EP0982554A1 - Procédé et installation de production d'oxygène impur par distillation d'air - Google Patents

Procédé et installation de production d'oxygène impur par distillation d'air Download PDF

Info

Publication number
EP0982554A1
EP0982554A1 EP99402116A EP99402116A EP0982554A1 EP 0982554 A1 EP0982554 A1 EP 0982554A1 EP 99402116 A EP99402116 A EP 99402116A EP 99402116 A EP99402116 A EP 99402116A EP 0982554 A1 EP0982554 A1 EP 0982554A1
Authority
EP
European Patent Office
Prior art keywords
oxygen
column
impure
nitrogen
impure oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99402116A
Other languages
German (de)
English (en)
Inventor
Norbert Rieth
François De Bussy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0982554A1 publication Critical patent/EP0982554A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04587Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for the NH3 synthesis, e.g. for adjusting the H2/N2 ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Definitions

  • the present invention relates to a method and an installation for production of impure oxygen by air distillation.
  • the impure oxygen typically contains from 1 to 5 mol% of argon. This argon accumulates in the synthesis loop and can cause losses of ammonia production and possible pollution during purges.
  • J-B-74023997 describes the use of an air separation device for supply oxygen and nitrogen to an ammonia production unit.
  • EP-A-0562893 describes a process using a double column to produce nitrogen containing less than 10 ppm in moles of oxygen for a medium to high purity ammonia and oxygen manufacturing unit, or 95 to 99.5 mol% for the production of hydrogen by reaction of oxygen on heavy hydrocarbons, hydrogen being intended to supply the same ammonia manufacturing unit.
  • EP-A-0636845 describes a process in which oxygen pumped a double column is sent at the head of a mixing column.
  • the process uses an intermediate pressure column of the so-called column type Etienne supplied with rich liquid from the medium pressure column and produces oxygen at 30 bar with 95% by mole of oxygen, 2% by mole nitrogen and 3% by mole of argon.
  • EP-A-0531182 discloses a process using a mixing column operating at a pressure different from that of the medium pressure column to produce oxygen having a purity between 80 and 97 mol% oxygen.
  • US-A-5490391 describes a process using a double column and a mixing column with a Claude turbine to provide cold to the device.
  • a method of supplying of impure oxygen to a syngas production unit including synthesis is separated into a part enriched in hydrogen intended for a unit of ammonia synthesis characterized in that the impure oxygen comes from a air separation device by cryogenic distillation and contains from 70 to 98% in moles of oxygen and less than 2% in moles of argon.
  • the impure oxygen contains from 1 to 30 mol% of nitrogen.
  • the impure oxygen contains between 75 and 85 mol% of oxygen, it contains 15 to 25 mol% of nitrogen and less than 2 mol% of argon.
  • the synthesis gas production unit can be a device for reforming or partial oxidation.
  • a method of supply of impure oxygen to a syngas production unit including the synthesis gas is separated into a part enriched in hydrogen intended for an ammonia synthesis and nitrogen supply unit to the ammonia synthesis characterized in that impure oxygen and nitrogen come from an air separation device by cryogenic distillation and impure oxygen contains 70 to 98% in moles of oxygen and less than 2% in moles of argon.
  • the syngas production unit produces synthesis gas which is separated into a part enriched in hydrogen intended for the synthesis of ammonia.
  • the impurities in impure oxygen are essentially nitrogen which will take part in the synthesis reaction ammonia.
  • the air is compressed to 6 bars in a compressor 1, is cooled in 3 and purified in water and carbon dioxide and hydrocarbons in the beds adsorbent 5. The air is then divided into three fractions. The first fraction 6 is cooled to its dew temperature in the exchanger 13 and sent to the medium pressure column 15 of a double column 14.
  • the second fraction 8 is boosted by the booster 7 at 11 bars, cools in exchanger 13 and is sent to the bottom of a column of mixture 19.
  • the third fraction 10 is boosted by the booster 9 to 8 bars, is cooled in 13 and expanded in the blowing turbine 11 before to be sent to the low pressure column 17 of the double column.
  • the mixing column can be supplied to the tank by a flow withdrawn from the medium pressure column.
  • a flow rate of 99 mol% of oxygen is withdrawn from the bottom of the low pressure column 14, pressurized to 11.8 bar by pump 21 and sent at the head of the mixing column 19.
  • Impure oxygen gas flow 23 to 95 mol% oxygen, 4% nitrogen molars and 1 mol% argon is withdrawn at the top of the mixture and a flow 22 is drawn off at an intermediate level thereof and returned to the low pressure column.
  • a flow of liquid nitrogen is drawn off at the top of the middle column pressure, pressurized by the pump 25 and sent (at 26) to the exchanger 13 where it vaporizes.
  • Nitrogen can be compressed by a compressor.
  • the process also produces low pressure nitrogen 33 withdrawn at the head of the minaret in column 17. This nitrogen flow can be sent at the ammonia synthesis unit.
  • Impure nitrogen at low pressure is used to regenerate the beds adsorbents 5.
  • a liquid flow 31 is sent from the mixing column to the column low pressure 17 a few trays above the flow injection point 22 and the flow injection point 10.
  • FIG. 3 shows the steps of an ammonia production process according to the invention.
  • An apparatus for air separation by cryogenic distillation 1 produces oxygen containing less than 1% argon and pure nitrogen.
  • Oxygen is sent to unit 3 where hydrocarbons undergo a stage reforming or partial oxidation.
  • the synthesis gas mixture is separated in a PSA 5 and the hydrogen by 6 is sent to the synthesis of ammonia 7 produced in 8 using the nitrogen 9 produced by the separation 1.
  • Fraction 6 is sent to the medium pressure column 15 and the fraction 8 is compressed by compressor 7 with n stages.
  • Fraction 10 is compressed by at most n-1 compressor stages 8 and then by booster 49, cooled in 13 and slackened in a Claude 41 turbine before being sent to the column medium pressure.
  • the turbine 11, 41 can produce a flow which is at least partially liquid.
  • the mixing column can operate at between 2 and 30 bar. She can operate at the same pressure as the low pressure column or at a pressure above or below this value.
  • Figures 1, 2 and 4 can obviously include a argon column fed from the low pressure column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

De l'oxygène impur contenant de 70 à 98% molaires d'oxygène et moins de 2% molaires d'argon est fourni à une unité de production de gaz de synthèse (3) qui fournit de l'hydrogène à une unité de production d'ammoniac (7). Le même appareil de séparation d'air (1) peut fournir l'azote (9) à l'unité de production d'ammoniac et de l'oxygène impur (2) à l'unité de production de gaz de synthèse. <IMAGE>

Description

La présente invention est relative à un procédé et une installation de production d'oxygène impur par distillation d'air.
De l'oxygène impur est souvent utilisé pour la production de gaz de synthèse par oxydation partielle ou reformage. Le gaz de synthèse est séparé par PSA pour produire de l'hydrogène qui est mélangé avec de l'azote pour la synthèse d'ammoniac.
L'oxygène impur contient typiquement de 1 à 5 % en moles d'argon. Cet argon s'accumule dans la boucle de synthèse et peut entraíner des pertes de production d'ammoniac et des pollutions éventuelles à l'occasion des purges.
J-B-74023997 décrit l'usage d'un appareil de séparation d'air pour fournir de l'oxygène et de l'azote à une unité de production d'ammoniac.
EP-A-0562893 décrit un procédé utilisant une double colonne pour produire de l'azote contenant moins de 10 ppm en moles d'oxygène pour une unité de fabrication d'ammoniac et de l'oxygène de pureté moyenne à haute, soit 95 à 99,5 % en moles pour la production d'hydrogène par réaction de l'oxygène sur des hydrocarbures lourdes, l'hydrogène étant destiné à alimenter la même unité de fabrication d'ammoniac.
Evidemment le problème lié à la présence d'argon en moles d'oxygène contenant moins de 1 % en moles d'argon mais ceci augmente les coûts de production.
Un procédé de ce genre est décrit dans la demande FR 97 04083 au nom de la demanderesse qui n'a pas encore été publiée.
Il est connu de produire de l'oxygène impur utilisant une double colonne et une colonne de mélange.
EP-A-0636845 décrit un procédé dans lequel de l'oxygène pompé d'une double colonne est envoyé en tête d'une colonne de mélange. Le procédé utilise une colonne à pression intermédiaire du type dit colonne Etienne alimentée par du liquide riche de la colonne moyenne pression et produit de l'oxygène à 30 bar avec 95 % en moles d'oxygène, 2 % en moles d'azote et 3 % en moles d'argon.
EP-A-0531182 divulgue un procédé utilisant une colonne de mélange opérant à une pression différente de celle de la colonne moyenne pression pour produire de l'oxygène ayant une pureté entre 80 et 97 % en moles d'oxygène.
US-A-5490391 décrit un procédé utilisant une double colonne et une colonne de mélange avec une turbine Claude pour fournir du froid à l'appareil.
Selon un objet de l'invention, il est prévu un procédé de fourniture d'oxygène impur à une unité de production de gaz de synthèse dont le gaz de synthèse est séparé en une partie enrichie en hydrogène destinée à une unité de synthèse d'ammoniac caractérisé en ce que l'oxygène impur provient d'un appareil de séparation d'air par distillation cryogénique et contient de 70 à 98 % en moles d'oxygène et moins de 2 % en moles d'argon.
De préférence l'oxygène impur contient de 1 à 30 % en moles d'azote.
Si l'oxygène impur contient entre 75 et 85 % en moles d'oxygène, il contient de 15 à 25 % en moles d'azote et moins de 2% en moles d'argon.
Dans un procédé de séparation d'air pour produire l'oxygène impur, on envoie de l'air dans une colonne moyenne pression d'une double colonne de l'appareil de séparation d'air, on envoie un liquide enrichi en oxygène et un liquide enrichi en azote de la colonne moyenne pression à une colonne basse pression de la double colonne, on envoie de l'air en cuve d'une colonne de mélange, on envoie un liquide enrichi en oxygène de la colonne basse pression à la tête de la colonne de mélange et on soutire l'oxygène impur comme produit en tête de la colonne de mélange.
L'unité de production de gaz de synthèse peut être un appareil à reformage ou à oxydation partielle.
Selon un autre objet de l'invention, il est prévu un procédé de fourniture d'oxygène impur à une unité de production de gaz de synthèse dont le gaz de synthèse est séparé en une partie enrichie en hydrogène destinée à une unité de synthèse d'ammoniac et de fourniture d'azote à l'unité de synthèse d'ammoniac caractérisé en ce que l'oxygène impur et l'azote proviennent d'un appareil de séparation d'air par distillation cryogénique et l'oxygène impur contient de 70 à 98 % en moles d'oxygène et moins de 2 % en moles d'argon.
L'invention sera maintenant décrite plus en détails avec des références aux figures dans lesquelles
  • les Figures 1, 2 et 4 sont des diagrammes schématiques de procédés de fourniture d'oxygène impur selon l'invention ;
  • la Figure 3 est un schéma simplifié d'un procédé de synthèse d'ammoniac comprenant un procédé de fourniture d'oxygène impur selon l'invention.
Préférablement, l'unité de production de gaz de synthèse produit du gaz de synthèse qui est séparé en une partie enrichie en hydrogène destiné à la synthèse d'ammoniac. Les impuretés contenues dans l'oxygène impur sont essentiellement de l'azote qui va prendre part à la réaction de synthèse d'ammoniac.
Un exemple de mise en oeuvre de l'invention va maintenant être décrit en regard du dessin annexé, dont la figure représente schématiquement une installation de production d'oxygène impur pour réaliser un procédé conforme à l'invention.
Tout l'air est comprimé à 6 bars dans un compresseur 1, est refroidi en 3 et épuré en eau et en dioxyde de carbone et hydrocarbures dans les lits d'adsorbant 5. L'air est ensuite divisé en trois fractions. La première fraction 6 est refroidie à sa température de rosée dans l'échangeur 13 et envoyée à la colonne moyenne pression 15 d'une double colonne 14.
La deuxième fraction 8 est surpressée par le surpresseur 7 à 11 bars, se refroidit dans l'échangeur 13 et est envoyée en cuve d'une colonne de mélange 19. La troisième fraction 10 est surpressée par le surpresseur 9 à 8 bars, est refroidie en 13 et détendue dans la turbine d'insufflation 11 avant d'être envoyée à la colonne basse pression 17 de la double colonne. Alternativement la colonne de mélange peut être alimentée en cuve par un débit soutiré de la colonne moyenne pression.
Un débit de 99 % en moles d'oxygène est soutiré en cuve de la colonne basse pression 14, pressurisé à 11,8 bars par la pompe 21 et envoyé en tête de la colonne de mélange 19.
Un débit gazeux d'oxygène impur 23 à 95 % molaires d'oxygène, 4 % molaires d'azote et 1 % molaire d'argon est soutiré en tête de la colonne de mélange et un débit 22 est soutiré à un niveau intermédiaire de celle-ci et renvoyé à la colonne basse pression.
Un débit d'azote liquide est soutiré en tête de la colonne moyenne pression, pressurisé par la pompe 25 et envoyé (en 26) à l'échangeur 13 où il se vaporise.
Il va de soi que cette vaporisation n'est pas essentielle au procédé. L'azote peut être comprimé par un compresseur.
Le procédé permet également de produire de l'azote basse pression 33 soutiré en tête du minaret de la colonne 17. Ce débit d'azote peut être envoyé à l'unité de synthèse d'ammoniac.
De l'azote impur à la basse pression sert à régénérer les lits d'adsorbants 5.
Un débit liquide 31 est envoyé de la colonne de mélange à la colonne basse pression 17 quelques plateaux au-dessus du point d'injection du débit 22 et du point d'injection du débit 10.
Il peut être avantageux de renvoyer le débit de cuve de la colonne de mélange plutôt à la colonne moyenne pression si la colonne de mélange opère à une pression supérieure à celle à laquelle opère la colonne moyenne pression (voir Figure 2, débit 30).
La figure 3 montre les étapes d'un procédé de production d'ammoniac selon l'invention. Un appareil de séparation d'air par distillation cryogénique 1 produit de l'oxygène contenant moins de 1 % d'argon et de l'azote pur. L'oxygène est envoyé à une unité 3 où des hydrocarbures subissent une étape de reforming ou d'oxydation partielle. Le mélange de gaz de synthèse est séparé dans un PSA 5 et l'hydrogène par 6 est envoyé au synthèse d'ammoniac 7 produit en 8 en utilisant l'azote 9 produit par l'appareil de séparation 1.
Dans la figure 4, le débit d'air à 6 bars est divisé en trois. La fraction 6 est envoyée à la colonne moyenne pression 15 et la fraction 8 est comprimé par le compresseur 7 à n étages. La fraction 10 est comprimée par au plus n-1 étages du compresseur 8 et ensuite par le booster 49, refroidie en 13 et détendue dans une turbine Claude 41 avant être envoyée à la colonne moyenne pression.
La turbine 11, 41 peut produire un débit qui est au moins partiellement liquide.
La colonne de mélange peut opérer à entre 2 et 30 bar. Elle peut fonctionner à la même pression que la colonne basse pression ou à une pression au-dessus ou au-dessous de cette valeur.
L'installation des figures 1, 2 et 4 peut évidemment comprendre une colonne argon alimentée à partir de la colonne basse pression.

Claims (7)

  1. Procédé de fourniture d'oxygène impur à une unité de production de gaz de synthèse (3) dont le gaz de synthèse est séparé en une partie enrichie en hydrogène destinée à une unité de synthèse d'ammoniac (7) caractérisé en ce que l'oxygène impur provient d'un appareil (1) de séparation d'air par distillation cryogénique et contient de 70 à 98 % en moles d'oxygène et moins de 2 % en moles d'argon.
  2. Procédé selon la revendication 1 dans lequel l'oxygène impur contient de 1 à 30 % en moles d'azote.
  3. Procédé selon la revendication 1 dans lequel l'oxygène impur contient entre 75 et 85 % en moles d'oxygène.
  4. Procédé selon la revendication 3 dans lequel l'oxygène impur contient de 15 à 25 % en moles d'azote.
  5. Procédé selon l'une des revendications 1 à 4 dans lequel on envoie de l'air dans une colonne moyenne pression d'une double colonne (14) de l'appareil de séparation d'air (1), on envoie un liquide enrichi en oxygène et un liquide enrichi en azote de la colonne moyenne pression (15) à une colonne basse pression (17) de la double colonne, on envoie de l'air en cuve d'une colonne de mélange (19), on envoie un liquide (20) enrichi en oxygène de la colonne basse pression à la tête de la colonne de mélange et on soutire l'oxygène impur (23) comme produit en tête de la colonne de mélange.
  6. Procédé selon la revendication 1 dans lequel l'unité de production de gaz de synthèse (3) est un appareil à reformage ou à oxydation partielle.
  7. Procédé de fourniture d'oxygène impur à une unité de production de gaz de synthèse (3) dont le gaz de synthèse est séparé en une partie enrichie en hydrogène destinée à une unité de synthèse d'ammoniac (7) et de fourniture d'azote (9) à l'unité de synthèse d'ammoniac caractérisé en ce que l'oxygène impur (2) et l'azote proviennent d'un appareil (1) de séparation d'air par distillation cryogénique et l'oxygène impur contient de 70 à 98 % en moles d'oxygène et moins de 2 % en moles d'argon.
EP99402116A 1998-08-28 1999-08-25 Procédé et installation de production d'oxygène impur par distillation d'air Withdrawn EP0982554A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9810813A FR2782787B1 (fr) 1998-08-28 1998-08-28 Procede et installation de production d'oxygene impur par distillation d'air
FR9810813 1998-08-28

Publications (1)

Publication Number Publication Date
EP0982554A1 true EP0982554A1 (fr) 2000-03-01

Family

ID=9529954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99402116A Withdrawn EP0982554A1 (fr) 1998-08-28 1999-08-25 Procédé et installation de production d'oxygène impur par distillation d'air

Country Status (4)

Country Link
US (1) US6247333B1 (fr)
EP (1) EP0982554A1 (fr)
JP (1) JP2000203827A (fr)
FR (1) FR2782787B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238215B2 (en) 2000-12-27 2007-07-03 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Integrated process and installation for the production of synthesis gas
EP3557166A1 (fr) 2018-04-19 2019-10-23 Linde Aktiengesellschaft Procédé de décomposition à basse température de l'air et installation de décomposition de l'air

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861841B1 (fr) * 2003-11-04 2006-06-30 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
FR2862128B1 (fr) * 2003-11-10 2006-01-06 Air Liquide Procede et installation de fourniture d'oxygene a haute purete par distillation cryogenique d'air

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367428A1 (fr) * 1988-10-15 1990-05-09 The BOC Group plc Séparation de l'air
EP0531182A1 (fr) * 1991-08-07 1993-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie
EP0562893A1 (fr) * 1992-03-24 1993-09-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de production d'azote sous haute pression et d'oxygène
EP0636845A1 (fr) * 1993-04-30 1995-02-01 The BOC Group plc Séparation d air
US5704228A (en) * 1995-03-15 1998-01-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and device for the evaporation of a liquid flow
US5775128A (en) * 1997-05-02 1998-07-07 Praxair Technology, Inc. Process for producing ammonia and recovering argon using low purity oxygen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863707A (en) * 1982-09-30 1989-09-05 Engelhard Corporation Method of ammonia production
US5740673A (en) * 1995-11-07 1998-04-21 Air Products And Chemicals, Inc. Operation of integrated gasification combined cycle power generation systems at part load
US5666823A (en) * 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367428A1 (fr) * 1988-10-15 1990-05-09 The BOC Group plc Séparation de l'air
EP0531182A1 (fr) * 1991-08-07 1993-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie
EP0562893A1 (fr) * 1992-03-24 1993-09-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de production d'azote sous haute pression et d'oxygène
EP0636845A1 (fr) * 1993-04-30 1995-02-01 The BOC Group plc Séparation d air
US5704228A (en) * 1995-03-15 1998-01-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and device for the evaporation of a liquid flow
US5775128A (en) * 1997-05-02 1998-07-07 Praxair Technology, Inc. Process for producing ammonia and recovering argon using low purity oxygen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238215B2 (en) 2000-12-27 2007-07-03 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Integrated process and installation for the production of synthesis gas
EP3557166A1 (fr) 2018-04-19 2019-10-23 Linde Aktiengesellschaft Procédé de décomposition à basse température de l'air et installation de décomposition de l'air
US11602713B2 (en) 2018-04-19 2023-03-14 Linde Aktiengesellschaft Method for cryogenic separation of air, and air separation plant

Also Published As

Publication number Publication date
JP2000203827A (ja) 2000-07-25
FR2782787A1 (fr) 2000-03-03
US6247333B1 (en) 2001-06-19
FR2782787B1 (fr) 2000-09-29

Similar Documents

Publication Publication Date Title
EP0676373B1 (fr) Procédé et installation de production de monoxyde de carbone
EP0937679B1 (fr) Procédé et installation de production de monoxyde de carbone et d&#39;hydrogène
EP1406052A2 (fr) Procédé intégré de séparation d&#39;air et installation pour la mise en oeuvre d&#39;un tel procédé
EP0677483B1 (fr) Procédé et installation de séparation d&#39;un mélange gazeux
EP0937681A1 (fr) Procédé et installation pour la production combinée d&#39;un mélange de synthèse d&#39;amomniac et de monoxyde de carbone
EP0968959A1 (fr) Procédé de production de monoxyde de carbone
FR2838424A1 (fr) Procede et installation de separation d&#39;un melange d&#39;hydrogene et de monoxyde de carbone
EP1269094B1 (fr) Procede et installation de generation d&#39;energie
FR2953004A1 (fr) Procede de separation cryogenique d&#39;un melange d&#39;azote et de monoxyde de carbone
FR2942869A1 (fr) Procede et appareil de separation cryogenique d&#39;un melange d&#39;hydrogene, d&#39;azote et de monoxyde de carbone avec colonne de deazotation
EP0410831B1 (fr) Installation de distillation d&#39;air produisant de l&#39;argon
FR2767317A1 (fr) Procede de conversion d&#39;un debit contenant des hydrocarbures par oxydation partielle
EP2137474A2 (fr) Procede et appareil de production de monoxyde de carbone par distillation cryogenique
EP0982554A1 (fr) Procédé et installation de production d&#39;oxygène impur par distillation d&#39;air
FR2814229A1 (fr) Procede et installation de separation d&#39;air par distillation cryogenique
EP1063484B1 (fr) Procédé et installation de séparation d&#39;un mélange gazeux par distillation cryogénique
WO2018020091A1 (fr) Procédé et appareil de lavage à température cryogénique pour la production d&#39;un mélange d&#39;hydrogène et d&#39;azote
KR940009650A (ko) 압력하에 초고순도 질소를 제조하는 방법 및 장치
EP1682836A1 (fr) Procede et installation de production de monoxyde de carbone par distillation cryogenique
EP1097903B1 (fr) Procédé et installation pour la production d&#39;hydrogène pur à partir d&#39;un gaz contenant de l&#39;hélium
WO2005045340A1 (fr) Procede et installation de fourniture d&#39;oxygene a haute purete par distillation cryogenique d&#39;air
EP2773442A1 (fr) Procédé et appareil de séparation d&#39;un gaz riche en dioxyde de carbone par distillation
EP3599438A1 (fr) Procede et appareil de separation cryogenique d&#39;un melange de monoxyde de carbone, d&#39;hydrogene et de methane pour la production de ch4
EP3913310A1 (fr) Procédé et appareil de séparation d&#39;air par distillation cryogénique
FR2862004A1 (fr) Procede et installation d&#39;enrichissement d&#39;un flux gazeux en l&#39;un de ses constituants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000901

AKX Designation fees paid

Free format text: BE DE ES FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

17Q First examination report despatched

Effective date: 20020510

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20021114