EP1000235A1 - Method for controlling an internal combustion engine - Google Patents

Method for controlling an internal combustion engine

Info

Publication number
EP1000235A1
EP1000235A1 EP98947302A EP98947302A EP1000235A1 EP 1000235 A1 EP1000235 A1 EP 1000235A1 EP 98947302 A EP98947302 A EP 98947302A EP 98947302 A EP98947302 A EP 98947302A EP 1000235 A1 EP1000235 A1 EP 1000235A1
Authority
EP
European Patent Office
Prior art keywords
torque
value
determined
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98947302A
Other languages
German (de)
French (fr)
Other versions
EP1000235B1 (en
Inventor
Johann FRÖHLICH
Hong Zhang
Stefan Treinies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1000235A1 publication Critical patent/EP1000235A1/en
Application granted granted Critical
Publication of EP1000235B1 publication Critical patent/EP1000235B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the invention relates to a method for controlling an internal combustion engine.
  • a known method (DE 42 32 974 AI)
  • an estimate of an ignition torque normalized actual torque is determined.
  • a setpoint value of a torque to be delivered via the air mass flow is determined in a device for torque specification. The setpoint of the
  • Torque is corrected as a function of a deviation of the target value from the normalized estimated value of the torque. Depending on the speed, this corrected setpoint of the torque is assigned to a setpoint of the air mass flow, which then has a corresponding degree of opening
  • Throttle valve is set. An ignition angle is adjusted as a function of the deviation of the target value from the normalized estimated value of the torque.
  • the setpoint value of the torque is also determined taking into account various torque requirements, for example from an anti-slip regulator, a torque reserve for heating up a catalytic converter or a torque request from an engine drag torque controller, there are also deviations between the standardized estimated value of the torque and that in stationary operation of the internal combustion engine Setpoint torque.
  • the air mass flow in a cylinder of the internal combustion engine, which is assigned to the corrected setpoint of the torque, can only be set after a long delay.
  • a method for adjusting the torque on an internal combustion engine is known from DE 43 15 885 Cl.
  • a controller is provided whose controlled variable is the air mass flow and which generates an actuating signal for a throttle valve.
  • the control difference of the controller is formed from an average air mass flow, which is calculated with the aid of an inverse clocked load filter depending on a predetermined load setpoint, and a measured air mass flow.
  • the object of the invention is to provide a method for controlling an internal combustion engine which is precise and at the same time has good jumping behavior on torque jumps over the entire operating time of the internal combustion engine.
  • an observer which determines an air mass flow into a cylinder of the internal combustion engine as a function of a measured air mass flow.
  • the observer comprises a dynamic filling model of the intake tract of the internal combustion engine.
  • FIG. 1 shows an internal combustion engine with a control device
  • FIG. 2 shows a block diagram of the control device
  • FIG. 3 shows a detailed block diagram of a block B2 in which an estimated value of an actual torque is determined.
  • An internal combustion engine (FIG. 1) comprises an intake tract 1 with a throttle valve 10 and an engine block 2 which has a cylinder 20 and a crankshaft 23.
  • a piston 21 and a connecting rod 22 are assigned to the cylinder 20.
  • the connecting rod 22 is connected to the piston 21 and the crankshaft 23.
  • a cylinder head 3 is provided in which a valve train is arranged with at least one inlet valve 30, one outlet valve 31 and in each case one valve drive 32a assigned to the inlet valve 30 and one valve drive 32b assigned to the outlet valve 31.
  • the valve drives 32a, 32b each comprise a camshaft (not shown) with a transmission device which transmits the cam stroke to the inlet valve 30 and the outlet valve 31, respectively.
  • Devices for adjusting the valve stroke times and the valve stroke curve can also be provided.
  • an electromagnetic actuator can also be provided, which controls the course of the valve lift of the intake and exhaust valves 30, 31.
  • An injection valve 11 is introduced in the intake tract 1, which is arranged such that the fuel in the intake tract 1 is metered.
  • the injection valve 11 can alternatively also be introduced into the cylinder head 3 and arranged there in such a way that the fuel is metered directly into the interior of the cylinder 20.
  • a spark plug 34 is inserted into a recess in the cylinder head 3.
  • the internal combustion engine is shown in FIG. 1 with a cylinder. However, it can also comprise several cylinders.
  • An exhaust tract 4 with a catalytic converter 40 is assigned to the internal combustion engine.
  • the crankshaft 23 can be coupled to a transmission 6 via a clutch 5. If the transmission 6 is designed as an automatic transmission, then the clutch 8 is preferably designed as a lockup clutch with a hydrodynamic converter.
  • a control device 7 for the internal combustion engine is provided, to which sensors are assigned, which record different measured variables and each determine the measured value of the measured variable.
  • the control device 7 determines one or more control signals, which control an actuator, depending on at least one operating variable.
  • the sensors are a pedal position sensor 81, which detects a pedal position PV of the accelerator pedal 8, a throttle valve position sensor 12, which detects an opening degree of the throttle valve, an air mass meter 13, which detects an air mass flow, and / or an intake manifold pressure sensor 14, which detects an intake manifold pressure in the intake tract 1 , a first temperature sensor 15, which detects an intake air temperature, a speed sensor 24, which detects a rotational speed N of the crankshaft 23, a torque sensor 25, which detects the actual torque that is output by the crankshaft 23, and a second and third temperature sensor 26, 27, which detect an oil temperature TOIL or a cooling water temperature TCO.
  • the control device 7 can have any subset of the sensors mentioned, or additional sensors can also be assigned to it.
  • Company variables include measurement variables and variables derived from them, which are determined by an observer over a map map relationship, which calculates the treasure values of the company variables.
  • the actuators each include an actuator and an actuator.
  • the actuator is an electromotive drive, an electromagnetic drive, a mechanical drive or another drive known to the person skilled in the art.
  • the actuators are designed as a throttle valve 10, as an injection valve 11, as a spark plug 34 or as an adjusting device for adjusting the valve lift of the intake or exhaust valves 30, 31. In the following, reference will be made to the actuators with the respectively assigned actuator.
  • the control device is preferably designed as an electronic motor control. However, it can also comprise a number of control devices which are connected to one another in an electrically conductive manner. B. via a bus system.
  • a treasure value MAF_CYL of the air mass flow into the cylinder 20 is calculated with a filling model of the intake tract 1 as a function of the measured value MAF_M ES of the air mass flow and other operating variables.
  • a filling model of the intake tract 1 is disclosed in WO 96/32579, the content of which is hereby incorporated in this regard.
  • a map KF1 is provided, from which a first contribution to a loss torque TQ_LOSS depending on the speed N, the treasure value MAF_CYL of the air mass flow in the cylinder 20 and preferably a treasure value of an exhaust gas mass flow in the cylinder 20 is determined.
  • the first contribution to the loss torque TQ_LOSS takes into account pump losses in the internal combustion engine and losses that occur due to friction at predetermined reference values for the cooling water temperature TCO and the oil temperature TOIL.
  • a second contribution to that Loss torque is determined from a map KF2 depending on the oil temperature TOIL and / or the cooling water temperature TCO.
  • the contributions to the loss torque are then added and multiplied by a correction value COR2 or added to the correction value C0R2.
  • the correction value C0R2 is determined in a block B9, which is described below.
  • TQ_LOSS and the speed N determined.
  • the pedal position PV and the speed N determine which portion of the available torque is requested by the driver.
  • a desired torque TQI_REQ is then determined from the requested proportion of the torque and the torque that can be made available.
  • a filtering of the desired torque TQI_REQ is preferably also provided to ensure that no load jumps can occur which lead to an unpleasant jerk in the vehicle.
  • a setpoint TQI_SP_M AF of the torque to be set via the air mass flow is determined in a block B3.
  • torque requests are, for example, a torque TQI_IS requested by an idling regulator, a torque TQI_CH requested to heat up a catalytic converter, a torque request from an anti-slip control TQI_ASC, a torque request TQI_N_MAX from a speed limitation or the torque request TQI_MSR from an engine drag torque control.
  • the setpoint TQI_SP_MAF of the torque can thus be greater or less than the desired torque TQI_REQ.
  • the target value TQI_SP_MAF of the torque is corrected in a block B4 with a correction value COR1, which is determined in block B9.
  • the correction takes place in block B4 either by multiplying the target value TQI_SP_MAF of the torque by the correction value C0R1 and / or by adding the correction value COR1.
  • the corrected setpoint TQI_SP_MAF_C ° R of the torque is assigned a setpoint MAF_SP of the air mass flow depending on the speed N.
  • the values of the map KF3 are determined on an engine test bench with an air ratio LAM_REF and a reference ignition angle IGA_R EF , at which the torque at the respective operating point is maximum, or determined by a simulation calculation.
  • a setpoint THR_SP of the degree of opening of the throttle valve is determined depending on the setpoint MAF_SP of the air mass flow.
  • an actuating signal for actuating the throttle valve is determined, preferably by a position controller of the throttle valve.
  • a setpoint TI_SP of the injection time and a setpoint IGA_SP of the ignition angle are derived from the desired torque TQI_REQ, an actual torque TQI_A ⁇ and preferably the estimated value TQI_MAF_CYL of the air mass flow into the cylinder 20.
  • block B12 takes into account further torque requirements that have to be converted into an actual torque very quickly, for example the torque requirement of the anti-slip controller.
  • the actual torque can be changed very quickly, in particular if a corresponding charge reserve has been set in the cylinder 20 via the setpoint TQI_SP_MZF ' of the torque to be set via the air mass flow is because a change in injection time or ignition angle has a direct effect on the torque.
  • a map KF4 (FIG. 3) is provided, in which reference values TQI_REF of the torque depending on the treasure value MAF_CYL and the speed N are stored.
  • the map KF4 like the map KF3, is determined on an engine test stand at the respective reference ignition angle IGA_REF and the respective reference air ratio LAM_REF or determined by means of a simulation calculation.
  • the reference torque TQI_REF is accordingly the maximum torque that can be achieved theoretically at the corresponding speed and the corresponding air mass flow m the cylinder.
  • the reference value TQI_REF of the torque is corrected with the correction value COR1.
  • the correction is carried out in each case with the mathematical operation mersed to block B4. If, for example, the setpoint TQI_SP_MAF of the torque is multiplied by the correction value COR1 in block B4, the reference value TQI_REF of the torque is divided by the correction value CORl in block B80.
  • the output variable of block B80 is a corrected reference value TQI_REF_COR of the torque.
  • the reference ignition angle IGA_REF is determined as a function of the rotational speed N and the treasure value MAF_CYL of the air mass flow into the cylinder and preferably also as a function of the cooling water temperature TCO.
  • the difference between the setpoint IGA_SP and the reference value IGA_REF of the ignition angle is calculated in a node V2.
  • a sparkling Efficiency EFF_IGA determined depending on the difference formed in node V2.
  • a reference value LAM_REF of the air ratio is determined depending on the speed and the estimated value MAF_CYL.
  • the reference value LAM_REF is the current operating point, the optimal value of the air ratio with regard to maximizing the actual torque.
  • the difference between the setpoint LAM_SP and the reference value LAM_REF of the air ratio is calculated in a node V3.
  • an air ratio efficiency EFF_LAM is then calculated depending on the difference determined in node V3.
  • a cylinder deactivation efficiency EFF_SCC is determined in a block B85.
  • the cylinder deactivation efficiency is preferably calculated from the number of cylinders fired per work cycle of the internal combustion engine, based on the total number of cylinders.
  • a block B86 by multiplying the corrected reference value TQI_RE _CC> R- of the torque by the ignition angle efficiency EFF_IGA, by the air coefficient efficiency EFF_LAM and by the cylinder deactivation efficiency EFF_SCC, the estimated value TQI_AV "of the indicated actual torque is determined from the Adding the loss torque TQ_LOSS the estimated value TQ_AV of the actual torque at the clutch 5 is calculated.
  • the difference between the estimated value TQ_AV of the actual torque and the measured value TQ_MES of the actual torque determined by the torque sensor 25 is calculated in the node V4 (FIG. 2).
  • the correction value COR1 or COR2 is then calculated in a block B9.
  • several values of the correction value CORl, COR2 depending on the air mass MAF CYL and the speed N provided.
  • the correction value provided for the current speed N and the current estimated value MAF_CYL of the air mass flow is adapted.
  • the adaptation is preferably carried out via a moving averaging.
  • the second correction value COR2 is adapted, since in this operating state the reference value TQI_REF of the torque is zero.
  • the correction value COR1 is adapted in block B9.
  • the assigned value of the correction value COR1, COR2 is determined in block B9 and then supplied to node VI, block B4 and block B80.
  • a particularly precise and at the same time simple adaptation is achieved if an additive correction value is determined for low air mass and low speed, a multiplicative correction value for medium to high speed and low air mass, a multiplicative correction value for low speed and a medium to high air mass flow and for medium up to high speeds and a medium to high air mass flow a multiplicative correction value
  • a block BIO checks whether the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque is greater than a predefined threshold value SW. If this is the case, an error in the calculation of the torque is assumed and a first emergency operation is controlled, which is advantageously a limitation of the speed N. Alternatively, a check is carried out in the BIO block as to whether the time integral over the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque is greater than the predetermined threshold value SW.
  • a major advantage of the method is that inaccuracies in the maps KF3 and KF4, which are caused by production variations and by aging of the internal combustion engine, are derived from the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

According to the method provided for in the invention, a measurement value (TQ_MES) of an actual torque is determined. An estimated value (TQ_AV) of the actual torque is determined according to the operating variables of the internal combustion engine. A corrected value (COR) is calculated on the basis of the estimated value (TQ_AV) and the measurement value (TQ_MES) of the actual torque. A set point value (TQI_SP_MAF) of the torque to be controlled by means of the air mass flow is determined according to a pedal position (PV) determined by a pedal position sensor (61), calculated using at least one other operating variable and corrected according to the corrected value (COR).

Description

Beschreibungdescription
Verfahren zum Steuern einer BrennkraftmaschineMethod for controlling an internal combustion engine
Die Erfindung betrifft ein Verfahren zum Steuern einer Brennkraftmaschine. Bei einem bekannten Verfahren (DE 42 32 974 AI) wird ein Schätzwert eines zündwinkelnormierten tatsächlichen Drehmoments ermittelt. Ein Sollwert eines über den Luftmassenstrom zustellenden Drehmoments wird in einer Einrich- tung zur Drehmomentvorgabe ermittelt. Der Sollwert desThe invention relates to a method for controlling an internal combustion engine. In a known method (DE 42 32 974 AI), an estimate of an ignition torque normalized actual torque is determined. A setpoint value of a torque to be delivered via the air mass flow is determined in a device for torque specification. The setpoint of the
Drehmoments wird abhängig von einer Abweichung des Sollwertes von dem normierten Schätzwert des Drehmoments korrigiert. Diesen korrigierten Sollwert des Drehmoments wird abhängig von der Drehzahl einem Sollwert des Luftmassenstroms zugeord- net, der dann über einen entsprechenden Öffnungsgrad einerTorque is corrected as a function of a deviation of the target value from the normalized estimated value of the torque. Depending on the speed, this corrected setpoint of the torque is assigned to a setpoint of the air mass flow, which then has a corresponding degree of opening
Drosselklappe eingestellt wird. Ein Verstellen eines Zündwinkels erfolgt abhängig von der Abweichung des Sollwertes von dem normierten Schätzwert des Drehmoments.Throttle valve is set. An ignition angle is adjusted as a function of the deviation of the target value from the normalized estimated value of the torque.
Erfolgt die Ermittlung des Sollwertes des Drehmoments zusätzlich unter Berücksichtigung verschiedener Drehmomentanforderungen, beispielsweise von einem Antischlupfregier, eines Drehmomentvorhalts zum Aufheizen eines Katalysators oder einer Drehmomentanforderung eines Motorschleppmoment-Reglers, so ergeben sich auch im stationären Betrieb der Brennkraftmaschine Abweichungen zwischen dem normierten Schätzwert des Drehmoments und dem Sollwert des Drehmoments. Der dem korrigierten Sollwert des Drehmoments zugeordnete Luftmassenstrom in einem Zylinder der Brennkraftmaschine läßt sich erst nach einer großen Verzögerungszeit einstellen. Daher führt dieIf the setpoint value of the torque is also determined taking into account various torque requirements, for example from an anti-slip regulator, a torque reserve for heating up a catalytic converter or a torque request from an engine drag torque controller, there are also deviations between the standardized estimated value of the torque and that in stationary operation of the internal combustion engine Setpoint torque. The air mass flow in a cylinder of the internal combustion engine, which is assigned to the corrected setpoint of the torque, can only be set after a long delay. Hence the
Korrektur des Drehmoments abhängig von dem Sollwert und dem Schätzwert des Drehmoments zu starken Schwingungen des Luftmassenstroms und damit zu der Notwendigkeit, daß der Zündwinkel verstellt werden muß. Dies hat zur Folge, daß der Fahr- komfort verringert wird und die Emissionen erhöht werden. Ein Verfahren zur Einstellung des Drehmoments an einer Brennkraftmaschine ist aus der DE 43 15 885 Cl bekannt. Ein Regler ist vorgesehen dessen Regelgröße der Luftmassenstrom ist und der ein Stellsignal für eine Drosselklappe erzeugt. Die Re- geldifferenz des Reglers wird aus einem mittleren Luftmassenstrom, der mit Hilfe eines invers getakteten Lastfilters abhängig von einem vorgegebenen Last-Sollwert berechnet wird, und einem gemessenen Luftmassenstrom gebildet.Correction of the torque depending on the target value and the estimated value of the torque to strong vibrations of the air mass flow and thus to the need that the ignition angle must be adjusted. As a result, driving comfort is reduced and emissions are increased. A method for adjusting the torque on an internal combustion engine is known from DE 43 15 885 Cl. A controller is provided whose controlled variable is the air mass flow and which generates an actuating signal for a throttle valve. The control difference of the controller is formed from an average air mass flow, which is calculated with the aid of an inverse clocked load filter depending on a predetermined load setpoint, and a measured air mass flow.
Die Aufgabe der Erfindung ist es, ein Verfahren zum Steuern einer Brennkraftmaschine anzugeben, das genau ist und gleichzeitig ein gutes Sprungverhalten auf Drehmomentsprünge über die gesamte Betriebsdauer der Brennkraftmaschine aufweist.The object of the invention is to provide a method for controlling an internal combustion engine which is precise and at the same time has good jumping behavior on torque jumps over the entire operating time of the internal combustion engine.
Die Aufgabe wird erfindungsgemäß durch die Merkmale des unabhängigen Patentanspruchs 1 gelöst.The object is achieved by the features of independent claim 1.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Advantageous embodiments of the invention are characterized in the subclaims.
In einer vorteilhaften Ausgestaltung der Erfindung ist ein Beobachter vorgesehen, der einen Luftmassenstrom in einen Zylinder der Brennkraftmaschine abhängig von einem gemessenenen Luftmassenstrom ermittelt. Der Beobachter umfaßt ein dynami- sches Füllungsmodell des Ansaugtraktes der Brennkraftmaschine .In an advantageous embodiment of the invention, an observer is provided which determines an air mass flow into a cylinder of the internal combustion engine as a function of a measured air mass flow. The observer comprises a dynamic filling model of the intake tract of the internal combustion engine.
Ausführungsbeispiele der Erfindung sind anhand der schematischen Zeichnungen näher erläutert. Es zeigen:Embodiments of the invention are explained in more detail with reference to the schematic drawings. Show it:
Figur 1 eine Brennkraftmaschine mit einer Steuereinrichtung, Figur 2 ein Blockschaltbild der Steuereinrichtung, Figur 3 ein detailliertes Blockschaltbild eines Blocks B2, in dem ein Schätzwert eines tatsächlichen Drehmo- ments ermittelt wird. Elemente gleicher Konstruktion und Funktion sind figurenübergreifend mit den gleichen Bezugszeichen versehen.1 shows an internal combustion engine with a control device, FIG. 2 shows a block diagram of the control device, FIG. 3 shows a detailed block diagram of a block B2 in which an estimated value of an actual torque is determined. Elements of the same construction and function are provided with the same reference symbols in all figures.
Eine Brennkraftmaschine (Figur 1) umfaßt einen Ansaugtrakt 1 mit einer Drosselklappe 10 und einen Motorblock 2, der einen Zylinder 20 und eine Kurbelwelle 23 aufweist. Ein Kolben 21 und eine Pleuelstange 22 sind dem Zylinder 20 zugeordnet. Die Pleuelstange 22 ist mit dem Kolben 21 und der Kurbelwelle 23 verbunden.An internal combustion engine (FIG. 1) comprises an intake tract 1 with a throttle valve 10 and an engine block 2 which has a cylinder 20 and a crankshaft 23. A piston 21 and a connecting rod 22 are assigned to the cylinder 20. The connecting rod 22 is connected to the piston 21 and the crankshaft 23.
Ein Zylinderkopf 3 ist vorgesehen, in dem ein Ventiltrieb angeordnet ist mit mindestens einem Einlaßventil 30, einem Auslaßventil 31 und jeweils einem dem Einlaßventil 30 zugeordne- ten Ventilantrieb 32a und einem dem Auslaßventil 31 zugeordneten Ventilantrieb 32b. Die Ventilantriebe 32a, 32b umfassen jeweils eine nicht dargestellte Nockenwelle mit einer Übertragungseinrichtung, die den Nockenhub auf das Einlaßventil 30 bzw. das Auslaßventil 31 überträgt. Es können auch Ein- richtungen zum Verstellen der Ventilhubzeiten und des Ventilhubverlaufs vorgesehen sein. Alternativ kann auch ein elektromagnetischer Aktor vorgesehen sein, der dem Ventilhubverlauf des Ein- bzw. Auslaßventils 30, 31 steuert.A cylinder head 3 is provided in which a valve train is arranged with at least one inlet valve 30, one outlet valve 31 and in each case one valve drive 32a assigned to the inlet valve 30 and one valve drive 32b assigned to the outlet valve 31. The valve drives 32a, 32b each comprise a camshaft (not shown) with a transmission device which transmits the cam stroke to the inlet valve 30 and the outlet valve 31, respectively. Devices for adjusting the valve stroke times and the valve stroke curve can also be provided. Alternatively, an electromagnetic actuator can also be provided, which controls the course of the valve lift of the intake and exhaust valves 30, 31.
In dem Ansaugtrakt 1 ist ein Einspritzventil 11 eingebracht, das so angeordnet ist, daß der Kraftstoff in den Ansaugtrakt 1 zugemessen wird. Das Einspritzventil 11 kann alternativ jedoch auch in dem Zylinderkopf 3 eingebracht sein und dort so angeordnet sein, daß der Kraftstoff direkt in den Innenraum des Zylinders 20 zugemessen wird.An injection valve 11 is introduced in the intake tract 1, which is arranged such that the fuel in the intake tract 1 is metered. However, the injection valve 11 can alternatively also be introduced into the cylinder head 3 and arranged there in such a way that the fuel is metered directly into the interior of the cylinder 20.
Eine Zündkerze 34 ist in eine Ausnehmung des Zylinderkopfes 3 eingebracht. Die Brennkraftmaschine ist in der Figur 1 mit einem Zylinder dargestellt. Sie kann jedoch auch mehrere Zy- linder umfassen. Ein Abgastrakt 4 mit einem Katalysator 40 ist der Brennkraftmaschine zugeordnet. Die Kurbelwelle 23 ist über eine Kupplung 5 mit einem Getriebe 6 koppelbar. Wenn das Getriebe 6 als Automatikgetriebe ausgebildet ist, dann ist die Kupplung 8 als Wandleruberbruckungskupplung vorzugsweise mit einem hydrodynamischen Wandler ausgebildet.A spark plug 34 is inserted into a recess in the cylinder head 3. The internal combustion engine is shown in FIG. 1 with a cylinder. However, it can also comprise several cylinders. An exhaust tract 4 with a catalytic converter 40 is assigned to the internal combustion engine. The crankshaft 23 can be coupled to a transmission 6 via a clutch 5. If the transmission 6 is designed as an automatic transmission, then the clutch 8 is preferably designed as a lockup clutch with a hydrodynamic converter.
Eine Steuereinrichtung 7 für die Brennkraftmaschine ist vor- gesehen, der Sensoren zugeordnet sind, die verschiedene Meßgroßen erfassen und jeweils den Meßwert der Meßgroße ermitteln. Die Steuereinrichtung 7 ermittelt abhangig von mindestens einer Betriebsgroße ein oder mehrere Stellsignale, die e ein Stellgerat steuern.A control device 7 for the internal combustion engine is provided, to which sensors are assigned, which record different measured variables and each determine the measured value of the measured variable. The control device 7 determines one or more control signals, which control an actuator, depending on at least one operating variable.
Die Sensoren sind ein Pedalstellungsgeber 81, der eine Pedalstellung PV des Fahrpedals 8 erfaßt, ein Drosselklappenstellungsgeber 12, der einen Offnungsgrad der Drosselklappe erfaßt, einen Luftmassenmesser 13, der einen Luftmassenstrom erfaßt und/ oder ein Saugrohrdrucksensor 14, der einen Saugrohrdruck in dem Ansaugtrakt 1 erfaßt, ein erster Temperatursensor 15, der eine Ansauglufttemperatur erfaßt, ein Drehzahlgeber 24, der eine Drehzahl N der Kurbelwelle 23 erfaßt, ein Drehmomentsensor 25, der das tatsächliche Drehmoment er- faßt, das von der Kurbelwelle 23 abgegeben wird, und ein zweiter und dritter Temperatursensor 26, 27, die eine Oltem- peratur TOIL bzw. eine Kuhlwassertemperatur TCO erfassen. Die Steuereinrichtung 7 kann eine beliebige Untermenge der genannten Sensoren aufweisen oder es können ihr auch zusatzli- ehe Sensoren zugeordnet sein.The sensors are a pedal position sensor 81, which detects a pedal position PV of the accelerator pedal 8, a throttle valve position sensor 12, which detects an opening degree of the throttle valve, an air mass meter 13, which detects an air mass flow, and / or an intake manifold pressure sensor 14, which detects an intake manifold pressure in the intake tract 1 , a first temperature sensor 15, which detects an intake air temperature, a speed sensor 24, which detects a rotational speed N of the crankshaft 23, a torque sensor 25, which detects the actual torque that is output by the crankshaft 23, and a second and third temperature sensor 26, 27, which detect an oil temperature TOIL or a cooling water temperature TCO. The control device 7 can have any subset of the sensors mentioned, or additional sensors can also be assigned to it.
Betriebsgroßen umfassen Meßgroßen sowie von diesen abgeleitete Großen, die über einem Kennfeldzusammenhang von einem Beobachter ermittelt werden, der Schatzwerte der Betriebsgroßen berechnet. Die Stellgerate umfassen jeweils einen Stellantrieb und ein Stellglied. Der Stellantrieb ist ein elektromotorischer Antrieb, ein elektromagnetischer Antrieb, ein mechanischer oder ein weiterer dem Fachmann bekannter Antrieb. Die Stellglieder sind als Drosselklappe 10, als Einspritzventil 11, als Zündkerze 34 oder als eine Versteileinrichtung zum Verstellen des Ventilhubs der Ein- oder Auslaßventile 30, 31 ausgebildet. Auf die Stellgerate wird im folgenden mit dem jeweils zuge- ordneten Stellglied bezug genommen.Company variables include measurement variables and variables derived from them, which are determined by an observer over a map map relationship, which calculates the treasure values of the company variables. The actuators each include an actuator and an actuator. The actuator is an electromotive drive, an electromagnetic drive, a mechanical drive or another drive known to the person skilled in the art. The actuators are designed as a throttle valve 10, as an injection valve 11, as a spark plug 34 or as an adjusting device for adjusting the valve lift of the intake or exhaust valves 30, 31. In the following, reference will be made to the actuators with the respectively assigned actuator.
Die Steuereinrichtung ist vorzugsweise als elektronische Motorsteuerung ausgebildet. Sie kann jedoch auch mehrere Steuergerate umfassen, die elektrische leitend miteinander ver- bunden sind, so z. B. über ein Bussystem.The control device is preferably designed as an electronic motor control. However, it can also comprise a number of control devices which are connected to one another in an electrically conductive manner. B. via a bus system.
Im folgenden wird die Funktion des erfindungsrelevanten Teils der Steuereinrichtung 7 anhand der Blockschaltbilder von Figur 2 und 3 beschrieben. In einem Block Bl (Figur 2) wird ein Schatzwert MAF_CYL des Luftmassenstroms in den Zylinder 20 mit einem Fullungsmodell des Ansaugtraktes 1 abhangig von dem Meßwert MAF_MES des Luftmassenstroms und weiteren Betriebsgroßen berechnet. Ein derartiges Modell ist in der WO 96/32579 offenbart, deren Inhalt hiermit diesbezüglich einbe- zogen ist.The function of the part of the control device 7 relevant to the invention is described below with reference to the block diagrams of FIGS. 2 and 3. In a block B1 (FIG. 2), a treasure value MAF_CYL of the air mass flow into the cylinder 20 is calculated with a filling model of the intake tract 1 as a function of the measured value MAF_M ES of the air mass flow and other operating variables. Such a model is disclosed in WO 96/32579, the content of which is hereby incorporated in this regard.
Ein Kennfeld KF1 ist vorgesehen, aus dem ein erster Beitrag zu einem Verlustdrehmoment TQ_LOSS abhangig von der Drehzahl N , dem Schatzwert MAF_CYL des Luftmassenstroms in den Zylin- der 20 und vorzugsweise einem Schatzwert eines Abgasmassenstroms in den Zylinder 20 ermittelt wird. Der erste Beitrag zu dem Verlustdrehmoment TQ_LOSS berücksichtigt Pumpverluste in der Brennkraftmaschine und Verluste, die durch Reibung bei vorgegebenen Referenzwerten der Kuhlwassertemperatur TCO und der Oltemperatur TOIL auftreten. Ein zweiter Beitrag zu dem Verlustdrehmoment wird aus einem Kennfeld KF2 abhangig von der Oltemperatur TOIL und/oder der Kuhlwassertemperatur TCO ermittelt. In einem Verknüpfungspunkt AI werden dann die Beitrage zum Verlustdrehmoment addiert und mit einem Korrektur- wert COR2 multipliziert oder zu dem Korrekturwert C0R2 addiert. Der Korrekturwert C0R2 wird in einem Block B9 ermittelt, der weiter unten beschrieben ist.A map KF1 is provided, from which a first contribution to a loss torque TQ_LOSS depending on the speed N, the treasure value MAF_CYL of the air mass flow in the cylinder 20 and preferably a treasure value of an exhaust gas mass flow in the cylinder 20 is determined. The first contribution to the loss torque TQ_LOSS takes into account pump losses in the internal combustion engine and losses that occur due to friction at predetermined reference values for the cooling water temperature TCO and the oil temperature TOIL. A second contribution to that Loss torque is determined from a map KF2 depending on the oil temperature TOIL and / or the cooling water temperature TCO. At a node AI, the contributions to the loss torque are then added and multiplied by a correction value COR2 or added to the correction value C0R2. The correction value C0R2 is determined in a block B9, which is described below.
In einem Block B2 wird ein minimal und maximal zur Verfugung stellbares Drehmoment abhangig von dem VerlustdrehmomentIn block B2, a minimum and maximum available torque is dependent on the loss torque
TQ_LOSS und der Drehzahl N ermittelt. Aus der Pedalstellung PV und der Drehzahl N wird ermittelt, welcher Anteil des zur Verfugung stehenden Drehmoments von dem Fahrer angefordert wird. Aus dem angeforderten Anteil des Drehmoments und dem zur Verfugung stellbaren Drehmoment wird dann ein gewünschtes Drehmoment TQI_REQ ermittelt. Dabei ist vorzugsweise auch eine Filterung des gewünschten Drehmoments TQI_REQ vorgesehen um sicherzustellen, daß keine Lastsprunge auftreten können, die zu einem unangenehmen Ruckein des Fahrzeugs fuhren.TQ_LOSS and the speed N determined. The pedal position PV and the speed N determine which portion of the available torque is requested by the driver. A desired torque TQI_REQ is then determined from the requested proportion of the torque and the torque that can be made available. In this case, a filtering of the desired torque TQI_REQ is preferably also provided to ensure that no load jumps can occur which lead to an unpleasant jerk in the vehicle.
In einem Block B3 wird ein Sollwert TQI_SP_MAF des über den Luftmassenstrom einzustellenden Drehmoments ermittelt. Dabei werden neben dem gewünschten Drehmoment TQI_REQ auch weitere Drehmomentanforderungen berücksichtigt. Diese Drehmomentan- forderungen sind beispielsweise ein von einem Leerlaufregier angefordertes Drehmoment TQI_IS, ein zum Aufheizen eines Katalysators angefordertes Drehmoment TQI_CH, eine Drehmomentanforderung einer Anti-Schlupfregelung TQI_ASC, eine Drehmomentanforderung TQI_N_MAX einer Drehzahlbegrenzung oder die Drehmomentanforderung TQI_MSR einer Motorschleppmomentregelung. Der Sollwert TQI_SP_MAF des Drehmoments kann somit großer oder auch kleiner als das gewünschte Drehmoment TQI_REQ sein. Der Sollwert TQI_SP_MAF des Drehmoments wird in einem Block B4 mit einem Korrekturwert COR1 korrigiert, der in dem Block B9 ermittelt wird. Die Korrektur erfolgt in dem Block B4 entweder durch eine Multiplikation des Sollwertes TQI_SP_MAF des Drehmoments mit dem Korrekturwert C0R1 und/ oder einer Addition des Korrekturwertes COR1.A setpoint TQI_SP_M AF of the torque to be set via the air mass flow is determined in a block B3. In addition to the desired torque TQI_REQ, other torque requirements are also taken into account. These torque requests are, for example, a torque TQI_IS requested by an idling regulator, a torque TQI_CH requested to heat up a catalytic converter, a torque request from an anti-slip control TQI_ASC, a torque request TQI_N_MAX from a speed limitation or the torque request TQI_MSR from an engine drag torque control. The setpoint TQI_SP_MAF of the torque can thus be greater or less than the desired torque TQI_REQ. The target value TQI_SP_MAF of the torque is corrected in a block B4 with a correction value COR1, which is determined in block B9. The correction takes place in block B4 either by multiplying the target value TQI_SP_MAF of the torque by the correction value C0R1 and / or by adding the correction value COR1.
Über ein Kennfeld KF3 wird dem korrigierten Sollwert TQI_SP_MAF_C°R des Drehmoments abhängig von der Drehzahl N ein Sollwert MAF_SP des Luftmassenstroms zugeordnet. Die Werte des Kennfelds KF3 sind an einem Motorprüfstand bei einer Luftzahl LAM_REF und einem Referenzzündwinkel IGA_REF ermittelt, bei denen das Drehmoment im jeweiligen Betriebspunkt maximal ist, oder durch eine Simulationsrechnung ermittelt.Via a map KF3, the corrected setpoint TQI_SP_MAF_C ° R of the torque is assigned a setpoint MAF_SP of the air mass flow depending on the speed N. The values of the map KF3 are determined on an engine test bench with an air ratio LAM_REF and a reference ignition angle IGA_R EF , at which the torque at the respective operating point is maximum, or determined by a simulation calculation.
In einem Block B5 wird ein Sollwert THR_SP des Öffnungsgrades der Drosselklappe abhängig von dem Sollwert MAF_SP des Luftmassenstroms ermittelt. In einem Block B6 wird ein Stellsignal zum Ansteuern der Drosselklappe ermittelt, vorzugsweise von einem Lageregler der Drosselklappe.In a block B5, a setpoint THR_SP of the degree of opening of the throttle valve is determined depending on the setpoint MAF_SP of the air mass flow. In block B6, an actuating signal for actuating the throttle valve is determined, preferably by a position controller of the throttle valve.
In einem Block B12 wird ein Sollwert TI_SP der Einspritzzeit und ein Sollwert IGA_SP des Zündwinkels abgeleitet von dem gewünschten Drehmoment TQI_REQ, einem tatsächlichen Drehmo- ment TQI_Aγ und vorzugsweise dem Schätzwert TQI_MAF_CYL des Luftmassenstroms in den Zylinder 20. Zusätzlich erfolgt in dem Block B12 eine Berücksichtung weiterer Drehmomentanforderungen, die sehr schnell in ein tatsächliches Drehmoment umgesetzt werden müssen, so zum Beispiel die Drehmomentanforde- rung des Anti-Schlupf Reglers. Hierbei kann eine sehr schnelle Veränderung des tatsächlichen Drehmoments erfolgen, insbesondere dann, wenn über den Sollwert TQI_SP_MZF' des über den Luftmassenstrom einzustellenden Drehmoments ein entsprechender Füllungsvorhalt in dem Zylinder 20 eingestellt worden ist, da sich eine Änderung der Einspritzzeit oder des Zund- wmkels unmittelbar auf das Drehmoment auswirken.In a block B12, a setpoint TI_SP of the injection time and a setpoint IGA_SP of the ignition angle are derived from the desired torque TQI_REQ, an actual torque TQI_A γ and preferably the estimated value TQI_MAF_CYL of the air mass flow into the cylinder 20. In addition, block B12 takes into account further torque requirements that have to be converted into an actual torque very quickly, for example the torque requirement of the anti-slip controller. In this case, the actual torque can be changed very quickly, in particular if a corresponding charge reserve has been set in the cylinder 20 via the setpoint TQI_SP_MZF ' of the torque to be set via the air mass flow is because a change in injection time or ignition angle has a direct effect on the torque.
In einem Block B8 wird der Schatzwert TQ_AV des tatsachlichen Drehmoments ermittelt. Ein Kennfeld KF4 (Figur 3) ist vorgesehen, in dem Referenzwerte TQI_REF des Drehmoments abhangig von dem Schatzwert MAF_CYL und der Drehzahl N gespeichert sind. Das Kennfeld KF4 ist ebenso wie das Kennfeld KF3 an einen Motorprufstand bei dem jeweiligen Referenzzundwmkels IGA_REF und der jeweiligen Referenzluftzahl LAM_REF ermittelt oder durch eine Simulationsrechnung ermittelt. Das Referenzdrehmoment TQI_REF ist demnach jeweils das maximale Drehmoment, das bei der entsprechenden Drehzahl und dem entsprechenden Luftmassenstrom m den Zylinder teorethisch reali- siert werden kann.In a block B8, the estimated value TQ_AV of the actual torque is determined. A map KF4 (FIG. 3) is provided, in which reference values TQI_REF of the torque depending on the treasure value MAF_CYL and the speed N are stored. The map KF4, like the map KF3, is determined on an engine test stand at the respective reference ignition angle IGA_REF and the respective reference air ratio LAM_REF or determined by means of a simulation calculation. The reference torque TQI_REF is accordingly the maximum torque that can be achieved theoretically at the corresponding speed and the corresponding air mass flow m the cylinder.
In einem Block B80 erfolgt eine Korrektur des Referenzwertes TQI_REF des Drehmoments mit dem Korrekturwert CORl. Die Korrektur erfolgt dabei jeweils mit der zu Block B4 jeweils m- versen mathematischen Operation. Wird beispielsweise in Block B4 der Sollwert TQI_SP_MAF des Drehmoments mit dem Korrekturwert CORl multipliziert, so wird in dem Block B80 der Referenzwert TQI_REF des Drehmoments durch den Korrekturwert CORl dividiert. Die Ausgangsgroße des Blocks B80 ist ein korπ- gierter Referenzwert TQI_REF_COR des Drehmoments.In block B80, the reference value TQI_REF of the torque is corrected with the correction value COR1. The correction is carried out in each case with the mathematical operation mersed to block B4. If, for example, the setpoint TQI_SP_MAF of the torque is multiplied by the correction value COR1 in block B4, the reference value TQI_REF of the torque is divided by the correction value CORl in block B80. The output variable of block B80 is a corrected reference value TQI_REF_COR of the torque.
In einem Block B81 wird der Referenzzundwmkel IGA_REF abhangig von der Drehzahl N und dem Schatzwert MAF_CYL des Luftmassenstroms in den Zylinder und vorzugsweise auch abhangig von der Kuhlwassertemperatur TCO ermittelt.In block B81, the reference ignition angle IGA_REF is determined as a function of the rotational speed N and the treasure value MAF_CYL of the air mass flow into the cylinder and preferably also as a function of the cooling water temperature TCO.
In einem Verknüpfungspunkt V2 wird die Differenz des Sollwertes IGA_SP und des Referenzwertes IGA_REF des Zundwinkels berechnet. In einem Block B82 wird dann ein Zundwmkel- Wirkungsgrad EFF_IGA abhängig von der im Verknüpfungspunkt V2 gebildeten Differenz ermittelt.The difference between the setpoint IGA_SP and the reference value IGA_REF of the ignition angle is calculated in a node V2. In block B82, a sparkling Efficiency EFF_IGA determined depending on the difference formed in node V2.
In einem Block B83 wird ein Referenzwert LAM_REF der Luftzahl abhängig von der Drehzahl und dem Schätzwert MAF_CYL ermittelt. Der Referenzwert LAM_REF ist dabei jeweils der aktuelle Betriebspunkt optimale Wert der Luftzahl hinsichtlich einer Maximierung des tatsächlichen Drehmoments. In einem Verknüpfungspunkt V3 wird die Differenz des Sollwertes LAM_SP und des Referenzwertes LAM_REF der Luftzahl berechnet. In einem Block B84 wird dann ein Luftzahl-Wirkungsgrad EFF_LAM abhängig von der im Verknüpfungspunkt V3 ermittelten Differenz berechnet .In block B83, a reference value LAM_REF of the air ratio is determined depending on the speed and the estimated value MAF_CYL. The reference value LAM_REF is the current operating point, the optimal value of the air ratio with regard to maximizing the actual torque. The difference between the setpoint LAM_SP and the reference value LAM_REF of the air ratio is calculated in a node V3. In block B84, an air ratio efficiency EFF_LAM is then calculated depending on the difference determined in node V3.
In einem Block B85 wird ein Zylinderabschaltungs-Wirkungsgrad EFF_SCC ermittelt. Der Zylinderabschaltungs-Wirkungsgrad berechnet sich vorzugsweise aus der Anzahl der pro Arbeitsspiel der Brennkraftmaschine gefeuerten Zylinder bezogen auf die Gesamtzahl der Zylinder.A cylinder deactivation efficiency EFF_SCC is determined in a block B85. The cylinder deactivation efficiency is preferably calculated from the number of cylinders fired per work cycle of the internal combustion engine, based on the total number of cylinders.
In einem Block B86 wird durch Multiplikation des korrigierten Referenzwertes TQI_RE _CC>R- des Drehmoments mit dem Zündwinkel-Wirkungsgrad EFF_IGA, mit dem Luftzahl-Wirkungsgrad EFF_LAM und mit dem Zylinderabschaltungs-Wirkungsgrad EFF_SCC der Schätzwert TQI_AV" des indizierte tatsächlichen Drehmoments ermittelt, aus dem durch Addition des Verlustdrehmoments TQ_LOSS der Schätzwert TQ_AV des tatsächlichen Drehmoments an der Kupplung 5 berechnet wird.In a block B86, by multiplying the corrected reference value TQI_RE _CC> R- of the torque by the ignition angle efficiency EFF_IGA, by the air coefficient efficiency EFF_LAM and by the cylinder deactivation efficiency EFF_SCC, the estimated value TQI_AV "of the indicated actual torque is determined from the Adding the loss torque TQ_LOSS the estimated value TQ_AV of the actual torque at the clutch 5 is calculated.
In dem Verknüpfungspunkt V4 (Figur 2) wird die Differenz des Schätzwertes TQ_AV des tatsächlichen Drehmoments und des von dem Drehmomentsensor 25 ermittelten Meßwerts TQ_MES des tatsächlichen Drehmoments berechnet. Abhängig von dieser Differenz wird dann in einem Block B9 der Korrekturwert CORl oder COR2 berechnet. Vorzugsweise sind mehrere Werte des Korrek- turwertes CORl, COR2 abhängig von der Luftmasse MAF CYL und der Drehzahl N vorgesehen. Abhängig von der Differenz des Schätzwertes TQ_AV und des Meßwertes TQ_MES des tatsächlichen Drehmoments wird der jeweils für die aktuelle Drehzahl N und den aktuellen Schätzwert MAF_CYL des Luftmassenstroms vorgesehene Korrekturwert adaptiert. Die Adaption erfolgt dabei vorzugsweise über eine gleitende Mittelwertbildung. In dem Betriebszustand des Schubs wird der zweite Korrekturwert COR2 adaptiert, da in diesem Betriebszustand der Referenzwert TQI_REF des Drehmoments gleich Null ist. In den sonstigen Be- triebszuständen der Brennkraftmaschine wird der Korrekturwert CORl in dem Block B9 adaptiert. Außerdem wird abhängig von der aktuellen Drehzahl N und dem aktuellen Schätzwert MAF_CYL des Luftmassenstroms in dem Block B9 der zugeordnete Wert des Korrekturwertes CORl, COR2 ermittelt und dann dem Verknüpfungspunkt VI, dem Block B4 und dem Block B80 zugeführt. Eine besonders präzise und gleichzeitig einfache Adaption wird erreicht, wenn bei niedriger Luftmasse und niedriger Drehzahl ein additiver Korrekturwert ermittelt wird, bei mittleren bis hohen Drehzahlen und niedriger Luftmasse ein multiplikativer Korrekturwert, bei niedrigen Drehzahlen und einem mittleren bis hohem Luftmasssenstrom ein multiplikativer Korrekturwert und bei mittleren bis hohen Drehzahlen und einem mittleren bis hohem Luftmassenstrom ein multiplikativer KorrekturwertThe difference between the estimated value TQ_AV of the actual torque and the measured value TQ_MES of the actual torque determined by the torque sensor 25 is calculated in the node V4 (FIG. 2). Depending on this difference, the correction value COR1 or COR2 is then calculated in a block B9. Preferably, several values of the correction value CORl, COR2 depending on the air mass MAF CYL and the speed N provided. Depending on the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque, the correction value provided for the current speed N and the current estimated value MAF_CYL of the air mass flow is adapted. The adaptation is preferably carried out via a moving averaging. In the operating state of the thrust, the second correction value COR2 is adapted, since in this operating state the reference value TQI_REF of the torque is zero. In the other operating states of the internal combustion engine, the correction value COR1 is adapted in block B9. In addition, depending on the current speed N and the current estimated value MAF_CYL of the air mass flow, the assigned value of the correction value COR1, COR2 is determined in block B9 and then supplied to node VI, block B4 and block B80. A particularly precise and at the same time simple adaptation is achieved if an additive correction value is determined for low air mass and low speed, a multiplicative correction value for medium to high speed and low air mass, a multiplicative correction value for low speed and a medium to high air mass flow and for medium up to high speeds and a medium to high air mass flow a multiplicative correction value
In einem Block BIO wird geprüft, ob die Differenz des Schätzwertes TQ_AV und des Meßwertes TQ_MES des tatsächlichen Drehmoments größer ist als ein vorgegebener Schwellenwert SW. Ist dies der Fall, so wird von einem Fehler der Berechnung des Drehmoments ausgegangen und ein erster Notlauf gesteuert, der vorteilhafterweise eine Begrenzung der Drehzahl N ist. Alternativ wird in dem Block BIO geprüft, ob das zeitliche Integral über die Differenz des Schätzwertes TQ_AV und des Meßwertes TQ_MES des tatsächlichen Drehmoments größer ist als der vorgegebener Schwellenwert SW. Ein wesentlicher Vorteil des Verfahrens ist, daß Ungenauig- keiten der Kennfelder KF3 und KF4 , die bedingt sind durch Fertigungsstreuungen und durch Alterung der Brennkraftmaschi- ne, aus der Differenz des Schätzwertes TQ_AV und des Meßwertes TQ_MES des tatsächlichen Drehmoments abgeleitet werden.A block BIO checks whether the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque is greater than a predefined threshold value SW. If this is the case, an error in the calculation of the torque is assumed and a first emergency operation is controlled, which is advantageously a limitation of the speed N. Alternatively, a check is carried out in the BIO block as to whether the time integral over the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque is greater than the predetermined threshold value SW. A major advantage of the method is that inaccuracies in the maps KF3 and KF4, which are caused by production variations and by aging of the internal combustion engine, are derived from the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque.
Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt. The invention is not restricted to the exemplary embodiments described.

Claims

Patentansprüche claims
1. Verfahren zum Steuern einer Brennkraftmaschine bei dem1. Method for controlling an internal combustion engine in the
- ein Meßwert (TQ_MES) eines tatsächlichen Drehmoments ermit- telt wird, das an einer Abtriebswelle der Brennkraftmaschine abgegeben wird,a measured value (TQ_MES) of an actual torque is determined, which is output on an output shaft of the internal combustion engine,
- ein Schätzwert (TQ_AV) des tatsächlichen Drehmoments abhängig von Betriebsgrößen der Brennkraftmaschine ermittelt wird und - ein Korrekturwert (COR) abhängig von dem Schätzwert (TQ_AV) und dem Meßwert (TQ_MES) des tatsächlichen Drehmoments berechnet wird,an estimated value (TQ_AV) of the actual torque is determined as a function of operating variables of the internal combustion engine and - a correction value (COR) is calculated as a function of the estimated value (TQ_AV) and the measured value (TQ_MES) of the actual torque,
- ein Sollwert (TQI_SP_MAF) des über den Luftmassenstrom einzustellenden Drehmoments abhängig von einer Pedalstellung (PV), die von einem Pedalstellungsgeber (61) ermittelt wird, und von mindestens einer weiteren Betriebsgröße berechnet wird,a setpoint (TQI_SP_MAF) of the torque to be set via the air mass flow as a function of a pedal position (PV), which is determined by a pedal position transmitter (61), and is calculated from at least one further operating variable,
- der Sollwert des Drehmoments (TQI_SP_MAF) abhängig von dem Korrekturwert (COR) korrigiert wird und - ein Stellsignal für ein Stellglied der Brennkraftmaschine abhängig von dem korrigierten Sollwert (TQI_SP_MAF_COR) des Drehmoments ermittelt wird.- The setpoint of the torque (TQI_SP_MAF) is corrected depending on the correction value (COR) and - An actuating signal for an actuator of the internal combustion engine is determined depending on the corrected setpoint (TQI_SP_MAF_COR) of the torque.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Schätzwert (TQ_AV) des tatsächlichen Drehmoments abhängig von dem Korrekturwert (COR) korrigiert wird.2. The method according to claim 1, characterized in that the estimated value (TQ_AV) of the actual torque is corrected as a function of the correction value (COR).
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Notlauf (NL) der Brennkraftmaschine gesteuert wird, wenn die Abweichung des Schätzwertes (TQ_AV) von dem Meßwert3. The method according to claim 1, characterized in that an emergency operation (NL) of the internal combustion engine is controlled when the deviation of the estimated value (TQ_AV) from the measured value
(TQ__MES) des tatsächlichen Drehmoments größer ist als ein vorgegebener Schwellenwert (SW) .(TQ__MES) of the actual torque is greater than a predetermined threshold value (SW).
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Notlauf (NL) der Brennkraftmaschine gesteuert wird, wenn das zeitliche Integral über die Abweichung des Schätzwertes (TQ_AV) von dem Meßwert (TQ_MES) des tatsächlichen Drehmoments größer ist als der vorgegebene Schwellenwert (SW) .4. The method according to claim 1, characterized in that the emergency operation (NL) of the internal combustion engine is controlled when the time integral over the deviation of the estimated value (TQ_AV) from the measured value (TQ_MES) of the actual torque is greater than the predetermined threshold value (SW).
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der Notlauf (NL) eine Begrenzung der Drehzahl (N) einer Kurbelwelle (23) ist.5. The method according to claim 3 or 4, characterized in that the emergency operation (NL) is a limitation of the speed (N) of a crankshaft (23).
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Korrekturwert abhängig von der Drehzahl (N) und einem Luftmassenstrom (MAF_CYL) in einen Zylinder (20) der Brennkraftmaschine durch Filtern der Abweichung von dem Schätzwert (TQ_AV) und dem Meßwert (TQ_MES) des tatsächlichen Drehmoments berechnet wird.6. The method according to claim 1, characterized in that the correction value depending on the speed (N) and an air mass flow (MAF_CYL) in a cylinder (20) of the internal combustion engine by filtering the deviation from the estimated value (TQ_AV) and the measured value (TQ_MES) the actual torque is calculated.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Schätzwert (TQ_A"V) des tatsächlichen Drehmoments abhängig von einem Zündwinkel-Wirkungsgrad (EFF_IGA) , einem Luft- zahl-Wirkungsgrad (EFF_LAM) und einem Referenzwert7. The method according to claim 1, characterized in that the estimated value (TQ_A " V) of the actual torque depending on an ignition angle efficiency (EFF_IGA), an air ratio efficiency (EFF_LAM) and a reference value
(TQI_REF) des Drehmoments ermittelt wird, wobei der Referenzwert (TQI_RFW abhängt von dem Luftmassenstrom (MAF_CYL) in den Zylinder (20) und der Drehzahl (N) .(TQI_REF) of the torque is determined, the reference value (TQI_RFW depending on the air mass flow (MAF_CYL) into the cylinder (20) and the speed (N).
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der Schätzwert (TQ_AV) zusätzlich abhängig von einem Zylinder- abschaltungs-Wirkungsgrad (EFF_SCC) ermittelt wird.8. The method according to claim 7, characterized in that the estimated value (TQ_AV) is additionally determined as a function of a cylinder deactivation efficiency (EFF_SCC).
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch ge- kennzeichnet, daß der Luftmassenstrom (MAF_CYL) von einem9. The method according to any one of claims 1 to 8, characterized in that the air mass flow (MAF_CYL) by one
Beobachter abhängig von einem gemessenen Luftmassenstrom (MAF_MES) ermittelt wird.Observer is determined depending on a measured air mass flow (MAF_MES).
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch ge- kennzeichnet, daß das Stellglied eine Drosselklappe ist. 10. The method according to any one of claims 1 to 8, characterized in that the actuator is a throttle valve.
EP98947302A 1997-07-31 1998-07-17 Method for controlling an internal combustion engine Expired - Lifetime EP1000235B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19733106 1997-07-31
DE19733106A DE19733106A1 (en) 1997-07-31 1997-07-31 Method for controlling an internal combustion engine
PCT/DE1998/002019 WO1999006686A1 (en) 1997-07-31 1998-07-17 Method for controlling an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1000235A1 true EP1000235A1 (en) 2000-05-17
EP1000235B1 EP1000235B1 (en) 2003-03-12

Family

ID=7837561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98947302A Expired - Lifetime EP1000235B1 (en) 1997-07-31 1998-07-17 Method for controlling an internal combustion engine

Country Status (5)

Country Link
US (1) US6237563B1 (en)
EP (1) EP1000235B1 (en)
KR (1) KR100629014B1 (en)
DE (2) DE19733106A1 (en)
WO (1) WO1999006686A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790516B1 (en) * 1999-03-01 2001-05-11 Renault METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
US6474276B1 (en) 1999-05-19 2002-11-05 Fev Motorentechnik Gmbh Method for controlling an electromagnetic valve drive mechanism for a gas exchange valve in an internal combustion piston engine
US6425373B1 (en) * 1999-08-04 2002-07-30 Ford Global Technologies, Inc. System and method for determining engine control parameters based on engine torque
US6279531B1 (en) * 1999-08-09 2001-08-28 Ford Global Technologies, Inc. System and method for controlling engine torque
DE19946634A1 (en) * 1999-09-29 2001-04-05 Volkswagen Ag Process for controlling an intake volume of internal combustion engines with multiple intake systems
US6619155B2 (en) * 2000-05-15 2003-09-16 Grand Haven Stamped Products, Division Of Jsj Corporation Adjustable pedal apparatus
DE10124545A1 (en) * 2000-06-30 2002-01-10 Bosch Gmbh Robert Actuator drive e.g. for vehicle brake, has position demand changed according to rise in subsequent torque peaks until demanded position is reached if electronically commutated motor torque threshold exceeded
DE10046446A1 (en) * 2000-09-18 2002-03-28 Daimler Chrysler Ag Regulating of IC engine regarding engagements in at least one adjustable variable of IC engine so that desired torque or work to be applied at crankshaft of IC engine is determined
US6367447B1 (en) * 2001-02-21 2002-04-09 Ford Global Technologies, Inc. Adjustment of driver demand for atmospheric conditions
EP1279821B1 (en) * 2001-07-23 2005-04-06 Visteon Global Technologies, Inc. Engine torque controller
DE10149477A1 (en) * 2001-10-08 2003-04-17 Bosch Gmbh Robert controlling internal combustion engine, involves using torque model with base parameter that is at least one of corrected optimal engine torque or corrected optimal ignition angle
US6655353B1 (en) * 2002-05-17 2003-12-02 General Motors Corporation Cylinder deactivation engine control system with torque matching
DE10234719B3 (en) 2002-07-30 2004-04-15 Siemens Ag Method for regulating the filling of an internal combustion engine
US6705286B1 (en) * 2002-09-20 2004-03-16 Ford Global Technologies, Llc Method and system for minimizing torque intervention of an electronic throttle controlled engine
SE524759C2 (en) * 2002-12-12 2004-09-28 Volvo Lastvagnar Ab Combustion engine for motor vehicles
US6761146B1 (en) * 2003-06-17 2004-07-13 General Motors Corporation Model following torque control
DE10343504B3 (en) * 2003-09-19 2005-04-28 Siemens Ag Determining torque of internal combustion engine involves determining torque produced on output side of crankshaft of engine depending on measured camshaft angle and measured crankshaft angle
DE102004005134A1 (en) * 2004-02-02 2005-08-18 Siemens Ag Method for adapting a measured value of an air mass sensor
AU2004201718B1 (en) * 2004-04-27 2005-02-24 Larry Lin Feng Weng Engine optimisation method and apparatus
DE102004031527B3 (en) * 2004-06-29 2005-11-17 Siemens Ag Method for inverting a map online during the control and / or control of an internal combustion engine
DE102005032670A1 (en) * 2005-07-13 2007-02-01 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for controlling the drive power distribution in a motor vehicle with hybrid drive
DE102005039393B4 (en) * 2005-08-20 2015-01-08 Bayerische Motoren Werke Aktiengesellschaft Method for checking the functionality of the heating of a catalyst arranged in an exhaust system of an internal combustion engine
DE102006020062A1 (en) * 2006-04-29 2007-10-31 Dr.Ing.H.C. F. Porsche Ag Method for controlling an internal combustion engine
DE102006040945A1 (en) * 2006-08-31 2008-03-06 Volkswagen Ag Method for controlling a drive train of a motor vehicle
DE102007011812B4 (en) * 2007-03-12 2011-04-14 Continental Automotive Gmbh Method and device for operating a drive system
JP4956485B2 (en) * 2008-05-29 2012-06-20 株式会社クボタ Engine speed control structure of work vehicle
JP4875663B2 (en) * 2008-05-29 2012-02-15 株式会社クボタ Accelerator control structure of work vehicle
JP5246451B2 (en) * 2010-06-07 2013-07-24 三菱自動車工業株式会社 Vehicle output control device
JP6248548B2 (en) * 2013-10-31 2017-12-20 株式会社デンソー Vehicle control device
KR101558678B1 (en) 2013-11-25 2015-10-07 현대자동차주식회사 Method for estimating torque of transmission clutch
CN108571388B (en) * 2017-03-09 2022-02-11 罗伯特·博世有限公司 Method and device for adapting the resistive torque
US10920689B2 (en) * 2017-04-10 2021-02-16 Ford Global Technologies, Llc Methods and system for improving transient torque response

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455189A1 (en) * 1979-04-26 1980-11-21 Renault SYSTEM FOR CALCULATING AND ADJUSTING THE OPTIMIZATION OF THE IGNITION ADVANCE
WO1984000581A1 (en) * 1982-07-27 1984-02-16 Marchal Equip Auto Method for self-adaptive regulation of the ignition advance angle of a thermal engine with controlled ignition
JPS601375A (en) * 1983-06-16 1985-01-07 Nippon Soken Inc Ignition timing control method for internal-combustion engine
WO1990008889A1 (en) * 1989-01-31 1990-08-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Output controller of internal combustion engine
FR2688546B1 (en) * 1992-03-10 1996-03-01 Siemens Automotive Sa METHOD AND DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE.
DE4222298B4 (en) * 1992-07-08 2005-11-03 Robert Bosch Gmbh Method for damping occurring jerking vibrations for internal combustion engines
DE4232974C2 (en) * 1992-10-01 2002-05-16 Bosch Gmbh Robert Method and device for adjusting the torque of a gasoline engine
DE4315885C1 (en) * 1993-05-12 1994-11-03 Daimler Benz Ag Torque adjustment procedure
US5421302A (en) * 1994-02-28 1995-06-06 General Motors Corporation Engine speed control state prediction
US5577474A (en) * 1995-11-29 1996-11-26 General Motors Corporation Torque estimation for engine speed control
US5666918A (en) * 1995-12-11 1997-09-16 Ford Motor Company Engine airflow controller with feedback loop compensation for changes in engine operating conditions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9906686A1 *

Also Published As

Publication number Publication date
KR20010022380A (en) 2001-03-15
US6237563B1 (en) 2001-05-29
DE19733106A1 (en) 1999-02-04
KR100629014B1 (en) 2006-09-26
EP1000235B1 (en) 2003-03-12
DE59807478D1 (en) 2003-04-17
WO1999006686A1 (en) 1999-02-11

Similar Documents

Publication Publication Date Title
EP1000235B1 (en) Method for controlling an internal combustion engine
EP1082231B1 (en) Method and device for controlling a prime mover
DE19712843C2 (en) Method and device for controlling an internal combustion engine
DE102007056738B4 (en) Torque-based engine speed control
DE102006034576B4 (en) Improve drivetrain shift quality in drivetrains equipped with a variable valve train engine
EP0889795B1 (en) Process for controlling an internal combustion engine
DE19536038A1 (en) Motor vehicle propulsion unit control setting upper limit to torque
DE10051423B4 (en) Method for controlling the cylinder filling of an internal combustion engine
DE102009051874A1 (en) Method and apparatus for switching torque reserves and loads in a torque-based system
DE10219665A1 (en) Method and device for deactivating and reactivating cylinders for an engine with demand-dependent displacement
EP1216352A1 (en) Method for controlling an internal combustion engine
WO2005090769A1 (en) Method for controlling an internal combustion engine
EP1021649B1 (en) Method and device for supervising an internal combustion engine
EP0875673B1 (en) Method for controlling an internal combustion engine
DE19812485B4 (en) Method and device for operating an internal combustion engine
DE102005051296B4 (en) Valve characteristic control device and control method for an internal combustion engine
WO2001075300A1 (en) Method for starting an internal combustion engine and starter device for an internal combustion engine
WO2004055348A1 (en) Method and device for monitoring a control unit of an internal combustion engine
EP1312773B1 (en) System for compensating the phase deviation of an adjustable camshaft and corresponding method
DE4335726B4 (en) Method and device for controlling the drive power of a vehicle
DE10065516B4 (en) Method and device for controlling an internal combustion engine
DE10305092B4 (en) Method for automatic adaptation of a torque model and circuit arrangement
DE19803664B4 (en) Method and device for controlling an internal combustion engine
DE10059563A1 (en) Controlling steering for motor vehicle involves determining torque loss dependent on power steering required servo torque from steering angle
DE102007011812B4 (en) Method and device for operating a drive system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 20010802

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030312

REF Corresponds to:

Ref document number: 59807478

Country of ref document: DE

Date of ref document: 20030417

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080715

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080714

Year of fee payment: 11

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090717

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160731

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59807478

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201