EP0995484B1 - Method of producing a gas stream of medium pressure and medium temperature from a gas stream of high pressure and high temperature as well as apparatus for carrying out the process - Google Patents

Method of producing a gas stream of medium pressure and medium temperature from a gas stream of high pressure and high temperature as well as apparatus for carrying out the process Download PDF

Info

Publication number
EP0995484B1
EP0995484B1 EP98811042A EP98811042A EP0995484B1 EP 0995484 B1 EP0995484 B1 EP 0995484B1 EP 98811042 A EP98811042 A EP 98811042A EP 98811042 A EP98811042 A EP 98811042A EP 0995484 B1 EP0995484 B1 EP 0995484B1
Authority
EP
European Patent Office
Prior art keywords
pressure
energy
cascade
energy exchanger
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98811042A
Other languages
German (de)
French (fr)
Other versions
EP0995484A1 (en
Inventor
Gustav Hagström
Jakob Prof.Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to EP98811042A priority Critical patent/EP0995484B1/en
Priority to DE59807078T priority patent/DE59807078D1/en
Priority to US09/405,227 priority patent/US6286333B1/en
Publication of EP0995484A1 publication Critical patent/EP0995484A1/en
Application granted granted Critical
Publication of EP0995484B1 publication Critical patent/EP0995484B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • B01F23/19Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means

Definitions

  • the present invention relates to the field of fluid engineering. It relates to a method for generating a third gas stream of medium pressure and temperature, which can be used in particular as cooling air for a gas turbine, from a first gas stream of high pressure and high temperature, according to the preamble of claim 1.
  • Such a method is known, for example, from US-A-2,839,900.
  • the invention further relates to an apparatus for performing the method.
  • a particular difficulty in connection with the cooling of gas turbines is that only a limited number of pressure stages are available on the compressor for the secondary air supply. As a result of this limitation, it is common for cooling air to be provided at a very high pressure and for large losses to occur before the cooling air reaches a desired pressure level that can be much lower than the pressure level when it is provided. Another problem in this case is that the temperature of the cooling air is very high because a mere pressure drop does not reduce the resting temperature of the cooling air.
  • the object is achieved by the entirety of the features of claim 1 and claim 3.
  • the essence of the invention consists in lowering the pressure and the temperature of the gas flow on the inlet side by combining it with a further gas flow of low pressure and low temperature in several steps in a cascade of energy exchangers, in each of which by mixing two mass flows of different pressure and temperature a resulting third mass flow is generated.
  • a first preferred embodiment of the method according to the invention is therefore characterized in that the third mass flow of the second and all further energy exchangers is divided into two partial flows, that the first partial flow is used as the first mass flow of the energy exchanger following within the cascade, that the second Partial flow as a second mass flow within the Cascade of previous energy exchanger is used, that the first gas stream is fed as the first mass flow in the first energy exchanger, that the second gas stream is fed as the second mass flow in the last energy exchanger, and that the first partial stream of the last energy exchanger is taken as the resulting gas stream from the cascade.
  • the differences between the different types of energy exchangers are essentially linked to the different areas of application, with different complexity and different effectiveness.
  • the simplest class of energy exchangers are the so-called direct liquid-liquid energy exchangers, which include the jet injector and the Ranque-Hilsch tube. Sufficiently high efficiencies can therefore be achieved in a particularly simple manner according to a second preferred embodiment of the method according to the invention if the energy exchangers are designed as jet injectors, i.e. if in each of the energy exchangers of the cascade the first and the second mass flow are in each case as a jet into one Mixing room injected and mixed there for the third mass flow.
  • the device according to the invention for carrying out the method is characterized in that a plurality of energy exchangers are connected in series in a cascade, that each of the energy exchangers has two inputs and one output, that the output of one energy exchanger is connected to the first input of the subsequent energy exchanger is that means are available, each of which return a partial flow from the output of an energy exchanger to its second input, that the first input of the first energy exchanger is provided as a high-pressure inlet for feeding the first gas stream, that the second input of the last energy exchanger is used as a low-pressure inlet for feeding the second gas stream is provided, and that the output of the last energy exchanger is provided as a medium pressure outlet for removing the third gas stream.
  • each of the energy exchangers is designed as a jet injector and in each case has a mixing chamber through which the gas streams flow, and that two nozzle-shaped inlets are provided on the mixing chamber upstream, which form the two inputs of the energy exchanger, and that an outlet is arranged downstream of the mixing space, which outlet forms the output of the energy exchanger.
  • a very compact design can be achieved for the entire cascade in that the injector cascade is made up of a plurality of semicircular tubular segments with different diameters, which are arranged alternately and concentrically on the two sides of a central plane and are thus oriented with their open sides towards the central plane that the pipe segments interlock, and between two successive pipe segments on the same side of the median plane, mixing channels are formed, which are connected to one another in a cascade.
  • the cascade 10 comprises three energy exchangers EE1,..., EE3 designed as jet injectors, which are arranged one behind the other and are interconnected in a characteristic manner.
  • the representation is chosen on a pressure scale p such that the respective pressure levels p 0 to r 4 p 0 can be recognized in the individual stages of the cascade (the meaning of the quantities p 0 and r 4 can be seen from the explanations below).
  • a first gas stream S1 with a high pressure r 4 p 0 (and a high temperature) is introduced as a mass flow F 1 into a first inlet (high-pressure inlet) of the first energy exchanger EE1 of the cascade 10.
  • a second mass flow R 1 with a lower pressure r 2 p 0 (and a lower temperature) enters a second inlet (low pressure inlet) of the first energy exchanger EE1.
  • a mass flow F 2 combined from the mass flows F 1 and R 1 at an average pressure r 3 p 0 (and an average temperature) is then available at the output of the energy exchanger EE1.
  • the combined mass flow F 2 F 1 + R 1 is applied to the first input of the subsequent energy exchanger EE2, the second input of which is subjected to a further mass flow R 2 with the pressure rp 0 .
  • a further mass flow F 2 + R 2 with the mean pressure r 2 p 0 arises from the two mass flows F 2 and R 2 on the input side.
  • the mass flow R 1 ⁇ 1 F 1 is branched off as a partial flow from this mass flow F 2 + R 2 on the output side and is returned to the second input of the first energy exchanger EE1.
  • the remaining mass flow F 3 F 2 + R 2 - R 1 from the output of the second energy exchanger EE2 reaches the first input of the third energy exchanger EE3 following in the cascade 10.
  • the remaining mass flow F 4 F 3 + R 3 - R 2 is available at the medium pressure outlet 22 of the cascade 10 as a gas flow with reduced pressure rp 0 (and reduced temperature). If the cascade contains further stages or energy exchangers, the gas flows or mass flows are guided accordingly.
  • the schematized jet injector 11 shown there consists of a central mixing tube 12 which flows from left to right is: On the (left) input side of the mixing tube 12, two nozzle-like inlets 13 and 14 are provided, which are separated from one another by a partition 15. There is an outlet 16 on the right side of the mixing tube 12.
  • indices "1", “2", “3” and “13" relate to different locations within the jet injector 11. An additional "0" at the end of the indices denotes an associated steady state.
  • the parameters p, T, u and ⁇ denote the pressure, the temperature, the flow rate and the ratio of the cross-sectional area of the high-pressure inlet 13 to the cross-sectional area of the mixing tube 12. Further parameters, not shown in FIG. 2, for the subsequent formal consideration are the density ⁇ , the speed of sound c, the Mach number M, the ratio ⁇ of the specific heat, and the specific heat c p at constant pressure.
  • FIGS. 3 to 11 show the calculated stationary temperatures in all stages of the cascade as a function of the area ratio ⁇ of the individual jet injector according to FIG. 2.
  • FIGS. 4 and 5 show the Mach numbers of the flows on the inlet side at the respective high-pressure and low-pressure inlet (inlet 13 or 14) of the individual injector.
  • Figure 6 shows the cumulative effectiveness at each level of the cascade including the total effectiveness achieved in the 7th level. It should also be pointed out that the validity of the results is limited to the case of subsonic currents. It is not advisable to increase the Mach numbers (Fig. 4) significantly above 1.
  • FIGS. 8 to 11 show the cross-sectional area normalized to the cross-sectional area of the first high-pressure inlet of the cascade of the respective high-pressure inlet of an energy exchanger (FIG. 8), of the respective low-pressure inlet of an energy exchanger (FIG. 9) , the respective mixing chamber of an energy exchanger (FIG.
  • a very simply constructed and compact injector cascade 17 for carrying out the method according to the invention can be realized according to FIG. 12 by arranging a plurality of semicircular tube segments (half tubes) 18, 19 which are graduated in diameter concentrically and alternately on both sides of a central plane 26 be that a curved mixing channel 23-25 is formed on each side of the central plane 26 between successive pipe segments.
  • the pipe segments 18, 19 are interleaved in such a way that each mixing channel on one side of the central plane 26 is connected at both ends to two mixing channels on the other side of the central plane 26 at the same time.
  • the innermost mixing channel is connected to the high-pressure inlet 21, the outermost mixing channel 24 to the low-pressure inlet 20 and the medium-pressure outlet 22. It goes without saying that the arrangement of pipe segments (half pipes) is delimited and closed on both sides by corresponding end plates.
  • the invention provides a simple possibility of generating a gas flow of medium pressure with high efficiency from a high-pressure gas flow, which gas flow is particularly suitable for providing cooling air for a gas turbine from the compressor.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Strömungstechnik. Sie betrifft ein Verfahren zur Erzeugung eines dritten Gasstromes mittleren Druckes und mittlerer Temperatur, welcher insbesondere als Kühlluft für eine Gasturbine einsetzbar ist, aus einem ersten Gasstrom hohen Druckes und hoher Temperatur, gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to the field of fluid engineering. It relates to a method for generating a third gas stream of medium pressure and temperature, which can be used in particular as cooling air for a gas turbine, from a first gas stream of high pressure and high temperature, according to the preamble of claim 1.

Ein solches Verfahren ist z.B. aus der Druckschrift US-A-2,839,900 bekannt.Such a method is known, for example, from US-A-2,839,900.

Die Erfindung betrifft weiterhin eine Vorrichtung zur Durchführung des Verfahrens.The invention further relates to an apparatus for performing the method.

STAND DER TECHNIKSTATE OF THE ART

Eine besondere Schwierigkeit im Zusammenhang mit der Kühlung von Gasturbinen besteht darin, dass am Kompressor nur eine begrenzte Anzahl von Druckstufen für die Sekundärluftversorgung zur Verfügung steht. Infolge dieser Einschränkung kommt es häufig vor, dass Kühlluft mit einem sehr hohen Druck bereit gestellt wird, und dass hohe Verluste entstehen, bevor die Kühlluft ein gewünschtes Druckniveau erreicht, dass sehr viel tiefer liegen kann als das Druckniveau bei der Bereitstellung. In diesem Fall besteht ein weiteres Problem darin, dass die Temperatur der Kühlluft sehr hoch ist, weil eine reine Druckabsenkung die Ruhetemperatur der Kühlluft nicht verringert.A particular difficulty in connection with the cooling of gas turbines is that only a limited number of pressure stages are available on the compressor for the secondary air supply. As a result of this limitation, it is common for cooling air to be provided at a very high pressure and for large losses to occur before the cooling air reaches a desired pressure level that can be much lower than the pressure level when it is provided. Another problem in this case is that the temperature of the cooling air is very high because a mere pressure drop does not reduce the resting temperature of the cooling air.

Eine besonders missliche Situation ergibt sich bei den niedrigen Versorgungsdruckniveaus eines Kompressors, wenn die Einlass-Leitschaufeln des Kompressors weitgehend geschlossen sind. In diesem Fall kann der niedrigste Versorgungsdruck, der bei vollkommen geöffneten Einlass-Leitschaufeln etwa 2 bar betragen würde, unter den Umgebungsdruck absinken. Als Folge davon würde der niedrigste erlaubte Versorgungsdruck für die Versorgung der Lager mit Sperrluft und der letzten Turbinenscheibe mit Kühlluft bis zu 5 bar hoch sein, obgleich ein Ueberdruck von 200 mbar ausreichend sein würde (siehe z.B. die US-A-5,564,896)A particularly unfortunate situation arises with the low supply pressure levels of a compressor when the inlet guide vanes of the compressor are largely closed. In this case, the lowest supply pressure, which would be approximately 2 bar with the inlet guide vanes fully open, can drop below the ambient pressure. As a result, the lowest permitted supply pressure for supplying the bearings with sealing air and the last turbine disk with cooling air would be up to 5 bar, although an excess pressure of 200 mbar would be sufficient (see e.g. US-A-5,564,896)

Aus der eingangs genannten Druckschrift US-A-2,839,900 ist ein regeneratives Vortex-Kühlsystem gemäß dem Oberbegriff des Anspruchs 3 für Turbinen von Flugzeugen bekannt, bei dem in einem mehrstufigen Abkühlprozess mittels zweier Wärmetauscher und zwei hintereinandergeschalteter Vortexrohre heisse komprimierte Luft aus dem Verdichterteil der Turbine durch Energieaustausch mit angesaugter Luft von der Eingangsseite des Verdichterteils abgekühlt wird. Die beiden Luftströme werden dabei voneinander getrennt geführt, was nicht nur einen sehr aufwendigen Aufbau der Wärmetauscher bedingt, sondern auch den Energieaustausch behindert.From the above-mentioned document US-A-2,839,900 a regenerative vortex cooling system according to the preamble of claim 3 for aircraft turbines is known, in which in a multi-stage cooling process by means of two heat exchangers and two serially connected vortex tubes, hot compressed air from the compressor part of the turbine Energy exchange with intake air is cooled from the inlet side of the compressor part. The two air flows are guided separately from each other, which not only requires a very complex structure of the heat exchanger, but also hinders the energy exchange.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es ist daher Aufgabe der Erfindung, ein Verfahren sowie eine Vorrichtung anzugeben, mit welchen die Kühlluft bzw. generell ein Gasstrom mit gutem Wirkungsgrad von einem vergleichsweise hohen Ausgangsdruck und einer vergleichsweise hohen Ausgangstemperatur auf besser geeignete niedrigere Niveaus des Druckes und der Temperatur abgesenkt werden kann.It is therefore an object of the invention to provide a method and a device with which the cooling air or generally a gas stream can be reduced with good efficiency from a comparatively high outlet pressure and a comparatively high outlet temperature to more suitable lower levels of pressure and temperature.

Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 bzw. des Anspruchs 3 gelöst. Der Kern der Erfindung besteht darin, den Druck und die Temperatur des eingangsseitigen Gasstromes durch Kombination mit einem weiteren Gasstrom geringen Drucks und geringer Temperatur energetisch günstig in mehreren Schritten in einer Kaskade von Energieaustauschern abzusenken, in denen jeweils durch Mischung zweier Masssenströme unterschiedlichen Druckes und unterschiedlicher Temperatur ein resultierender dritter Massenstrom erzeugt wird.The object is achieved by the entirety of the features of claim 1 and claim 3. The essence of the invention consists in lowering the pressure and the temperature of the gas flow on the inlet side by combining it with a further gas flow of low pressure and low temperature in several steps in a cascade of energy exchangers, in each of which by mixing two mass flows of different pressure and temperature a resulting third mass flow is generated.

Es gibt eine Vielzahl verschiedener Typen von Energieaustauschern, die in einer solchen Kaskade eingesetzt werden können, einschliesslich Turboladern, Druckwellenmaschinen, Ranque-Hilsch-Rohren oder einfachen Strahlinjektoren. In jedem Fall wird in einem solchen einzelnen Energieaustauscher ein Gasstrom hohen Druckes und ein Gasstrom niedrigen Druckes zu einem resultierenden Gasstrom mit einem mittleren Druck kombiniert. Eine erste bevorzugte Ausführungsform des Verfahrens nach der Erfindung ist daher dadurch gekennzeichnet, dass der dritte Massenstrom des zweiten und aller weiteren Energieaustauscher jeweils in zwei Teilströme aufgeteilt wird, dass der erste Teilstrom als erster Massenstrom des innerhalb der Kaskade nachfolgenden Energieaustauschers verwendet wird, dass der zweite Teilstrom als zweiter Massenstrom des innerhalb der Kaskade vorangegangenen Energieaustauschers verwendet wird, dass der erste Gasstrom als erster Massenstrom in den ersten Energieaustauscher eingespeist wird, dass der zweite Gasstrom als zweiter Massenstrom in den letzten Energieaustauscher eingespeist wird, und dass der erste Teilstrom des letzten Energieaustauschers als resultierender Gasstrom der Kaskade entnommen wird.There are a variety of different types of energy exchangers that can be used in such a cascade, including turbochargers, pressure wave machines, Ranque-Hilsch tubes or simple jet injectors. In any case, in such a single energy exchanger, a gas stream of high pressure and a gas stream of low pressure are combined to a resulting gas stream with an average pressure. A first preferred embodiment of the method according to the invention is therefore characterized in that the third mass flow of the second and all further energy exchangers is divided into two partial flows, that the first partial flow is used as the first mass flow of the energy exchanger following within the cascade, that the second Partial flow as a second mass flow within the Cascade of previous energy exchanger is used, that the first gas stream is fed as the first mass flow in the first energy exchanger, that the second gas stream is fed as the second mass flow in the last energy exchanger, and that the first partial stream of the last energy exchanger is taken as the resulting gas stream from the cascade.

Die Unterschiede zwischen den verschiedenen Typen von Energieaustauschern sind im wesentlichen verknüpft mit den unterschiedlichen Anwendungsbereichen, mit unterschiedlichen Komplexität und unterschiedlicher Effektivität. Die einfachste Klasse von Energieaustauschern sind die sogenannten direkten Flüssigkeits-Flüssigkeits-Energieaustauscher, zu denen der Strahlinjektor und das Ranque-Hilsch-Rohr zählen. Man kann daher gemäss einer zweiten bevorzugten Ausführungsform des Verfahrens nach der Erfindung auf besonders einfache Weise ausreichend hohe Effektivitäten erzielen, wenn die Energieaustauscher als Strahlinjektoren ausgebildet sind, d.h., wenn in jedem der Energieaustauscher der Kaskade der erste und der zweite Massenstrom jeweils als Strahl in einen Mischraum eingedüst und dort zum dritten Massenstrom miteinander vermischt werden.The differences between the different types of energy exchangers are essentially linked to the different areas of application, with different complexity and different effectiveness. The simplest class of energy exchangers are the so-called direct liquid-liquid energy exchangers, which include the jet injector and the Ranque-Hilsch tube. Sufficiently high efficiencies can therefore be achieved in a particularly simple manner according to a second preferred embodiment of the method according to the invention if the energy exchangers are designed as jet injectors, i.e. if in each of the energy exchangers of the cascade the first and the second mass flow are in each case as a jet into one Mixing room injected and mixed there for the third mass flow.

Die erfindungsgemässe Vorrichtung zur Durchführung des Verfahrens ist dadurch gekennzeichnet, dass eine Mehrzahl von Energieaustauschern in einer Kaskade hintereinandergeschaltet sind, dass jeder der Energieaustauscher zwei Eingänge und einen.Ausgang aufweist, dass der Ausgang eines Energieaustauschers jeweils mit dem ersten Eingang des nachfolgenden Energieaustauschers verbunden ist, dass Mittel vorhanden sind, welche jeweils einen Teilstrom vom Ausgang eines Energieaustauschers auf seinen zweiten Eingang zurückführen, dass der erste Eingang des ersten Energieaustauschers als Hochdruckeinlass zum Einspeisen des ersten Gasstromes vorgesehen ist, dass der zweite Eingang des letzten Energieaustauschers als Niederdruckeinlass zum Einspeisen des zweiten Gasstromes vorgesehen ist, und dass der Ausgang des letzten Energieaustauschers als Mitteldruckauslass zur Entnahme des dritten Gasstromes vorgesehen ist.The device according to the invention for carrying out the method is characterized in that a plurality of energy exchangers are connected in series in a cascade, that each of the energy exchangers has two inputs and one output, that the output of one energy exchanger is connected to the first input of the subsequent energy exchanger is that means are available, each of which return a partial flow from the output of an energy exchanger to its second input, that the first input of the first energy exchanger is provided as a high-pressure inlet for feeding the first gas stream, that the second input of the last energy exchanger is used as a low-pressure inlet for feeding the second gas stream is provided, and that the output of the last energy exchanger is provided as a medium pressure outlet for removing the third gas stream.

Eine wegen der Einfachheit bevorzugte Ausführungsform der erfindungsgemässen Vorrichtung ist dadurch gekennzeichnet, dass jeder der Energieaustauscher als Strahlinjektor ausgebildet ist und jeweils einen von den Gasströmen durchströmten Mischraum aufweist, dass an dem Mischraum stromaufwärts zwei düsenförmige Einlässe vorgesehen sind, welche die beiden Eingänge des Energieaustauschers bilden, und dass an dem Mischraum stromabwärts ein Auslass angeordnet ist, welcher des Ausgang des Energieaustauschers bildet.A preferred embodiment of the device according to the invention because of the simplicity is characterized in that each of the energy exchangers is designed as a jet injector and in each case has a mixing chamber through which the gas streams flow, and that two nozzle-shaped inlets are provided on the mixing chamber upstream, which form the two inputs of the energy exchanger, and that an outlet is arranged downstream of the mixing space, which outlet forms the output of the energy exchanger.

Ein sehr kompakter Aufbau lässt sich für die gesamte Kaskade dadurch erreichen, dass die Injektorkaskade aus einer Mehrzahl von im Durchmesser abgestuften halbkreisförmigen Rohrsegmenten aufgebaut ist, welche alternierend und konzentrisch auf den beiden Seiten einer Mittelebene angeordnet und mit ihren offenen Seiten so zur Mittelebene hin orientiert sind, dass die Rohrsegmente ineinandergreifen, und zwischen zwei aufeinanderfolgenden Rohrsegmenten auf derselben Seite der Mittelebene jeweils Mischkanäle gebildet werden, welche untereinander kaskadenartig in Verbindung stehen.
Weitere Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.
A very compact design can be achieved for the entire cascade in that the injector cascade is made up of a plurality of semicircular tubular segments with different diameters, which are arranged alternately and concentrically on the two sides of a central plane and are thus oriented with their open sides towards the central plane that the pipe segments interlock, and between two successive pipe segments on the same side of the median plane, mixing channels are formed, which are connected to one another in a cascade.
Further embodiments result from the dependent claims.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhand mit der Zeichnung näher erläutert werden. Es zeigen

Fig. 1
die schematisierte grundsätzliche Anordnung einer 3-stufigen Kaskade mit Strahlinjektoren mit den dazugehörigen Druckniveaus und Massenströmen gemäss einem bevorzugten Ausführungsbeispiel der Erfindung;
Fig. 2
den prinzipiellen Aufbau eines einzelnen Strahlinjektors mit Mischrohr mit den für eine Berechnung notwendigen Parametern;
Fig. 3-11
verschiedene Diagramme mit berechneten charakteristischen Grössen einer beispielhaften 7-stufigen Kaskade mit Strahlinjektoren gemäss Fig. 2 in Abhängigkeit vom Verhältnis der Einlassquerschnitte; und
Fig. 12
im Querschnitt ein bevorzugtes Ausführungsbeispiel für eine aus konzentrischen halbkreisförmigen Rohrsegmenten zusammengesetzte, kompakte Strahlinjektorkaskade.
The invention is to be explained in more detail below on the basis of exemplary embodiments in conjunction with the drawing. Show it
Fig. 1
the schematic basic arrangement of a 3-stage cascade with jet injectors with the associated pressure levels and mass flows according to a preferred embodiment of the invention;
Fig. 2
the basic structure of a single jet injector with a mixing tube with the parameters necessary for a calculation;
Fig. 3-11
different diagrams with calculated characteristic sizes of an exemplary 7-stage cascade with jet injectors according to FIG. 2 as a function of the ratio of the inlet cross sections; and
Fig. 12
in cross section a preferred embodiment for a compact jet injector cascade composed of concentric semicircular pipe segments.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

In Fig. 1 ist die schematisierte grundsätzliche Anordnung einer 3-stufigen Kaskade mit Strahlinjektoren mit den dazugehörigen Druckniveaus und Massenströmen gemäss einem bevorzugten Ausführungsbeispiel der Erfindung wiedergegeben. Die Kaskade 10 umfasst drei als Strahlinjektoren ausgebildete Energieaustauscher EE1,..,EE3, die hintereinander angeordnet und in charakteristischer Weise untereinander verbunden sind. Die Darstellung ist zugleich auf einer Druckskala p so gewählt, dass die jeweiligen Druckniveaus p0 bis r4p0 in den einzelnen Stufen der Kaskade erkennbar sind (die Bedeutung der Grössen p0 und r4 ergibt sich aus den weiter unten folgenden Erläuterungen). Am linken Hochdruckeinlass 21 der Kaskade wird ein erster Gasstrom S1 mit einem hohen Druck r4p0 (und einer hohen Temperatur) als Massenstrom F1 in einen ersten Eingang (Hochdruckeingang) des ersten Energieaustauschers EE1 der Kaskade 10 eingespeist. In einen zweiten Eingang (Niederdruckeingang) des ersten Energieaustauschers EE1 gelangt ein zweiter Massenstrom R1 mit einem niedrigeren Druck r2p0 (und einer niedrigeren Temperatur). Am Ausgang des Energieaustauschers EE1 steht dann ein aus den Massenströmen F1 und R1 kombinierter Massenstrom F2 bei einem mittleren Druck r3p0 (und einer mittleren Temperatur) zur Verfügung. Der kombinierte Massenstrom F2 = F1 + R1 wird auf den ersten Eingang des nachfolgenden Energieaustauschers EE2 gegeben, dessen zweiter Eingang mit einem weiteren Massenstrom R2 mit dem Druck rp0 beaufschlagt wird. Am Ausgang entsteht aus den beiden eingangsseitigen Massenströmen F2 und R2 ein weiterer Massenstrom F2 + R2 mit dem mittleren Druck r2p0.1 shows the schematic basic arrangement of a 3-stage cascade with jet injectors with the associated pressure levels and mass flows according to a preferred exemplary embodiment of the invention. The cascade 10 comprises three energy exchangers EE1,..., EE3 designed as jet injectors, which are arranged one behind the other and are interconnected in a characteristic manner. At the same time, the representation is chosen on a pressure scale p such that the respective pressure levels p 0 to r 4 p 0 can be recognized in the individual stages of the cascade (the meaning of the quantities p 0 and r 4 can be seen from the explanations below). At the left high-pressure inlet 21 of the cascade, a first gas stream S1 with a high pressure r 4 p 0 (and a high temperature) is introduced as a mass flow F 1 into a first inlet (high-pressure inlet) of the first energy exchanger EE1 of the cascade 10. A second mass flow R 1 with a lower pressure r 2 p 0 (and a lower temperature) enters a second inlet (low pressure inlet) of the first energy exchanger EE1. A mass flow F 2 combined from the mass flows F 1 and R 1 at an average pressure r 3 p 0 (and an average temperature) is then available at the output of the energy exchanger EE1. The combined mass flow F 2 = F 1 + R 1 is applied to the first input of the subsequent energy exchanger EE2, the second input of which is subjected to a further mass flow R 2 with the pressure rp 0 . At the outlet, a further mass flow F 2 + R 2 with the mean pressure r 2 p 0 arises from the two mass flows F 2 and R 2 on the input side.

Von diesem ausgangsseitigen Massenstrom F2 + R2 wird der Massenstrom R1 = β1F1 als Teilstrom abgezweigt und auf den zweiten Eingang des ersten Energieaustauschers EE1 zurückgeleitet. Der restliche Massenstrom F3 = F2 + R2 - R1 vom Ausgang des zweiten Energieaustauschers EE2 gelangt auf den ersten Eingang des in der Kaskade 10 nachfolgenden dritten Energieaustauschers EE3. Auf den zweiten Eingang des dritten Energieaustauschers EE3, der einen Niederdruckeinlass 20 bildet, wird von aussen ein Gasstrom S2 als Massenstrom R3 = β3F3 mit dem niedrigsten Druck p0 gegeben. Aus beiden Massenströmen ergibt sich am Ausgang des dritten Energieaustauschers EE3 der Massenstrom F3 + R3, von dem der Teilstrom R2 = β2F2 abgezweigt und auf den zweiten Eingang des vorangehenden Energieaustauschers EE2 zurückgeführt wird. Der restliche Massenstrom F4 = F3 + R3 - R2 steht am Mitteldruckauslass 22 der Kaskade 10 als Gasstrom mit reduzierten Druck rp0 (und reduzierter Temperatur) zur Verfügung. Enthält die Kaskade weitere Stufen bzw. Energieaustauscher, erfolgt die Führung der Gasströme bzw. Massenströme entsprechend.The mass flow R 1 = β 1 F 1 is branched off as a partial flow from this mass flow F 2 + R 2 on the output side and is returned to the second input of the first energy exchanger EE1. The remaining mass flow F 3 = F 2 + R 2 - R 1 from the output of the second energy exchanger EE2 reaches the first input of the third energy exchanger EE3 following in the cascade 10. At the second input of the third energy exchanger EE3, which forms a low-pressure inlet 20, a gas flow S2 is given from the outside as a mass flow R 3 = β 3 F 3 with the lowest pressure p 0 . The mass flow F 3 + R 3 results from both mass flows at the output of the third energy exchanger EE3, from which the partial flow R 2 = β 2 F 2 branches off and is returned to the second input of the preceding energy exchanger EE2. The remaining mass flow F 4 = F 3 + R 3 - R 2 is available at the medium pressure outlet 22 of the cascade 10 as a gas flow with reduced pressure rp 0 (and reduced temperature). If the cascade contains further stages or energy exchangers, the gas flows or mass flows are guided accordingly.

Die grundsätzliche Situation bei einem einzelnen Strahlinjektor kann anhand der Fig. 2 betrachtet werden. Der dort dargestellte schematisierte Strahlinjektor 11 besteht aus einem zentralen Mischrohr 12, welches von links nach rechts durchströmt wird: Auf der (linken) Eingangsseite des Mischrohres 12 sind zwei durch eine Trennwand 15 voneinander getrennte düsenartige Einlässe 13 und 14 vorgesehen. Auf der rechten Seite des Mischrohres 12 befindet sich ein Auslass 16. In der Fig. 2 sind verschiedene, mit Indizes versehene Parameter eingetragen. Die Indizes "1", "2", "3" und "13" beziehen sich dabei auf unterschiedliche Orte innerhalb des Strahlinjektors 11. Eine zusätzlich "0" am Ende der Indizes bezeichnet einen zugehörigen stationären Zustand. Die Parameter p, T, u und α bezeichnen den Druck, die Temperatur, die Strömungsgeschwindigkeit und das Verhältnis der Querschnittsfläche des Hochdruckeinlasses 13 zur Querschnittsfläche des Mischrohres 12. Weitere, in der Fig. 2 nicht eingezeichnete Parameter für die nachfolgende formelmässige Betrachtung sind die Dichte ρ, die Schallgeschwindigkeit c, die Machzahl M, das Verhältnis γ der spezifischen Wärmen, und die spezifische Wärme cp bei konstantem Druck.The basic situation with a single jet injector can be viewed with reference to FIG. 2. The schematized jet injector 11 shown there consists of a central mixing tube 12 which flows from left to right is: On the (left) input side of the mixing tube 12, two nozzle-like inlets 13 and 14 are provided, which are separated from one another by a partition 15. There is an outlet 16 on the right side of the mixing tube 12. Various parameters provided with indices are entered in FIG. The indices "1", "2", "3" and "13" relate to different locations within the jet injector 11. An additional "0" at the end of the indices denotes an associated steady state. The parameters p, T, u and α denote the pressure, the temperature, the flow rate and the ratio of the cross-sectional area of the high-pressure inlet 13 to the cross-sectional area of the mixing tube 12. Further parameters, not shown in FIG. 2, for the subsequent formal consideration are the density ρ, the speed of sound c, the Mach number M, the ratio γ of the specific heat, and the specific heat c p at constant pressure.

Für verlustfreie Strömungen durch die Einlässe 13 und 14 gilt: (1)    p 10 p 13 = 1 + γ - 1 2 M 1 2 γ γ-1 , p 30 p 13 = 1 + γ - 1 2 M 3 2 γ γ-1 . For lossless flows through inlets 13 and 14: (1) p 10 p 13 = 1 + γ - 1 2 M 1 2 γ γ-1 . p 30 p 13 = 1 + γ - 1 2 M 3 2 γ γ-1 ,

Die Impulserhaltung über die Mischzone des Strahlinjektors 11 ergibt: (2)    p 13 + αρ 1 u 1 2 + (1-α)ρ 3 u 3 2 = p 2 + ρ 2 u 2 2 . The conservation of momentum across the mixing zone of the jet injector 11 results in: (2) p 13 + αρ 1 u 1 2 + (1-α) ρ 3 u 3 2 = p 2 + ρ 2 u 2 2 ,

Die Bedingung der Erhaltung der Masse kann wie folgt formuliert werden: (3)    αρ 1 u 1 + (1 - α) ρ 3 u 3 = ρ 3 u 2 , und die Erhaltung der Energie über die Mischzone erfordert, wenn die spezifischen Wärmen als konstant angenommen werden: (4)   αρ 1 u 1 T 10 + (1 - α)ρ 3 u 3 T 30 = ρ 2 u 2 T 20 . The condition of maintaining the mass can be formulated as follows: (3) αρ 1 u 1 + (1 - α) ρ 3 u 3 = ρ 3 u 2 . and the maintenance of energy across the mixing zone requires, if the specific heat is assumed to be constant: (4) αρ 1 u 1 T 10 + (1 - α) ρ 3 u 3 T 30 = ρ 2 u 2 T 20 ,

Weiterhin gelten die Zustandsgleichung (5)    p ρ T = γ - 1 γ c p , und die Bedingungen für eine isentropische Strömung (6)    p p 0 = ρ ρ 0 γ = T T 0 γ-1 γ ̲ = c c 0 γ-1 , um die lokalen Grössen mit den entsprechenden Grössen unter stationären Bedingungen in Beziehung zu setzen.The equation of state also applies (5) p ρ T = γ - 1 γ c p . and the conditions for an isentropic flow (6) p p 0 = ρ ρ 0 γ = T T 0 γ-1 γ = c c 0 γ-1 . to relate the local sizes to the corresponding sizes under stationary conditions.

Auf der Basis der Gleichungen (1) bis (6) lassen sich nun die Bedingungen am Einlass und am Auslass des Strahlinjektors 11 miteinander verknüpfen. Nimmt man weiterhin, dass das Flächenverhältnis α und das Druckverhältnis pro Stufe r = pn+1,0/pn,0 für alle Strahlinjektoren dieselben sind, können die Strahlinjektoren bzw. Energieaustauscher gemäss Fig. 1 zu der entsprechenden Kaskade 10 kombiniert werden. Wird der vorwärts gerichtete Massenstrom von der Stufe n zur Stufe n+1 mit Fn bezeichnet, und der von der Stufe n+1 zur Stufe n zurückgeführte Massenstrom mit Rn, ergibt die Massenerhaltung: (7)    F n +1 = F n + R n - R n -1 . The conditions at the inlet and at the outlet of the jet injector 11 can now be linked to one another on the basis of equations (1) to (6). If one further assumes that the area ratio α and the pressure ratio per stage r = p n + 1.0 / p n, 0 are the same for all jet injectors, the jet injectors or energy exchangers according to FIG. 1 can be combined to form the corresponding cascade 10. If the forward mass flow from stage n to stage n + 1 is denoted by F n , and the mass flow returned from stage n + 1 to stage n is R n , the mass conservation results in: (7) F n +1 = F n + R n - R n -1 ,

Auf der anderen Seite führt die Lösung der Gleichungen (1) bis (6) bei vorgegebenen stationärem Druck- und Temperaturverhältnissen zu einer Beziehung der Form: (8)    R n = β n F n , wobei der Proportionalitätsfaktor βn ein Mass für die Effektivität der n-ten Stufe der Kaskade 10 ist. Geht man davon aus, dass die Kaskade aus N Stufen zusammengesetzt ist, müssen N-1 Strahlinjektoren miteinander verknüpft werden. In diesem Fall ist das Druckverhältnis zwischen dem Hochdruckeingang und dem Niederdruckeingang rtotal = rN, während das Druckverhältnis zwischen dem Ausgang und dem Niederdruckeingang r beträgt.On the other hand, the solution of equations (1) to (6) leads to a relationship of the form given predetermined stationary pressure and temperature conditions: (8th) R n = β n F n . where the proportionality factor β n is a measure of the effectiveness of the nth stage of the cascade 10. If one assumes that the cascade is composed of N stages, N-1 jet injectors must be linked together. In this case, the pressure ratio between the high-pressure inlet and the low-pressure inlet r total = r N , while the pressure ratio between the outlet and the low-pressure inlet is r.

Bezeichnet man die stationären Temperaturen beim hohen Druck und beim niedrigen Druck mit THP0 bzw. TLP0, können die Verhältnisse der Massenströme bei den Hochdruckeingängen und den Niederdruckeingängen HP und LP für eine verlustfreie Energieaustauscher-Kaskade wie folgt ausgedrückt werden: (9)    m ̇ LP m ̇ HP = T HP 0 T LP 0 1 - r -( N -1) γ-1 γ r γ-1 γ -1 . If one designates the stationary temperatures at high pressure and at low pressure with T HP0 and T LP0 , the ratios of the mass flows at the high pressure inputs and the low pressure inputs HP and LP for a loss-free energy exchanger cascade can be expressed as follows: (9) m ̇ LP m ̇ HP = T HP 0 T LP 0 1 - r - ( N -1) γ-1 γ r γ-1 γ -1 ,

Die Effektivität ηE des Energieaustausches der vollständigen Kaskade 10 kann dann ausgedrückt werden durch The effectiveness η E of the energy exchange of the complete cascade 10 can then be expressed by

Beispiel:Example:

Eine Kaskade mit 7 Strahlinjektoren (N = 8) hat folgende Bedingungen am Hochdruckeingang und am Niederdruckeingang: (11)   p HP0 = 5.10 5 Pa, T HP0 = 480 K, p LP0 = 10 5 Pa, T LP0 = 288 K . A cascade with 7 jet injectors (N = 8) has the following conditions at the high pressure inlet and at the low pressure inlet: (11) p HP0 = 5.10 5 Pa, T HP0 = 480 K, p LP0 = 10 5 Pa, T LP0 = 288 K.

Die unter diesen Bedingungen errechneten Ergebnisse für verschiedene Parameter sind in den Figuren 3 bis 11 wiedergegeben. Fig. 3 zeigt die berechneten stationären Temperaturen in allen Stufen der Kaskade als Funktion des Flächenverhältnisses α des einzelnen Strahlinjektors gemäss Fig. 2. Die Figuren 4 und 5 zeigen die Machzahlen der eingangsseitigen Ströme am jeweiligen Hochdruckund Niederdruckeingang (Einlass 13 bzw. 14) des einzelnen Injektors. Fig. 6 zeigt die kumulierte Effektivität an jeder Stufe der Kaskade einschliesslich der gesamten Effektivität, die in der 7. Stufe erreicht wird. Es soll noch darauf hingewiesen werden, dass die Gültigkeit der Ergebnisse auf den Fall der unterschallschnellen Strömungen beschränkt ist. Es ist nicht ratsam, die Machzahlen (Fig. 4) wesentlich über 1 zu erhöhen. Die Prandtl-Meyer-Winkel, die aufgrund einer überschallschnellen Ausdehnung auftreten würden, würden zu einer Verschlechterung der Energieaustausch-Effektivität führen. Aus diesem Grund (siehe Fig. 4) sollte die Kaskade nahe bei α = 0,435 ausgelegt werden, wo die gesamte Effektivität ungefähr 0,4 und das Verhältnis der Gesamt-Massenströme gemäss Fig. 7 etwa 4 beträgt.The results calculated under these conditions for various parameters are shown in FIGS. 3 to 11. 3 shows the calculated stationary temperatures in all stages of the cascade as a function of the area ratio α of the individual jet injector according to FIG. 2. FIGS. 4 and 5 show the Mach numbers of the flows on the inlet side at the respective high-pressure and low-pressure inlet (inlet 13 or 14) of the individual injector. Figure 6 shows the cumulative effectiveness at each level of the cascade including the total effectiveness achieved in the 7th level. It should also be pointed out that the validity of the results is limited to the case of subsonic currents. It is not advisable to increase the Mach numbers (Fig. 4) significantly above 1. The Prandtl-Meyer angles, which would occur due to a supersonic expansion, would lead to a deterioration in the energy exchange effectiveness. For this reason (see FIG. 4) the cascade should be designed close to α = 0.435, where the total effectiveness is approximately 0.4 and the ratio of the total mass flows according to FIG. 7 is approximately 4.

Eine Verringerung oder Erhöhung der Anzahl der Stufen führt zu einer Verringerung bzw. Erhöhung der Kaskaden-Effektivität. Jedoch ist es kaum möglich, für ein grosses Druckverhältnis eine Kaskaden-Effektivität von mehr als 0,5 zu erreichen. Ein typischer Bereich der Effektivität, die mit einer geeigneten Anzahl von Stufen erreicht werden kann, liegt irgendwo zwischen 0,35 und 0,5. Die Geometrie bzw. Auslegung der Kaskade wird durch die Fig. 8 bis 11 festgelegt, welche die auf die Querschnittsfläche des ersten Hochdruckeinlasses der Kaskade normalisierte Querschnittsfläche des jeweiligen Hochdruckeinlasses eines Energieaustauschers (Fig. 8), des jeweiligen Niederdruckeinlasses eines Energieaustauschers (Fig. 9), der jeweiligen Mischkammer eines Energieaustauschers (Fig. 10), und des jeweiligen Auslasses für den zurückgeführten Teilstrom eines Energieaustauschers (Fig. 11) in Abhängigkeit vom Flächenverhältnis α zeigen. Es ist anzumerken, dass die Abstimmung zwischen den Auslass- und Einlassflächen aufeinanderfolgender Stufen relativ gut ist. Daher ist es nicht notwendig, viel kinetische Energie durch Abbremsen nach einem Auslass und Beschleunigen vor einem Einlass zu opfern. Die Uebergänge zwischen den Stufen können so ziemlich fliessend gehalten werden.A decrease or increase in the number of stages leads to a decrease or increase in the cascade effectiveness. However, it is hardly possible to achieve a cascade effectiveness of more than 0.5 for a large pressure ratio. A typical range of effectiveness that can be achieved with an appropriate number of levels is anywhere from 0.35 to 0.5. The geometry or design of the cascade is determined by FIGS. 8 to 11, which show the cross-sectional area normalized to the cross-sectional area of the first high-pressure inlet of the cascade of the respective high-pressure inlet of an energy exchanger (FIG. 8), of the respective low-pressure inlet of an energy exchanger (FIG. 9) , the respective mixing chamber of an energy exchanger (FIG. 10), and the respective outlet for the recirculated partial flow of an energy exchanger (FIG. 11) as a function of the area ratio α. It should be noted that the coordination between the outlet and inlet surfaces of successive stages is relatively good. Therefore, it is not necessary to sacrifice a lot of kinetic energy by braking after an outlet and accelerating before an inlet. The transitions between the steps can be kept pretty fluent.

Eine sehr einfach aufgebaute und kompakte Injektorkaskade 17 für die Durchführung des erfindungsgemässen Verfahrens kann gemäss Fig. 12 dadurch realisiert werden, dass eine Mehrzahl von im Durchmesser abgestuften, halbkreisförmigen Rohrsegmenten (Halbrohren) 18, 19 konzentrisch und alternierend auf beiden Seiten einer Mittelebene 26 so angeordnet werden, dass auf beiden Seiten der Mittelebene 26 zwischen aufeinanderfolgenden Rohrsegmenten jeweils ein gekrümmter Mischkanal 23-25 gebildet wird. Die Rohrsegmente 18, 19 sind so ineinander verschachtelt, dass jeder Mischkanäle auf der einen Seite der Mittelebene 26 an beiden Enden gleichzeitig mit zwei Mischkanälen auf der anderen Seite der Mittelebene 26 in Verbindung steht. Der innerste Mischkanal ist mit dem Hochdruckeinlass 21 verbunden, der äusserste Mischkanal 24 mit dem Niederdruckeinlass 20 und dem Mitteldruckauslass 22. Es versteht sich von selbst, dass die Anordnung Rohrsegmente (Halbrohre) an ihren beiden Seiten durch entsprechende Endplatten begrenzt und geschlossen ist.A very simply constructed and compact injector cascade 17 for carrying out the method according to the invention can be realized according to FIG. 12 by arranging a plurality of semicircular tube segments (half tubes) 18, 19 which are graduated in diameter concentrically and alternately on both sides of a central plane 26 be that a curved mixing channel 23-25 is formed on each side of the central plane 26 between successive pipe segments. The pipe segments 18, 19 are interleaved in such a way that each mixing channel on one side of the central plane 26 is connected at both ends to two mixing channels on the other side of the central plane 26 at the same time. The innermost mixing channel is connected to the high-pressure inlet 21, the outermost mixing channel 24 to the low-pressure inlet 20 and the medium-pressure outlet 22. It goes without saying that the arrangement of pipe segments (half pipes) is delimited and closed on both sides by corresponding end plates.

Insgesamt ergibt sich mit der Erfindung eine einfache Möglichkeit, mit hoher Effizienz aus einem Hochdruck-Gasstrom einen Gasstrom mittleren Druckes zu erzeugen, die insbesondere für die Bereitstellung von Kühlluft für eine Gasturbine aus dem Kompressor geeignet ist.Overall, the invention provides a simple possibility of generating a gas flow of medium pressure with high efficiency from a high-pressure gas flow, which gas flow is particularly suitable for providing cooling air for a gas turbine from the compressor.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
Kaskadecascade
1111
Strahlinjektorjet injector
1212
Mischrohrmixing tube
13,1413.14
Einlassinlet
1515
Trennwandpartition wall
1616
Auslassoutlet
1717
InjektorkaskadeInjektorkaskade
18,1918.19
Rohrsegment (halbkreisförmig)Pipe segment (semicircular)
2020
NiederdruckeinlassLow pressure inlet
2121
HochdruckeinlassHigh pressure inlet
2222
MitteldruckauslassMitteldruckauslass
23,24,2523,24,25
Mischkanalmixing channel
2626
Mittelebenemidplane
EE1,..,EE3EE1, .., EE3
Energieaustauscherenergy exchanger
F1,..,F4 F 1 , .., F 4
Massenstrommass flow
R1,..,R3 R 1 , .., R 3
Massenstrommass flow
S1,..,S3S1, .., S3
Gasstromgas flow

Claims (6)

  1. Method of generating a third gas flow (S3) of medium pressure and medium temperature, which can be employed, in particular, as cooling air for a gas turbine, from a first gas flow (S1) of high pressure and high temperature, in which method the reduction is undertaken by stepwise energy exchange between the first gas flow (S1) and a second gas flow (S2) of low pressure and low temperature in a cascade (10) consisting of a plurality of energy exchangers (EE1, .., EE3) connected in series characterized in that
    from a first mass flow (F1, .., F3) with a first pressure and a first temperature and a second mass flow (R1, .., R3) with a second pressure and a second temperature, which are smaller than the first pressure and the first temperature, a resultant third mass flow (F2, .., F4) with a third pressure and a third temperature is generated in each of the energy exchangers (EE1, .., EE3), which third pressure and third temperature lie between the first and the second pressures and the first and second temperatures, and in that in each of the energy exchangers (EE1, .., EE3) of the cascade (10), the first and the second mass flows are respectively injected as a jet into a mixing space (12, 24) and are there mixed with one another to form the third mass flow.
  2. Method according to Claim 1, characterized in that the respective third mass flow of the second and all further energy exchangers (EE2, EE3) is divided into two partial flows, in that the first partial flow is used as the first mass flow of the following energy exchanger within the cascade (10), in that the second partial flow (R1, R2) is used as the second mass flow of the preceding energy exchanger within the cascade (10), in that the first gas flow (S1) is fed into the first energy exchanger (EE1) as the first mass flow, in that the second gas flow (S2) is fed into the last energy exchanger (EE3) as the second mass flow, and in that the first partial flow of the last energy exchanger (EE3) is extracted from the cascade (10) as the resultant gas flow.
  3. Appliance for carrying out the method according to one of Claims 1 to 2, wherein a plurality of energy exchangers (EE1, .., EE3) are connected in series in a cascade (10), characterized in that each of the energy exchangers (EE1, .., EE3) has two inlet openings and one outlet opening, in that the outlet opening of one energy exchanger is respectively connected to the first inlet opening of the following energy exchanger, in that means are present which, starting with the second energy exchanger, respectively feed back a partial flow from the outlet opening of an energy exchanger to the second inlet opening of the preceding energy exchanger in the cascade (10), in that the first inlet opening of the first energy exchanger (EE1) is provided as the high-pressure inlet (21) for feeding in the first gas flow (S1), in that the second inlet opening of the last energy exchanger (EE3) is provided as the low-pressure inlet (20) for feeding in the second gas flow (S2), and in that the outlet opening from the last energy exchanger (EE3) is provided as the medium-pressure outlet (22) for extracting the third gas flow (S3).
  4. Appliance according to Claim 3, characterized in that each of the energy exchangers (EE1, .., EE3) is configured as an injector (11) and each has a mixing space (12, 23-25) through which the gases flow, in that two nozzle-shaped inlets (13, 14), which form the two inlet openings of the energy exchanger, are provided upstream of the mixing space (12, 23-25), and in that an outlet (16), which forms the outlet opening of the energy exchanger, is arranged downstream of the mixing space (12, 23-25).
  5. Appliance according to Claim 4, characterized in that the mixing space is configured as a mixing tube (12).
  6. Appliance according to Claim 4, characterized in that the injector cascade (17) is made up of a plurality of semicircular tube segments (18, 19), which are stepped in diameter, which are alternately and concentrically arranged on both sides of a central plane (26) and whose open sides are oriented relatively to the central plane (26) in such a way that the tube segments (18, 19) engage with one another and that mixing ducts (24, 25), which are connected to one another in the manner of a cascade, are respectively formed between two sequential tube segments on the same side of the central plane (26).
EP98811042A 1998-10-19 1998-10-19 Method of producing a gas stream of medium pressure and medium temperature from a gas stream of high pressure and high temperature as well as apparatus for carrying out the process Expired - Lifetime EP0995484B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98811042A EP0995484B1 (en) 1998-10-19 1998-10-19 Method of producing a gas stream of medium pressure and medium temperature from a gas stream of high pressure and high temperature as well as apparatus for carrying out the process
DE59807078T DE59807078D1 (en) 1998-10-19 1998-10-19 Method for generating a gas stream of medium pressure and medium temperature from a gas stream of high pressure and high temperature and device for carrying out the method
US09/405,227 US6286333B1 (en) 1998-10-19 1999-09-27 Method of generating a gas flow of medium pressure and medium temperature from a gas flow of high pressure and high temperature and appliance for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98811042A EP0995484B1 (en) 1998-10-19 1998-10-19 Method of producing a gas stream of medium pressure and medium temperature from a gas stream of high pressure and high temperature as well as apparatus for carrying out the process

Publications (2)

Publication Number Publication Date
EP0995484A1 EP0995484A1 (en) 2000-04-26
EP0995484B1 true EP0995484B1 (en) 2003-01-29

Family

ID=8236393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98811042A Expired - Lifetime EP0995484B1 (en) 1998-10-19 1998-10-19 Method of producing a gas stream of medium pressure and medium temperature from a gas stream of high pressure and high temperature as well as apparatus for carrying out the process

Country Status (3)

Country Link
US (1) US6286333B1 (en)
EP (1) EP0995484B1 (en)
DE (1) DE59807078D1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2839900A (en) * 1950-08-31 1958-06-24 Garrett Corp Regenerative vortex cooling systems
US4333017A (en) * 1980-10-20 1982-06-01 Connell John J O Method and apparatus for closed loop vortex operation
DE3603350A1 (en) * 1986-02-04 1987-08-06 Walter Prof Dipl Ph Sibbertsen METHOD FOR COOLING THERMALLY LOADED COMPONENTS OF FLOWING MACHINES, DEVICE FOR CARRYING OUT THE METHOD AND TRAINING THERMALLY LOADED BLADES
US5311749A (en) * 1992-04-03 1994-05-17 United Technologies Corporation Turbine bypass working fluid admission
US5461882A (en) * 1994-07-22 1995-10-31 United Technologies Corporation Regenerative condensing cycle
US6070418A (en) * 1997-12-23 2000-06-06 Alliedsignal Inc. Single package cascaded turbine environmental control system

Also Published As

Publication number Publication date
DE59807078D1 (en) 2003-03-06
US6286333B1 (en) 2001-09-11
EP0995484A1 (en) 2000-04-26

Similar Documents

Publication Publication Date Title
DE3514718C2 (en) Gas turbine plant and method for its operation
EP1752616B1 (en) Gas turbine plant
DE3447991C2 (en) Thrust engine for hypersonic aircraft
EP0707142B1 (en) Method of and device for recirculating exhaust gas to the high pressure side of a supercharged combustion engine
DE2422105C2 (en) Multi-flow gas turbine jet engine
WO2003027461A1 (en) Gas turbine system for working fluid in the form of a carbon dioxide/water mixture
EP2067941A2 (en) Combined cycle power plant with exhaust gas recycling and CO2 separation, and also method for operating such a combined cycle power plant
DE2042478A1 (en) Gas turbine jet engine for aircraft with devices for component cooling and compressor control
WO2000002653A1 (en) Method and device for increasing the pressure or enthalpy of a fluid flowing at supersonic speed
DE2813667A1 (en) AREA VARIABLE BYPASS INJECTOR FOR A CYCLE VARIABLE DOUBLE BYPASS GAS TURBO ENGINE
DE1626137B2 (en) DOUBLE-CIRCLE JET
DE19858700A1 (en) Fluid feed device between two stages of a centrifugal turbo engine
DE3023900A1 (en) DIFFUSER DEVICE AND GAS TURBINE ENGINE EQUIPPED WITH IT
DE112019002484T5 (en) STEAM TURBINE SYSTEM AND COOLING PROCESS FOR THIS
EP0168567B1 (en) Method of and device for cooling the charge air of a supercharged internal-combustion engine
EP0995484B1 (en) Method of producing a gas stream of medium pressure and medium temperature from a gas stream of high pressure and high temperature as well as apparatus for carrying out the process
EP0108298A1 (en) Turbine condenser with at least one steam bypass conduit entering the steam dome
CH212269A (en) Gas turbine plant.
EP0592817B1 (en) Gas turbine plant with a pressure wave machine
DE2230781C3 (en) Turbo compressor with recuperation turbine
DE19949761B4 (en) More pressure condensation plant
DE1526839A1 (en) Turbo jet engine?
DE102022114214A1 (en) Propulsion system for an aircraft
DE102020202299A1 (en) Propulsion system with multiple engines
DE1626129C3 (en) Bypass gas turbine jet engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000927

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20010806

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59807078

Country of ref document: DE

Date of ref document: 20030306

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030422

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090914

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091030

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091020

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59807078

Country of ref document: DE

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502