EP0974742B1 - Control of a cooling circuit for a motorised vehicle - Google Patents

Control of a cooling circuit for a motorised vehicle Download PDF

Info

Publication number
EP0974742B1
EP0974742B1 EP19990111701 EP99111701A EP0974742B1 EP 0974742 B1 EP0974742 B1 EP 0974742B1 EP 19990111701 EP19990111701 EP 19990111701 EP 99111701 A EP99111701 A EP 99111701A EP 0974742 B1 EP0974742 B1 EP 0974742B1
Authority
EP
European Patent Office
Prior art keywords
regulation method
coolant
vehicle
location data
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19990111701
Other languages
German (de)
French (fr)
Other versions
EP0974742A3 (en
EP0974742A2 (en
Inventor
Hans-Dieter Gohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0974742A2 publication Critical patent/EP0974742A2/en
Publication of EP0974742A3 publication Critical patent/EP0974742A3/en
Application granted granted Critical
Publication of EP0974742B1 publication Critical patent/EP0974742B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load

Definitions

  • the invention relates to a control of a cooling circuit of a Vehicle according to the generic features of the claim 1.
  • a generic regulation of a cooling circuit of a vehicle is known from JP 58131306.
  • a coolant temperature control device for the coolant of an internal combustion engine is disclosed.
  • a gradient detection sensor is provided to detect the engine load.
  • the hill-climb sensor can only determine if the vehicle is currently on a grade. This hill-climb sensor can not detect if a change in altitude is expected. This results from the operation of the hill-up sensor.
  • the hill-up sensor has a housing and a rotor therein, the rotor being provided with a weight. On an outer housing and the rotor contact points are arranged.
  • a change in height is sensed by the rotor moving with the weight at a change in altitude and then touching the contact points on the outer housing and the rotor. Consequently, an expected change in altitude can not be detected, but only a straight existing.
  • a generic regulation of a cooling circuit of a vehicle is also known, for example, from WO89 / 04419.
  • a cooling circuit with various cooling components such as a mechanical and an electric coolant pump for delivering the coolant is provided.
  • the control unit which controls the electric coolant pump and other components such as blinds, fans and mixing valves, receives additional information such as engine operating temperature, engine compartment temperature, engine compartment temperatures, ambient temperature, engine speed, vehicle speed, and a coolant pressure signal, in addition to coolant temperature.
  • US 5,247,440 describes a control system for a vehicle, wherein a control is carried out depending on the geographical position of the vehicle.
  • a control is carried out depending on the geographical position of the vehicle.
  • the regulation of vehicle lights is claimed.
  • the geographical position of the vehicle via a positioning system such as a GPS (Global Positioning System) is determined.
  • the regulation of the vehicle lights takes place, for example, due to the legal regulation of the respective area in which the vehicle is currently located.
  • the regulation by determining the temperature of To cool the engine part or by determining the temperature the coolant by means of temperature sensors or by determination the coolant pressure is carried out with the aid of a pressure sensor. Only when an increase in temperature occurs Measures initiated, the cooling capacity, for example by Increasing the coolant flow or by connecting the coolant Increase cooling fans. At heavy load of the engine, For example, by driving on a slope, which can Cooling required cooling capacity, by controlling the individual cooling components is achieved, the electrical system strong load and increase fuel consumption.
  • the invention is therefore based on the object, a generic regulation of a cooling circuit such educate that an improvement of the cooling with defined allocation of the performance of cooling components and Secondary consumers is achieved.
  • An essential advantage of these embodiments is that that upcoming load changes of the engine and thus also the Cooling circuit can be detected early and a necessary Rules of the individual cooling components and others Secondary consumers can start early, even before the Load change has occurred at all. So the operation of the individual cooling components designed more efficient and operation of the individual components in maximum load as far as possible be avoided, so that increases their life and the Fuel consumption is reduced. With early recognition a load change of the cooling system, the cooling components be controlled according to demand, so that the electrical system is not must be overloaded. This leads to a reduction of Gasoline consumption. As the regulation of cooling functions early used and not only when the load change occurs, finds not too much increase in engine temperature. So will The engine spared and extended its life.
  • Fig. 1 The essential building blocks to carry out the scheme are needed are shown in Fig. 1.
  • On Navigation device 11 receives via an input unit 13 a driver desired destination and determined via a Location system 12 the current and the future Location data of the vehicle.
  • the navigation device 11 transmits this data to a controller 10, which accordingly a control program, the individual cooling components 14 and other secondary consumers 15 such as a Retarder auxiliary brake regulates.
  • the vehicle 8 receives as shown in FIG. 2 via satellite 9 information about his own location and about upcoming load changes of the cooling system like for example, a pending slope, but also a upcoming gradient.
  • For this purpose is to detect three-dimensional Location data a special navigation device 11 provided that has the ability, except width and Length data also to determine the associated height data.
  • the GPS receiver receives the radio waves from the Satellite 9 via a GPS antenna and generates GPS data including latitude, longitude and elevation data.
  • the Navigation device 11 has a CD-ROM, the control data along with elevation data according to latitude and longitude Stored length data and also has a CD-ROM driver on, to read and output the rule and Height data is provided.
  • the navigation device 11 has a control unit 10, the matching between the Location data and the rule data causes the from the cd-rom be read out by means of CD-Rom driver and on the GPS data based on the GPS receiver.
  • a can also GPS receiver find use only in one two-dimensional measuring mode can work.
  • the control unit 10 then generates rules data that are on the width and Length data from the GPS receiver and altitude data from the CD-ROM based.
  • Locating systems 12 conceivable, such as a Dead reckoning.
  • the driver gives the Input unit 13 of the navigation device 11, the desired Target.
  • the navigation device 11 determines the possible Routes. According to given parameters like the Track consumption, time and other parameters are the Navigation device 11 the driver individual routes to Selection.
  • the driver chooses one of the cars before the start of the journey Navigation device 11 predetermined routes and shares this route via the input unit 13 of Navigation device 11 with. Become from the vehicle 8 frequently the same route, this route can be found in the Navigation device 11 can also be stored and later be retrieved again.
  • Fig. 2 shows a schematic representation of a route profile, wherein in the upper part of the illustration, the altitude m of a roadway and in the lower part of the illustration, the coolant temperature KWT of the vehicle 8 is plotted along the route. Based on this representation, a possible control of the cooling circuit of a vehicle 8 is explained in more detail.
  • the vehicle 8 In a route previously selected by the driver, the vehicle 8 first travels on the flat lane 1. Its cooling circuit is in partial load operation.
  • the coolant pump operates to cool the vehicle engine with partial delivery, so that the coolant temperature KWT does not exceed the temperature of 90 ° C.
  • the cooling fan is switched off, since it is turned on in this embodiment only from a fixed coolant temperature KWT of 93 ° C.
  • the transition of the control of the cooling circuit of partial load in full load operation corresponds to the transition of the vehicle from the flat lane 1 to a slope 2.
  • the controller receives from the navigation device, the information of the upcoming slope 2.
  • the control unit controls the control phase T 1 , In this control phase T 1 , the cooling capacity is increased.
  • the coolant pump operates at a higher delivery rate, so that the coolant temperature KWT drops to 85 ° C.
  • the engine power increases and thereby the heat generated by the engine is dissipated by the coolant.
  • the coolant temperature KWT increases up to 95 ° C.
  • the cooling fan is activated for assistance.
  • the slope end is detected before reaching and the transition to partial load operation when driving on the flat roadway 3 leads to a fan shutdown as soon as the coolant temperature KWT falls below 93 ° C.
  • the coolant pump is back-regulated to partial delivery in accordance with the desired partial load control.
  • the early detection of a gradient leads to a full opening of the coolant regulator, according to control phase T 3 .
  • the coolant pump works with higher power.
  • the coolant temperature drops to 88 ° C.
  • the control unit also controls the retarder auxiliary brake and all other units intended for cooling. According to the load of the vehicle electrical system, the control unit regulates the individual units.
  • the retarder auxiliary brake is partially switched off during control phase T 5 .
  • the partial load operation is initiated.
  • the cooling fan is switched off.
  • the coolant pump is fed back to the partial delivery rate.
  • the cooling circuit is regulated in partial load.
  • the control phase T 7 begins after early detection of the flat gradient 6.
  • the cooling capacity controller will be opened further.
  • the coolant pump works with higher flow rates.
  • control phase T 9 Driving on the flat gradient until control phase T 9 takes place at constant speed.
  • control phase T 10 of the cooling system takes place.
  • the cooling fan is switched off and the coolant pump works with partial flow. If the driver leaves his initially selected route, this leads to an error message which forces the driver to re-route. For the newly selected route, the future location data are determined and then the regulation of the individual cooling components is aligned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

Die Erfindung betrifft eine Regelung eines Kühlkreislaufes eines Fahrzeuges gemäß den gattungsbildenden Merkmalen des Anspruchs 1.The invention relates to a control of a cooling circuit of a Vehicle according to the generic features of the claim 1.

Eine gattungsgemässe Regelung eines Kühlkreislaufs eines Fahrzeuges ist aus der JP 58131306 bekannt. Es wird eine Kühlmitteltemperaturregeleinrichtung für das Kühlmittel eines Verbrennungsmotors offenbart. Zur Erkennung der Motorlast ist ein Steigungserkennungssensor vorgesehen. Während einer Steigung, wird die Solltemperatur des Kühlmittels niedrig gehalten. Der Hügel-Aufsteigensensor kann nur bestimmen, ob sich das Fahrzeug augenblicklich auf einer Steigung befindet. Dieser Hügel-Aufsteigen-Sensor kann nicht erkennen, ob eine Höhenänderung zu erwarten ist. Dies resultiert aus der Funktionsweise des Hügel-Aufsteigen-Sensors. Der Hügel-Aufsteigen-Sensor weist ein Gehäuse und darin einen Rotor auf, wobei der Rotor mit einem Gewicht ausgestattet ist. Auf einem äusseren Gehäuse und dem Rotor sind Kontaktpunkte angeordnet. Eine Höhenänderung wird sensiert, indem sich der Rotor mit dem Gewicht bei einer Höhenänderung bewegt und sich daraufhin die Kontaktpunkte am äusseren Gehäuse und dem Rotor berühren. Folglich kann eine zu erwartende Höhenänderung nicht erkannt werden, sondern nur eine gerade bestehende.
Eine gattungsgemäße Regelung eines Kühlkreislaufes eines Fahrzeuges ist beispielsweise auch aus der W089/04419 bekannt. Zur Kühlung des Motors ist ein Kühlkreislauf mit verschiedenen Kühlkomponenten, wie beispielsweise eine mechanische und eine elektrische Kühlmittelpumpe zur Förderung des Kühlmittels vorgesehen. Die Steuereinheit, die die elektrische Kühlmittelpumpe und andere Komponenten, wie Jalousie, Gebläse und Mischventile ansteuert, erhält zusätzlich zur Kühlmitteltemperatur, weitere Informationen wie beispielsweise die Motorbetriebstemperatur, die Motorraumtemperatur, Temperaturen von Motorteilen, Umgebungstemperatur, Motordrehzahl, Fahrgeschwindigkeit sowie ein Drucksignal des Kühlmittels. Mit diesen Informationen ist eine Anpassung der Förderleistung der elektrischen Kühlmittelpumpe an die erforderliche Kühlleistung möglich. Bei hoher Motorleistung wird die Kühlleistung durch Erhöhen der Förderleistung der Kühlmittelpumpe oder durch Zuschalten eines Kühllüfters erhöht. Die US 5,247,440 beschreibt ein Regelsystem für ein Fahrzeug, wobei eine Regelung in Abhängigkeit der geographischen Lage des Fahrzeuges erfolgt. Beansprucht wird insbesondere die Regelung der Fahrzeuglichter. Hierbei wird die geographische Lage des Fahrzeugs über ein Ortungssystem, wie beispielsweise ein GPS (Global Positioning System) ermittelt. Die Regelung der Fahrzeuglichter erfolgt beispielsweise aufgrund der gesetzlichen Regelung des jeweiligen Gebietes, indem sich das Fahrzeug gerade befindet.
A generic regulation of a cooling circuit of a vehicle is known from JP 58131306. A coolant temperature control device for the coolant of an internal combustion engine is disclosed. To detect the engine load, a gradient detection sensor is provided. During a slope, the setpoint temperature of the coolant is kept low. The hill-climb sensor can only determine if the vehicle is currently on a grade. This hill-climb sensor can not detect if a change in altitude is expected. This results from the operation of the hill-up sensor. The hill-up sensor has a housing and a rotor therein, the rotor being provided with a weight. On an outer housing and the rotor contact points are arranged. A change in height is sensed by the rotor moving with the weight at a change in altitude and then touching the contact points on the outer housing and the rotor. Consequently, an expected change in altitude can not be detected, but only a straight existing.
A generic regulation of a cooling circuit of a vehicle is also known, for example, from WO89 / 04419. For cooling the engine, a cooling circuit with various cooling components, such as a mechanical and an electric coolant pump for delivering the coolant is provided. The control unit, which controls the electric coolant pump and other components such as blinds, fans and mixing valves, receives additional information such as engine operating temperature, engine compartment temperature, engine compartment temperatures, ambient temperature, engine speed, vehicle speed, and a coolant pressure signal, in addition to coolant temperature. With this information, an adaptation of the delivery rate of the electric coolant pump to the required cooling capacity is possible. At high engine power, the cooling capacity is increased by increasing the capacity of the coolant pump or by connecting a cooling fan. US 5,247,440 describes a control system for a vehicle, wherein a control is carried out depending on the geographical position of the vehicle. In particular, the regulation of vehicle lights is claimed. Here, the geographical position of the vehicle via a positioning system, such as a GPS (Global Positioning System) is determined. The regulation of the vehicle lights takes place, for example, due to the legal regulation of the respective area in which the vehicle is currently located.

Bei der gattungsgemäßen Regelung eines Kühlkreislaufes ist von Nachteil, daß die Regelung durch Bestimmung der Temperatur des zu kühlenden Motorteiles oder durch Bestimmung der Temperatur des Kühlmittels mittels Temperaturfühlern oder durch Bestimmung des Kühlmitteldruckes mit Hilfe eines Druckfühlers erfolgt. Erst bei Auftreten einer Erhöhung der Temperatur werden Maßnahmen eingeleitet, die Kühlleistung beispielsweise durch Erhöhen der Kühlmittelförderleistung oder durch Zuschalten des Kühllüfters zu erhöhen. Bei starker Belastung des Motors, beispielsweise durch Befahren einer Steigung, kann die zur Kühlung benötigte Kühlleistung, die durch Ansteuern der einzelnen Kühlkomponenten erreicht wird, das Bordnetz stark belasten und den Kraftstoffverbrauch erhöhen.In the generic control of a cooling circuit is of Disadvantage that the regulation by determining the temperature of To cool the engine part or by determining the temperature the coolant by means of temperature sensors or by determination the coolant pressure is carried out with the aid of a pressure sensor. Only when an increase in temperature occurs Measures initiated, the cooling capacity, for example by Increasing the coolant flow or by connecting the coolant Increase cooling fans. At heavy load of the engine, For example, by driving on a slope, which can Cooling required cooling capacity, by controlling the individual cooling components is achieved, the electrical system strong load and increase fuel consumption.

Der Erfindung liegt daher die Aufgabe zugrunde, eine gattungsgemäße Regelung eines Kühlkreislaufes derart weiterzubilden, daß eine Verbesserung der Kühlung mit definierter Zuteilung der Leistung von Kühlkomponenten und Sekundärverbrauchern erreicht wird.The invention is therefore based on the object, a generic regulation of a cooling circuit such educate that an improvement of the cooling with defined allocation of the performance of cooling components and Secondary consumers is achieved.

Erfindungsgemäß wird die Aufgabe durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Aus- und Weiterbildungen des Erfindungsgegenstandes sind durch die Merkmale der Unteransprüche gekennzeichnet.According to the invention the object is achieved by the features of Claim 1 solved. Advantageous embodiments and further developments of Subject of the invention are characterized by the features of Subclaims characterized.

Ein wesentlicher Vorteil dieser Ausgestaltungen liegt darin, daß bevorstehende Laständerungen des Motors und damit auch des Kühlkreislaufes frühzeitig erkannt werden und ein nötiges Regeln der einzelnen Kühlkomponenten und anderer Sekundärverbraucher frühzeitig beginnen kann, noch bevor die Laständerung überhaupt eingetreten ist. So kann der Betrieb der einzelnen Kühlkomponenten effizienter gestaltet und der Betrieb der einzelnen Komponenten in Höchstlast weitestgehendst vermieden werden, so daß ihre Lebensdauer erhöht und der Kraftstoffverbrauch reduziert wird. Bei frühzeitigem Erkennen einer Laständerung des Kühlsystems können die Kühlkomponenten bedarfsmäßig angesteuert werden, so daß das Bordnetz nicht überlastet werden muß. Dies führt zu einer Verringerung des Benzinverbrauchs. Da die Regelung der Kühlfunktionen frühzeitig einsetzt und nicht erst, wenn die Laständerung eintritt, findet keine allzu starke Erhöhung der Motortemperatur statt. So wird der Motor geschont und seine Lebensdauer verlängert.An essential advantage of these embodiments is that that upcoming load changes of the engine and thus also the Cooling circuit can be detected early and a necessary Rules of the individual cooling components and others Secondary consumers can start early, even before the Load change has occurred at all. So the operation of the individual cooling components designed more efficient and operation of the individual components in maximum load as far as possible be avoided, so that increases their life and the Fuel consumption is reduced. With early recognition a load change of the cooling system, the cooling components be controlled according to demand, so that the electrical system is not must be overloaded. This leads to a reduction of Gasoline consumption. As the regulation of cooling functions early used and not only when the load change occurs, finds not too much increase in engine temperature. So will The engine spared and extended its life.

Die Erfindung wird anhand eines Ausführungsbeispieles in Verbindung mit der Figurenbeschreibung näher erläutert. Es zeigen

Fig. 1
ein Blockschaltbild für die Regelung eines Kühlkreislaufes,
Fig. 2
eine schematische Darstellung eines Streckenprofils.
The invention will be explained in more detail using an exemplary embodiment in conjunction with the description of the figures. Show it
Fig. 1
a block diagram for the control of a cooling circuit,
Fig. 2
a schematic representation of a route profile.

Die wesentlichen Bausteine, die zur Durchführung der Regelung benötigt werden, sind in Fig. 1 dargestellt. Ein Navigationseinrichtung 11 erhält über eine Eingabeeinheit 13 ein vom Fahrer gewünschtes Fahrziel und ermittelt über ein Ortungssystem 12 die derzeitigen und die zukünftigen Standortdaten des Fahrzeuges. Die Navigationseinrichtung 11 übermittelt diese Daten an ein Steuergerät 10, das entsprechend einem Steuerprogramm die einzelnen Kühlkomponenten 14 und andere Sekundärverbraucher 15 wie beispielsweise eine Retarderzusatzbremse regelt. Das Fahrzeug 8 erhält wie in Fig. 2 über Satelliten 9 Informationen über seine eigene Lage und über anstehende Laständerungen des Kühlsystems wie beispielsweise eine anstehende Steigung, aber auch ein anstehendes Gefälle. Hierzu ist zur Erkennung dreidimensionaler Standortdaten eine spezielle Navigationseinrichtung 11 vorgesehen, die die Fähigkeit besitzt, außer Breiten- und Längendaten auch die dazugehörigen Höhendaten zu ermitteln. Zum Empfang und zur Verarbeitung der Satellitendaten ist als Ortungssystem 12 beispielsweise eine spezielle GPS (Global Positioning System)-Einheit vorgesehen, die die Fähigkeit besitzt, bevorzugt in dreidimensionaler Meßbetriebsart zu arbeiten. Der GPS-Empfänger empfängt die Funkwellen von dem Satelliten 9 über eine GPS-Antenne und erzeugt GPS-Daten einschließlich Breiten-, Längen- und Höhendaten. Die Navigationseinrichtung 11 weist eine CD-ROM auf, die Regeldaten zusammen mit Höhendaten entsprechend der Breiten- und Längendaten gespeichert hat und weist außerdem einen CD-ROM-Treiber auf, der zum Lesen und Ausgeben der Regel- und Höhendaten vorgesehen ist. Die Navigationseinrichtung 11 weist ein Steuergerät 10 auf, das ein Angleichen zwischen den Standortdaten und den Regeldaten bewirkt, die von der CD-Rom mittels CD-Rom-Treiber ausgelesen werden und die auf den GPS-Daten vom GPS-Empfänger basieren. Als Alternative kann auch ein GPS-Empfänger Verwendung finden, der nur in einer zweidimensionalen Meßbetriebsart arbeiten kann. Das Steuergerät 10 erzeugt dann Regeldaten, die auf den Breiten- und Längendaten des vom GPS-Empfänger und den Höhendaten vom CD-ROM basieren. Anstatt einer GPS-Einheit sind auch andere Ortungssysteme 12 denkbar, wie beispielsweise eine Koppelnavigation. Vor Fahrtbeginn gibt der Fahrer über die Eingabeeinheit 13 der Navigationseinrichtung 11 das gewünschte Ziel an. Die Navigationseinrichtung 11 ermittelt die möglichen Fahrtrouten. Entsprechend vorgegebener Parameter wie dem Streckenverbrauch, der Zeit und anderer Parameter gibt die Navigationseinrichtung 11 dem Fahrer einzelne Routen zur Auswahl. Der Fahrer wählt vor Fahrtbeginn eine der von der Navigationseinrichtung 11 vorgegebenen Routen aus und teilt diese Route über die Eingabeeinheit 13 der Navigationseinrichtung 11 mit. Werden vom Fahrzeug 8 häufig dieselbe Route zurückgelegt, kann diese Route in der Navigationseinrichtung 11 auch abgespeichert werden und später wieder abgerufen werden.The essential building blocks to carry out the scheme are needed are shown in Fig. 1. On Navigation device 11 receives via an input unit 13 a driver desired destination and determined via a Location system 12 the current and the future Location data of the vehicle. The navigation device 11 transmits this data to a controller 10, which accordingly a control program, the individual cooling components 14 and other secondary consumers 15 such as a Retarder auxiliary brake regulates. The vehicle 8 receives as shown in FIG. 2 via satellite 9 information about his own location and about upcoming load changes of the cooling system like for example, a pending slope, but also a upcoming gradient. For this purpose is to detect three-dimensional Location data a special navigation device 11 provided that has the ability, except width and Length data also to determine the associated height data. To the Receiving and processing the satellite data is as Location system 12, for example, a special GPS (Global Positioning System) unit provided the ability has, preferably in three-dimensional measuring mode work. The GPS receiver receives the radio waves from the Satellite 9 via a GPS antenna and generates GPS data including latitude, longitude and elevation data. The Navigation device 11 has a CD-ROM, the control data along with elevation data according to latitude and longitude Stored length data and also has a CD-ROM driver on, to read and output the rule and Height data is provided. The navigation device 11 has a control unit 10, the matching between the Location data and the rule data causes the from the cd-rom be read out by means of CD-Rom driver and on the GPS data based on the GPS receiver. As an alternative, a can also GPS receiver find use only in one two-dimensional measuring mode can work. The control unit 10 then generates rules data that are on the width and Length data from the GPS receiver and altitude data from the CD-ROM based. Other than a GPS unit are others Locating systems 12 conceivable, such as a Dead reckoning. Before the start of the journey, the driver gives the Input unit 13 of the navigation device 11, the desired Target. The navigation device 11 determines the possible Routes. According to given parameters like the Track consumption, time and other parameters are the Navigation device 11 the driver individual routes to Selection. The driver chooses one of the cars before the start of the journey Navigation device 11 predetermined routes and shares this route via the input unit 13 of Navigation device 11 with. Become from the vehicle 8 frequently the same route, this route can be found in the Navigation device 11 can also be stored and later be retrieved again.

Fig. 2 zeigt eine schematische Darstellung eines Streckenprofils, wobei im oberen Teil der Darstellung die Höhenlage m einer Fahrbahn und im unteren Teil der Darstellung die Kühlmitteltemperatur KWT des Fahrzeuges 8 entlang der Strecke aufgetragen ist. Anhand dieser Darstellung wird eine mögliche Regelung des Kühlkreislaufes eines Fahrzeuges 8 näher erläutert. Bei einer vom Fahrer zuvor gewählten Route fährt das Fahrzeug 8 zuerst auf der ebenen Fahrbahn 1. Sein Kühlkreislauf ist in Teillastbetrieb. Die Kühlmittelpumpe arbeitet zur Kühlung des Fahrzeugmotors mit Teilförderleistung, so daß die Kühlmitteltemperatur KWT die Temperatur von 90°C nicht übersteigt. Der Kühllüfter ist abgeschaltet, da er in diesem Ausführungsbeispiel erst ab einer fest vorgegebenen Kühlmitteltemperatur KWT von 93°C eingeschaltet wird.
Der Übergang der Regelung des Kühlkreislaufes von Teillast in Vollastbetrieb entspricht dem Übergang des Fahrzeuges von der ebenen Fahrbahn 1 zu einer Steigung 2. Das Steuergerät erhält von der Navigationseinrichtung die Information der anstehenden Steigung 2. Bevor die Laständerung eintritt, steuert das Steuergerät die Regelphase T1. In dieser Regelphase T1 wird die Kühlleistung erhöht. Die Kühlmittelpumpe arbeitet mit höherer Förderleistung, so daß die Kühlmitteltemperatur KWT auf 85°C abfällt. Bei Befahren der Steigung 2 steigt die Motorleistung an und die dabei vom Motor erzeugte Wärme wird vom Kühlmittel abgeführt. Dabei erhöht sich die Kühlmitteltemperatur KWT bis auf 95°C. Bei Übersteigen der Kühlmitteltemperatur KWT von 93°C wird der Kühllüfter zur Unterstützung zugeschaltet. Mit der GPS-Einheit wird das Steigungsende vor Erreichen erkannt und der Übergang auf Teillastbetrieb bei Befahren der ebenen Fahrbahn 3 führt zu einer Lüfterabschaltung, sobald die Kühlmitteltemperatur KWT von 93°C unterschritten wird. In der Regelphase T2 wird entsprechend gewünschter Teillastregelung die Kühlmittelpumpe auf Teilförderung zurückgeregelt. Die Früherkennung eines Gefälles führt zu einer Vollöffnung des Kühlmittelreglers, entsprechend Regelphase T3. Die Kühlmittelpumpe arbeitet mit höherer Leistung. Die Kühlmitteltemperatur fällt auf 88°C ab. Bei Befahren des Gefälles in der Regelphase T4 ist zur Geschwindigkeitskonstanthaltung . zusätzlich die Retarderzusatzbremse aktiviert. Das Steuergerät steuert auch die Retarderzusatzbremse und alle weiteren Aggregate, die für die Kühlung vorgesehen sind. Entsprechend der Belastung des Bordnetzes regelt das Steuergerät die einzelnen Aggregate.
Beim Übergang von Bremsbetrieb in Teillastbetrieb wird nach Früherkennung der ebenen Fahrbahn 5 die Retarderzusatzbremse bei Regelphase T5 teilweise abgeschaltet. In der Regelphase T6 wird der Teillastbetrieb eingeleitet. Der Kühllüfter wird abgeschaltet. Die Kühlmittelpumpe wird auf Teilförderleistung zurückgeregelt. Auf der ebenen Fahrbahn 5 wird der Kühlkreislauf in Teillast geregelt.
Beim Übergang von Teillast in den Bremsbetrieb bei Befahren des flachen Gefälles, beginnt nach Früherkennung des flachen Gefälles 6 die Regelphase T7. Der Kühlleistungsregler wird weiter geöffnet. Die Kühlmittelpumpe arbeitet mit höherer Förderleistung.
Bei Befahren des flachen Gefälles 6 wird in der Regelphase T8 die Motorbremse und eine Geschwindigkeitsstabilisierung aktiviert oder alternativ ein Lüfter für die Bremsleistung zugeschaltet. Das Befahren des flachen Gefälles bis Regelphase T9 erfolgt mit konstanter Geschwindigkeit.
Bei Befahren der ebenen Fahrbahn 7 erfolgt die Regelphase T10 des Kühlsystems. Der Kühllüfter wird abgeschaltet und die Kühlmittelpumpe arbeitet mit Teilförderleistung.
Verläßt der Fahrer seine zu Beginn gewählte Route, führt dies zu einer Fehlermeldung, die den Fahrer zu einer erneuten Routenauswahl zwingt. Für die neu gewählte Route werden die zukünftigen Standortdaten bestimmt und hierauf die Regelung der einzelnen Kühlkomponenten ausgerichtet.
Fig. 2 shows a schematic representation of a route profile, wherein in the upper part of the illustration, the altitude m of a roadway and in the lower part of the illustration, the coolant temperature KWT of the vehicle 8 is plotted along the route. Based on this representation, a possible control of the cooling circuit of a vehicle 8 is explained in more detail. In a route previously selected by the driver, the vehicle 8 first travels on the flat lane 1. Its cooling circuit is in partial load operation. The coolant pump operates to cool the vehicle engine with partial delivery, so that the coolant temperature KWT does not exceed the temperature of 90 ° C. The cooling fan is switched off, since it is turned on in this embodiment only from a fixed coolant temperature KWT of 93 ° C.
The transition of the control of the cooling circuit of partial load in full load operation corresponds to the transition of the vehicle from the flat lane 1 to a slope 2. The controller receives from the navigation device, the information of the upcoming slope 2. Before the load change occurs, the control unit controls the control phase T 1 , In this control phase T 1 , the cooling capacity is increased. The coolant pump operates at a higher delivery rate, so that the coolant temperature KWT drops to 85 ° C. When driving on the slope 2, the engine power increases and thereby the heat generated by the engine is dissipated by the coolant. The coolant temperature KWT increases up to 95 ° C. When the coolant temperature KWT exceeds 93 ° C, the cooling fan is activated for assistance. With the GPS unit, the slope end is detected before reaching and the transition to partial load operation when driving on the flat roadway 3 leads to a fan shutdown as soon as the coolant temperature KWT falls below 93 ° C. In the control phase T 2 , the coolant pump is back-regulated to partial delivery in accordance with the desired partial load control. The early detection of a gradient leads to a full opening of the coolant regulator, according to control phase T 3 . The coolant pump works with higher power. The coolant temperature drops to 88 ° C. When driving on the gradient in the control phase T 4 is to maintain constant speed. additionally activated the retarder auxiliary brake. The control unit also controls the retarder auxiliary brake and all other units intended for cooling. According to the load of the vehicle electrical system, the control unit regulates the individual units.
During the transition from braking operation to partial load operation, after early detection of the flat roadway 5, the retarder auxiliary brake is partially switched off during control phase T 5 . In the control phase T 6 , the partial load operation is initiated. The cooling fan is switched off. The coolant pump is fed back to the partial delivery rate. On the flat roadway 5, the cooling circuit is regulated in partial load.
During the transition from partial load to braking mode when driving on the flat gradient, the control phase T 7 begins after early detection of the flat gradient 6. The cooling capacity controller will be opened further. The coolant pump works with higher flow rates.
When driving on the flat slope 6, the engine brake and a speed stabilization is activated in the control phase T 8 or alternatively a fan for the braking power is switched on. Driving on the flat gradient until control phase T 9 takes place at constant speed.
When driving on the flat roadway 7, the control phase T 10 of the cooling system takes place. The cooling fan is switched off and the coolant pump works with partial flow.
If the driver leaves his initially selected route, this leads to an error message which forces the driver to re-route. For the newly selected route, the future location data are determined and then the regulation of the individual cooling components is aligned.

Claims (11)

  1. Regulation method for a coolant circuit of a motorised vehicle as a function of load changes of the engine,
    characterised in that
    the current location data of the vehicle (8) and the future location data of the way ahead of it are determined and, if there is a change of height between the current and future location data, the coolant circuit of the vehicle (8) is adjusted before time in accordance with the anticipated load change.
  2. Regulation method for a coolant circuit according to Claim 1,
    characterised in that
    the location data include length, breadth and height information.
  3. Regulation method for a coolant circuit according to Claims 1 or 2,
    characterised in that
    when the engine output is about to increase, the cooling performance is increased.
  4. Regulation method according to any of Claims 1 to 3,
    characterised in that
    when a positive height change between the current and future location data, corresponding to an upward slope (2), and/or when a negative height change, corresponding to a downward slope (4), is imminent, the delivery output of a coolant pump of the coolant circuit is increased.
  5. Regulation method according to Claim 4,
    characterised in that
    when driving on a flat road (1) and on progressing onto a flat road (5), the coolant pump is operated in part-load output mode.
  6. Regulation method according to any of Claims 1 to 5,
    characterised in that
    the vehicle (8) comprises a location-finding system (12) and a navigation device (11) with a CD-ROM to determine the current and future location data and to transmit these data to a control unit (10).
  7. Regulation method according to Claim 6,
    characterised in that
    the control unit (10) regulates the coolant circuit by adjusting cooling components.
  8. Regulation method according to Claim 7,
    characterised in that
    as cooling components (14), at least an adjustable coolant pump for circulating the coolant and an adjustable cooling fan are provided.
  9. Regulation method according to Claim 8,
    characterised in that
    above a predetermined coolant temperature (KWT) the cooling fan is switched on.
  10. Regulation method according to any of Claims 6 to 9,
    characterised in that
    the control unit (10) also regulates secondary consumers (15).
  11. Regulation method according to any of Claims 6 to 10,
    characterised in that
    when driving on a downward slope (4), the control unit (10) actuates a retarder brake.
EP19990111701 1998-07-21 1999-06-17 Control of a cooling circuit for a motorised vehicle Expired - Lifetime EP0974742B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998132626 DE19832626C1 (en) 1998-07-21 1998-07-21 Regulation of a cooling circuit of a motor-driven vehicle
DE19832626 1998-07-21

Publications (3)

Publication Number Publication Date
EP0974742A2 EP0974742A2 (en) 2000-01-26
EP0974742A3 EP0974742A3 (en) 2001-04-25
EP0974742B1 true EP0974742B1 (en) 2004-05-12

Family

ID=7874709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19990111701 Expired - Lifetime EP0974742B1 (en) 1998-07-21 1999-06-17 Control of a cooling circuit for a motorised vehicle

Country Status (3)

Country Link
EP (1) EP0974742B1 (en)
DE (1) DE19832626C1 (en)
ES (1) ES2219953T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013009275A1 (en) 2013-06-04 2014-12-04 Daimler Ag Method and device for operating a vehicle

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19953511A1 (en) 1999-11-06 2001-05-23 Bosch Gmbh Robert Process for controlling / regulating heat flows in the motor vehicle
FR2816674B1 (en) * 2000-11-10 2003-05-23 Renault METHOD FOR CONTROLLING A MOTOR-FAN GROUP OF MOTOR VEHICLE
JP3912104B2 (en) * 2001-12-25 2007-05-09 三菱自動車工業株式会社 Engine cooling system
DE102008034973A1 (en) * 2008-07-25 2010-01-28 Voith Patent Gmbh Cooling system, in particular of a motor vehicle
DE102009039374B4 (en) 2009-08-29 2022-01-05 Bayerische Motoren Werke Aktiengesellschaft Predictive thermal management in a motor vehicle
US8286437B2 (en) 2010-06-30 2012-10-16 Thermo King Corporation Transport refrigeration system with predictive refrigeration
DE102010060230B4 (en) * 2010-10-28 2024-05-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Tempering system for a drive device of a motor vehicle, method for operating such a tempering system and motor vehicle with such a tempering system
RU2564459C2 (en) * 2010-12-17 2015-10-10 Вольво Ластвагнар Аб Method of control over vehicle drive system
DE102012205141A1 (en) * 2012-03-29 2013-10-02 Zf Friedrichshafen Ag Fluid supply arrangement for powertrain of hybrid vehicle, has fluid circuit to which heat exchanger output is supplied for increasing cooling capacity through electrically driven fan of coolant circuit or heat exchanger
DE102013205331A1 (en) * 2013-03-26 2014-10-02 Zf Friedrichshafen Ag Method and control device for operating a motor fan
DE102013018666A1 (en) * 2013-11-07 2015-05-07 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Predictive cooling system for a motor vehicle
DE102014113753B4 (en) * 2014-09-23 2022-12-15 Pierburg Gmbh System and method for predictive control and/or regulation of a heating/cooling device of a vehicle
DE102014019657A1 (en) * 2014-12-20 2016-06-23 Daimler Ag Vehicle with at least one internal combustion engine and method for operating a waste heat utilization device
GB2552501B (en) * 2016-07-26 2019-03-06 Jaguar Land Rover Ltd Apparatus and method for thermal control
DE102016014164A1 (en) 2016-11-26 2017-05-18 Daimler Ag Method for detecting a trailer on a vehicle and method for cooling a vehicle component
CN109854354A (en) * 2017-11-30 2019-06-07 中国人民解放军陆军军事交通学院 Diesel altitude-variable cooling system with variable water flow and its control process
DE102018101718B4 (en) * 2018-01-25 2024-05-29 Rolls-Royce Solutions GmbH Method and device for operating a drive system and drive system
CN111169292B (en) * 2018-11-13 2021-08-31 联合汽车电子有限公司 Method and system for controlling temperature of driving motor in pure electric driving uphill stage of vehicle
DE102019215897A1 (en) * 2019-10-16 2021-04-22 Robert Bosch Gmbh Method for cooling an internal combustion engine in a vehicle
DE102019220567A1 (en) * 2019-12-23 2021-06-24 Robert Bosch Gesellschaft mit beschränkter Haftung Cooling of vehicles following a platoon

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131306A (en) * 1982-01-29 1983-08-05 Nissan Motor Co Ltd Temperature controlling device for cooling liquid of internal-combustion engine for vehicular use
DE3738412A1 (en) * 1987-11-12 1989-05-24 Bosch Gmbh Robert ENGINE COOLING DEVICE AND METHOD
DE3810174C2 (en) * 1988-03-25 1996-09-19 Hella Kg Hueck & Co Device for regulating the coolant temperature of an internal combustion engine, in particular in motor vehicles
US5247440A (en) * 1991-05-03 1993-09-21 Motorola, Inc. Location influenced vehicle control system
US5553661A (en) * 1995-10-23 1996-09-10 Delco Electronics Corporation Solar position correction for climate control system
JP3596170B2 (en) * 1996-06-06 2004-12-02 トヨタ自動車株式会社 Auxiliary drive control device for internal combustion engine
DE19641559A1 (en) * 1996-10-09 1998-04-16 Voith Turbo Kg Drive unit with thermally controlled water pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013009275A1 (en) 2013-06-04 2014-12-04 Daimler Ag Method and device for operating a vehicle

Also Published As

Publication number Publication date
DE19832626C1 (en) 2000-03-16
EP0974742A3 (en) 2001-04-25
EP0974742A2 (en) 2000-01-26
ES2219953T3 (en) 2004-12-01

Similar Documents

Publication Publication Date Title
EP0974742B1 (en) Control of a cooling circuit for a motorised vehicle
EP1485897B1 (en) Automatic vehicle guidance method and system
DE102005005002B4 (en) Method and device for saving energy in a vehicle
DE602004006821T2 (en) Control device for guiding a vehicle
DE102011103096B4 (en) Motor vehicle comprising a driver assistance system with a control device for automatic longitudinal guidance
EP2707581A1 (en) Method for optimising a power requirement of a motor vehicle
DE102016214822A1 (en) A method of assisting a driver in driving a motor vehicle
EP2692604B1 (en) Method for controlling the charge level of an energy storage device of a hybrid vehicle
DE102013211871A1 (en) Method and device for operating a vehicle with electric drive
WO2016096612A1 (en) Method and air-conditioning system for air-conditioning an electric or hybrid vehicle
DE102013210395A1 (en) Method for data communication between motor vehicles on the one hand and a central information pool on the other hand, driver assistance device and motor vehicle
WO2015140244A1 (en) Method for controlling a hybrid drive of a vehicle, vehicle-side device and central processing unit
DE19953511A1 (en) Process for controlling / regulating heat flows in the motor vehicle
DE102013221876A1 (en) Motor vehicle, method for controlling a filling level of a water tank in a motor vehicle comprising a fuel cell system and use of signals and / or data of a motor vehicle state and / or a motor vehicle environment
DE10149285A1 (en) Advanced driver assistance system includes speed, spacing, navigation and economy control
WO2018228906A1 (en) Method for optimising the journey of a motor vehicle on a route
WO2021018684A1 (en) Planning a route for an automatically operable motor vehicle
EP1377475B1 (en) Method for storing data in a motor vehicle
DE112015002113T5 (en) Cooling control system for a mobile machine
EP2148172B1 (en) Method for operating a navigation system for a vehicle, in particular a motor vehicle and navigation system
EP1380021B1 (en) Method for operating a navigation system for a vehicle
DE102012210389A1 (en) Method and device for operating a drive system with an accessory
DE102021127912A1 (en) VEHICLE CONTROL DEVICES, VEHICLE CONTROL SYSTEMS AND HYBRID VEHICLES
DE102019200973B4 (en) Vehicle control system
DE102013003144B4 (en) Method for operating a cooling system of a motor vehicle and motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): ES FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010523

AKX Designation fees paid

Free format text: ES FR GB IT NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20021213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040705

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2219953

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050215

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: DAIMLER AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160630

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160630

Year of fee payment: 18

Ref country code: NL

Payment date: 20160624

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160629

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160725

Year of fee payment: 18

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170618