Feld bestimmt, das von dem spannungsbeaufschlagten Bauelement erzeugt wird. Die beiden Elektroden sind an einen Meßverstärker der Meßeinrichtung angeschlossen, welche vom Bauelement und somit insbesondere auch von der mit diesem galvanisch kontaktierten Stimuliereinrichtung galvanisch getrennt ist. Daher ergibt eine einfache Spannungsmessung der Felddifferenzspannung zwischen den Elektroden einen hochgenauen Wert, der eine genaue Wiedergabe der Feldgeometrie ist und somit eine exakte Aussage über Geometrie und Anordnung des benachbarten Bauelementes ermöglicht. Durch die galvanische Trennung der Meßeinrichtung werden Beeinflussungen durch das Bauelement vermieden. Es können bei z.B. dicht benachbarten Elektroden kleinste Felddifferenzen mit einem geeigneten Meßverstärker mit hoher Aussagekraft gemessen werden. Eine einzige Spannungsmessung (Gleichspannung oder Wechselspannung) reicht für die Bestimmung eines Meßpunktes aus. Anschließende hochkomplexe Signalauswertungen bei Verwertung entsprechender Stimulussignale, wie nach dem Stand der Technik, können entfallen. Die Erzeugung eines magnetischen Feldes und somit Stromfluß im Bauelement ist nicht erforderlich. Es reicht daher aus, das Bauelement bzw. eine mit Bauelementen besetzte Schaltung mit nur einem Leiter zu kontaktieren. Es kann eine Gleichspannung und somit ein erzeugtes rein elektrostatisches Feld verwendet werden. Die beiden Elektroden bilden eine Feldsonde, mit der die Feldgeometrie um das Bauelement hochgenau ausgemessen werden kann. Dazu können beide Elektroden oder vorzugsweise eine dem Bauelement benachbarte Elektrode bewegt werden. Nahe dem zu testenden Bauelement hängt das Feld im wesentlichen nur von diesem ab. Ist das Bauelement z.B. durch mangelnde Verlötung oder Leitungsunterbrechung nicht an die Stimulusspannung angeschlossen, so ergeben sich starke Feldabweichungen, die gegenüber dem Sollzustand - z.B. ermittelt durch eine vorherige Messung an einer korrekt arbeitenden Platine - sehr einfach nachweisbar sind. Formabweichungen am zu testenden Bauelement, z.B. Schieflage, Verbiegung etc., können durch die sich ergebenden Feldabweichungen sehr einfach detektiert werden. Andere Bauelemente stören wenig aufgrund ihrer geometrisch entfernten, das Feld wenig beeinflussenden Lage, insbesondere, wenn im Nahfeld um das zu testende Bauelement gemessen wird. Der Meßprozeß erzeugt nicht notwendigerweise Ströme in der Schaltung und dadurch bedingte Meßfehler. Wie beim gattungsgemäßen Stand der Technik entfällt jede Kontaktierung der Schaltung durch die Elektroden. Es sind keine gut kontaktierbaren Oberflächen nötig. Es kann über isolierten Oberflächen oder durch Kunststoffgehäuse hindurch gemessen werden, z.B. im Inneren eines in ein Kunststoffgehäuse eingebetteten ICs. Da Feldunsymmetrien besonders gut erkannt werden, löst sich sehr einfach das bisher ungelöste Problem der Erkennung falsch herum eingesetzter Elektrolytkondensatoren. Die Stimuliereinrichtung kann gesonderte Spannungen am Bauelement anlegen, z.B. Gleichspannungen, mit denen Probleme durch Kondensatoren in der Schaltung vermeidbar sind. Es sind auch Impulse, z.B. Wechselspannungen beliebiger Frequenz, verwendbar. Es kann sogar das elektrische Feld bestimmt werden, das sich über Bauelementen beim bestimmungsgemäßen Betrieb der Schaltung ergibt. Daher läßt sich die erfindungsgemäße Vorrichtung auch als Funktionstester einsetzen. Besitzt die erfindungsgemäße Feldsonde eine geeignete geometrische Auflösung, so keimen dabei sogar die Schaltprozesse im Inneren eines ICs betrachtet werden.In the device according to the invention, one is made with the two electrodes Voltage between two points in the electric field determined by the stressed component is generated. The two electrodes are connected to a measuring amplifier of the measuring device, which from Component and thus in particular of the galvanically contacted with this Stimulation device is electrically isolated. Therefore, a simple one Voltage measurement of the field differential voltage between the electrodes highly accurate value that is an accurate representation of the field geometry and thus an exact statement about the geometry and arrangement of the neighboring component allows. Due to the galvanic isolation of the measuring device Influences caused by the component avoided. With e.g. closely adjacent Smallest field differences with a suitable measuring amplifier can be measured with high informative value. A single voltage measurement (DC voltage or AC voltage) is sufficient for determining one Measuring point. Subsequent highly complex signal evaluations during recycling corresponding stimulus signals, as in the prior art omitted. The generation of a magnetic field and thus current flow in the Component is not required. It is therefore sufficient to use the component or one to contact circuitry with components with only one conductor. It can generate a direct voltage and thus a purely electrostatic field be used. The two electrodes form a field probe with which the Field geometry around the component can be measured with high precision. To can both electrodes or preferably one adjacent to the component Electrode are moved. The field hangs near the component to be tested essential only from this. Is the component e.g. due to lack of soldering or open circuit not connected to the stimulus voltage, This results in strong field deviations that are different from the target state - e.g. determined by a previous measurement on a correctly working board - very much are easily detectable. Shape deviations on the component to be tested, e.g. Skew, bending, etc., can result from the resulting field deviations can be detected very easily. Other components cause little disruption their geometrically distant position, which has little influence on the field, in particular when measuring in the near field around the component to be tested. The measuring process does not necessarily generate currents in the circuit and thereby Measurement error. As with the generic prior art, each is omitted Contacting of the circuit by the electrodes. They are not easily contactable Surfaces necessary. It can be over insulated surfaces or through plastic enclosures measured through, e.g. inside one in a plastic case embedded ICs. Since field asymmetries are recognized particularly well, the previously unresolved problem of recognition is very easily reversed used electrolytic capacitors. The stimulation device can be separate Apply voltages to the component, e.g. DC voltages with which problems through capacitors are avoidable in the circuit. There are also impulses, e.g. AC voltages any frequency, usable. It can even be electrical Field are determined, which are about components in the intended Operation of the circuit results. Therefore, the device according to the invention also use as a function tester. The field probe according to the invention has one suitable geometric resolution, the switching processes even germinate Be considered inside an IC.

Die zweite Elektrode kann irgendwo im elektrischen Feld, z.B. weit außerhalb des Meßortes, angeordnet sein. Dann braucht nur die erste Elektrode von Meßort zu Meßort verfahren zu werden. Vorteilhaft sind jedoch die Merkmale des Anspruches 2 vorgesehen. Sind beide Elektroden dem zu testenden Bauelement benachbart, so wird das elektrische Feld im Nahbereich, in dem sehr hohe Feldstärkedifferenzen vorliegen, sehr präzise ausgemessen, ohne Beeinflussungen durch Felder anderer Bauelemente.The second electrode can be anywhere in the electrical field, e.g. far outside of the measuring location. Then only the first electrode from the measuring location is required to be moved to the measurement site. However, the features of the claim are advantageous 2 provided. If both electrodes are adjacent to the component to be tested, so the electric field is in the close range, in which very high field strength differences available, measured very precisely, without being influenced by Fields of other components.

Dabei kann in sehr einfacher Bauform die Feldsonde als Anordnung am Ende eines abgeschirmten Kabels gemäß Anspruch 3 ausgebildet sein. Es lassen sich dadurch Feldmessungen in geometrischer Auflösung bis unter 1 mm durchführen.In a very simple design, the field probe can be arranged at the end a shielded cable according to claim 3. It can be this enables field measurements with a geometric resolution of less than 1 mm.

Vorteilhaft sind die Merkmale des Anspruches 4 vorgesehen. Dadurch kann bei Messungen im Nahbereich von zu testenden Bauelementen galvanischer Kontakt mit diesen auch bei Positionierabweichungen vermieden werden, die zu störendem galvanischen Kontakt mit der Schaltung führen würden.The features of claim 4 are advantageously provided. This can help Measurements in the close range of components to be tested galvanic contact with these, even in the event of positioning deviations, which are to be disrupted would lead to galvanic contact with the circuit.

Gemäß Anspruch 5 kann vorteilhaft die erste Elektrode auch mehrere Bauelemente gleichzeitig erfassen. Bei geeigneter Stimulierung z.B. der einzelnen Bauelemente nacheinander, wobei die jeweils anderen Bauelemente, z.B. mit der Stimuliereinrichtung geerdet sind, kann mit nur einer Positionierung der ersten Elektrode eine größere Anzahl von Bauelementen gemessen werden. Dies ist insbesondere bei geometrisch und elektrisch im wesentlichen gleichen Bauelementen von Vorteil, wie z.B. bei Kontaktstiften eines Steckers oder bei den Anschlußpins eines ICs.According to claim 5, the first electrode can advantageously also have several components capture at the same time. With suitable stimulation e.g. of the individual components one after the other, the other components, e.g. with the Stimulator are grounded with only one positioning of the first Electrode a larger number of components can be measured. This is particularly so with geometrically and electrically essentially the same components advantageous, e.g. with contact pins of a plug or with the connection pins of an IC.

Die Stimmuliereinrichtung kann eine Gleichspannung anlegen, deren elektrostatisches Feld von der erfindungsgemäßen Vorrichtung präzise ausmeßbar ist. Vorteilhaft wird jedoch gemäß Anspruch 6 eine gepulste Spannung angelegt, z.B. eine gepulste Gleichspannung oder eine Wechselspannung, die von dem Meßverstärker besser nachweisbar ist.The stimulating device can apply a DC voltage, its electrostatic Field can be precisely measured by the device according to the invention. Advantageous however, according to claim 6, a pulsed voltage is applied, e.g. a pulsed DC voltage or an AC voltage from the measuring amplifier is more detectable.

Vorteilhaft sind dabei gemäß Anspruch 7 Pulsfolgen niedriger Frequenz verwendet, die außerhalb des üblichen Frequenzbereiches liegen, in dem benachbarte Meßeinrichtungen und Computer abstrahlen.In this case, pulse sequences of low frequency are advantageously used, which are outside the usual frequency range, in the neighboring Radiate measuring devices and computers.

Vorzugsweise wird dabei gemäß Anspruch 8 als Pulsform eine Dreieckform verwendet. Diese hat den Vorzug, daß sie an Kapazitäten der Meßanordnung zu Rechtecken differenziert wird, welche vom Meßverstärker besser verarbeitbar sind.A triangular shape is preferably used as the pulse shape. This has the advantage that it increases the capacities of the measuring arrangement Rectangles are differentiated, which can be better processed by the measuring amplifier are.

Vorzugsweise unterdrückt der Meßverstärker gemäß Anspruch 9 Gleichspannung. Elektrostatische Felder, wie sie z.B. durch elektrostatische Aufladung in der Nähe des Meßortes entstehen können und die zu Fehlmessungen führen können, werden dadurch unterdrückt.Preferably, the measuring amplifier suppresses DC voltage. Electrostatic fields, e.g. by electrostatic charge in close to the measurement location and which can lead to incorrect measurements, are suppressed.

Vorzugsweise ist der Meßverstärker gemäß Anspruch 10 derart ausgebildet, daß er vorkommende Störfrequenzen unterdrückt, wie z.B. Netzfrequenzen im 50 Hertzbereich, die von benachbarten Netzgeräten erzeugt werden oder sonstige störende Frequenzen, die in der Nähe des Meßortes abgestrahlt werden, z.B. durch Computer-CPUs im 100 Megahertzbereich, von Robotersteuermotoren und dergleichen.Preferably, the measuring amplifier is designed in such a way that suppresses occurring interference frequencies, e.g. Line frequencies in the 50th Hertz range, which are generated by neighboring power supplies or other interfering frequencies which are emitted in the vicinity of the measuring location, e.g. through computer CPUs in the 100 megahertz range, from robot control motors and like.

Vorzugsweise sind die Merkmale des Anspruches 11 vorgesehen. Wie auch von anderen Sende- und Empfangseinrichtungen her bekannt, lassen sich auf diese Weise Störungen aus der Umgebung besonders gut unterdrücken.The features of claim 11 are preferably provided. As from other transmitters and receivers known, can be on this Suppress interference from the environment particularly well.

Vorzugsweise sind die Merkmale des Anspruches 12 vorgesehen. Hierbei wird das elektrische Feld in der Nähe eines oder mehrerer Bauelemente, z.B. über einer bestückten Platine, durch Verfahren der Elektrode in seiner geometrischen Anordnung ausgemessen.The features of claim 12 are preferably provided. Here will the electric field in the vicinity of one or more components, e.g. over one assembled circuit board, by moving the electrode in its geometric Arrangement measured.

Alternativ sind vorteilhaft die Merkmale des Anspruches 13 vorgesehen. Es sind dort als erste Elektrode Matrixelektroden in größerer Zahl, z.B. flächig parallel zu einer zu testenden Platine angeordnet, die mit einer geeigneten Einrichtung nacheinander mit dem Meßverstärker verbunden sind und auf diese Weise mit einem statischen, nicht bewegten Aufbau eine geometrische Auflösung des vom Bauelement erzeugten Feldes ermöglichen.Alternatively, the features of claim 13 are advantageously provided. There are there as a first electrode matrix electrodes in large numbers, e.g. flat parallel arranged to a circuit board to be tested, with a suitable device are successively connected to the measuring amplifier and in this way with a static, not moving structure a geometric resolution of the from Enable component generated field.

Dabei sind vorteilhaft die Merkmale des Anspruches 14 vorgesehen. Mit solchen Zeilen- und Spaltenelektroden, die jeweils zu zweit gekreuzt mit dem Meßverstärker verbunden werden, wozu eine übliche Multiplexansteuerung verwendbar ist, läßt sich eine flächige Auflösung des Feldes erreichen, da bei Verbindung zweier Elektroden des Matrixfeldes nur diese zur Zeit empfindlich sind, und zwar mit höchster Empfindlichkeit an ihrem Kreuzungspunkt, so daß dieser eine Aussage über die dortige Feldstärke macht. Durch Multiplexansteuerung aller Zeilenund Spaltenelektroden nacheinander lassen sich die Feldstärken an allen Kreuzungspunkten bestimmen. The features of claim 14 are advantageously provided. With such Row and column electrodes, each crossed by two with the measuring amplifier can be connected, for which purpose a conventional multiplex control can be used is, a flat resolution of the field can be achieved, since with connection two electrodes of the matrix field, only these are currently sensitive, namely with the highest sensitivity at their crossing point, so that this is a statement about the field strength there. By multiplex control of all lines and Column electrodes one after the other can be the field strengths at all crossing points determine.

In den Zeichnungen ist die Erfindung beispielsweise und schematisch dargestellt.
Es zeigen:

Fig. 1a und 1b:
den Test eines Kontaktstiftes auf ordnungsemäße Verlötung mit einer Leiterbahn,
Fig. 2a und 2b:
den Test zweier parallelen Leiterbahnen auf Unterbrechung einer der Leiterbahnen,
Fig. 3a und 3b:
den Test eines Elektrolytkondensators auf korrekte Einbaulage,
Fig. 4:
eine erfindungsgemäße Feldsonde in Ausbildung am Ende einer abgeschirmten Leitung mit Positioniereinrichtung,
Fig. 5:
eine erfindungsgemäße Feldsonde zum Testen aller Pins eines ICs in nur einer Positionierstellung,
Fig. 6
eine Draufsicht auf eine Ausführungsform der erfindungsgemäßen Feldsonde mit einer Matrixanordnung von Elektroden und
Fig. 7
eine Draufsicht auf eine Variante zur Ausführungsform der Fig. 6 mit gekreuzten Matrixelektroden.
The invention is shown schematically, for example, in the drawings.
Show it:
1a and 1b:
testing a contact pin for proper soldering to a conductor track,
2a and 2b:
the test of two parallel conductor tracks for the interruption of one of the conductor tracks,
3a and 3b:
the test of an electrolytic capacitor for correct installation position,
Fig. 4:
a field probe according to the invention in training at the end of a shielded line with a positioning device,
Fig. 5:
a field probe according to the invention for testing all pins of an IC in only one positioning position,
Fig. 6
a plan view of an embodiment of the field probe according to the invention with a matrix arrangement of electrodes and
Fig. 7
a plan view of a variant of the embodiment of FIG. 6 with crossed matrix electrodes.

Fig. 1a zeigt im Schnitt eine typische Testsituation auf einer nichtleitenden Platine 1, auf der ein Metallstift 2, z.B. einer von mehreren Stiften einer Steckkontaktleiste befestigt ist, der mit einer Leiterbahn 3 auf der Platine durch eine Lötstelle 4 kontaktiert ist. Fig. 1a shows a typical test situation on a non-conductive circuit board 1 on which a metal pin 2, e.g. one of several pins of a plug contact strip is attached with a conductor track 3 on the board through a solder joint 4 is contacted.

An die Leiterbahn 3 wird an einer geeigneten Kontaktstelle 5 mit einer Stimuliereinrichtung 6 eine Spannung, z.B. eine Gleichspannung von einigen Volt, angelegt, und zwar mit einer Kontaktspitze 7, die an eine Spannungsquelle 8 angeschlossen ist. Mit der zweiten Kontaktspitze 9 der Spannungsquelle 8 ist ein Leiter 10 kontaktiert, der im Abstand zur Leiterbahn 3 liegt. Bei dem Leiter 10 kann es sich um Erde, Masse der auf der Platine 1 befindlichen Schaltung oder auch um eine Feldplatte handeln, die irgendwo frei im Raum aufgehängt ist.The conductor track 3 is connected to a suitable contact point 5 with a stimulation device 6 a voltage, e.g. a DC voltage of a few volts, with a contact tip 7, which is connected to a voltage source 8 is. With the second contact tip 9 of the voltage source 8 is a conductor 10 contacted, which is at a distance from the conductor track 3. The conductor 10 can it is earth, mass of the circuit on the circuit board 1 or are a field plate that is suspended somewhere freely in the room.

Zwischen dem Leiter 10 und der Leiterbahn 3 sowie den damit elektrisch verbundenen Elementen, wie insbesondere dem zu testenden Bauelement in Form des Stiftes 2, bildet sich im umgebenden Raum ein elektrisches Feld aus. Ist der Leiter 10 von den Bauelementen 2 und 3 weit entfernt, so bildet sich um letztere ein im wesentlichen ungestörtes elektrisches Feld aus, dessen Feld(kraft)linien etwa so aussehen, wie in Fig. 1a dargestellt.Between the conductor 10 and the conductor track 3 and the ones electrically connected to it Elements, such as in particular the component to be tested in the form of the pin 2, an electric field is formed in the surrounding space. Is the Head 10 far from the components 2 and 3, so forms around the latter an essentially undisturbed electric field, whose field (force) lines look approximately as shown in Fig. 1a.

Man sieht, daß die Feldlinien stets senkrecht zu den Leitern 2, 3 stehen. An den Leiterenden, also an Spitzen der Leiter, verlaufen die Linien divergent. An langgestreckten Leitungsstücken verlaufen sie im wesentlichen parallel zueinander.It can be seen that the field lines are always perpendicular to the conductors 2, 3. To the The ends of the conductors, i.e. at the tips of the conductors, are divergent. On elongated They run essentially parallel to each other.

Fig. 1b zeigt dieselbe Anordnung, jedoch bei fehlender Verlötung 4. Der Stift 2 ist hier gegenüber der Leiterbahn 3 elektrisch isoliert. Die von der Stimuliereinrichtung 6 an die Leiterbahn 3 angelegte Spannung liegt nicht am Stift 2 an. Der Stift 2 liegt also nur als Leiter frei im elektrischen Feld. Er beeinflußt das Feld durch Influenz, also Ladungsverschiebungen auf dem Stift 2 geringfügig. Es ergibt sich dadurch, wie dargestellt, eine völlig andere Ausbildung der Feldlinien im Bereich des Stiftes 2. Insbesondere fehlt die starke Divergenz im Bereich der oberen Spitze des Stiftes 2. 1b shows the same arrangement, but with no soldering 4. The pin 2 is electrically isolated here from the conductor track 3. The one from the stimulator 6 voltage applied to the conductor track 3 is not present at pin 2. The Pin 2 is only exposed as a conductor in the electrical field. It affects the field due to influence, i.e. charge shift on pin 2 slightly. It results a completely different formation of the field lines, as shown in the area of the pen 2. In particular, the strong divergence in the area of the top tip of pin 2.

Wird eine Feldsonde mit einer Elektrode 11, wie dargestellt, in den Fällen der Figuren 1a und 1b in gleicher geometrischer Anordnung benachbart zum Stift 2 angeordnet, so sieht sie in den beiden dargestellten Fällen der Figuren 1a und 1b völlig unterschiedliche Feldstärken. Damit kann der dargestellte Fehler (fehlende Lötstelle 4) nachgewiesen werden. Liegen andere Fehler vor, wie beispielsweise ein elektrisch isolierender Bruch im Stift 2, z.B. innerhalb der Platine 1, oder z.B. ein Bruch in der Leiterbahn 3, so ergeben sich ähnliche, das elektrische Feld stark verzerrende Effekte, die zu sicherem Nachweis des Fehlers führen.If a field probe with an electrode 11, as shown, in the cases of Figures 1a and 1b in the same geometric arrangement adjacent to the pin 2nd arranged, so she sees in the two cases shown in Figures 1a and 1b completely different field strengths. The displayed error (missing Solder joint 4) can be verified. Are there other errors, such as an electrically insulating break in pin 2, e.g. inside the board 1, or e.g. a break in the conductor track 3, there are similar, the electric field strong distorting effects that lead to reliable detection of the error.

Da die Geometrie des Meßortes sehr stark in das Meßergebnis eingeht, kann bei exakt reproduzierter räumlicher Positionierung der Feldsonde 11 gegenüber der Platine 1 auch eine geometrische Abweichung des Stiftes 2 nachgewiesen werden, z.B. eine Verbiegung des Stiftes, eine zu geringe Länge oder dergleichen.Since the geometry of the measurement site is very much involved in the measurement result, at exactly reproduced spatial positioning of the field probe 11 relative to the Circuit board 1 also a geometric deviation of the pin 2 can be detected e.g. a bending of the pin, a length that is too short or the like.

Die dargestellte Feldsonde kann mit ihrer Elektrode 11 z.B. als Feldplatte ausgebildet sein, die über eine Leitung 12 mit einem Eingang eines Meßverstärkers 13 verbunden ist. Mit einer zweiten Leitung 14 ist der andere Eingang des Meßverstärkers 13 mit einer zweiten Elektrode in Form einer Feldplatte 15 verbunden, die irgendwo im Raum an anderer Stelle angeordnet ist. Liegen die erste Elektrode 11 und zweite Elektrode 15 weit auseinander, so wird das elektrische Feld im Nahfeld des Stiftes 2 allein durch die Positionierung der ersten Elektrode 11 bestimmt, während die zweite Elektrode 15 vorzugsweise in einem von der Schaltung auf der Platine 1 ungestörten Bereich liegt. Der durch die Elektroden 11 und 15 gebildete Dipol kann jedoch auch sehr kleinräumig, also mit eng benachbarten sehr kleinen Elektroden 11 und 15 ausgebildet sein und bestimmt dann hochpräzise die lokale Feldstärke am Ort der Feldsonde 11. Da ein solcher Dipol richtungsabhängig mißt, also in Richtung der dargestellten Feldlinien eine höhere Empfindlichkeit als quer zu diesen aufweist, läßt sich die Richtung der Feldlinien bestimmen und somit das elektrische Feld sehr genau erfassen. The field probe shown can with its electrode 11 e.g. designed as a field plate be connected via a line 12 to an input of a measuring amplifier 13 connected is. With a second line 14 is the other input of the measuring amplifier 13 connected to a second electrode in the form of a field plate 15, which is somewhere else in the room. Lie the first electrode 11 and the second electrode 15 far apart, so the electric field in The near field of the pin 2 is determined solely by the positioning of the first electrode 11, while the second electrode 15 is preferably in one of the circuit undisturbed area lies on the circuit board 1. The through the electrodes 11 and The dipole formed can, however, also be very small-scale, that is to say with closely adjacent ones very small electrodes 11 and 15 can be formed and then determined with high precision the local field strength at the location of the field probe 11. Since such a dipole depends on the direction measures, i.e. a higher in the direction of the field lines shown The direction of the field lines can be sensitive to this determine and thus detect the electric field very precisely.

Die Figuren 2a und 2b zeigen ein anderes typisches Meßproblem auf der Platine 1, die diesmal in Draufsicht dargestellt ist. Zwei Leiterbahnen 20 und 21 liegen parallel und sind von der Stimuliereinrichtung 6 mit einer Spannungsdifferenz beaufschlagt. Es bildet sich zwischen ihnen, wie Fig. 2a zeigt, eine elektrisches Feld mit parallelen Feldlinien aus. Dieses kann an der dargestellten Stelle mit der Elektrode 11 der Feldsonde bestimmt werden, die im übrigen der der Fig. 1 entsprechen kann.Figures 2a and 2b show another typical measurement problem on the board 1, which is shown in plan view this time. Two conductor tracks 20 and 21 are located parallel and are from the stimulation device 6 with a voltage difference applied. As shown in FIG. 2a, an electrical one is formed between them Field with parallel field lines. This can be done with the Electrode 11 of the field probe can be determined, which otherwise correspond to that of FIG. 1 can.

In Fig. 2a ist die Leiterbahn 21 mit einer Bruchstelle 22 unterteilt in die beiden Teilstücke 21a und 21b. Nur das Teilstück 21a ist von der Stimuliereinrichtung 6 mit Spannung beaufschlagt, während das abgetrennte Teilstück 21b spannungsfrei ist.In Fig. 2a, the conductor track 21 with a break 22 is divided into the two Sections 21a and 21b. Only the section 21a is from the stimulation device 6 supplied with voltage, while the separated section 21b is free of stress is.

Wie Fig. 2b zeigt, bildet sich dadurch eine starke Veränderung im elektrischen Feld aus, wie die dargestellten Feldlinien anzeigen. Diese starke Abweichung im elektrischen Feld kann von der Feldsonde 11 in Vergleich zur Messung in Fig. 2a an einer ordnungsgemäß gefertigten Platine leicht erkannt werden.As shown in Fig. 2b, this leads to a strong change in the electrical Field as shown by the field lines shown. This strong deviation in electric field can be obtained from the field probe 11 in comparison to the measurement in FIG. 2a can be easily recognized on a properly manufactured circuit board.

Die Figuren 3a und 3b zeigen einen außerordentlichen schwierigen Testfall auf der Platine 1 (im Schnitt dargestellt), nämlich einen Elektrolytkondensator 30, der zu Erläuterungszwecken stark schematisiert in älterer Bauform dargestellt ist.Figures 3a and 3b show an extraordinarily difficult test case the circuit board 1 (shown in section), namely an electrolytic capacitor 30, which is shown schematically in an older design for explanatory purposes.

Der Elektrolytkondensator 30 weist eine äußere topfförmig das Gehäuse ausbildende Elektrode 31 auf, die mit einer Zuleitung 32 kontaktiert ist sowie eine mit einer Zuleitung 33 kontaktierte innere Elektrode 34. The electrolytic capacitor 30 has an outer cup-shaped one that forms the housing Electrode 31, which is in contact with a lead 32 and one with a lead 33 contacted inner electrode 34.

In Fig. 3a ist der Elektrolytkondensator 30 in korrekter Einbaulage vorgesehen. In Fig. 3b sitzt er falsch herum, also mit umgekehrter Polarität. Dies muß von der Testvorrichtung erkannt werden.The electrolytic capacitor 30 is provided in the correct installation position in FIG. 3a. In Fig. 3b he sits the wrong way round, that is with reverse polarity. This must be from the Test device can be recognized.

Zum Test wird in beiden Fällen der Kondensator 30 mit Spannung beaufschlagt, und zwar durch Kontaktierung der Zuleitungen 32 und 33 mit einer nicht dargestellten Stimuliereinrichtung, z.B. der Stimuliereinrichtung 6 der Fig. 1. Es ergibt sich dabei in der Umgebung des Elektrolytkondensatoren 30 jeweils ein elektrisches Feld mit Feldlinien, wie sie in Figuren 3a und 3b dargestellt sind. Man erkennt, daß die Feldlinien in dem Bereich des Elektrolytkondensators 30, in dem die Zuleitung 33 mit der inneren Elektrode 34 kontaktiert ist, mit hoher Dichte, also hoher Feldstärke, aus der Öffnung der abschirmenden topfförmigen äußeren Elektrode 31 austreten, im Abstand von dieser Stelle jedoch eine sehr geringere Feldstärke herrscht. Wird in den beiden Fällen der Figuren 3a und 3b die bereits erwähnte Feldsonde 11 in derselben geometrischen Anordnung benachbart zum Elektrolytkondensator 30 angeordnet, so ergibt sich in den beiden dargestellten Fällen der Figuren 3a und 3b eine extrem unterschiedliches Meßergebnis, völlig im Gegensatz zu allen anderen bekannten Testvorrichtungen, die im dargestellten Beispiel eines verkehrt eingebauten Elektrolytkondensators nur sehr geringe Meßergebnisse ergeben. Mehrere Messungen mit vertauschter Stimuluspolarität sind nicht erforderlich.In both cases, the capacitor 30 is subjected to voltage for the test, by contacting the leads 32 and 33 with one, not shown Stimulator, e.g. the stimulation device 6 of FIG. 1. It results there is an electrical one in the vicinity of the electrolytic capacitors 30 Field with field lines, as shown in Figures 3a and 3b. One recognises, that the field lines in the area of the electrolytic capacitor 30 in which the lead 33 is in contact with the inner electrode 34, with high density, So high field strength, from the opening of the shielding cup-shaped outer Emerge from electrode 31, but a very small distance from this point Field strength prevails. In the two cases of Figures 3a and 3b, the already mentioned field probe 11 in the same geometric arrangement adjacent to Electrolytic capacitor 30 arranged, results in the two shown Cases of Figures 3a and 3b an extremely different measurement result, completely in contrast to all other known test devices shown in the Example of an incorrectly installed electrolytic capacitor only very low measurement results result. There are several measurements with reversed stimulus polarity not mandatory.

Fig. 4 zeigt ein Beispiel für eine Feldsonde mit einem räumlich sehr kleinen, also die Feldgeometrie hoch auflösenden Dipol. Die Feldsonde ist am Ende eines abgeschirmten Kabels 40 vorgesehen. Dabei werden die beiden Pole des Dipols von der äußeren Abschirmung 41 und dem aus dem Ende des abgeschirmten Kabels 40 heraussragenden Innenleiter 42 gebildet. Wird ein sehr dünnes abgeschirmtes Kabel mit einem Gesamtdurchmesser von unter z.B. 1 mm verwendet, so läßt sich eine Dipolfeldsonde mit einem Abstand der beiden Pole im Bereich unter 1 mm erzeugen, mit der elektrische Felder mit entsprechend kleiner geometrischer Auflösung vermessen werden können.Fig. 4 shows an example of a field probe with a spatially very small, ie the field geometry high-resolution dipole. The field probe is shielded at the end Cable 40 provided. The two poles of the dipole of the outer shield 41 and that from the end of the shielded cable 40 protruding inner conductor 42 is formed. Becomes a very thin shielded Cables with a total diameter of less than e.g. 1 mm used, so lets a dipole field probe with a distance between the two poles in the range below 1 mm with which electric fields with a correspondingly smaller geometric Resolution can be measured.

Fig. 4 zeigt ferner eine Positioniereinrichtung 43, die mit nicht dargestellten Einrichtungen in den dargestellten drei Raumrichtungen verstellbar ist und die mit einem Arm 44 und einer Klammer 45 den Endbereich des abgeschirmten Kabels 40, also die Feldsonde, trägt. Mit der Positioniereinrichtung 43 kann die Feldsonde im elektrischen Feld um Bauelemente genau positioniert werden.Fig. 4 also shows a positioning device 43, the devices, not shown is adjustable in the three spatial directions shown and with an arm 44 and a bracket 45 the end portion of the shielded cable 40, i.e. the field probe. With the positioning device 43, the field probe be positioned precisely in the electrical field around components.

Das abgeschirmte Kabel 40 ist an seinem der Feldsonde abgewandten Ende mit seiner Abschirmung 41 und seinem Innenleiter 42 an die beiden Eingänge des bereits erwähnten Meßverstärkers 13 angeschlossen, der die Spannung zwischen den Elektroden 42 und 41 mitbestimmt, wobei sein Eingang sehr hochohmig sein muß, um das Feld nicht zu sehr zu belasten.The shielded cable 40 is at its end facing away from the field probe its shield 41 and its inner conductor 42 to the two inputs of the already mentioned measuring amplifier 13 connected, the voltage between co-determined with electrodes 42 and 41, its input being very high-impedance must, in order not to overload the field too much.

Fig. 5 zeigt in perspektivischer Ansicht einen handelsüblichen IC 50 mit Anschlußpins 51, die in einer Reihe angeordnet sind. Es soll getestet werden, ob die Pins 51.1 - 51.6 ordnungsgemäß mit Leiterbahnen 52 der Platine 1 verlötet sind, wobei die Lötstellen entsprechend den Lötstellen 4 in Fig. 1a ausgebildet sein können.5 shows a perspective view of a commercially available IC 50 with connecting pins 51, which are arranged in a row. It should be tested whether the Pins 51.1 - 51.6 are properly soldered to conductor tracks 52 of circuit board 1, wherein the solder joints are designed according to the solder joints 4 in Fig. 1a can.

Zur Zeit soll der Pin 51.4 auf ordnungsgemäße Verlötung getestet werden. Es wird die bereits beschriebene Stimuliereinrichtung 6 angelegt, die mit einer Kontaktspitze 7 die Leiterbahn zum Pin 51.4 kontaktiert und mit ihrem anderen Pol mit einer Reihe paralleler Kontaktspitzen 9.1 - 9.5 alle anderen Leiterbahnen 52 mit dem anderen Pol der Spannungsquelle 8 verbindet. An den Pin 51.4 wird also eine Spannung angelegt gegen alle anderen Pins. Pin 51.4 is currently being tested for proper soldering. It the stimulation device 6 already described is applied, which is connected to a Contact tip 7 contacted the conductor to pin 51.4 and with its other Pole with a series of parallel contact tips 9.1 - 9.5 all other conductor tracks 52 connects to the other pole of the voltage source 8. Pin 51.4 so a voltage is applied to all other pins.

Die Testvorrichtung weist im Ausführungsbeispiel der Fig. 5 zwei Elektroden 53 und 54 auf, die durch eine Isolierung 55 getrennt sind und über verdrillte Zuleitungen an den bereits diskutierten Meßverstärker 13 angeschlossen sind. Wie aus Fig. 5 ersichtlich, erstrecken sich die beiden Elektroden 53 und 54 großflächig über den gesamten IC 50, liegen also allen Pins 51.1 - 51.6 gleichermaßen benachbart. Das durch Anlegen einer Spannung mit der Stimuliereinrichtung 6 an den Pins erzeugte elektrische Feld kann von den Elektroden 53 und 54 erfaßt und mit dem Meßverstärker 13 nachgewiesen werden. Wie die Fig. 5 zeigt, ergibt sich dabei im wesentlichen dasselbe Feld bei unterschiedlicher Beschaltung der Pins. Es kann also jeder der Pins 51.1 - 51.6 nacheinander mit der Kontaktspitze 7 der Stimuliereinrichtung 6 verbunden werden, wobei jeweils alle übrigen Pins mit den Kontaktspitzen 9.1 - 9.5, also dem anderen Ausgang der Spannungsquelle 8, verbunden sind. Auf diese Weise können in derselben Weise, wie zu den Figuren 1a und 1b beschrieben, alle Pins 51.1 - 51.6 nacheinander auf ordnungsgemäße Verlötung mit ihren Leiterbahnen 52 untersucht werden. Die Elektrodenanordnung 53, 54 braucht dabei nicht jeweils neu positioniert zu werden, was den Testablauf wesentlich vereinfacht.In the exemplary embodiment in FIG. 5, the test device has two electrodes 53 and 54, which are separated by insulation 55 and via twisted leads are connected to the measuring amplifier 13 already discussed. How from 5, the two electrodes 53 and 54 extend over a large area over the entire IC 50, all pins 51.1 - 51.6 are equally adjacent. This by applying a voltage to the stimulation device 6 electrical field generated by the pins can be detected by electrodes 53 and 54 and can be detected with the measuring amplifier 13. 5 shows essentially the same field with different wiring of the pins. It can therefore each of the pins 51.1 - 51.6 in succession with the contact tip 7 of the Stimulation device 6 can be connected, with all the remaining pins the contact tips 9.1 - 9.5, ie the other output of the voltage source 8, are connected. This way you can in the same way as for the figures 1a and 1b described, all pins 51.1 - 51.6 successively on proper Soldering with their conductor tracks 52 are examined. The electrode arrangement 53, 54 does not have to be repositioned, which means the test procedure much simplified.

Mit dem Testaufbau gemäß Fig. 5 können auch andere ähnliche Strukturen untersucht werden, z.B. in Reihenanordnung stehende Stifte einer Steckerleiste und dergleichen.5 can also be used to investigate other similar structures e.g. pins in a row of a connector strip and like.

Der in den diskutierten Ausführungsformen beschriebene Meßverstärker 13 muß zur Messung sehr kleiner Feldstärken ausgebildet sein. Er muß also sehr kleine Spannungen, z.B. im µV-Bereich nachweisen können.The measuring amplifier 13 described in the discussed embodiments must be designed to measure very small field strengths. So he must be very small Tensions, e.g. can prove in the µV range.

Bei der Konstruktion des Meßverstärkers 13 ist zu berücksichtigen, daß am Meßort störende Fremdfelder vorliegen können, die sich dem Feld das von dem zu testenden Bauelement erzeugt wird, überlagern. Solche Felder können z.B. Frequenzen im Netzfrequenzbereich haben, also z.B. von benachbarten Transformatoren stammen. Außerdem können benachbart aufgestellte Computer sehr starke Störungen im Bereich z.B. 100 Megahertz erzeugen. Solche bekannten Störfrequenzen können durch geeignete Filtereinrichtungen im Meßverstärker 13 unterdrückt werden.When designing the measuring amplifier 13, it must be taken into account that at the measuring location disturbing foreign fields may exist, which differ from that to the field test component is generated, overlay. Such fields can e.g. frequencies in the network frequency range, e.g. from neighboring transformers come. In addition, neighboring computers can do a lot strong disturbances in the area e.g. Generate 100 megahertz. Such well-known Interference frequencies can be adjusted by suitable filter devices in the measuring amplifier 13 be suppressed.

Es können aber auch starke Gleichfeldstörungen vorliegen, z.B. durch elektrostatische Felder, die beispielsweise von elektrostatischer Aufladung herrühren. Daher unterdrückt der Meßverstärker 13 vorteilhaft auch Gleichspannung.However, there may also be strong DC interference, e.g. through electrostatic Fields that originate, for example, from electrostatic charging. Therefore the measuring amplifier 13 advantageously also suppresses DC voltage.

Bei Gleichspannungsunterdrückung am Meßverstärker 13 muß das zu messende, vom Bauelement abgestrahlte Feld gepulst sein. Die Stimuliereinrichtung 6 ist dabei zum Anlegen von Impulsen ausgebildet, die in Form von Gleichspannungsimpulsen. Wechselspannungsimpulsen oder auch als sinusförmige Wechselspannung verwendbar sind. Diese haben dann vorzugsweise Frequenzen im unteren Frequenzbereich, also unter z.B. 100.000 Hz, da in diesem niedrigen Frequenzbereich weniger Störfrequenzen auftreten. Vorzugsweise wird die Stimuliereinrichtung 6 mit dem Meßverstärker 13 auf geeignetem Wege synchronisiert, beispielsweise durch Selbstsynchronisation des Meßverstärkers am empfangenen Signal. Dadurch können Störungen durch Fremdfelder weiter unterdrückt werden.With DC voltage suppression at the measuring amplifier 13, the field emitted by the component must be pulsed. The stimulation device 6 is thereby designed to apply pulses in the form of DC voltage pulses. AC voltage pulses or as a sinusoidal AC voltage are usable. These then preferably have frequencies in the lower frequency range, i.e. below e.g. 100,000 Hz because in this low Frequency range fewer interference frequencies occur. The stimulation device is preferably used 6 synchronized with the measuring amplifier 13 in a suitable way, for example, by self-synchronization of the measuring amplifier on the received Signal. This can further suppress interference from external fields become.

In besonders bevorzugter Ausbildung liefert die Stimuliereinrichtung 6 Dreieckimpulse, die nach Differenzierung an Kapazitäten im Meßaufbau Rechteckimpulse ergeben, welche vom Meßverstärker 13 besonders einfach nachweisbar sind.In a particularly preferred embodiment, the stimulation device delivers 6 triangular pulses, the rectangular pulses after differentiation of capacities in the measurement setup result, which are particularly easy to detect by the measuring amplifier 13 are.

Wenn beispielsweise die in Fig. 4 dargestellte Feldsonde, die zur sehr kleinräumigen Ausmessung des elektrischen Feldes geeignet ist, im Nahbereich eines zu testenden Bauelementes, z.B. des Stiftes 2 in Fig. 1a, positioniert wird und das Feld in unmittelbarer Nähe des Bauelementes bestimmt werden soll, kann es bei Fehlpositionierungen zu galvanischem Kontakt der Elektrode 42 mit dem Stift 2 kommen. Dies würde zu Fehlmessungen führen. Daher kann in nicht dargestellter Weise diese Elektrode oder auch beide Elektroden 42 und 41 mit einem Isolierüberzug versehen sein, der die Feldmessung nicht stört, jedoch elektrisch leitenden Kontakt verhindert.If, for example, the field probe shown in Fig. 4, the very small-scale Measurement of the electric field is suitable in the close range testing component, e.g. of the pin 2 in Fig. 1a, is positioned and that Field in the immediate vicinity of the component should be determined, it can be Incorrect positioning for galvanic contact of the electrode 42 with the pin 2 come. This would lead to incorrect measurements. Therefore, in not shown Way this electrode or both electrodes 42 and 41 with an insulating coating be provided, which does not interfere with the field measurement, but is electrically conductive Contact prevented.

Aus Vorstehendem ergibt sich, daß die erste Elektrode zum Ausmessen des vom Bauelement oder von mehreren Bauelementen erzeugten elektrischen Feldes dieses z.B. gemäß der Ausführungsform der Fig. 5 großflächig bestimmen kann oder z.B. gemäß Ausführungsform der Fig. 4 punktförmig mit einer Bewegungseinrichtung die zum Ausmessen des Feldes die Elektrode durch das Feld bewegt.From the above it follows that the first electrode for measuring the from Component or of several components generated electric field this e.g. 5 can determine over a large area or e.g. according to the embodiment of FIG. 4 punctiform with a movement device which moves the electrode through the field to measure the field.

In einer alternativen Ausführungsform gemäß Fig. 6 wird das Feld ebenfalls punktförmig ausgemessen, jedoch mit einer statischen, nicht bewegten Elektrodenanordnung.In an alternative embodiment according to FIG. 6, the field is also measured at a point, but with a static, non-moving electrode arrangement.

Fig. 6 zeigt die Platine 1 mit einem Kondensator 30, in dessen Nähe das elektrische Feld zu bestimmen ist. Dazu ist parallel und benachbart zur Platine über dem Kondensator 30 eine nichtleitende Elektrodenplatte 60 mit auf dieser, im ausführungsbeispiel in einer Rechteckmatrix, angeordneten Elektroden 61 angeordnet. Im Ausführungsbeispiel sind neun Elektroden 61 vorgesehen. Diese sind über neun Leitungen 62 an einen Umschalter 63 angeschlossen, der die Elektroden nacheinander einzeln mit dem Meßverstärker 13 verbindet.Fig. 6 shows the circuit board 1 with a capacitor 30, in the vicinity of which the electrical Field to be determined. This is parallel and adjacent to the board the capacitor 30 has a non-conductive electrode plate 60 on it, in execution example arranged in a rectangular matrix, arranged electrodes 61. In the exemplary embodiment, nine electrodes 61 are provided. These are connected via nine lines 62 to a changeover switch 63 which connects the electrodes one after the other connects to the measuring amplifier 13.

Mit dieser Anordnung kann das Feld in Umgebung des Kondensators 30 nacheinander an den Orten der einzelnen Elektroden 61 bestimmt werden, genauso als wenn man die erste Elektrode 11 gemäß Fig. 3a in der Nähe des Kondensators 30 in dessen Feld auf die Matrixpunkte bewegt.With this arrangement, the field around the capacitor 30 can be successively can be determined at the locations of the individual electrodes 61, as well as if the first electrode 11 according to FIG. 3a is close to the capacitor 30 moved to the matrix points in its field.

Fig. 7 zeigt eine Variante der Ausführungsform der Fig. 6, die ebenfalls zur Ausmessung des Feldes um den Kondensator 30 auf der Platine 1 dient.Fig. 7 shows a variant of the embodiment of Fig. 6, which is also for Measurement of the field around the capacitor 30 on the board 1 is used.

Bei der Anordnung der Fig. 7 besteht die Elektrodenmatrix aus drei Zeilenelektroden 71 und drei Spaltenelektroden 72, die gekreuzt angeordnet und über Umschalter 73 und 74 mit dem Meßverstärker 13 verbunden sind. Sind z.B. über die Umschalter 73, 74 die beiden Elektroden 71a und 72a an den Meßverstärker angeschlossen, so wird am Kreuzungspunkt dieser beiden Elektroden das Feld bestimmt. Sind z.B. die Elektroden 71c und 72c angeschlossen, so wird an deren Kreuzungspunkt das Feld bestimmt. Auf diese Weise lassen sich die beiden Messungen durchführen, die in den Fig. 3a und 3b dargestellt sind. Wird eine sehr viel größere Anzahl von Zeilen- und Spaltenelektroden verwendet, so läßt sich das Feld über einem sehr großen Schaltungsbereich mit einer Auflösung bestimmen, die vom Abstand der Elektroden abhängt.In the arrangement of FIG. 7, the electrode matrix consists of three row electrodes 71 and three column electrodes 72, which are arranged crosswise and via changeover switches 73 and 74 are connected to the measuring amplifier 13. Are e.g. about the Switch 73, 74 connected the two electrodes 71a and 72a to the measuring amplifier, the field is determined at the point of intersection of these two electrodes. Are e.g. the electrodes 71c and 72c connected, so on their Crossing point determines the field. In this way, the two measurements perform, which are shown in Figs. 3a and 3b. Will be a very much larger number of row and column electrodes can be used determine the field over a very large circuit area with a resolution, which depends on the distance between the electrodes.

Mit den dargestellten Testvorrichtungen können Bauelemente aller Art, wie z.B. einzelne Schalter, Kondensatoren, ICs u. dgl. sowie insbesondere auch unbestückte Platinen getestet werden, letztere insbesondere auf Leiterunterbrechung. Ferner können elektrische Schaltungen mit mehreren Bauelementen, wie z.B. bestückte Platinen, getestet werden.With the test devices shown, all types of components, such as individual switches, capacitors, ICs and. Like. And in particular also unequipped Boards are tested, the latter in particular for wire breaks. Furthermore, electrical circuits with multiple components, e.g. assembled boards, to be tested.

Claims (14)

  1. Apparatus for testing electronic components (1, 2, 21, 30, 51.4) including a stimulating device (6), which galvanically contacts the component and excites it by applying a voltage to create a field in the surrounding space, and including a measuring device, which is positioned with a first electrode (11; 42; 53; 61; 71.72) in the vicinity of the component, characterised in that the measuring device (11, 13, 15) is galvanically isolated from the component (1, 2, 21, 30, 51.4) and that the measuring device has a measuring amplifier (13), which is constructed to measure a voltage differential between the first electrode (11; 42; 53; 61; 71.72) and a second electrode (15), disposed at a distance from it in the field.
  2. Apparatus as claimed in Claim 1, characterised in that the two electrodes (41, 42) are disposed at a small distance from one another of the order of the structure of the component to be tested.
  3. Apparatus as claimed in Claim 2, characterised in that one electrode is constituted by the shielding (41) of a shielded cable (40) and the other electrode is constituted by its internal conductor (42) projecting beyond the end of the cable.
  4. Apparatus as claimed in Claim 1, characterised in that at least the first electrode (11, 42, 53) is provided with insulation preventing galvanic contact.
  5. Apparatus as claimed in Claim 1, characterised in that the first electrode (53) has a large area covering a plurality of components (51.1 - 51.6).
  6. Apparatus as claimed in Claim 1, characterised in that the stimulating device (6) applies a pulsed voltage.
  7. Apparatus as claimed in Claim 6, characterised in that the pulse sequence corresponds to a frequency below about 100,000 Hz.
  8. Apparatus as claimed in Claim 6, characterised in that the pulses are of triangular shape.
  9. Apparatus as claimed in Claim 6, characterised in that the measuring amplifier (13) suppresses dc voltages.
  10. Apparatus as claimed in Claim 6, characterised in that the measuring amplifier (13) suppresses interfering frequencies.
  11. Apparatus as claimed in Claim 6, characterised in that the measuring amplifier (13) operates in synchronism with the stimulating device (6).
  12. Apparatus as claimed in Claim 1, characterised in that the first electrode (11, 42) is arranged to be movable in the vicinity of the component (2, 21, 30).
  13. Apparatus as claimed in Claim 1, characterised in that the first electrode is in the form of a matrix of separate matrix electrodes (61), which are selectively connectable to the measuring amplifier (13).
  14. Apparatus as claimed in Claim 13, characterised in that the matrix electrodes are constructed in the form of intersectingly arranged line electrodes (71a - 71c) and column electrodes (72a - 72c), of which one of the line electrodes and one of the column electrodes are selectively simultaneously connected.
EP98954273A 1997-09-24 1998-09-11 Device for testing circuit boards Expired - Lifetime EP1018031B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19742055 1997-09-24
DE19742055A DE19742055C2 (en) 1997-09-24 1997-09-24 Device for testing circuit boards
PCT/EP1998/005801 WO1999015910A1 (en) 1997-09-24 1998-09-11 Device for testing circuit boards

Publications (2)

Publication Number Publication Date
EP1018031A1 EP1018031A1 (en) 2000-07-12
EP1018031B1 true EP1018031B1 (en) 2002-10-09

Family

ID=7843416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98954273A Expired - Lifetime EP1018031B1 (en) 1997-09-24 1998-09-11 Device for testing circuit boards

Country Status (7)

Country Link
US (1) US6496013B1 (en)
EP (1) EP1018031B1 (en)
AT (1) ATE225944T1 (en)
AU (1) AU1146299A (en)
DE (3) DE19742055C2 (en)
ES (1) ES2185226T3 (en)
WO (1) WO1999015910A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011018650A1 (en) 2010-04-22 2011-10-27 Elowerk Gmbh & Co.Kg Method for testing electrical component, involves connecting free electrodes of test device with trigger electrode mounted on printed circuit board while arranging free electrodes on package of electric component

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6625554B2 (en) * 2001-06-22 2003-09-23 Hitachi, Ltd. Method and apparatus for determining a magnetic field
AUPR793201A0 (en) * 2001-09-28 2001-10-18 Deepwater Electronics Electric field detector
US7859666B2 (en) * 2003-07-28 2010-12-28 Nippon Telegraph And Telephone Corporation Electric field sensor
US8493053B2 (en) * 2009-12-18 2013-07-23 GRID20/20, Inc. System and device for measuring voltage in a conductor
US8742777B2 (en) 2010-12-29 2014-06-03 The Board Of Trustees Of The University Of Alabama For And On Behalf Of The University Of Alabama Method and system for testing an electric circuit
US9523729B2 (en) * 2013-09-13 2016-12-20 Infineon Technologies Ag Apparatus and method for testing electric conductors

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925726A (en) * 1974-05-08 1975-12-09 Us Navy Electric field sensor
GB1537870A (en) * 1975-09-05 1979-01-04 Ericsson L M Pty Ltd Printed circuit board testing method and apparatus
US4186338A (en) * 1976-12-16 1980-01-29 Genrad, Inc. Phase change detection method of and apparatus for current-tracing the location of faults on printed circuit boards and similar systems
DE2813947C2 (en) * 1978-03-31 1986-09-04 Siemens AG, 1000 Berlin und 8000 München Method for contactless measurement of the potential profile in an electronic component and arrangement for carrying out the method
DE2903077C2 (en) * 1979-01-26 1986-07-17 Siemens AG, 1000 Berlin und 8000 München Method for contactless potential measurement on an electronic component and arrangement for carrying out the method
US4588993A (en) * 1980-11-26 1986-05-13 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Broadband isotropic probe system for simultaneous measurement of complex E- and H-fields
DE3334494A1 (en) * 1983-09-23 1985-04-11 Siemens AG, 1000 Berlin und 8000 München METHOD FOR MEASURING LOW-FREQUENCY SIGNAL PROCESSES WITHIN INTEGRATED CIRCUITS WITH THE ELECTRON PROBE
US4670710A (en) * 1985-03-29 1987-06-02 International Business Machines Corporation Noncontact full-line dynamic AC tester for integrated circuits
DE3544187A1 (en) * 1985-12-13 1987-06-19 Flowtec Ag CAPACITY MEASURING
US4837506A (en) * 1986-10-02 1989-06-06 Ultraprobe, Inc. Apparatus including a focused UV light source for non-contact measuremenht and alteration of electrical properties of conductors
EP0264481B1 (en) * 1986-10-23 1992-05-13 International Business Machines Corporation Testing method for integrated circuit packaging boards using a laser in vacuum
US4779041A (en) * 1987-05-20 1988-10-18 Hewlett-Packard Company Integrated circuit transfer test device system
US4924172A (en) * 1988-08-25 1990-05-08 Kaman Instrumentation Corporation Capacitive sensor and electronic circuit for non-contact distance measurement
US5006808A (en) * 1989-03-21 1991-04-09 Bath Scientific Limited Testing electrical circuits
US4991580A (en) * 1989-03-30 1991-02-12 Invivo Research, Inc. Method of improving the quality of an electrocardiogram obtained from a patient undergoing magnetic resonance imaging
DE59005875D1 (en) * 1989-04-07 1994-07-07 Asea Brown Boveri Device for measuring an electrical field.
GB2236593B (en) 1989-08-25 1994-01-05 Janet Heather Driver Detector
US5138266A (en) * 1989-10-20 1992-08-11 Digital Equipment Corporation Single-probe charge measurement testing method
DE4022563A1 (en) * 1990-04-11 1991-10-17 Flachglas Ag METHOD FOR CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE OF AN EXAMINATION MATERIAL
US5489888A (en) * 1990-11-07 1996-02-06 Precitec Gmbh Sensor system for contactless distance measuring
US5124660A (en) * 1990-12-20 1992-06-23 Hewlett-Packard Company Identification of pin-open faults by capacitive coupling through the integrated circuit package
US5254953A (en) * 1990-12-20 1993-10-19 Hewlett-Packard Company Identification of pin-open faults by capacitive coupling through the integrated circuit package
CA2049616C (en) * 1991-01-22 2000-04-04 Jacob Soiferman Contactless test method and system for testing printed circuit boards
EP0527321A1 (en) * 1991-08-05 1993-02-17 Siemens Aktiengesellschaft Method for automatic error diagnosis of electrical circuit boards
US5406209A (en) * 1993-02-04 1995-04-11 Northern Telecom Limited Methods and apparatus for testing circuit boards
IT1261074B (en) * 1993-07-05 1996-05-08 Luciano Bonaria METHOD AND TESTING DEVICE FOR ELECTRONIC BOARDS
US5514229A (en) * 1993-11-24 1996-05-07 Ramot-University Authority For Applied Research And Industrial Development Ltd., Tel Aviv University Method of producing transparent and other electrically conductive materials
US6191587B1 (en) * 1996-04-26 2001-02-20 Anthony Charles Leonid Fox Satellite synchronized 3-D magnetotelluric system
US5954762A (en) * 1997-09-15 1999-09-21 Di Mino; Alfonso Computer-controlled servo-mechanism for positioning corona discharge beam applicator
US6359451B1 (en) * 2000-02-11 2002-03-19 Image Graphics Incorporated System for contactless testing of printed circuit boards

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011018650A1 (en) 2010-04-22 2011-10-27 Elowerk Gmbh & Co.Kg Method for testing electrical component, involves connecting free electrodes of test device with trigger electrode mounted on printed circuit board while arranging free electrodes on package of electric component
DE102011018650B4 (en) * 2010-04-22 2015-05-07 Elowerk Gmbh & Co.Kg Method for testing an electrical component and use

Also Published As

Publication number Publication date
ES2185226T3 (en) 2003-04-16
EP1018031A1 (en) 2000-07-12
DE59805921D1 (en) 2002-11-14
US6496013B1 (en) 2002-12-17
DE19742055C2 (en) 2000-02-24
ATE225944T1 (en) 2002-10-15
WO1999015910A1 (en) 1999-04-01
AU1146299A (en) 1999-04-12
DE19881384D2 (en) 2001-03-08
DE19742055A1 (en) 1999-04-08

Similar Documents

Publication Publication Date Title
EP0285799B1 (en) Device for the functional electric testing of wiring arrays, in particular of circuit boards
DE102007046054B4 (en) Improved high-precision Rogowski current transformer
DE4012839B4 (en) Method and test device for testing electrical or electronic devices under test
DE2659976C2 (en) Device for establishing an electrical connection between a component being subjected to a dynamic electrical test and a test device
DE2360801A1 (en) TEST DEVICE WITH CONTACT DEVICE
DE2604837A1 (en) PROGRAMMABLE INTERFACE CONTACT DEVICE
EP0508062A1 (en) Method and device for testing an arrangement of electrical conductors
DE2744299C2 (en) Method for electrically testing a conductor track pattern on a substrate
EP1018031B1 (en) Device for testing circuit boards
DE69532626T2 (en) Test method for determining the polarity of electrolytic capacitors mounted in electronic devices
EP1920263B1 (en) Method of testing unloaded, large-area printed circuit boards with a finger tester
EP0772054B1 (en) Method and device for testing an electric conductor arrangement
DE10260238B4 (en) Adapter for testing one or more ladder arrangements and methods
EP1012613B1 (en) Method and device for charging integrated circuits and structures with a pulsed high intensity current
DE10010493A1 (en) High frequency current detector for sensing current in conductive material has two conductive materials inserted into hole in core, forming primary and secondary coils
EP0489052B1 (en) Device for the operational electrical testing of wired areas, especially printed circuit boards
EP0286814A2 (en) Addressing device
EP1561119B1 (en) Device and method for determining the absence of application of stresses on polyphase electrical transmission lines
DE19913791C2 (en) Device for measuring variable resistances of electrical contacts, in particular plug connections
DE102021105605B4 (en) METHOD OF DETECTING A TRANSITION RESISTANCE OF A TOUCH-SAFE INTERFACE AND INTERFACE
EP0433680B1 (en) Method for measuring the potential of the conductor lines of a program-controlled integrated circuit
DE4134193A1 (en) Testing electrical conductor arrangement, esp. on circuit board
EP3312624A1 (en) Assembly and method for vibration testing of circuit boards
WO2013004775A1 (en) Adapter for an examination apparatus and examination apparatus for testing printed circuit boards
EP0294592B1 (en) Contact device for the technique of testing circuit boards

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCORPION TECHNOLOGIES AG

17Q First examination report despatched

Effective date: 20010613

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 225944

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021009

REF Corresponds to:

Ref document number: 59805921

Country of ref document: DE

Date of ref document: 20021114

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2185226

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

26N No opposition filed

Effective date: 20030710

BERE Be: lapsed

Owner name: *SCORPION TECHNOLOGIES A.G.

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080915

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110826

Year of fee payment: 14

Ref country code: GB

Payment date: 20110907

Year of fee payment: 14

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 225944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120911

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120911

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59805921

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59805921

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170925

Year of fee payment: 20

Ref country code: DE

Payment date: 20170821

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59805921

Country of ref document: DE