EP1006756B1 - Sensor controlled hot plate with sensor arranged below the plate - Google Patents

Sensor controlled hot plate with sensor arranged below the plate Download PDF

Info

Publication number
EP1006756B1
EP1006756B1 EP99123600A EP99123600A EP1006756B1 EP 1006756 B1 EP1006756 B1 EP 1006756B1 EP 99123600 A EP99123600 A EP 99123600A EP 99123600 A EP99123600 A EP 99123600A EP 1006756 B1 EP1006756 B1 EP 1006756B1
Authority
EP
European Patent Office
Prior art keywords
cooking field
sensor
heat radiation
field plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99123600A
Other languages
German (de)
French (fr)
Other versions
EP1006756A1 (en
EP1006756B2 (en
Inventor
Uwe Has
Katrin Horn
Maximilian Neuhauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7890074&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1006756(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP1006756A1 publication Critical patent/EP1006756A1/en
Publication of EP1006756B1 publication Critical patent/EP1006756B1/en
Application granted granted Critical
Publication of EP1006756B2 publication Critical patent/EP1006756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/746Protection, e.g. overheat cutoff, hot plate indicator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/10Tops, e.g. hot plates; Rings
    • F24C15/102Tops, e.g. hot plates; Rings electrically heated
    • F24C15/105Constructive details concerning the regulation of the temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/082Arrangement or mounting of control or safety devices on ranges, e.g. control panels, illumination
    • F24C7/083Arrangement or mounting of control or safety devices on ranges, e.g. control panels, illumination on tops, hot plates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the present invention relates to a sensor-controlled hob with a hob, in particular made of glass ceramic or glass, with at least one cooking zone, which can be heated by means of a heating element arranged below the hob is, as well as with one arranged below the hob plate and against it Underside directed in the area of a measuring spot limited in area Heat radiation sensor unit that is connected to a control unit Regulation of the heating power of the heating element.
  • Such a hob is known from GB 2 072 334 A, wherein a parabolic reflector arrangement is provided below the hob.
  • the reflector assembly collects one from the bottom of the bottom on the Stovetop and radiated pan heated by the heating element Heat radiation and conducts this via a connected optical connecting line to an infrared sensitive photodiode. The so detected Heat radiation is used as a signal to regulate the heating power of the heating element used.
  • the object of the present invention is in a sensor-controlled hob according to the preamble of claim 1, the heating power control independent of the pot to ensure sufficient accuracy.
  • the emissivity of the bottom of the Hob plate at least in the area of the measuring spot at least in the spectral measuring area the heat radiation sensor unit at least 60%, in particular more than 90%.
  • the measuring accuracy according to the invention is at least sufficient to Carry out frying or frying with satisfactory cooking results can. It is to increase the accuracy of the sensor-controlled system expedient, pots or pans with as flat as possible and thus to be used over a large area on the top of the hob.
  • a measuring spot with suitable transmission and Emission properties can be achieved if the hob is on the underside of the Area of the measuring spot with a dark, in particular black, emission layer is provided.
  • the transmission and emission values are then on the one hand regardless of production variation and on the other hand over the life of the Hob is essentially constant despite its aging. Furthermore, the Values are then independent of the properties of the material of the hob plate or regardless of manufacturer or color.
  • a suitable size of the measuring spot is about 1 to 4 cm 2 . This ensures that, on the one hand, the measuring spot is not too large, which would affect a uniform cooking result in the pan or the pot. On the other hand, the measuring spot must not be too small so that the influence of the heat radiation from the base of the pot on the glass ceramic remains large enough. If the surface area of the measuring spot is too small, despite the low thermal conductivity of, for example, glass or glass ceramic, its sensed temperature is essentially exclusively dependent on the temperature of the glass ceramic in the vicinity of the measuring spot.
  • the aim of the hob according to the invention is to infer the temperature of the heated cooking vessel placed on the hob and to regulate it.
  • the heat radiation sensor unit a special filter
  • the spectral pass band essentially is between about 4 and 8 ⁇ m. In this area is both the value of the transmittance as well as the average reflectance of the material the hob plate with typical glass ceramic hob plates is sufficiently low. This results in a high emissivity in this wavelength range Underside of the cooktop and associated high sensitivity and accuracy.
  • the spectral passband can typically are also between about 10 to 20 microns. The value is also in this range the transmittance for typical glass ceramic material is about 0% and that of The degree of reflection is significantly lower than in the wavelength ranges neighboring on both sides.
  • the choice of a suitable spectral filter is particularly of its price depends on and on the achievable in the respective wavelength range Sensitivity or measuring and control accuracy of the sensor-controlled Cooktop.
  • a measuring shaft is arranged in which the heat radiation sensor unit is directed to the measuring spot of the hob plate. This measure ensures that the temperature influence of the measuring spot by the heat radiation radiating heating element greatly reduced or excluded is. It is particularly advantageous if the measuring shaft is as close as possible to the Underside of the cooktop is present, as well as if the radiation channel in the measuring shaft is insulated as well as possible from the space outside the measuring shaft.
  • a computing unit calculates the Hob from the signal of the heat radiation sensor unit and in one Storage unit stored characteristics of the hob the temperature of the floor of a heated cooking vessel placed on the hob plate and indicates this the control unit for regulating the heating output. From laboratory tests Findings can be typical indicators for the relationship of the measurement signal the sensor unit to the prevailing pot bottom temperature become. These are then stored in the storage unit and are used during the cooking process suitably linked with the measurement signal of the heat radiation sensor unit. The ground temperature derived from this then in turn becomes control signals determined for the heating power of the corresponding heating element.
  • the precision The system can be used especially with large cooking vessels such as for example, frying pans can be increased if at least two heat radiation sensor units be used. It is also useful to have a to realize known pot detection unit or the measurement signals of the To use heat radiation sensor unit for pot detection.
  • a hob 1 has a hob plate 3 made of glass ceramic material, on the Heated zones are marked on the top with the aid of a decorative print (FIG. 1). These zones are in each case corresponding to themselves below the hob plate 3 known metallic radiator pots 5 assigned. These are by themselves Known tools, not shown, pressed onto the underside of the hob plate 3.
  • the radiator pot 5 has a radiator insulation on the bottom and on the circumference 7 on. In this or on this is a radiation heating conductor known per se 9 held by the heat radiation when dining with electrical current in particular in the direction of the underside of the hob plate 3. Above the radiator pot 5 or the radiant heater 9 a frying pan 11 placed on the top of the hob 3.
  • the emissivity ⁇ of the bottom the pot base 11 is typically about 10 to in stainless steel pots 20% and typically around 80 for a black enamelled pan base up to 90%.
  • a tubular one Measuring shaft 15 provided, the upper end face close to the bottom of the Hob 3 is present.
  • the diameter of the measuring shaft is approximately 1 to 2 cm.
  • the measuring shaft 15 is with suitable insulation means for thermal insulation compared to the measuring arrangement described below in particular the heating conductor 9 provided. Furthermore, the measuring shaft 15 has on its inner circumferential side to increase the sensitivity of the measuring arrangement described below a reflection layer 17.
  • the limited by the measuring shaft 15 Circular area on the underside of the hob plate 3 serves as a measuring spot 18 of the measuring arrangement.
  • a heat radiation-sensitive infrared sensor 19 is arranged at the end of the measuring shaft opposite the measuring spot 18 15.
  • This Upstream is an infrared optic 21 with a spectral filter, the spectral Passband is between about 5 and 8 microns.
  • Through an aperture 23 in Bottom of the measuring shaft 15 is the infrared sensor 19 on the measuring spot 18 Hob 3 directed.
  • a suitable sensor window 25 is set.
  • the infrared sensor 19 For cooling the infrared sensor 19 this sits in a cooling duct connection of the bottom of the radiator pot 5, to which cooling air (cooling air arrows) is supplied if necessary. Furthermore, between the radiator pot 5 and the radiator insulation 7, a cooling channel 27 is provided. This ensures that the permissible continuous operating temperature of the infrared sensor 19 of about 100 to 120 ° C is not exceeded (Fig. 1).
  • the transmittance of the glass ceramic cooktop has the through Spectral filters define the spectral measuring range of the infrared sensor 19 of approximately 5 2 to 8 ⁇ m according to FIG. 2 a transmittance ⁇ of approximately 0%.
  • Spectral filters define the spectral measuring range of the infrared sensor 19 of approximately 5 2 to 8 ⁇ m according to FIG. 2 a transmittance ⁇ of approximately 0%.
  • the value of the transmittance ⁇ is ideally about 0% and that of the emissivity ⁇ is approximately 100% (FIG. 5).
  • the heating conductor 9 moves according to FIG Measuring shaft 15 essentially on all sides. Whether the measuring shaft 15 on the edge of the radiator pot 5 or rather arranged in its central area depends of the respective circumstances. For example, it can be used of two measuring shafts 15 in a radiator pot 5 for reasons of accuracy despite, for example, an uneven temperature distribution in the soil the pan may be advantageous if the two measuring shafts 15 each in the edge area the radiator pot 5 are arranged (Fig. 3).
  • both the Radiant heating conductor 9 and the cooktop 3 heat radiation to the bottom of the pot 11.
  • the hob plate touches heat conduction between the two instead. The same applies in the direction parallel to the hob 3 within this.
  • the infrared sensor 19 is through the Measuring shaft 15 shielded from the heat radiation of the radiant heater 9. It is also characterized by the properties of the material of the hob plate the heat radiation of the cooking vessel 11 largely shielded.
  • a computing unit 41 determines the hob from the measured value S of the infrared sensor 19 and from in a storage unit 43 characteristics of the arrangement stored in the cooktop 1 have a corresponding output signal, from the one control unit 45 of the hob 1 a heating power signal P for the radiant heating conductor 9 is derived (FIG. 4). This makes it possible; that for example an input element known per se by an operator predetermined cooking temperature of 180 ° C by the control unit 45 is automatically adjusted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Electric Stoves And Ranges (AREA)
  • Cookers (AREA)
  • Resistance Heating (AREA)

Description

Die vorliegende Erfindung betrifft ein sensorgesteuertes Kochfeld mit einer Kochfeldplatte, insbesondere aus Glaskeramik oder Glas, mit zumindest einer Kochzone, die mittels eines unterhalb der Kochfeldplatte angeordneten Heizelementes beheizbar ist, sowie mit einer unterhalb der Kochfeldplatte angeordneten und gegen deren Unterseite im Bereich eines flächenmäßig begrenzten Meßfleckes gerichteten Wärmestrahlungs-Sensoreinheit, die in Verbindung steht mit einer Steuereinheit zur Regelung der Heizleistung des Heizelementes.The present invention relates to a sensor-controlled hob with a hob, in particular made of glass ceramic or glass, with at least one cooking zone, which can be heated by means of a heating element arranged below the hob is, as well as with one arranged below the hob plate and against it Underside directed in the area of a measuring spot limited in area Heat radiation sensor unit that is connected to a control unit Regulation of the heating power of the heating element.

Ein derartiges Kochfeld ist bekannt aus der Druckschrift GB 2 072 334 A, wobei unterhalb der Kochfeldplatte eine parabolische Reflektoranordnung vorgesehen ist. Die Reflektoranordnung sammelt die von der Unterseite des Bodens einer auf der Kochfeldplatte abgestellten und mittels des Heizelementes beheizten Pfanne abgestrahlte Wärmestrahlung und leitet diese über eine angeschlossene optische Verbindungsleitung zu einer infrarotsensitiven Photodiode. Die derart detektierte Wärmestrahlung wird als Signal zur Regelung der Heizleistung des Heizelementes verwendet.Such a hob is known from GB 2 072 334 A, wherein a parabolic reflector arrangement is provided below the hob. The reflector assembly collects one from the bottom of the bottom on the Stovetop and radiated pan heated by the heating element Heat radiation and conducts this via a connected optical connecting line to an infrared sensitive photodiode. The so detected Heat radiation is used as a signal to regulate the heating power of the heating element used.

Aufgabe der vorliegenden Erfindung ist es, bei einem sensorgesteuerten Kochfeld nach dem Oberbegriff des Patentanspruches 1 die Heizleistungsregelung topfunabhängig ausreichend genau zu gewährleisten.The object of the present invention is in a sensor-controlled hob according to the preamble of claim 1, the heating power control independent of the pot to ensure sufficient accuracy.

Erfindungsgemäß ist dies dadurch erreicht, daß der Wert des Transmissionsgrades der Kochfeldplatte zumindest im Bereich des Meßfleckes zumindest im spektralen Meßbereich der Wärmestrahlungs-Sensoreinheit weniger als 30 %, vorzugsweise weniger als 10 % und insbesondere annähernd etwa 0 % beträgt. Durch den gering gewählten Wert des Transmissionsgrades des Materials der Kochfeldplatte ist sichergestellt, daß der störende, weil unbekannte Einfluß der vom Topfboden in Richtung auf die Kochfeldplatte und damit auf den Wärmestrahlungs-Sensor abgestrahlten Wärmestrahlung gering ist. Dies ist insbesondere deshalb wichtig, weil sich der Wert des Emissionsgrades der Topfbodenunterseite abhängig vom Kochtopftyp typischerweise zwischen 20 und 90 % bewegen kann. Erfindungsgemäß ist also sichergestellt, daß der Wärmestrahlungs-Sensor im wesentlichen bis ausschließlich die von der Unterseite der Kochfeldplatte abgestrahlte Wärmestrahlung empfängt.This is achieved according to the invention in that the value of the transmittance the hob plate at least in the spectral range at least in the area of the measurement spot Measuring range of the heat radiation sensor unit less than 30%, preferably is less than 10% and in particular approximately approximately 0%. Because of the low selected value of the transmittance of the material of the hob plate ensures that the disturbing, because unknown influence of the bottom of the pot in Direction on the hob plate and thus radiated on the heat radiation sensor Heat radiation is low. This is particularly important because the value of the emissivity of the bottom of the pot depends on Pot type can typically move between 20 and 90%. According to the invention it is thus ensured that the heat radiation sensor essentially up to only the heat radiation radiated from the underside of the hob plate receives.

Um eine ausreichende Meßempfindlichkeit des sensorgesteuerten Kochfeldes erreichen zu können, beträgt erfindungsgemäß der Emissionsgrad der Unterseite der Kochfeldplatte zumindest im Bereich des Meßfleckes zumindest im spektralen Meßbereich der Wärmestrahlungs-Sensoreinheit zumindest 60 %, insbesondere mehr als 90 %. Die erfindungsgemäße Meßgenauigkeit ist zumindest ausreichend, um Brat- oder Fritiervorgänge bei zufriedenstellenden Garergebnissen durchführen zu können. Zur Steigerung der Genauigkeit des sensorgesteuerten Systems ist es zweckmäßig, Töpfe beziehungsweise Pfannen mit möglichst ebenem und damit großflächig auf der Oberseite der Kochfeldplatte aufliegendem Boden zu verwenden.To achieve a sufficient measuring sensitivity of the sensor-controlled hob To be able to, according to the invention the emissivity of the bottom of the Hob plate at least in the area of the measuring spot at least in the spectral measuring area the heat radiation sensor unit at least 60%, in particular more than 90%. The measuring accuracy according to the invention is at least sufficient to Carry out frying or frying with satisfactory cooking results can. It is to increase the accuracy of the sensor-controlled system expedient, pots or pans with as flat as possible and thus to be used over a large area on the top of the hob.

Mit geringem Aufwand ist ein Meßfleck mit geeigneten Transmissions- und Emissionseigenschaften realisierbar, wenn die Kochfeldplatte an ihrer Unterseite im Bereich des Meßfleckes mit einer dunklen insbesondere schwarzen Emissionsschicht versehen ist. Die Transmissions- bzw. Emissionswerte sind dann zum einen unabhängig von Fertigungsstreuungen und zum anderen über die Lebensdauer der Kochfeldplatte trotz deren Alterung im wesentlichen konstant. Weiterhin sind die Werte dann auch unabhängig von den Eigenschaften des Materials der Kochfeldplatte bzw. hersteller- oder farbtönungsunabhägig.A measuring spot with suitable transmission and Emission properties can be achieved if the hob is on the underside of the Area of the measuring spot with a dark, in particular black, emission layer is provided. The transmission and emission values are then on the one hand regardless of production variation and on the other hand over the life of the Hob is essentially constant despite its aging. Furthermore, the Values are then independent of the properties of the material of the hob plate or regardless of manufacturer or color.

Eine geeignete Größe des Meßfleckes bewegt sich bei etwa 1 bis 4 cm2. Dadurch ist sichergestellt, daß der Meßfleck einerseits nicht zu groß ist, was ein gleichmäßiges Garergebnis in der Pfanne beziehungsweise dem Topf beeinträchtigen würde. Andererseits darf der Meßfleck auch nicht zu klein sein, damit der Einfluß der Wärmestrahlung des Topfbodens auf die Glaskeramik groß genug bleibt. Im Falle einer zu kleinen Flächenausdehnung des Meßflecks ist dessen abgefühlte Temperatur trotz der geringen Wärmeleitfähigkeit von beispielsweise Glas oder Glaskeramik im wesentlichen ausschließlich abhängig von der Temperatur der Glaskeramik in der Umgebung des Meßfleckes. Ziel des erfindungsgemäßen Kochfeldes ist es jedoch, auf die Temperatur des auf der Kochfeldplatte abgestellten und beheizten Gargefäßes zu schließen beziehungsweise diese zu regeln.A suitable size of the measuring spot is about 1 to 4 cm 2 . This ensures that, on the one hand, the measuring spot is not too large, which would affect a uniform cooking result in the pan or the pot. On the other hand, the measuring spot must not be too small so that the influence of the heat radiation from the base of the pot on the glass ceramic remains large enough. If the surface area of the measuring spot is too small, despite the low thermal conductivity of, for example, glass or glass ceramic, its sensed temperature is essentially exclusively dependent on the temperature of the glass ceramic in the vicinity of the measuring spot. The aim of the hob according to the invention, however, is to infer the temperature of the heated cooking vessel placed on the hob and to regulate it.

Gemäß einer bevorzugten Ausführungsform weist die Wärmestrahlungs-Sensoreinheit einen Spezialfilter auf, dessen spektraler Durchlaßbereich im wesentlichen zwischen etwa 4 und 8 µm liegt. In diesem Bereich ist sowohl der Wert des Transmissionsgrades als auch der des durchschnittlichen Reflexionsgrades des Materials der Kochfeldplatte bei typischen Glaskeramik-Kochfeldplatten ausreichend gering. Daraus ergibt sich in diesem Wellenlängenbereich ein hoher Emissionsgrad der Unterseite der Kochfeldplatte und damit verbunden eine hohe Meßempfindlichkeit und -genauigkeit. Alternativ kann der spektrale Durchlaßbereich typischerweise auch zwischen etwa 10 bis 20 µm liegen. Auch in diesem Bereich beträgt der Wert des Transmissionsgrades bei typischem Glaskeramikmaterial etwa 0 % und der des Reflexionsgrades ist deutlich geringer als in den beidseitig benachbarten Wellenlängenbereichen. Die Wahl eines geeigneten Spektralfilters ist insbesondere von dessen Preis abhängig sowie von der in dem jeweiligen Wellenlängenbereich erzielbaren Empfindlichkeit beziehungsweise Meß- und Regelgenauigkeit des sensorgesteuerten Kochfeldes.According to a preferred embodiment, the heat radiation sensor unit a special filter, the spectral pass band essentially is between about 4 and 8 µm. In this area is both the value of the transmittance as well as the average reflectance of the material the hob plate with typical glass ceramic hob plates is sufficiently low. This results in a high emissivity in this wavelength range Underside of the cooktop and associated high sensitivity and accuracy. Alternatively, the spectral passband can typically are also between about 10 to 20 microns. The value is also in this range the transmittance for typical glass ceramic material is about 0% and that of The degree of reflection is significantly lower than in the wavelength ranges neighboring on both sides. The choice of a suitable spectral filter is particularly of its price depends on and on the achievable in the respective wavelength range Sensitivity or measuring and control accuracy of the sensor-controlled Cooktop.

Erfindungsgemäß ist an der Unterseite der Kochfeldplatte im Bereich des Meßfleckes ein Meßschacht angeordnet, in dem die Wärmestrahlungs-Sensoreinheit auf den Meßfleck der Kochfeldplatte gerichtet ist. Diese Maßnahme stellt sicher, daß die temperaturmäßige Beeinflussung des Meßfleckes durch das Wärmestrahlung abstrahlende Heizelement stark verringert beziehungsweise ausgeschlossen ist. Dabei ist es besonders günstig, wenn der Meßschacht möglichst dicht an der Unterseite der Kochfeldplatte anliegt, sowie wenn der Strahlungskanal im Meßschacht möglichst gut von dem Raum außerhalb des Meßschachtes isoliert ist.According to the invention is on the underside of the hob plate in the area of the measurement spot a measuring shaft is arranged in which the heat radiation sensor unit is directed to the measuring spot of the hob plate. This measure ensures that the temperature influence of the measuring spot by the heat radiation radiating heating element greatly reduced or excluded is. It is particularly advantageous if the measuring shaft is as close as possible to the Underside of the cooktop is present, as well as if the radiation channel in the measuring shaft is insulated as well as possible from the space outside the measuring shaft.

Um eine möglichst gleichmäßige Wärmeverteilung im Topfboden und in der Kochfeldplatte und damit verbunden eine hohe Meßgenauigkeit zu erreichen, umzieht vorteilhafterweise das Heizelement den Meßschacht und damit den Meßfleck im wesentlichen allseitig. To ensure that heat is distributed as evenly as possible in the bottom of the pot and in the hob and associated with this to achieve high measuring accuracy advantageously the heating element in the measuring shaft and thus the measuring spot in essential all around.

Gemäß einer bevorzugten Ausführungsform berechnet eine Recheneinheit des Kochfeldes aus dem Signal der Wärmestrahlungs-Sensoreinheit und in einer Speichereinheit abgelegten Kenndaten des Kochfeldes die Temperatur des Bodens eines auf der Kochfeldplatte abgestellten beheizten Gargefäßes und gibt diese an die Steuereinheit zur Regelung der Heizleistung weiter. Aus in Laborversuchen gewonnenen Erkenntnissen können typische Kennzahlen für die Beziehung des Meßsignals der Sensoreinheit zur vorherrschenden Topfbodentemperatur gewonnen werden. Diese sind dann in der Speichereinheit abgelegt und werden beim Garvorgang mit dem Meßsignal der Wärmestrahlungs-Sensoreinheit geeignet verknüpft. Aus der daraus abgeleiteten Bodentemperatur werden dann wiederum Stellsignale für die Heizleistung des entsprechenden Heizelementes ermittelt. Die Genauigkeit des Systems kann insbesondere bei großflächigen Gargefäßen wie beispielsweise Bräterpfannen erhöht werden, wenn zumindest zwei Wärmestrahlungs-Sensoreinheiten verwendet werden. Weiterhin ist es zweckmäßig, eine an sich bekannte Topferkennungseinheit zu realisieren oder die Meßsignale der Wärmestrahlungs-Sensoreinheit zur Topferkennung zu verwenden.According to a preferred embodiment, a computing unit calculates the Hob from the signal of the heat radiation sensor unit and in one Storage unit stored characteristics of the hob the temperature of the floor of a heated cooking vessel placed on the hob plate and indicates this the control unit for regulating the heating output. From laboratory tests Findings can be typical indicators for the relationship of the measurement signal the sensor unit to the prevailing pot bottom temperature become. These are then stored in the storage unit and are used during the cooking process suitably linked with the measurement signal of the heat radiation sensor unit. The ground temperature derived from this then in turn becomes control signals determined for the heating power of the corresponding heating element. The precision The system can be used especially with large cooking vessels such as for example, frying pans can be increased if at least two heat radiation sensor units be used. It is also useful to have a to realize known pot detection unit or the measurement signals of the To use heat radiation sensor unit for pot detection.

Nachfolgend sind anhand schematischer Darstellungen zwei Ausführungsbeispiele des erfindungsgemäßen sensorgesteuerten Kochfeldes beschrieben.Below are two exemplary embodiments based on schematic representations of the sensor-controlled hob according to the invention.

Es zeigen:

Fig. 1
in einer Schnittdarstellung abschnittsweise das Kochfeld mit darauf abgestelltem Topf gemäß dem ersten Ausführungsbeispiel,
Fig. 2
die Verläufe des Transmissions- und des Reflexionsgrades einer Glaskeramik-Kochfeldplatte im interessierenden Wellenlängenbereich,
Fig. 3
abschnittsweise in einer Ansicht von oben den Anordnung des Heizelementes im Bereich des Meßschachtes der Wärmestrahlungs-Sensoreinheit,
Fig. 4
ein Blockschaltbild wesentlicher Regelungseinheiten des sensorgesteuerten Kochfeldes und
Fig. 5
abschnittsweise den Bereich unterhalb der Kochfeldplatte im Bereich des Meßfleckes gemäß dem zweiten Ausführungsbeispiel in einer Schnittdarstellung gemäß Figur 1.
Show it:
Fig. 1
in a sectional representation of the hob with the pot placed thereon according to the first embodiment,
Fig. 2
the courses of the transmission and the reflectance of a glass ceramic cooktop in the wavelength range of interest,
Fig. 3
sectionally in a view from above the arrangement of the heating element in the area of the measuring shaft of the heat radiation sensor unit,
Fig. 4
a block diagram of essential control units of the sensor-controlled hob and
Fig. 5
in sections the area below the hob plate in the area of the measurement spot according to the second embodiment in a sectional view according to FIG. 1.

Ein Kochfeld 1 weist eine Kochfeldplatte 3 aus Glaskeramikmaterial auf, auf deren Oberseite mit Hilfe einer Dekorbedruckung beheizbare Zonen markiert sind (Fig. 1). Diesen Zonen sind unterhalb der Kochfeldplatte 3 jeweils entsprechende an sich bekannte metallische Heizkörpertöpfe 5 zugeordnet. Diese sind mittels an sich bekannter, nicht gezeigter Hilfsmittel an die Unterseite der Kochfeldplatte 3 gedrückt. Der Heizkörpertopf 5 weist boden- sowie umfangseitig eine Heizkörperisolierung 7 auf. In dieser beziehungsweise auf dieser ist ein an sich bekannter Strahlungsheizleiter 9 gehaltert, der beim Speisen mit elektrischem Strom Wärmestrahlung insbesondere in Richtung auf die Unterseite der Kochfeldplatte 3 abgibt. Oberhalb des Heizkörpertopfes 5 beziehungsweise des Strahlungsheizleiters 9 ist eine Bratpfanne 11 auf der Oberseite der Kochfeldplatte 3 abgestellt. Zwischen der Unterseite des Bodens der Bratpfanne 11 und der Oberseite der Kochfeldplatte 3 ist typischerweise ein geringer Luftspalt 13 vorhanden. Der Emissionsgrad ε der Unterseite des Topfbodens 11 beträgt bei Edelstahltöpfen typischerweise ungefähr 10 bis 20 % und bei einem schwarz emailliertem Topfboden typischerweise ungefähr 80 bis 90 %. Im Bereich unterhalb des Bodens der Bratpfanne 11 ist ein rohrförmiger Meßschacht 15 vorgesehen, dessen obere Stimseite dicht an der Unterseite der Kochfeldplatte 3 anliegt. Der Durchmesser des Meßschachtes beträgt etwa 1 bis 2 cm. Der Meßschacht 15 ist mit geeigneten Isolationsmitteln zur thermischen Abschottung der nachfolgend beschriebenen Meßanordnung insbesondere gegenüber dem Heizleiter 9 versehen. Weiterhin weist der Meßschacht 15 an seiner Innenumfangseite zur Erhöhung der Empfindlichkeit der nachfolgend beschriebenen Meßanordnung eine Reflexionsschicht 17 auf. Die von dem Meßschacht 15 begrenzte Kreisfläche auf der Unterseite der Kochfeldplatte 3 dient als Meßfleck 18 der Meßanordnung. An der dem Meßfleck 18 gegenüberliegenden Ende des Meßschachtes 15 ist ein wärmestrahlungsempfindlicher Infrarotsensor 19 angeordnet. Diesem vorgeschaltet ist eine Infrarotoptik 21 mit einem Spektralfilter, dessen spektraler Durchlaßbereich zwischen etwa 5 und 8 µm liegt. Durch eine Blendenöffnung 23 im Boden des Meßschachtes 15 ist der Infrarotsensor 19 auf den Meßfleck 18 der Kochfeldplatte 3 gerichtet. Zum Schutz des Infrarotsensors 19 ist in die Blendenöffnung 23 ein geeignetes Sensorfenster 25 gesetzt. Zur Kühlung des Infrarotsensors 19 sitzt dieser in einem Kühlkanalstutzen des Bodens des Heizkörpertopfes 5, dem bei Bedarf Kühlluft (Kühlluftpfeile) zugeführt wird. Weiterhin ist zwischen dem Heizkörpertopf 5 und der Heizkörperisolierung 7 ein Kühlkanal 27 vorgesehen. Dadurch ist sichergestellt, daß die zulässige Dauerbetriebstemperatur des Infrarotsensors 19 von etwa 100 bis 120°C nicht überschritten wird (Fig. 1).A hob 1 has a hob plate 3 made of glass ceramic material, on the Heated zones are marked on the top with the aid of a decorative print (FIG. 1). These zones are in each case corresponding to themselves below the hob plate 3 known metallic radiator pots 5 assigned. These are by themselves Known tools, not shown, pressed onto the underside of the hob plate 3. The radiator pot 5 has a radiator insulation on the bottom and on the circumference 7 on. In this or on this is a radiation heating conductor known per se 9 held by the heat radiation when dining with electrical current in particular in the direction of the underside of the hob plate 3. Above the radiator pot 5 or the radiant heater 9 a frying pan 11 placed on the top of the hob 3. Between the Underside of the bottom of the frying pan 11 and the top of the cooktop 3 is typically a small air gap 13 is present. The emissivity ε of the bottom the pot base 11 is typically about 10 to in stainless steel pots 20% and typically around 80 for a black enamelled pan base up to 90%. In the area below the bottom of the frying pan 11 is a tubular one Measuring shaft 15 provided, the upper end face close to the bottom of the Hob 3 is present. The diameter of the measuring shaft is approximately 1 to 2 cm. The measuring shaft 15 is with suitable insulation means for thermal insulation compared to the measuring arrangement described below in particular the heating conductor 9 provided. Furthermore, the measuring shaft 15 has on its inner circumferential side to increase the sensitivity of the measuring arrangement described below a reflection layer 17. The limited by the measuring shaft 15 Circular area on the underside of the hob plate 3 serves as a measuring spot 18 of the measuring arrangement. At the end of the measuring shaft opposite the measuring spot 18 15, a heat radiation-sensitive infrared sensor 19 is arranged. this Upstream is an infrared optic 21 with a spectral filter, the spectral Passband is between about 5 and 8 microns. Through an aperture 23 in Bottom of the measuring shaft 15 is the infrared sensor 19 on the measuring spot 18 Hob 3 directed. To protect the infrared sensor 19 is in the aperture 23 a suitable sensor window 25 is set. For cooling the infrared sensor 19 this sits in a cooling duct connection of the bottom of the radiator pot 5, to which cooling air (cooling air arrows) is supplied if necessary. Furthermore, between the radiator pot 5 and the radiator insulation 7, a cooling channel 27 is provided. This ensures that the permissible continuous operating temperature of the infrared sensor 19 of about 100 to 120 ° C is not exceeded (Fig. 1).

Der Transmissionsgrad der Glaskeramik-Kochfeldplatte weist in dem durch den Spektralfilter definierten spektralen Meßbereich des Infrarotsensors 19 von etwa 5 bis 8 µm gemäß Fig. 2 einen Transmissionsgrad τ von etwa 0 % auf. Dies bedeutet, daß die vom Topfboden 11 abgestrahlte Wärmestrahlung nicht direkt durch die Kochfeldplatte 3 hindurch zum Infrarotsensor 19 gelangen kann. Der Topfboden 11 kann durch Wärmeleitung und Wärmestrahlung lediglich die Glaskeramikplatte 3 erwärmen. Diese strahlt nun bei einem durchschnittlichen Emissionsgrad ε (= 1- r) von etwa 95 % (siehe Fig. 2) Strahlungswärme zum Infrarotsensor 19. Die Meßund Regelgenauigkeit des Systems ist um so höher, je besser die thermische Ankopplung des Topfbodens 11 an die Glaskeramikplatte 3 einerseits und deren Ankopplung an den Infrarotsender 19 andererseits realisiert ist. Alternativ ist es auch möglich, einen Spektralfilter 21 vorzusehen, dessen spektraler Durchlaßbereich zwischen etwa 10 bis 20 µm liegt. Auch in diesen Wellenlängenbereich von λ = 10 bis 20 um beträgt der Wert des Transmissionsgrades τ etwa 0 % und der des Reflexionsgrades r etwa um die 10 %, woraus sich ein durchschnittlicher Emissionsgrad ε von etwa 90 % ergibt (Fig. 2).The transmittance of the glass ceramic cooktop has the through Spectral filters define the spectral measuring range of the infrared sensor 19 of approximately 5 2 to 8 µm according to FIG. 2 a transmittance τ of approximately 0%. This means, that the radiated heat radiation from the bottom 11 of the pot is not directly caused by the Hob plate 3 can pass through to the infrared sensor 19. The bottom of the pot 11 can only the glass ceramic plate 3 by heat conduction and heat radiation heat. This now radiates with an average emissivity ε (= 1- r) of about 95% (see Fig. 2) radiant heat to the infrared sensor 19. Die Meßund Control accuracy of the system is higher, the better the thermal coupling of the pot bottom 11 to the glass ceramic plate 3 on the one hand and their coupling to the infrared transmitter 19 on the other hand. Alternatively it is possible to provide a spectral filter 21, the spectral pass band is between about 10 to 20 microns. Also in this wavelength range of λ = 10 to 20 µm, the value of the transmittance τ is about 0% and that of the Reflectance r around 10%, which results in an average emissivity ε of about 90% results (Fig. 2).

Um grundsätzlich unabhängig von den Materialeigenschaften der Kochfeldplatte zu sein, ist gemäß dem zweiten Ausführungsbeispiel nach Fig. 5 im Bereich des Meßfleckes 18 die Unterseite der Kochfeldplatte 3 mit einer schwarzen Farbschicht 31 bedeckt. Der Wert des Transmissionsgrades τ beträgt dabei idealerweise etwa 0 % und der des Emissionsgrades ε etwa 100 % (Fig. 5).In order to be independent of the material properties of the hob 5 is in the area of the measuring spot according to the second exemplary embodiment according to FIG 18 the underside of the cooktop plate 3 with a black color layer 31 covered. The value of the transmittance τ is ideally about 0% and that of the emissivity ε is approximately 100% (FIG. 5).

Um eine möglichst gleichmäßige Wärmeverteilung im Topfboden 11 sowie in der Glaskeramikplatte 3 zu erreichen, umzieht der Heizleiter 9 gemäß Fig. 3 den Meßschacht 15 im wesentlichen allseitig. Ob der Meßschacht 15 dabei am Rand des Heizkörpertopfes 5 oder eher in dessen Zentralbereich angeordnet ist, ist abhängig von den jeweiligen Gegebenheiten. Beispielsweise kann es bei der Verwendung von zwei Meßschächten 15 in einem Heizkörpertopf 5 aus Genauigkeitsgründen trotz einer beispielsweise ungleichmäßigen Temperaturverteilung im Boden der Pfanne vorteilhaft sein, wenn die beiden Meßschächte 15 jeweils im Randbereich des Heizkörpertopfes 5 angeordnet sind (Fig. 3).In order to distribute heat as evenly as possible in the base 11 of the pot and in the To reach glass ceramic plate 3, the heating conductor 9 moves according to FIG Measuring shaft 15 essentially on all sides. Whether the measuring shaft 15 on the edge of the radiator pot 5 or rather arranged in its central area depends of the respective circumstances. For example, it can be used of two measuring shafts 15 in a radiator pot 5 for reasons of accuracy despite, for example, an uneven temperature distribution in the soil the pan may be advantageous if the two measuring shafts 15 each in the edge area the radiator pot 5 are arranged (Fig. 3).

Beim Betrieb des sensorgesteuerten Kochfeldes 1 strahlt die Unterseite des von dem Strahlungsheizleiter 9 beheizten Topfbodens 11 fortwährend Wärmestrahlung auf die darunter angeordnete Kochfeldplatte 3. Andererseits strahlen sowohl der Strahlungsheizleiter 9 als auch die Kochfeldplatte 3 Wärmestrahlung zum Topfboden 11. Zuzüglich findet in den Bereichen, in denen der Topfboden die Kochfeldplatte berührt Wärmeleitung zwischen beiden statt. Dasselbe gilt auch in Richtung parallel zur Kochfeldplatte 3 innerhalb dieser. Der Infrarotsensor 19 ist durch den Meßschacht 15 von der Wärmestrahlung des Strahlungsheizleiters 9 abgeschirmt. Außerdem ist er auch durch die Eigenschaften des Materials der Kochfeldplatte von der Wärmestrahlung des Gargefäßes 11 weitestgehend abgeschirmt. In Meßreihen kann nun ein Zusammenhang zwischen der von der Unterseite der Glaskeramik-Kochfeldplatte 3 im Bereich des Meßfleckes 18 zum Infrarotsensor 19 abgestrahlten Wärmestrahlung und der Temperatur des Bodens der Bratpfanne 11 ermittelt werden. Beim Betrieb des Kochfeldes 1 ermittelt eine Recheneinheit 41 des Kochfeldes aus dem Meßwert S des Infrarotsensores 19 und aus in einer Speichereinheit 43 des Kochfeldes 1 abgelegten Kenndaten der Anordnung ein entsprechendes Ausgangssignal, aus dem eine Steuereinheit 45 des Kochfeldes 1 ein Heizleistungssignal P für den Strahlungsheizleiter 9 ableitet (Fig. 4). Dadurch ist es möglich; daß beispielsweise eine von einer Bedienperson über an sich bekannte Eingabeelemente vorgegebene Fritiertemperatur von 180°C durch die Steuereinheit 45 automatisch eingeregelt wird.When operating the sensor-controlled hob 1, the underside of the radiates from the radiant heating conductor 9 heated pot base 11 continuously heat radiation on the cooktop plate 3 arranged below. On the other hand, both the Radiant heating conductor 9 and the cooktop 3 heat radiation to the bottom of the pot 11. In addition, in the areas where the bottom of the pot is the hob plate touches heat conduction between the two instead. The same applies in the direction parallel to the hob 3 within this. The infrared sensor 19 is through the Measuring shaft 15 shielded from the heat radiation of the radiant heater 9. It is also characterized by the properties of the material of the hob plate the heat radiation of the cooking vessel 11 largely shielded. In series of measurements can now be a relationship between the from the bottom of the ceramic hob 3 emitted in the area of the measuring spot 18 to the infrared sensor 19 Heat radiation and the temperature of the bottom of the frying pan 11 can be determined. When the hob 1 is operating, a computing unit 41 determines the hob from the measured value S of the infrared sensor 19 and from in a storage unit 43 characteristics of the arrangement stored in the cooktop 1 have a corresponding output signal, from the one control unit 45 of the hob 1 a heating power signal P for the radiant heating conductor 9 is derived (FIG. 4). This makes it possible; that for example an input element known per se by an operator predetermined cooking temperature of 180 ° C by the control unit 45 is automatically adjusted.

Claims (9)

  1. Sensor-controlled cooking field with a cooking field plate, particularly of glass-ceramic, with at least one cooking zone heatable by means of a heating element arranged below the cooking field plate, as well as with a heat radiation sensor unit which is arranged below the cooking field plate and directed towards the underside thereof in the region of a measurement spot limited in terms of area and which is connected with a control unit for regulating the heat output of the heating element, characterised in that the value of the transmissivity of the cooking field plate (3) at least in the region of the measurement spot (18) is smaller than 30% at least in the spectral measurement range of the heat radiation sensor unit (19), preferably smaller than 10% and, in particular, approximately about 0%.
  2. Sensor-controlled cooking field according to claim 1, characterised in that the emissivity of the cooking field plate (3) at least in the region of the measurement spot (18) amounts to at least 60% at least in the spectral measurement range of the heat radiation sensor unit (19), in particular more than 90%.
  3. Sensor-controlled cooking field according to claim 1 or 2, characterised in that the cooking field plate (3) is provided at the underside thereof in the region of the measurement spot (18) with a dark emission layer (31).
  4. Sensor-controlled cooking field according to one of the preceding claims, characterised in that the measurement spot (18) has an area extent of approximately 1 to 4 cm2.
  5. Sensor-controlled cooking field according to one of the preceding claims with a glass-ceramic cooking field plate, characterised in that the heat radiation sensor unit (19) comprises a spectral filter (21), the spectral pass range of which lies between about 4 and 8 µm.
  6. Sensor-controlled cooking field according to one of claims 1 to 4 with a glass-ceramic cooking field plate, characterised in that the heat radiation sensor unit (19) comprises a spectral filter, the spectral pass range of which lies between approximately 10 to 20 µm.
  7. Sensor-controlled cooking field according to one of the preceding claims, characterised in that a measurement shaft (15) in which the heat radiation sensor unit (19) is directed to the measurement spot (18) of the cooking field plate (3), is arranged at the underside of the cooking field plate (3) in the region of the measurement spot (18).
  8. Sensor-controlled cooking field according to claim 7, characterised in that the heating element (9) encloses the measurement shaft (15) and thus the measurement spot (18) substantially all round.
  9. Sensor-controlled cooking field according to one of the preceding claims, characterised in that a computer unit (41) calculates the temperature of the base of a heated pot (11) placed on the cooking field plate (3) from the signal of the heat radiation sensor unit (19) and characterising data, which is filed in a storage unit (43), of the cooking field (1) and passes it on to the control unit (45).
EP99123600A 1998-12-04 1999-11-26 Sensor controlled hot plate with sensor arranged below the plate Expired - Lifetime EP1006756B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19856140 1998-12-04
DE19856140A DE19856140A1 (en) 1998-12-04 1998-12-04 Sensor-controlled cooktop with a sensor unit located below the cooktop

Publications (3)

Publication Number Publication Date
EP1006756A1 EP1006756A1 (en) 2000-06-07
EP1006756B1 true EP1006756B1 (en) 2002-06-05
EP1006756B2 EP1006756B2 (en) 2010-02-17

Family

ID=7890074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99123600A Expired - Lifetime EP1006756B2 (en) 1998-12-04 1999-11-26 Sensor controlled hot plate with sensor arranged below the plate

Country Status (4)

Country Link
US (1) US6225607B1 (en)
EP (1) EP1006756B2 (en)
DE (2) DE19856140A1 (en)
ES (1) ES2178337T5 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462316B1 (en) * 2000-10-10 2002-10-08 General Electric Company Cooktop control and monitoring system including detecting properties of a utensil and its contents
US6864465B2 (en) * 2002-11-27 2005-03-08 General Electric Company Error correction for optical detector in glass-ceramic cooktop appliances
DE10260512B4 (en) * 2002-12-21 2005-03-03 Diehl Ako Stiftung & Co. Kg Aperture of an optical sensor
DE102004002058B3 (en) * 2004-01-15 2005-09-08 Miele & Cie. Kg Method for controlling a cooking process in a hob and hob for performing the method
DE102004033454A1 (en) * 2004-07-07 2006-01-26 E.G.O. Elektro-Gerätebau GmbH Cooking device with temperature detection and method for detecting temperature on a cooking appliance
DE102004061101B3 (en) 2004-12-18 2006-01-19 Miele & Cie. Kg Determining thermal emissivity of heated surface, e.g. hob or base of cooking vessel, first determines incident heat flux and heating temperature
US20080160462A1 (en) * 2007-01-03 2008-07-03 Sokudo Co., Ltd. Method and system for bake plate heat transfer control in track lithography tools
US8581159B2 (en) 2007-06-05 2013-11-12 Miele & Cie. Kg Control method for a cooktop and cooktop for carrying out said method
EP2173137B1 (en) * 2007-06-22 2013-08-14 Panasonic Corporation Induction cooker
WO2009088809A1 (en) * 2008-01-02 2009-07-16 W.C. Bradley Company Temperature measurement means for cooking appliances
DE102008022387A1 (en) * 2008-05-06 2009-11-12 Miele & Cie. Kg Hob with a cooktop panel and process to control a cooking process
IT1393070B1 (en) * 2008-10-24 2012-04-11 Worgas Bruciatori Srl SPECIAL THERMOCOUPLE FOR BURNERS
JP5077268B2 (en) * 2009-03-04 2012-11-21 パナソニック株式会社 Induction heating device
US20140117008A1 (en) * 2012-10-31 2014-05-01 Mikrowellen-Labor-Systeme Gmbh Pressure Vessel
DE102013102115A1 (en) * 2013-03-04 2014-09-18 Miele & Cie. Kg Cooking equipment and method of assembly
DE102013102112A1 (en) * 2013-03-04 2014-09-18 Miele & Cie. Kg cooking facility
DE102013102109A1 (en) * 2013-03-04 2014-09-18 Miele & Cie. Kg cooking facility
DE102013102117A1 (en) * 2013-03-04 2014-09-18 Miele & Cie. Kg cooking facility
KR102363540B1 (en) * 2015-07-13 2022-02-17 삼성전자주식회사 Cooking apparatus
ES2597752B1 (en) * 2015-07-20 2017-10-25 Bsh Electrodomésticos España, S.A. COOKING FIELD DEVICE
DE102016101048B3 (en) 2016-01-21 2017-03-09 Schott Ag Glass ceramic hob with an infrared sensor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710062A (en) * 1971-04-06 1973-01-09 Environment One Corp Metal base cookware induction heating apparatus having improved power supply and gating control circuit using infra-red temperature sensor and improved induction heating coil arrangement
DE2437026C3 (en) * 1974-08-01 1978-06-08 Jenaer Glaswerk Schott & Gen., 6500 Mainz Glass ceramic cooking surface
DE2627254C3 (en) 1976-06-18 1981-08-13 Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen Process for measuring or regulating the temperature of a graphite tube
GB2072334A (en) * 1980-03-24 1981-09-30 Thorn Domestic Appliances Ltd Temperature responsive apparatus
ATE42164T1 (en) 1982-12-24 1989-04-15 Thorn Emi Patents Ltd COOKING PLATE.
US5285517A (en) * 1983-06-24 1994-02-08 Canyon Materials, Inc. High energy beam sensitive glasses
DE3576682D1 (en) * 1985-10-26 1990-04-26 Schott Glaswerke CLEAR COLORED GLASS CERAMICS WITH GOOD TEMPERATURE RESISTANCE AND VARIABLE ADJUSTABLE TRANSMISSION IN THE IR AREA.
US5249142A (en) * 1989-03-31 1993-09-28 Tokyo Electron Kyushu Limited Indirect temperature-measurement of films formed on semiconductor wafers
DE4007971A1 (en) * 1990-03-13 1991-09-19 Gaggenau Werke DEVICE FOR SWITCHING ELECTRICAL DEVICES
DE4208252A1 (en) 1992-03-14 1993-09-16 Ego Elektro Blanc & Fischer INDUCTIVE COOKING HEATING
USD384239S (en) 1993-02-15 1997-09-30 Bosch-Siemens Hausgeraete Gmbh Cooktop
US5658478A (en) * 1994-05-03 1997-08-19 Roeschel; Hans E. Automatic heating assembly with selective heating
DE19541632A1 (en) * 1995-11-08 1997-05-15 Bosch Siemens Hausgeraete Sensor-controlled cooking unit
US5709473A (en) * 1996-05-13 1998-01-20 General Motors Corporation Temperature sensor
DE19654773C1 (en) * 1996-12-31 1998-04-23 Schott Glaswerke Operating temperature measurement method in at least one cooking area of a cooking hob with glass ceramic plate
DE59813206D1 (en) 1997-01-10 2005-12-29 Ego Elektro Geraetebau Gmbh Cooking system with a contact heat transmitting electric hotplate
US6133552A (en) * 1999-08-11 2000-10-17 General Electric Company Sensor assembly for glass-ceramic cooktop appliance and method of calibrating
US6140617A (en) * 1999-10-22 2000-10-31 General Electric Company Cooktop control and monitoring system including detecting properties of a utensil through a solid-surface cooktop

Also Published As

Publication number Publication date
DE19856140A1 (en) 2000-06-08
EP1006756A1 (en) 2000-06-07
ES2178337T5 (en) 2010-05-31
EP1006756B2 (en) 2010-02-17
DE59901608D1 (en) 2002-07-11
US6225607B1 (en) 2001-05-01
ES2178337T3 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
EP1006756B1 (en) Sensor controlled hot plate with sensor arranged below the plate
EP2153698B1 (en) Control method for a hob and hob for carrying out said method
DE4331574C2 (en) Infrared sensor module
DE102005025896B4 (en) Hob plate with optical temperature display and with device for optical temperature detection and corresponding hob
EP1615469A2 (en) Cooking apparatus with temperature detection and method for detecting temperature in a cooking apparatus
EP3196175A1 (en) Glass ceramic cooktop with an infrared sensor
DE102008015483B4 (en) Oven for the thermal treatment of a dental firing object
DE19949601A1 (en) Gas cooker
DE102016101036B4 (en) Cooker with a ceramic hob
EP1583396A2 (en) Sensor system
DE102006026907A1 (en) Induction hob and method for determining a temperature of a bottom of a preparation container
EP0690659B1 (en) Infrared beam controlled cooking unit
DE69026553T2 (en) Temperature measuring device for induction cooking device and device with such a device
AT389612B (en) ELECTRIC RADIATION HEATING UNIT
DE102004002058B3 (en) Method for controlling a cooking process in a hob and hob for performing the method
EP1217873A2 (en) Temperature of cooking vessels sensing method and device
DE4413979C2 (en) Sensor-controlled cooking unit and cooking device
EP0722069A2 (en) Cooking apparatus
DE60131255T2 (en) TEMPERATURE SENSOR
WO2015018891A1 (en) Cooking device and method for operating the cooking device
EP2775792B1 (en) Cooking device
DE2721921C3 (en) Gas cooking device with a gas-tight cover plate
EP2775787B1 (en) Cooking device
EP2775786B1 (en) Cooking device
WO2015018890A1 (en) Cooking device and method for operating a cooking device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001120

AKX Designation fees paid

Free format text: DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20010327

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59901608

Country of ref document: DE

Date of ref document: 20020711

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020721

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2178337

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: MIELE & CIE. GMBH & CO.SCHUTZRECHTE/VERTRAE

Effective date: 20030305

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091120

Year of fee payment: 11

27A Patent maintained in amended form

Effective date: 20100217

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR GB IT SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091128

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20100419

Kind code of ref document: T5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59901608

Country of ref document: DE

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, 81739 MUENCHEN, DE

Effective date: 20150402

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: BSH HAUSGERATE GMBH

Effective date: 20150527

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: BSH HAUSGERATE GMBH

Effective date: 20151022

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181130

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181126

Year of fee payment: 20

Ref country code: FR

Payment date: 20181127

Year of fee payment: 20

Ref country code: ES

Payment date: 20181218

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59901608

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191125

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191127