EP0982799B1 - Dielectric resonator antenna - Google Patents

Dielectric resonator antenna Download PDF

Info

Publication number
EP0982799B1
EP0982799B1 EP99202591A EP99202591A EP0982799B1 EP 0982799 B1 EP0982799 B1 EP 0982799B1 EP 99202591 A EP99202591 A EP 99202591A EP 99202591 A EP99202591 A EP 99202591A EP 0982799 B1 EP0982799 B1 EP 0982799B1
Authority
EP
European Patent Office
Prior art keywords
dielectric resonator
resonator antenna
plane
antenna
symmetry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99202591A
Other languages
German (de)
French (fr)
Other versions
EP0982799A3 (en
EP0982799A2 (en
Inventor
Frank Philips Corp.Intellec.Prop. GmbH Heinrichs
Tilman Philips Corp.Intellec. Prop.GmbH Schlenker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP0982799A2 publication Critical patent/EP0982799A2/en
Publication of EP0982799A3 publication Critical patent/EP0982799A3/en
Application granted granted Critical
Publication of EP0982799B1 publication Critical patent/EP0982799B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/24Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave constituted by a dielectric or ferromagnetic rod or pipe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0485Dielectric resonator antennas

Definitions

  • the invention relates to a dielectric resonator antenna (DRA) with an electrical conductive layer in a plane of symmetry.
  • DRA dielectric resonator antenna
  • the invention also relates to a transmitter and receiver with a dielectric resonator antenna with an electrically conductive layer in a plane of symmetry and on a mobile device with such an antenna.
  • Dielectric resonator antennas are known as miniaturized antennas made of ceramic or another dielectric for microwave frequencies.
  • a dielectric resonator the dielectric of which is surrounded by air with a dielectric constant of ⁇ r >> 1, this has a discrete spectrum of natural frequencies and natural modes.
  • the radiation of power is in the foreground with a resonator antenna. Since no conductive structures are used as the radiating element, the skin effect cannot have a negative effect. Such antennas therefore have low ohmic losses at high frequencies.
  • a compact, miniaturized structure can also be achieved.
  • Such a DR antenna 1 is shown in FIG. 1 in the basic form considered as an example.
  • other shapes are also possible, such as cylindrical or spherical geometries.
  • Dielectric resonator antennas are resonant components that only work in a narrow band around one of their resonance frequencies. The problem of antenna miniaturization is equivalent to lowering the working frequency for given antenna dimensions. Therefore the lowest resonance (TE z 111 mode) is used. This mode has a plane in which the tangential component of the electric field disappears, which is called plane of symmetry 2.
  • the resonance frequency remains the same as that of an antenna with the original dimensions. This is shown in Figure 2.
  • a further miniaturization can be achieved with this antenna by means of a dielectric with a high dielectric constant ⁇ r .
  • a material with low dielectric losses is preferably selected.
  • dielectric resonator antenna Such a dielectric resonator antenna is described in the article "Dielectric Resonator Antennas - A review and general design relations for resonant frequency and bandwidth", Rajesh K. Mongia and Prakash Barthia, Intern. Journal of Microwave and Millimeterwave Computer-aided Engineering, Vol. 4, No. 3, 1994, pages 230-247.
  • a cuboid dielectric resonator antenna is described in particular in FIG. 9 and the associated description.
  • the original structure can be halved without changing the field distribution or other resonance characteristics for the Te z 111 mode (page 244, right column, Lines 1-7).
  • the DRA is excited via a feed line with microwave power by being introduced into the stray field in the vicinity of a microwave line (for example a microstrip line or the end of a coaxial line).
  • An antenna is known from EP 0 790 663 A, which uses the known SMD technology (Soldering on the surface of the board) is mounted on a circuit board (PCB).
  • the antenna consists of a dielectric or magnetic substrate and has two Radiation electrodes, one of which is a radiation electrode Generated resonance frequency. Another connected to a feed line Electrode is on an opposite surface of the substrate. A there is another electrode connected to a ground potential on the back of the substrate. The two radiation electrodes are connected to the ground potential and each have an open end. The open ends of the radiation electrodes and the Electrode connected to the lead are electromagnetic through a gap between a radiation electrode and the electrode connected to the feed capacitively coupled. A wide range can be achieved through the antenna, in the signals of two different frequencies without reducing the Gain and without increasing the antenna configuration received and can be sent. Furthermore, a telecommunications device with a such antenna disclosed.
  • 3b and 5b each show a dielectric resonator antenna with a Microstrip line as supply line.
  • the resonator antenna shown in FIG. 3b stands out with a right-angled notch on the underside.
  • Fig. 5b resonator antenna shown from a dielectric block with several layered Segments on the underside, which is a material with a much higher Have dielectric constant.
  • the object of the invention is to provide a dielectric resonator antenna to create better coupling to a supply line.
  • a metal layer for forming the provided electrically conductive layer in the plane of symmetry and the electrical contact are suitable due to their good manufacturing properties and electrical conductivity good for realizing the connection with a supply line.
  • a metal layer is on a plane of symmetry adjacent side of the DRA for connection to the electrical contact in the Plane of symmetry provided.
  • a cuboid antenna with the plane of symmetry as Base of the electrical contact can be attached to an adjacent end face.
  • the metal layer is carried over the edge to the base, so that in a plane of symmetry is created on the plane of symmetry, which is used for surface mounting can be.
  • This soldering point is of course isolated from the electrically conductive layer, which is preferably done by leaving out a small area when metallizing the plane of symmetry happens.
  • a silver paste is advantageously used to form the metal layer provided by burning into the material of the DRA.
  • the material for the dielectric resonator antenna is a ceramic made of (Ba, Nd, Gd) TiO3 is provided. This ceramic material shows everyone important properties for the dielectric resonator antenna such as high dielectric constant, low dielectric losses and a low dielectric temperature coefficient on.
  • the object of the invention is achieved by a transmitter and a receiver as well as a mobile radio device in which at least in the plane of symmetry of the antenna an electrical contact which is insulated from the electrically conductive layer is provided, and the electrical layer and the electrical contact for connecting the dielectric Resonator antenna with at least one feed line for one to be transmitted or received Signal are provided.
  • FIG. 3 shows a dielectric resonator antenna (DRA) 4 with a metallic layer 5 in a plane of symmetry. Furthermore, the ceramic cuboid of the DRA 4 has a second metallization 6 on one end face. The second metallization 6 has a soldering point 7, which is electrically insulated from the metal layer 5 in the plane of symmetry. The solder point 7 forms the additional electrical contact in the plane of symmetry.
  • the plane of symmetry in which the tangential component of the electric field of the desired eigenmode (lowest resonance in TE z 111 mode) disappears is provided with a metallization firmly connected to the dielectric. This is preferably done with a silver paste that is burned into the ceramic.
  • the second metallization 6 on the end face is applied in the same way.
  • These metallizations 5, 6, 7 allow surface mounting (surface mount device, SMD), that is, the flat soldering of electronic components on a printed circuit board (printed circuit board PCB) by means of a wave solder bath or a reflow process.
  • FIG. 4 shows a DRA 4 provided with metallizations 5 and 6 Surface mounting technology on a circuit board 8 with a coplanar strip line 9, 10, 11 was soldered.
  • the metallization 6 on the end face is on after assembly Soldering point 7, which can no longer be seen, is electrically connected to a lead 9.
  • the Metallization of the plane of symmetry 5 is at two solder points with the ones lying on ground Surfaces 10 and 11 of the coplanar line 9, 10 11 connected.
  • One so assembled Antenna 4 has a good coupling with the feed line 9, 10, 11 with a very good one Impedance adjustment to (return loss of -35dB), which makes it very efficient is achieved.
  • the good values for the impedance matching are insensitive to Variations in the exact shape and size of the metallizations and the position of the Antenna on the board 8.
  • the antenna 4 is firmly soldered to the conductor tracks 9, 10, 11 of the feed board 8.
  • the soldering is done flat on the surface of the board, i.e. in the SMD technology known as manufacturing technology in the electronics industry.
  • the assembly of the antenna 4 can thus be combined with other components.
  • a DRA 4 mounted in this way has a very good impedance matching to the feed line 9, 10, 11, which is insensitive to inaccuracies in the positioning of the DRA 4.
  • the described DRA 4 can preferably be realized by a cuboid measuring 15x5x6mm 3 made of (Ba, Nd, Gd) TiO 3 ceramic.
  • the metallizations 5 and 6 are produced by means of a silver paste, which is baked at a temperature of 700 ° C, so that a closed, highly conductive metallic layer is formed.
  • the microstrip line 9, 10, 11 can be implemented on a standard circuit board substrate 8 with a characteristic impedance of 50 ⁇ .
  • the working frequency of such a DRA 4 is 2.1 GHz, so that it is particularly suitable for applications in the mobile radio sector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

Die Erfindung betrifft eine dielektrische Resonatorantenne (DRA) mit einer elektrisch leitenden Schicht in einer Symmetrieebene.The invention relates to a dielectric resonator antenna (DRA) with an electrical conductive layer in a plane of symmetry.

Außerdem bezieht sich die Erfindung noch auf einen Sender und Empfänger mit einer dielektrischen Resonatorantenne mit einer elektrisch leitenden Schicht in einer Symmetrieebene sowie auf ein Mobilfunkgerät mit einer solchen Antenne.The invention also relates to a transmitter and receiver with a dielectric resonator antenna with an electrically conductive layer in a plane of symmetry and on a mobile device with such an antenna.

Dielektrische Resonatorantennen (DRA) sind als miniaturisierte Antennen aus Keramik oder einem anderen Dielektrikum für Mikrowellenfrequenzen bekannt. In einem dielektrischen Resonator, dessen Dielektrikum mit einer Dielektrizitätszahl von εr>>1 von Luft umgeben ist, besitzt dieser ein diskretes Spektrum von Eigenfrequenzen und Eigenmoden. Im Gegensatz zu einem Resonator, der bei Vermeidung von Abstrahlungsverlusten eine sehr hohe Güte aufweist, steht bei einer Resonatorantenne die Abstrahlung von Leistung im Vordergrund. Da keine leitenden Strukturen als strahlendes Element verwendet werden, kann sich der Skineffekt nicht negativ auswirken. Daher weisen solche Antennen niedrige ohmsche Verluste bei hohen Frequenzen auf. Durch die Verwendung von Materialien mit hoher Dielektrizitätszahl kann weiterhin ein kompakter, miniaturisierter Aufbau erreicht werden. In der Figur 1 ist eine solche DR-Antenne 1 in der als beispielhaft betrachteten Grundform dargestellt. Neben der Form als Quader sind auch andere Formen möglich, wie zum Beispiel zylinder- oder kugelförmige Geometrien. Dielektrische Resonatorantennen sind resonante Bauteile, die nur in einem schmalen Band um eine ihrer Resonanzfrequenzen arbeiten. Das Problem der Miniaturisierung einer Antenne ist äquivalent dazu, die Arbeitsfrequenz bei gegebenen Antennenabmessungen zu erniedrigen. Deshalb wird die niedrigste Resonanz (TEz 111-Mode) verwendet. Diese Mode besitzt eine Ebene, in der die Tangentialkomponente des elektrischen Feldes verschwindet, die Symmetrieebene 2 genannt wird. Wenn die Antenne in der Symmetrieebene 2 halbiert und eine elektrisch leitfähige Fläche 3 angebracht wird (beispielsweise eine Metallplatte), bleibt die Resonanzfrequenz gleich der einer Antenne mit den ursprünglichen Abmessungen. Dies ist in der Figur 2 dargestellt. Eine weitere Miniaturisierung kann bei dieser Antenne mittels eines Dielektrikums mit hoher Dielektrizitätszahl εr erzielt werden. Dabei wird vorzugsweise ein Material mit geringen dielektrischen Verlusten ausgewählt.Dielectric resonator antennas (DRA) are known as miniaturized antennas made of ceramic or another dielectric for microwave frequencies. In a dielectric resonator, the dielectric of which is surrounded by air with a dielectric constant of ε r >> 1, this has a discrete spectrum of natural frequencies and natural modes. In contrast to a resonator, which has a very high quality while avoiding radiation losses, the radiation of power is in the foreground with a resonator antenna. Since no conductive structures are used as the radiating element, the skin effect cannot have a negative effect. Such antennas therefore have low ohmic losses at high frequencies. Through the use of materials with a high dielectric constant, a compact, miniaturized structure can also be achieved. Such a DR antenna 1 is shown in FIG. 1 in the basic form considered as an example. In addition to the shape as a cuboid, other shapes are also possible, such as cylindrical or spherical geometries. Dielectric resonator antennas are resonant components that only work in a narrow band around one of their resonance frequencies. The problem of antenna miniaturization is equivalent to lowering the working frequency for given antenna dimensions. Therefore the lowest resonance (TE z 111 mode) is used. This mode has a plane in which the tangential component of the electric field disappears, which is called plane of symmetry 2. If the antenna is halved in the plane of symmetry 2 and an electrically conductive surface 3 is attached (for example a metal plate), the resonance frequency remains the same as that of an antenna with the original dimensions. This is shown in Figure 2. A further miniaturization can be achieved with this antenna by means of a dielectric with a high dielectric constant ε r . A material with low dielectric losses is preferably selected.

Eine solche dielektrische Resonatorantenne wird in dem Artikel "Dielectric Resonator Antennas - A review and general design relations for resonant frequency and bandwidth", Rajesh K. Mongia und Prakash Barthia, Intern. Journal of Microwave and Millimeterwave Computer-aided Engineering, Vol. 4, No. 3, 1994, Seiten 230-247 beschrieben. Dabei wird ein Überblick über die Moden und die Strahlungscharakteristik für verschiedene Formen, wie zylindrische, kugelförmige und rechtwinklige DRA's gegeben. Es werden für unterschiedliche Formen die möglichen Moden und Symmetrieebenen gezeigt (siehe Figur 4, 5, 6 und Seite 240, linke Spalte, Zeilen 1-21). In der Figur 9 und der zugehörigen Beschreibung wird insbesondere eine quaderförmige dielektrische Resonatorantenne beschrieben. Mittels einer Metallfläche in der x-z-Ebene bei y=0 oder der y-z-Ebene bei x=0 kann die ursprüngliche Struktur halbiert werden, ohne die Feldverteilung oder andere Resonanzcharakteristika für die Tez 111-Mode zu verändern (Seite 244, rechte Spalte, Zeilen 1-7). Die DRA wird über eine Zuleitung mit Mikrowellenleistung angeregt, indem sie in das Streufeld in der Nähe einer Mikrowellenleitung (beispielsweise eine Microstripleitung oder das Ende einer Koaxialleitung) eingebracht wird.Such a dielectric resonator antenna is described in the article "Dielectric Resonator Antennas - A review and general design relations for resonant frequency and bandwidth", Rajesh K. Mongia and Prakash Barthia, Intern. Journal of Microwave and Millimeterwave Computer-aided Engineering, Vol. 4, No. 3, 1994, pages 230-247. An overview of the modes and the radiation characteristics for various shapes, such as cylindrical, spherical and right-angled DRA's, is given. The possible modes and symmetry levels are shown for different shapes (see FIGS. 4, 5, 6 and page 240, left column, lines 1-21). A cuboid dielectric resonator antenna is described in particular in FIG. 9 and the associated description. Using a metal surface in the xz plane at y = 0 or the yz plane at x = 0, the original structure can be halved without changing the field distribution or other resonance characteristics for the Te z 111 mode (page 244, right column, Lines 1-7). The DRA is excited via a feed line with microwave power by being introduced into the stray field in the vicinity of a microwave line (for example a microstrip line or the end of a coaxial line).

Aus der EP 0 790 663 A ist eine Antenne bekannt, welche in der bekannten SMD-Technik (Verlöten auf der Oberfläche der Platine) auf einer Platine (PCB) montiert wird. Die Antenne besteht aus einem dielektrischen oder magnetischen Substrat und weist zwei Strahlungselektroden auf, von denen jeweils eine Strahlungselektrode eine Resonanzfrequenz generiert. Eine weitere mit einer Zuführungsleitung verbundene Elektrode befindet sich auf einer gegenüberliegenden Oberfläche des Substrats. Eine weitere mit einem Massepotential verbundene Elektrode befindet sich auf der Rückseite des Substrats. Die zwei Strahlungselektroden sind mit dem Massepotential verbunden und weisen jeweils ein offenes Ende auf. Die offenen Enden der Strahlungselektroden und die mit der Zuführung verbundene Elektrode sind elektromagnetisch durch einen Spalt zwischen einer Strahlungselektrode und der mit der Zuführung verbundene Elektrode kapazitiv gekoppelt. Durch die Antenne kann eine breite Bandbreite erreicht werden, in der Signale zweier unterschiedlicher Frequenzen ohne Reduzierung des Verstärkungsfaktors und ohne Vergrößerung der Antennenkonfiguration empfangen und gesendet werden können. Weiterhin wird eine Telekommunikationsvorrichtung mit einer solchen Antenne offenbart.An antenna is known from EP 0 790 663 A, which uses the known SMD technology (Soldering on the surface of the board) is mounted on a circuit board (PCB). The antenna consists of a dielectric or magnetic substrate and has two Radiation electrodes, one of which is a radiation electrode Generated resonance frequency. Another connected to a feed line Electrode is on an opposite surface of the substrate. A there is another electrode connected to a ground potential on the back of the substrate. The two radiation electrodes are connected to the ground potential and each have an open end. The open ends of the radiation electrodes and the Electrode connected to the lead are electromagnetic through a gap between a radiation electrode and the electrode connected to the feed capacitively coupled. A wide range can be achieved through the antenna, in the signals of two different frequencies without reducing the Gain and without increasing the antenna configuration received and can be sent. Furthermore, a telecommunications device with a such antenna disclosed.

In dem Artikel "Recent Advances in Dielectric-Resonator Antenna Technology" A. Petosa, A. Ittipiboon, Y. M. M. Antar, D. Roscoe, M. Cuhaci, IEEE Antennas and Propagation Magazine, US, IEEE Inc; NY, Bd. 40, Nr.3, S. 35-48 werden Resonatorantennen mit einer verbesserten Impedanzbandbreite, zirkular-polarisatierten Bandbreite, Verstärkung oder Koppelmechanismen zu unterschiedlichen Zuleitungsstrukturen beschrieben. Dargestellt in Fig. 3b und Fig. 5b ist jeweils eine dielektrische Resonatorantenne mit einer Microstripleitung als Zuleitung. Die in Fig. 3b dargestellte Resonatorantenne zeichnet sich durch eine rechwinklige Einkerbung auf der Unterseite aus. Dagegen besteht die in Fig. 5b dargestellte Resonatorantenne aus einem dielektrischen Block mit mehreren geschichteten Segmenten auf der Unterseite, welche ein Material mit einer weit höheren Dielektrizitätskonstante aufweisen.In the article "Recent Advances in Dielectric-Resonator Antenna Technology" A. Petosa, A. Ittipiboon, Y. M. M. Antar, D. Roscoe, M. Cuhaci, IEEE Antennas and Propagation Magazine, US, IEEE Inc; NY, Vol. 40, No. 3, pp. 35-48 use resonator antennas an improved impedance bandwidth, circular-polarized bandwidth, amplification or coupling mechanisms to different supply structures are described. 3b and 5b each show a dielectric resonator antenna with a Microstrip line as supply line. The resonator antenna shown in FIG. 3b stands out with a right-angled notch on the underside. In contrast, there is that in Fig. 5b resonator antenna shown from a dielectric block with several layered Segments on the underside, which is a material with a much higher Have dielectric constant.

Bei dieser Art der Einkopplung der Leistung ist die für einen guten Wirkungsgrad notwendige Impedanzanpassung der dielektrischen Resonatorantenne an die Zuleitung schwierig, da die Anpassung stark von der Position der Antenne zur Zuleitung abhängt. Die Abweichung der relativen Position der Antenne zur Zuleitung schwankt aber insbesondere bei einer automatischen Fertigung sehr stark. With this type of coupling the power is necessary for good efficiency Impedance matching of the dielectric resonator antenna to the supply line difficult, since the adjustment depends strongly on the position of the antenna to the feed line. The deviation the relative position of the antenna to the feed line fluctuates in particular an automatic production very strong.

Die Aufgabe der Erfindung besteht darin, bei einer dielektrischen Resonatorantenne eine bessere Kopplung an eine Zuleitung zu schaffen.The object of the invention is to provide a dielectric resonator antenna to create better coupling to a supply line.

Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Auf diese Weise entstehen in einer Ebene zwei fest mit der dielektrischen Resonatorantenne verbundene elektrische Kontakte, die zur Einkopplung der Leistung mit der DRA verbunden werden können. Eine erfindungsgemäße Antenne kann mit anderen Komponenten auf einer Platine (PCB) in der bekannten SMD-Technik (Verlöten auf der Oberfläche der Platine) montiert werden. Diese SMD-fähige DRA kann fest mit den Zuleitungen auf der Platine verlötet werden, wodurch eine deutlich bessere Einkopplung als beim Einbringen in das Streufeld einer Zuleitung erzielt wird. Die Impedanzanpassung hängt wesentlich weniger von der genauen Positionierung der Antenne auf der Platine ab, als beim Einkoppeln in ein Streufeld, bei dem die Anpassung stark vom Abstand der Antenne von der Zuleitung abhängt.The object is solved by the features of claim 1. In this way arise in one level two electrical fixedly connected to the dielectric resonator antenna Contacts that can be connected to the DRA to couple the power. An antenna according to the invention can with other components on a circuit board (PCB) mounted in the known SMD technology (soldering on the surface of the board) become. This SMD-capable DRA can be soldered to the leads on the board be, which means a significantly better coupling than when introducing into the stray field a supply line is achieved. The impedance matching depends much less on that exact positioning of the antenna on the board than when coupling into one Stray field, in which the adaptation strongly depends on the distance of the antenna from the feed line depends.

Bei einer vorteilhaften Ausführungsform ist jeweils eine Metallschicht zur Bildung der elektrisch leitenden Schicht in der Symmetrieebene und des elektrischen Kontaktes vorgesehen. Metallschichten eignen sich aufgrund ihrer guten Fertigungseigenschaften und elektrischen Leitfähigkeit gut zur Realisierung der Verbindung mit einer Zuleitung.In an advantageous embodiment, a metal layer for forming the provided electrically conductive layer in the plane of symmetry and the electrical contact. Metal layers are suitable due to their good manufacturing properties and electrical conductivity good for realizing the connection with a supply line.

In einer weiteren Ausgestaltung ist eine Metallschicht auf einer an die Symmetrieebene angrenzenden Seite der DRA zur Verbindung mit dem elektrischen Kontakt in der Symmetrieebene vorgesehen. Auf diese Weise wird mit der Erweiterung durch die Metallschicht eine besonders gute Anregung der dielektrischen Resonatorantenne erreicht. Beispielsweise kann bei einer quaderförmigen Antenne mit der Symmetrieebene als Grundfläche der elektrische Kontakt auf einer angrenzenden Stirnseite angebracht werden. Dabei wird die Metallschicht über die Kante auf die Grundfläche durchgeführt, so daß in der Symmetrieebene ein Lötpunkt entsteht, der für die Oberflächenmontage verwendet werden kann. Dieser Lötpunkt ist natürlich von der elektrisch leitenden Schicht isoliert, was vorzugsweise durch Aussparen einer kleinen Fläche beim Metallisieren der Symmetrieebene geschieht. Dabei ist vorteilhafterweise eine Silberpaste zur Bildung der Metallschicht durch Einbrennen in das Material der DRA vorgesehen.In a further embodiment, a metal layer is on a plane of symmetry adjacent side of the DRA for connection to the electrical contact in the Plane of symmetry provided. This way, with the expansion through the Metal layer achieved a particularly good excitation of the dielectric resonator antenna. For example, in the case of a cuboid antenna with the plane of symmetry as Base of the electrical contact can be attached to an adjacent end face. The metal layer is carried over the edge to the base, so that in a plane of symmetry is created on the plane of symmetry, which is used for surface mounting can be. This soldering point is of course isolated from the electrically conductive layer, which is preferably done by leaving out a small area when metallizing the plane of symmetry happens. A silver paste is advantageously used to form the metal layer provided by burning into the material of the DRA.

In einer bevorzugten Weiterbildung ist als Material für die dielektrische Resonatorantenne eine Keramik aus (Ba, Nd, Gd)TiO3 vorgesehen. Dieses keramische Material weist alle wichtigen Eigenschaften für die dielektrische Resonatorantenne wie hohe Dielektrizitätszahl, niedrige dielektrische Verluste und einen niedrigen dielektrischen Temperaturkoeffizienten auf.In a preferred development, the material for the dielectric resonator antenna is a ceramic made of (Ba, Nd, Gd) TiO3 is provided. This ceramic material shows everyone important properties for the dielectric resonator antenna such as high dielectric constant, low dielectric losses and a low dielectric temperature coefficient on.

Weitere vorteilhafte Ausgestaltungen sind in den übrigen Ansprüchen enthalten.Further advantageous embodiments are contained in the remaining claims.

Weiterhin wird die Aufgabe der Erfindung noch durch einen Sender und einen Empfänger sowie ein Mobilfunkgerät gelöst, bei dem in der Symmetrieebene der Antenne wenigstens ein, von der elektrisch leitenden Schicht isolierter, elektrischer Kontakt vorgesehen ist, und die elektrische Schicht und der elektrische Kontakt zur Verbindung der dielektrischen Resonatorantenne mit wenigstens einer Zuleitung für ein zu sendendes oder zu empfangenes Signal vorgesehen sind.Furthermore, the object of the invention is achieved by a transmitter and a receiver as well as a mobile radio device in which at least in the plane of symmetry of the antenna an electrical contact which is insulated from the electrically conductive layer is provided, and the electrical layer and the electrical contact for connecting the dielectric Resonator antenna with at least one feed line for one to be transmitted or received Signal are provided.

Im folgenden soll ein Ausführungsbeispiel der Erfindung anhand von Zeichnungen näher erläutert werden. Dabei zeigen

Figur 1:
eine dielektrische Resonatorantenne,
Figur 2:
eine halbierte dielektrische Resonatorantenne mit einer elektrisch leitenden Schicht in einer Symmetrieebene,
Figur 3:
eine dielektrische Resonatorantenne mit elektrischen Kontakten gemäß der Erfindung für eine Oberflächenmontage und
Figur 4:
eine auf eine Platine montierte Antenne gemäß der Erfindung.
In the following an embodiment of the invention will be explained in more detail with reference to drawings. Show
Figure 1:
a dielectric resonator antenna,
Figure 2:
a halved dielectric resonator antenna with an electrically conductive layer in a plane of symmetry,
Figure 3:
a dielectric resonator antenna with electrical contacts according to the invention for surface mounting and
Figure 4:
an antenna mounted on a circuit board according to the invention.

In der Figur 3 ist eine dielektrische Resonatorantenne (DRA) 4 mit einer metallischen Schicht 5 in einer Symmetrieebene dargestellt. Weiterhin besitzt der Keramikquader der DRA 4 eine zweite Metallisierung 6 an einer Stirnseite. Die zweite Metallisierung 6 besitzt einen Lötpunkt 7, der sich in der Symmetrieebene elektrisch isoliert von der Metallschicht 5 befindet. Der Lötpunkt 7 bildet den zusätzlichen elektrischen Kontakt in der Symmetrieebene. Dazu wird zunächst die Symmetrieebene, in der die Tangentialkomponente des elektrischen Feldes der gewünschten Eigenmode (niedrigste Resonanz bei TEz 111-Mode) verschwindet, mit einer fest mit dem Dielektrikum verbundenen Metallisierung versehen. Dies geschieht vorzugsweise mit einer Silberpaste, die in die Keramik eingebrannt wird. Die zweite Metallisierung 6 an der Stirnseite wird auf die gleiche Weise angebracht. Diese Metallisierungen 5, 6, 7 erlauben eine Oberflächenmontage (Surface Mount Device, SMD), also das flache Auflöten elektronischer Komponenten auf einer Platine (Printed Circuit Board PCB) mittels eines Wellen-Lötbades oder eines Reflow-Prozesses.FIG. 3 shows a dielectric resonator antenna (DRA) 4 with a metallic layer 5 in a plane of symmetry. Furthermore, the ceramic cuboid of the DRA 4 has a second metallization 6 on one end face. The second metallization 6 has a soldering point 7, which is electrically insulated from the metal layer 5 in the plane of symmetry. The solder point 7 forms the additional electrical contact in the plane of symmetry. For this purpose, the plane of symmetry in which the tangential component of the electric field of the desired eigenmode (lowest resonance in TE z 111 mode) disappears is provided with a metallization firmly connected to the dielectric. This is preferably done with a silver paste that is burned into the ceramic. The second metallization 6 on the end face is applied in the same way. These metallizations 5, 6, 7 allow surface mounting (surface mount device, SMD), that is, the flat soldering of electronic components on a printed circuit board (printed circuit board PCB) by means of a wave solder bath or a reflow process.

In der Figur 4 ist eine mit Metallisierungen 5 und 6 versehene DRA 4 dargestellt, die in Oberflächenmontagetechnik auf eine Platine 8 mit einer koplanaren Streifenleitung 9, 10, 11 verlötet wurde. Die Metallisierung 6 auf der Stirnseite wird dabei am nach der Montage nicht mehr zu sehenden Lötpunkt 7 mit einer Zuleitung 9 elektrisch verbunden. Die Metallisierung der Symmetrieebene 5 wird an zwei Lötpunkten mit den auf Masse liegenden Flächen 10 und 11 der koplanaren Leitung 9, 10 11 verbunden. Eine so montierte Antenne 4 weist eine gute Kopplung mit der Zuleitung 9, 10, 11 mit einer sehr guten Impedanzanpassung auf (Return-Loss von -35dB), wodurch ein sehr guter Wirkungsgrad erreicht wird. Die guten Werte für die Impedanzanpassung sind unempfindlich gegen Schwankungen in der genauen Form und Größe der Metallisierungen und der Position der Antenne auf der Platine 8.FIG. 4 shows a DRA 4 provided with metallizations 5 and 6 Surface mounting technology on a circuit board 8 with a coplanar strip line 9, 10, 11 was soldered. The metallization 6 on the end face is on after assembly Soldering point 7, which can no longer be seen, is electrically connected to a lead 9. The Metallization of the plane of symmetry 5 is at two solder points with the ones lying on ground Surfaces 10 and 11 of the coplanar line 9, 10 11 connected. One so assembled Antenna 4 has a good coupling with the feed line 9, 10, 11 with a very good one Impedance adjustment to (return loss of -35dB), which makes it very efficient is achieved. The good values for the impedance matching are insensitive to Variations in the exact shape and size of the metallizations and the position of the Antenna on the board 8.

Damit werden folgende Vorteile erreicht. Die Antenne 4 wird fest mit den Leiterbahnen 9, 10, 11 der Zuführungsplatine 8 verlötet. Das Verlöten geschieht flach auf der Oberfläche der Platine, also in der als Fertigungstechnik der Elektronikindustrie bekannten SMD-Technik. Damit kann die Montage der Antenne 4 mit anderen Bauteilen kombiniert werden. Weiterhin weist eine derart montierte DRA 4 eine sehr gute Impedanzanpassung an die Zuleitung 9, 10, 11 auf, die unempfindlich gegen Ungenauigkeiten in der Positionierung der DRA 4 ist. Die beschriebene DRA 4 kann vorzugsweise durch einen Quader der Abmessungen 15x5x6mm3 aus einer (Ba, Nd, Gd)TiO3 Keramik realisiert werden. Dieses Material ist Hochfrequenz geeignet, hat eine Dielektrizitätszahl von er=85, niedrige dielektrische Verluste von tanδ=4x10-4 und einen niedrigen dielektrischen Temperaturkoeffizienten von τε = -30ppm/°C (NP0-Charakteristik). Die Metallisierungen 5 und 6 werden mittels einer Silberpaste hergestellt, die bei einer Temperatur von 700°C eingebrannt wird, so daß eine geschlossene, hoch leitfähige metallische Schicht entsteht. Die Microstripleitung 9, 10, 11 kann auf einem Standard Platinensubstrat 8 mit einem Wellenwiderstand von 50 Ω realisiert werden. Die Arbeitsfrequenz einer solchen DRA 4 liegt bei 2,1 GHz, so daß sie insbesondere für Anwendungen im Mobilfunkbereich geeignet ist.The following advantages are achieved. The antenna 4 is firmly soldered to the conductor tracks 9, 10, 11 of the feed board 8. The soldering is done flat on the surface of the board, i.e. in the SMD technology known as manufacturing technology in the electronics industry. The assembly of the antenna 4 can thus be combined with other components. Furthermore, a DRA 4 mounted in this way has a very good impedance matching to the feed line 9, 10, 11, which is insensitive to inaccuracies in the positioning of the DRA 4. The described DRA 4 can preferably be realized by a cuboid measuring 15x5x6mm 3 made of (Ba, Nd, Gd) TiO 3 ceramic. This material is suitable for high frequency, has a dielectric constant of e = r 85, low dielectric loss of tans = 4x10 -4, and a low dielectric temperature coefficient τ ε = -30ppm / ° C (NP0 characteristic). The metallizations 5 and 6 are produced by means of a silver paste, which is baked at a temperature of 700 ° C, so that a closed, highly conductive metallic layer is formed. The microstrip line 9, 10, 11 can be implemented on a standard circuit board substrate 8 with a characteristic impedance of 50 Ω. The working frequency of such a DRA 4 is 2.1 GHz, so that it is particularly suitable for applications in the mobile radio sector.

Claims (10)

  1. A dielectric resonator antenna (4) having a resonant dielectric body and an electrically conducting layer (5) on a surface of the halved resonant dielectric body (2) which surface corresponds to the plane in which the tangential component of the electrical field in the dielectric body disappears, this surface being denoted in the following as a plane of symmetry (2) and having at least one electrical contact (7) in this plane of symmetry (2), which is insulated from the electrically conducting layer (5), the electric layer (5) and the electrical contact (7) being used for connecting the dielectric resonator antenna (4) to at least one lead (9, 10, 11) for a signal to be transmitted or received, characterized in that a metal coating (6) is provided on a side of the dielectric resonator antenna (4) adjoining the plane of symmetry (2) for a connection with the electrical contact (7) in the plane of symmetry (2).
  2. A dielectric resonator antenna (4) as claimed in claim 1, characterized in that a metallic layer is provided for forming the electrically conducting layer (5) in the plane of symmetry (2) and for forming the electrical contact (7).
  3. A dielectric resonator antenna (4) as claimed in claim 2, characterized in that a silver paste is used for forming the metallic layer (5, 7) by burning into the material of the dielectric resonator antenna (4).
  4. A dielectric resonator antenna (4) as claimed in claim 1, characterized in that the material for the dielectric resonator antenna (4) is a ceramic of (Ba,Nd,Gd)TiO3.
  5. A dielectric resonator antenna (4) as claimed in claim 1, characterized in that the electric layer (5) and the electrical contact (7) are provided for connecting the dielectric resonator antenna (4) to at least one coplanar strip line (9, 10, 11).
  6. A dielectric resonator antenna (4) as claimed in claim 1, characterized in that the dielectric resonator antenna (4) has the geometric form of a right-angled cuboid having two head ends, two side faces, a ground face and top face.
  7. A dielectric resonator antenna (4) as claimed in claim 1, characterized in that the plane of symmetry (2) is provided for forming the ground face and the electrical contact (7) is deposited on a head end.
  8. A transmitter including a dielectric resonator antenna (4) as claimed in claim 1.
  9. A receiver including a dielectric resonator antenna (4) as claimed in claim 1.
  10. A mobile radiotelephone including a dielectric resonator antenna (4) as claimed in claim 1.
EP99202591A 1998-08-17 1999-08-09 Dielectric resonator antenna Expired - Lifetime EP0982799B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19837266 1998-08-17
DE19837266A DE19837266A1 (en) 1998-08-17 1998-08-17 Dielectric resonator antenna

Publications (3)

Publication Number Publication Date
EP0982799A2 EP0982799A2 (en) 2000-03-01
EP0982799A3 EP0982799A3 (en) 2001-05-02
EP0982799B1 true EP0982799B1 (en) 2004-05-26

Family

ID=7877799

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99202591A Expired - Lifetime EP0982799B1 (en) 1998-08-17 1999-08-09 Dielectric resonator antenna

Country Status (6)

Country Link
US (1) US6323824B1 (en)
EP (1) EP0982799B1 (en)
JP (1) JP2000232317A (en)
KR (1) KR20000017328A (en)
DE (2) DE19837266A1 (en)
TW (1) TW431029B (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19858790A1 (en) * 1998-12-18 2000-06-21 Philips Corp Intellectual Pty Dielectric resonator antenna uses metallization of electric field symmetry planes to achieve reduced size
DE19858799A1 (en) * 1998-12-18 2000-06-21 Philips Corp Intellectual Pty Dielectric resonator antenna
KR100406284B1 (en) * 2001-04-25 2003-11-14 현우마이크로 주식회사 Mini-Antenna for International Mobile Telecommunication-2000 Terminal Equipment for Bulk Type Dielectric
FI118403B (en) * 2001-06-01 2007-10-31 Pulse Finland Oy Dielectric antenna
US6801164B2 (en) * 2001-08-27 2004-10-05 Motorola, Inc. Broad band and multi-band antennas
KR100424051B1 (en) * 2001-09-05 2004-03-22 (주) 코산아이엔티 Micro chip antenna
GB2396747B (en) * 2002-03-26 2004-12-22 Antenova Ltd Novel dielectric resonator antenna resonance modes
GB0207052D0 (en) * 2002-03-26 2002-05-08 Antenova Ltd Novel dielectric resonator antenna resonance modes
JP3666600B2 (en) * 2002-04-12 2005-06-29 ソニー株式会社 Broadband antenna device
JP2004007559A (en) * 2002-04-25 2004-01-08 Matsushita Electric Ind Co Ltd Multiple-resonance antenna, antenna module, and radio device using the multiple-resonance antenna
AU2003234005A1 (en) * 2002-05-15 2003-12-02 Antenova Limited Improvements relating to attaching dielectric resonator antennas to microstrip lines
GB0218820D0 (en) * 2002-08-14 2002-09-18 Antenova Ltd An electrically small dielectric resonator antenna with wide bandwith
FR2844399A1 (en) * 2002-09-09 2004-03-12 Thomson Licensing Sa DIELECTRIC RESONATOR TYPE ANTENNAS
JP4217709B2 (en) * 2003-02-18 2009-02-04 財団法人国際科学振興財団 Mobile terminal antenna and mobile terminal using the same
US6879287B2 (en) * 2003-05-24 2005-04-12 Agency For Science, Technology And Research Packaged integrated antenna for circular and linear polarizations
US8144059B2 (en) * 2003-06-26 2012-03-27 Hrl Laboratories, Llc Active dielectric resonator antenna
US7391372B2 (en) * 2003-06-26 2008-06-24 Hrl Laboratories, Llc Integrated phased array antenna
GB2412246B (en) * 2004-03-16 2007-05-23 Antenova Ltd Dielectric antenna with metallised walls
GB0500856D0 (en) * 2005-01-17 2005-02-23 Antenova Ltd Pure dielectric antennas and related devices
KR100857284B1 (en) * 2005-12-29 2008-09-08 정상은 RF Antenna Using Dielectric Resonator
US7710325B2 (en) * 2006-08-15 2010-05-04 Intel Corporation Multi-band dielectric resonator antenna
US10727597B2 (en) * 2006-10-09 2020-07-28 Advanced Digital Broadcast S.A. Dielectric antenna device for wireless communications
US7940148B2 (en) * 2006-11-02 2011-05-10 Cts Corporation Ball grid array resonator
WO2008063507A2 (en) * 2006-11-17 2008-05-29 Cts Corporation Voltage controlled oscillator module with ball grid array resonator
US8009107B2 (en) 2006-12-04 2011-08-30 Agc Automotive Americas R&D, Inc. Wideband dielectric antenna
US20080129617A1 (en) * 2006-12-04 2008-06-05 Agc Automotive Americas R&D, Inc. Wideband Dielectric Antenna
TWI324839B (en) * 2007-05-07 2010-05-11 Univ Nat Taiwan Wideband dielectric resonator antenna and design method thereof
TWI338975B (en) * 2007-12-14 2011-03-11 Univ Nat Taiwan Circularly-polarized dielectric resonator antenna
US20090322285A1 (en) * 2008-06-25 2009-12-31 Nokia Corporation Method and Apparatus for Wireless Charging Using a Multi-Band Antenna
GB2466810A (en) 2009-01-08 2010-07-14 Visa Europe Ltd Processing payment authorisation requests
CN103843198B (en) * 2011-07-29 2016-05-04 萨斯喀彻温大学 Polymers resonant aerial
CN102723596A (en) * 2012-07-12 2012-10-10 Tdk大连电子有限公司 Ultrathin small ceramic antenna
CN102738579A (en) * 2012-07-12 2012-10-17 Tdk大连电子有限公司 Small-sized ceramic antenna
US10340599B2 (en) 2013-01-31 2019-07-02 University Of Saskatchewan Meta-material resonator antennas
WO2015089643A1 (en) 2013-12-20 2015-06-25 Tayfeh Aligodarz Mohammadreza Dielectric resonator antenna arrays
US9496617B2 (en) * 2014-01-17 2016-11-15 Qualcomm Incorporated Surface wave launched dielectric resonator antenna
US10355361B2 (en) 2015-10-28 2019-07-16 Rogers Corporation Dielectric resonator antenna and method of making the same
US10601137B2 (en) 2015-10-28 2020-03-24 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11367959B2 (en) 2015-10-28 2022-06-21 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10374315B2 (en) 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10476164B2 (en) 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11283189B2 (en) 2017-05-02 2022-03-22 Rogers Corporation Connected dielectric resonator antenna array and method of making the same
US11876295B2 (en) 2017-05-02 2024-01-16 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
CN110754017B (en) 2017-06-07 2023-04-04 罗杰斯公司 Dielectric resonator antenna system
US10892544B2 (en) 2018-01-15 2021-01-12 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10910722B2 (en) 2018-01-15 2021-02-02 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
CN109193147B (en) * 2018-09-14 2020-09-08 南通大学 Low-profile filtering antenna adopting grooved dielectric patch
US11031697B2 (en) 2018-11-29 2021-06-08 Rogers Corporation Electromagnetic device
GB2594171A (en) 2018-12-04 2021-10-20 Rogers Corp Dielectric electromagnetic structure and method of making the same
CN109687112A (en) * 2019-01-22 2019-04-26 南通大学 A kind of miniaturization dielectric patch antenna
KR102431608B1 (en) * 2020-04-06 2022-08-11 주식회사 케이티앤지 Aerosol generating device
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same
CN112928478B (en) * 2021-01-25 2022-07-29 电子科技大学 Wide-beam stepped dielectric resonator antenna based on high-order mode superposition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3509014A1 (en) 1985-03-13 1986-09-18 Siemens AG, 1000 Berlin und 8000 München Electrical component having a ceramically produced body and contact assignments of opposite polarity
US5453754A (en) * 1992-07-02 1995-09-26 The Secretary Of State For Defence In Her Brittanic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Dielectric resonator antenna with wide bandwidth
JP3185513B2 (en) * 1994-02-07 2001-07-11 株式会社村田製作所 Surface mount antenna and method of mounting the same
CA2176656C (en) * 1995-07-13 2003-10-28 Matthew Bjorn Oliver Broadband circularly polarized dielectric resonator antenna
US5748149A (en) 1995-10-04 1998-05-05 Murata Manufacturing Co., Ltd. Surface mounting antenna and antenna apparatus
JP3319268B2 (en) 1996-02-13 2002-08-26 株式会社村田製作所 Surface mount antenna and communication device using the same
CA2173679A1 (en) * 1996-04-09 1997-10-10 Apisak Ittipiboon Broadband nonhomogeneous multi-segmented dielectric resonator antenna
JPH10341108A (en) * 1997-04-10 1998-12-22 Murata Mfg Co Ltd Antenna system and radar module
US5923305A (en) * 1997-09-15 1999-07-13 Ericsson Inc. Dual-band helix antenna with parasitic element and associated methods of operation

Also Published As

Publication number Publication date
US6323824B1 (en) 2001-11-27
JP2000232317A (en) 2000-08-22
KR20000017328A (en) 2000-03-25
DE19837266A1 (en) 2000-02-24
EP0982799A3 (en) 2001-05-02
TW431029B (en) 2001-04-21
EP0982799A2 (en) 2000-03-01
DE59909570D1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
EP0982799B1 (en) Dielectric resonator antenna
DE60115131T2 (en) Chip antenna element and this having message transmission device
EP1195845B1 (en) Miniaturised microwave antenna
DE69821327T2 (en) Shorted stripline antenna and device with it
DE102005040499B4 (en) Surface mounted antenna and antenna device using the same as well as wireless communication device
DE60217580T2 (en) Surface mounted antenna and communication device with such an antenna
DE10124142B4 (en) Planar antenna and wireless communication equipment equipped therewith
DE60118449T2 (en) Surface mounted antenna and communication device with such an antenna
EP1204160B1 (en) Multiband microwave antenna
DE60018011T2 (en) Flachantenne
DE60315791T2 (en) chip antenna
DE10142384B4 (en) Microstrip line antenna
DE69628392T2 (en) Antenna with two resonance frequencies
EP1018780B1 (en) Dielectric resonator antenna
DE60023062T2 (en) antenna design
DE19904724A1 (en) Integrated circuit antenna for mobile communications device
DE10143168A1 (en) Circuit board and SMD antenna therefor
DE19713929A1 (en) Transmitting and receiving antenna system
DE10205358A1 (en) Meandering dual band antenna
DE102005015561A1 (en) Broadband internal antenna for mobile communication terminal, has radiator with conductive stripline through which current flows to form current paths in different directions to set certain broadband using electromagnetic coupling
DE102017116920A1 (en) Dual polarized cross dipole and antenna arrangement with two such dual polarized cross dipoles
DE2942035C2 (en) Device for receiving microwaves
DE102008007258A1 (en) Multi-band antenna and mobile communication terminal, which has these
EP1195846A2 (en) Patch antenna for the microwave range
DE10148370A1 (en) Miniaturized directional antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01Q 9/04 A, 7H 01Q 1/24 B, 7H 01Q 13/24 B

17P Request for examination filed

Effective date: 20011102

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20020426

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040526

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59909570

Country of ref document: DE

Date of ref document: 20040701

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040721

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20040730

ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060828

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060829

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061013

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070809

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070809