EP0974174B1 - Steckverbinder mit zusammengeschlossenen kammern - Google Patents

Steckverbinder mit zusammengeschlossenen kammern Download PDF

Info

Publication number
EP0974174B1
EP0974174B1 EP98908899A EP98908899A EP0974174B1 EP 0974174 B1 EP0974174 B1 EP 0974174B1 EP 98908899 A EP98908899 A EP 98908899A EP 98908899 A EP98908899 A EP 98908899A EP 0974174 B1 EP0974174 B1 EP 0974174B1
Authority
EP
European Patent Office
Prior art keywords
connector
chamber
receptacle
joined
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98908899A
Other languages
English (en)
French (fr)
Other versions
EP0974174A1 (de
Inventor
Edward J. Niekrasz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lockheed Martin Corp
Original Assignee
Lockheed Corp
Lockheed Martin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25247302&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0974174(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Lockheed Corp, Lockheed Martin Corp filed Critical Lockheed Corp
Publication of EP0974174A1 publication Critical patent/EP0974174A1/de
Application granted granted Critical
Publication of EP0974174B1 publication Critical patent/EP0974174B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/523Dustproof, splashproof, drip-proof, waterproof, or flameproof cases for use under water
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3816Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres for use under water, high pressure connectors

Definitions

  • connector technology is well developed for coupling together electrical lines, fiber optic lines and other types of conductors that communicate different signals, including AC and DC power.
  • connectors are constructed as two separable components, typically called a plug connector and a receptacle connector which, when joined, allow the signals and/or power to be communicated from one line to another line.
  • plug connector and a receptacle connector which, when joined, allow the signals and/or power to be communicated from one line to another line.
  • receptacle connector which, when joined, allow the signals and/or power to be communicated from one line to another line.
  • long-term reliability of connectorized lines is of paramount importance.
  • a specialized area has developed for submersible connectors which allow the joining of lines for underwater applications.
  • One type of underwater connector is adapted for mating and demating under dry conditions, but once mated, the joined connection can be immersed in fluids and yet maintain a reliable connection.
  • the plug and receptacle connector components can be mated or demated while underwater and maintain reliable connections.
  • the latter type of connectors are the most desirable for marine applications, in that the reliability of the connection is independent of whether the connector components are mated in wet or dry situations.
  • Connectors that can be mated under water known as "wetmate" connectors, generally include a pressure-compensated, dielectric fluid-filled chamber in the receptacle half of the connector.
  • the contact probe of the plug connector passes through a penetrable entry seal of the fluid-filled chamber to connect with a receptacle socket contact enclosed within the chamber.
  • the penetrable entry seal maintains a seal to the plug contact probe when mated, to thereby retain the compensating fluid within the chamber.
  • the entry seal recloses when the plug contact probe is removed.
  • the penetrable entry seal tends to "wipe" the plug contact probe so that the sea water, or the like, does not mix with the fluid dielectric contained within the pressure-compensated chamber. Underwater mateable connectors of such design are disclosed in U.S. Pat. Nos.
  • a family of submersible connectors has been developed, called “joined chamber connectors", that maintains the ends of the lines bathed in a dielectric fluid at all times.
  • Such type of connectors are designed to provide protective, fluid-filled chambers around the contacts of both the plug and receptacle connector halves.
  • the dielectric not only provides the contacts with a protective fluid environment, but also provides a pressure compensating mechanism to enhance reliability in deep sea situations.
  • the chamber over the plug contact probe is pushed back and the probe passes through the external fluid, which may be sea water with contaminants, before entering the mating chamber.
  • U.S. Pat. No. 3,491,326 by Pfister, et al shows such a connector.
  • WO 86/02173 discloses an underwater mateable optical fiber connector, composed by a plug unit and a receptacle unit, both housing a fluid tight interior chamber defined by bladders each adapted to contain an optical fiber carried by the respective unit. Each chamber has an opening sealed by a movable member in the form of a flanged seal.
  • the plug unit furthermore comprises a cylindrical probe adapted to carry the optical fiber, while the receptacle unit includes a precision alignment device adapted to carry the complementary optic fiber.
  • the probe penetrates both the above flanged seals, putting in communication the fluid tight interior chambers and getting then in abutment with the alignment device.
  • fluid purging can be employed to flush the external fluid out of the trapped volume before the final insertion of the plug contact probe into the receptacle connector half.
  • the fluid purging technique requires additional equipment, adds to the complexity and cost of the connector by requiring purge fluid reservoirs, pumps, valves and associated plumbing.
  • plug and receptacle connector halves are constructed so that when joined in underwater conditions, the plug and receptacle contacts, whether they be of the electrical or optical type, are moved toward each other in a dielectric-filled chamber without being exposed to any type of external fluid.
  • a connector plug half houses an optical. contact in a dielectric-filled chamber
  • a connector receptacle half houses a complementary optical contact in another dielectric-filled chamber, and when the connector halves are joined the dielectric-filled chambers are also joined, without any significant difference or change in the volume of the dielectric chambers.
  • a connector plug half includes a cylindrical housing body.
  • a cylindrical cover sleeve is made telescopic within the housing body, and is spring biased by a coil spring to a closed position.
  • Anchored at an angle within the housing body at one end thereof are one or more elongate flexible tubes. The other end of each flexible tube is urged radially inwardly from a rest position and contained by the telescopic cover sleeve. In its rest or relaxed state, the telescopic cover sleeve of the connector plug half maintains a seal between the housing body and a frontal end plate, to thereby maintain the contacts at the ends of the respective flexible tubes contained within a dielectric-filled chamber.
  • the telescopic cover sleeve When the connector plug half is joined to the connector receptacle half and the components pushed together, the telescopic cover sleeve is forced to a receded position within the plug housing body, thereby allowing the flexible tubes and associated contacts to splay outwardly in a radial direction. Upon further engagement of the connector halves, the contacts of the connector plug join with the complementary contacts of the connector receptacle, which are located in the peripheral portion of the connector receptacle.
  • the connector receptacle half is structured to receive the connector plug half in underwater conditions.
  • the connector receptacle half includes a cylindrical housing body, also with a spring-biased telescopic internal cover sleeve. In its relaxed or rest state, the telescopic internal cover sleeve maintains one or more of the complementary contacts located in the peripheral portion of the receptacle housing body within a dielectric-filled chamber.
  • the frontal end cap of the connector plug intimately seals to the internal cover sleeve of the receptacle, thereby eliminating any trapped external fluid, and creating a barrier between the plug and receptacle connector halves.
  • the telescopic internal cover sleeve of the connector receptacle half begins receding into the receptacle housing body.
  • the telescopic outer cover sleeve beings receding into the housing body of the connector plug half.
  • the dielectric-fluid chamber housing the receptacle complementary contact joins the chamber housing the plug contact, thereby achieving a connection without either contact being exposed to the external fluid.
  • the dielectric-filled chambers of both the connector plug and receptacle halves are compensated so that pressure and temperature changes do not adversely affect the connectors.
  • FIG. 1 there are shown the structural features of the connector plug half 10 constructed according to the preferred embodiment of the invention. While the joined chamber plug and receptacle connectors described below are structured to couple together the ends of optical fibers, the invention can be utilized with equal effectiveness in conjunction with lines and contacts carrying electrical signals, or a mixture of both optical and electrical contacts.
  • the connector plug 10 includes a housing constructed as an outer body 12 fixed to an inner body 14.
  • the housing parts are preferably machined from titanium stock, and anodized to provide a protective coating.
  • the outer body 12 and inner body 14 are generally of a cylindrical shape, and are fastened together during assembly by plural screws, shown as reference numeral 16.
  • the inner body 14 is sealed to the outer body 12 by way of a resilient O-ring 18.
  • Formed within the outer body 12 is a first axial bore 20 for supporting therein the inner body 14.
  • a second axial bore 22 is of a diameter larger than the first bore 20 and defines a chamber 24 for containing a dielectric fluid, such as a silicone oil having a viscosity of about 100 centistoke.
  • annular rim 26 Formed on the external annular surface at the rear end of the outer body 12 is an annular rim 26.
  • a key 30 is fastened by a screw 32 in the frontal portion of the outer body 12.
  • annular groove 34 for supporting an O-ring 36.
  • a frontal groove 38 formed annularly in the bore 22 is structured to support a scraper ring 40.
  • the outer cylindrical surface is machined along a portion thereof to provide opposing flat surfaces 42 and 44.
  • the elongate flat surfaces 42 and 44 allow movement of the dielectric fluid between the inner and outer body, despite other connector parts disposed therebetween.
  • An axial, central bore 46 is formed in the inner body 14 to define a cavity 48.
  • the cavity 48 is in fluid communication with the dielectric chamber 24 by way of numerous side wall ports, one shown as reference numeral 50.
  • the axial bore 46 extends to the back end of the inner body 14, and includes a hydraulic fitting port 52 for attachment to a hose or cable connection (not shown) for allowing a fluid-tight connection between the connector plug 10 and equipment carrying the signal lines.
  • a shaft 54 having a threaded end 56.
  • a number of angled holes 58 are drilled at the base of the shaft 54, each to support a flexible tube 60.
  • the angle at which the holes 58 are drilled, with respect to a longitudinal axis of the connector, is about 10°.
  • the angled holes 58 are formed in a stepped manner to prevent the flexible tube 60 from entering within the central cavity 48 of the inner body 14.
  • the base of each flexible tube 60 is bonded within a respective angled bore 58.
  • the flexible tubes 60 are constructed of a stainless steel material having a length of about 11,43 cm (4.5 inches), an outside diameter of about 0,24cm (0.095 inches) and an inside diameter of about 0,18 cm (0.070 inch).
  • the tubes 60 are themselves made of a rigid material such as stainless steel, but due to the length and diameter thereof, such tubes can be deformed to a certain extent without. incurring a permanent bend.
  • the flexible tube 60 carries therein a signal line 62 which passes through the internal cavity 48 of the inner body 14. Any unused angled bore 58 functions as a fluid port for allowing passage of the dielectric between the chamber 24 and the central cavity 48.
  • the inner body 14 of the connector plug 10 is fixed, and immovable with regard to the outer body 12. Threadably fastened to the inner body shaft 54 is a frontal end cap 64.
  • the end cap is constructed as a circular plug 66 having an exterior annular taper 68, and a shaft portion 70 that is threadably fastened to the shaft 54 of the inner body 14.
  • the end cap 64 of the connector plug 10 functions as a plunger that is sealed to the connector receptacle for forcing the external fluid out of a central portion thereof.
  • a threaded bore 72 of the frontal end cap shaft 70 includes a transverse port 74 in communication with the dielectric chamber 24.
  • An annular groove 76 is formed in the annular beveled surface 68 of the plug 66 to thereby support therein an elastomeric seal ring 78.
  • the seal ring 78 can be fabricated of an ethylene rubber, fluorosilicone material, natural rubber or other type of high quality material that is compatible with external fluids as well as dielectric fluids contained within the plug connector 10.
  • the frontal end cap 64 is immovable with respect to the outer body 12.
  • the slotted tube guide 80 Fastened to the shaft 54 of the inner body 14, and surrounding the shaft 70 of the forward end cap 64, is a slotted tube guide 80.
  • the slotted tube guide 80 is shown in detail in FIG. 3.
  • the slotted tube guide 80 includes a sleeve portion 82 and a slotted portion 84 having a plurality of slots 86.
  • Each slot 86 can freely accommodate a flexible tube 60 therein.
  • the slotted tube guide 80 is machined to accommodate a total of eight flexible tubes 60.
  • the slotted tube guide 80 can be fabricated to accommodate as many flexible tubes 60 as required by the particular connector plug 10.
  • the slots 86 function to provide lateral stability and support to the flexible tubes 60 so as to maintain an optical plug contact 88, as attached to the end of the flexible tube 60, aligned along a desired path.
  • the optical plug contact 88 is maintained in a path so as to be guided into a corresponding optical receptacle contact located in a peripheral dielectric chamber of the connector receptacle half.
  • a cylindrical-shaped external cover sleeve 90 is telescopic within the bore 22 of the outer body 12.
  • the dielectric fluid chamber 24 is contained and isolated within the connector plug half 10.
  • the external cover sleeve 90 is telescopically moved to the position shown in FIG. 2, the dielectric chamber 24 is opened, and the optical plug contact 88 is deployed radially outwardly.
  • the telescopic movement of the external cover sleeve 90 occurs only when the connector plug is pushed and sealed within the connector receptacle.
  • the telescopic cover sleeve 90 is provided with a fluid seal to the internal bore 22 of the outer body 12 by way of an O-ring 36.
  • the scraper ring 40 is effective to remove dirt, particles, residue and other debris from the outer smooth surface of the telescopic cover sleeve 90.
  • the scrapper ring 40 can be constructed of a hard polyurethane or other suitable material, such as utilized in the manufacture of standard hydraulic cylinders.
  • the frontal portion of the telescopic cover sleeve 90 includes and internal annular shoulder 92 against which a coil or helical spring 94 abuts.
  • the other end of the coil spring 94 abuts against an end surface 96 formed in the internal surface 22 of the outer body 12.
  • the telescopic cover sleeve 90 is spring biased in a direction to close and seal the internal fluid chamber 24.
  • the springs employed in the connector halves can be made of an Inconel 625 material, or other suitable metal.
  • the frontal portion of the telescopic cover sleeve 90 also includes an annular area that flares radially outwardly to provide a bow-shaped surface 98.
  • the surface 98 engages with the optical plug contact 88 in the position shown in FIG. 1, as well as with the flexible tube 60 as shown in FIG. 2.
  • a frontal annular edge 100 of the external cover sleeve 90 abuts against and seals with the seal ring 78 that is fixed to the forward end cap 64 of the inner body 14.
  • a tapered external surface 102 formed on the end of the external cover sleeve 90 is effective to form a seal with the connector receptacle half as the connector plug half 10 is pushed therein.
  • FIG. 2 illustrates the deployment of the free end of the flexible tube 60 and the associated optical plug connector 88.
  • the flexible tube 60 moves from an inwardly deformed position shown in FIG. 1, to a relaxed position shown in FIG. 2.
  • the telescopic cover sleeve 90 is moved into the outer body 12 against the tension of the coil spring 94, due to engagement with the connector receptacle parts shown in broken lines and by reference characters 116 and 168.
  • the length of the flexible tube 60 is such that when in the deformed condition shown in FIG. 1, the tube 60 is not permanently bent.
  • the inherent flexibility of the tube 60 allows the free end thereof to spring outwardly, as guided by the respective slot 86 in the slotted tube guide 80.
  • the deployment of the flexible tube 60 makes the optical plug contact 88 accessible for connection to an optical receptacle contact housed within the connector receptacle half.
  • FIGS. 4a and 4b when joined together, illustrate the receptacle portion of the connector, constructed according to the preferred embodiment of the invention.
  • the connector receptacle 110 includes a rear inner body 112, a mid-body 114 and a frontal receptacle shell 116.
  • Such parts are constructed in general cylindrical shapes from a titanium material that is anodized to provide a protective surface coating.
  • Fastened by a screw 118 to the frontal receptacle shell 116 is a support ring 120.
  • Fixed by screws 122 to the mid-body 114 is an outer cover sleeve 124.
  • An end plate 126 is fixed to the rear end of the rear inner body 112 by a number of screws 128.
  • the end cap 126 has formed integral therewith a tubular guide 130, around which a coil spring 132 is disposed.
  • the spring guide 130 prevents significant lateral movement of the coil spring 132 during compression thereof.
  • an O-ring 134 provides a seal between the mid-body 114 and the outer cover sleeve 124.
  • Another O-ring 136 provides a seal between the mid-body 114 and the rear inner body 112.
  • an O-ring 138 provides a seal between the rear portion of the inner body 112 and the outer cover sleeve 124.
  • a cavity 140 between the outer cover sleeve 124 and the rear inner body 112 defines an annular-shaped chamber filled with a dielectric fluid, such as a silicone oil.
  • the rear inner body 112 has a large off-center bore 142 for a hydraulic hose fitting (not shown) that engages with an opening 144 to the bore 142.
  • a second, smaller-diameter bore 146 provides a channel between the bore 142 and the dielectric chamber 140.
  • an optical fiber 148 is carried through the dielectric chamber 140.
  • the optical fiber 148 is coupled to an optical receptacle assembly 150 (FIG. 4a).
  • the optical receptacle assembly 150 is secured within an angled bore 152 of the mid-body 114.
  • the optical receptacle assembly 150 includes an inlet 154 for receiving therein the deployed optical plug contact 88, shown in FIG. 2.
  • the angled bore 152 formed in the mid-body 114 opens into the internal cylindrical surface thereof as an elongate oval opening. This allows guidance of the optical plug contact 88 into the optical receptacle assembly 150. Further, the internal surface of the mid-body 114 is machined to form an annular slanted groove 156. The slanted groove 156 also facilitates the guidance and mating of the optical contacts. The plug and receptacle parts of the optical contacts are described below in more detail in connection with FIG. 9.
  • the movable parts of the receptacle connector half 110 comprise telescopic internal cover sleeve 160.
  • the frontal portion of the internal cover sleeve 160 is machined to include an internal annular shoulder 162, against which the coil spring 132 abuts.
  • the coil spring 132 urges a frontal annular edge 164 of the internal cover sleeve 160 against an elastomeric seal ring 168
  • the seal ring 168 is nested within an annular channel formed in the frontal receptacle shell 116.
  • the angled surface of the elastomeric seal 168 seals to the outer beveled surface 102 of the telescopic cover sleeve 90 associated with the connector plug half 10.
  • the internal cover sleeve of the connector receptacle 110 is sealed to the mid-body 114 by an O-ring seal 158.
  • a scraper ring 159 held in an internal groove in the mid-body 114, is effective to clean the outer polished surface of the internal cover sleeve 160. It is noted the sea water and particles suspended therein are free to flow into the cavity 174, in which the coil spring 132 is disposed.
  • the internal, annular surface 172 of the internal cover sleeve 160 is tapered at exactly the same angle as the external tapered edge 68 of the end cap plug 64 associated with the connector plug half 10 With identical mating surfaces 172 and 68, substantially no external fluid is trapped therebetween.
  • the seal ring 78 encircling the frontal end cap 64 of the connector plug provides a fluid seal to the inside taper 172 of the internal cover sleeve 160.
  • the central cavity 174 within the internal cover sleeve 160 is in communication with the external fluid, such as sea water.
  • the internal bore 131 of the spring guide 130 opens to the exterior of the connector receptacle half 110 and thus allows sea water to enter into the connector volume containing the coil spring 132. Indeed, when not mated with a connector plug half 10, sea water or the like, can flow entirely through the central cavity 174 of the connector receptacle half 110.
  • FIG. 5 illustrates the mating of the connector plug and receptacle halves, such that the respective dielectric chambers 24 and 140 join together as one chamber, and the optical plug and receptacle contacts remain in the dielectric fluid during the mating operation to thereby provide a reliable and high-quality fiber optic interface to couple the optical signals.
  • the frontal portion of the connector plug half 10 is loosely inserted into the support ring 120 of the connector receptacle half 110, aided by an internal bevel 180.
  • the connector plug half 10 is rotated such that the key 30 slides within the angled entry portion 182 of the support ring 120.
  • the key 30 slides within the keyway 184 of the frontal receptacle shell 116.
  • the frontal end cap 64 of the connector plug 10 engages within the internal cover sleeve 160 of the connector receptacle 110.
  • the internal cover sleeve 160 is then sealed to the outer annular beveled edge 68 of the frontal end cap 64.
  • the seal ring 168 of the receptacle 110 forms a seal to the frontal outer surface 102 of the telescopic cover sleeve 90.
  • the telescopic cover sleeve 90 Upon further forced entry of the connector plug 10 into the receptacle 110, the telescopic cover sleeve 90 is stopped by its abutment with the seal ring 168 and thus begins to retract in the connector plug 10 into the dielectric chamber 24 of the outer body 12. This retraction of the telescopic cover sleeve 90 into the connector body forms a frontal opening in the dielectric chamber 24. However, by way of the various seals, the external fluid cannot enter the connector plug chamber 24. As the connector plug 10 is forced further into the connector receptacle 110, the movement of the forward end cap 64 forces the internal cover sleeve 160 of the connector receptacle 110 in a direction compressing the coil spring 132.
  • the direction of movement of the frontal end cap 64 is shown by the arrow 188 of FIG. 5.
  • the movement of the internal cover sleeve 160 by the connector plug end cap 64 in the direction shown by the arrow 188 reduces the volume in the external fluid cavity 174, whereby the sea water is pushed out of the connector receptacle.
  • the connector plug end cap 64 functions as a plunger to clear a path in the connector receptacle 110 and remove the external fluid.
  • both chambers are filled with a silicone oil to provide a protective dielectric fluid in which the optical connection components are bathed, and to provide an interface environment between the optical components that is free of particles and other contaminants that could otherwise deteriorate the coupling of optical signals.
  • FIGS. 6-8 illustrate a generalized connector plug and receptacle of the invention during various stages of the mating sequence.
  • FIG. 6 there is illustrated the position of the connector components once initial contact is made between the internal cover sleeve 160 of the connector receptacle 110 and the frontal end cap 64 of the connector plug 10.
  • the fluid purge port 186 formed in the frontal receptacle shell 116 is sealed by the engagement of the telescopic cover sleeve 90 with the seal ring 168 of the connector receptacle 110.
  • the dielectric chamber 24 of the connector plug 10 and the dielectric chamber 140 of the connector receptacle 110 remain as distinct cavities at this stage of the mating sequence.
  • the external fluid in the central cavity 174 of the connector receptacle 110 is contained at the frontal end by virtue of the seal between the internal cover sleeve 160 and the seal ring 78 carried by the tapered surface 68 of the connector plug end cap 64.
  • the telescopic cover sleeve 90 remains stationary with respect to the connector receptacle 110 as the connector plug 10 continues to be pushed into the connector receptacle 110.
  • the telescopic cover sleeve 90 recedes internally into the outer body 12 of the connector plug 10 and compresses the coil spring 94.
  • the internal cover sleeve 160 of the connector receptacle 110 is forced by the connector plug end cap 64 to a receded position in the connector receptacle 110, thereby compressing the coil spring 132. This effectively reduces the volume of the central cavity 174 filled with the external fluid.
  • the flexible tubes 60 and associated optical plug contacts 88 begin to deploy radially outwardly. At this stage of the mating sequence, the dielectric chambers 24 and 140 remain separately sealed as to each other, and as to the central cavity 174 that contains sea water.
  • the volume of the dielectric chamber 24 does not substantially change. The reason for this is that even though a larger volume is generated around the area of the optical plug contacts 88, a greater volume of the telescopic cover sleeve 90 is displaced within the dielectric chamber 24 of the connector plug body 12. Thus, as additional volume is created in one portion of the dielectric chamber 24, less volume is created in another portion of the chamber. Thus, there is no net change in the volume of the dielectric fluid chamber 24 during engagement of the connector components.
  • the connector plug 10 is shown completely joined with the connector receptacle 110.
  • the dielectric chamber 140 of the connector receptacle 110 is joined with the dielectric chamber 24 of the connector plug 10, by virtue of the fluid passage port 190 and the small passages in the optical receptacle assembly 150.
  • the optical receptacle assembly 150 is bathed in the dielectric fluid and the optical plug contact 88 remains in the dielectric fluid, thereby providing an optical connection with components that remain in the dielectric fluid at all times.
  • a passage for the dielectric fluid could be formed adjacent or around the optical receptacle assembly 150.
  • the optical plug contact 88 is fully seated within the optical receptacle assembly 150, thereby providing an optical interface between the fibers that is free of contaminants.
  • the de-mating of the connector plug 10 and receptacle 110 is carried out by removing the plug 10 from the receptacle 110.
  • the reverse of the operations described above is carried out such that the internal cover sleeve 160 is moved to the right.
  • the flexible tubes 60 begin to be deformed radially inwardly by the engagement therewith of the internal surface 98 of the telescopic cover sleeve 90.
  • FIG. 6 the position of the connector components illustrates that the dielectric chamber 140 is completely sealed in the connector receptacle 110 from the sea water cavity 174.
  • the dielectric chamber 24 of the connector plug 10 is sealed to thereby contain the optical plug contact 88 in the uncontaminated dielectric fluid. Further movement of the connector plug 10 allows the connector plug 10 to be completely removed from the receptacle 110.
  • the optical plug contact 88 includes a stainless steel adapter sleeve 200 bonded by an adhesive to the stainless steel flexible tube 60.
  • the adapter sleeve 200 has formed in the side wall thereof a port 202 for allowing passage therethrough of the dielectric fluid.
  • An optical fiber 62 is assembled in conjunction with a conventional tungsten carbide or ceramic optical ferrule 206 so that the polished end of the fiber 62 is adjacent the optical face 208 of the ferrule 206.
  • the optical fiber 62 is centered and otherwise supported within the ferrule 206 in a standard and well known manner.
  • a coil spring 210 is disposed within the adapter sleeve 200, and engaged around a post 212 formed integral at the back end of the ferrule 206.
  • the spring 210 applies a pressure on the ferrule 206 of about 0,45-0,90 kg (1-2 pounds).
  • a C-shaped ring 214 is clipped around a thinned portion 216 of the ferrule 206.
  • a stainless steel adapter cap 218 shaped to cover the C-ring 214 is bonded by an adhesive to the adapter sleeve 200. The adapter cap 218 permanently retains the C-ring 214 engaged around the thinned portion of the optical ferrule 206.
  • the ferrule body 206 is allowed a certain degree of axial and angular movement.
  • the spring 210 functions to maintain the optical interface 208 of the ferrule 206 in intimate contact with a corresponding ferrule interface of the optical receptacle assembly 150.
  • the optical interface 208 of the ferrule 206 is somewhat crowned or convex. During intimate contact between the optical interfaces of the coupled ferrules, the glass surfaces undergo a slight elastic deformation to provide a high quality optical coupling of signals.
  • optical receptacle assembly 150 of FIG. 9 With reference to the optical receptacle assembly 150 of FIG. 9, it is noted that such assembly is supported at an angle of about 10° in the mid-body 114 of the connector receptacle half 110.
  • a triple stepped bore is formed in the mid-body 114 to support the receptacle assembly 150 therein.
  • a large diameter bore 220 is formed coaxial with an intermediate bore 222 and a smaller diameter bore 152.
  • a threaded hole 224 is formed in the mid-body 114, transverse to the larger diameter bore 220.
  • a fluid passage port 226 is formed in the mid-body 114 transverse to the intermediate-diameter bore 222.
  • the optical receptacle assembly 150 includes a stainless steel retainer 228 that is slip fit within the larger-diameter bore 220 and secured by way of a set screw engaging a flat surface on the retainer side wall.
  • a stainless steel holder 230 Housed within the retainer 228 is a stainless steel holder 230 that captures a C-ring 232 between a shoulder thereof, and an annular end of a stainless steel nut 234.
  • the nut 234 is treaded into the holder 230, and the holder 230 is slideable within the retainer 228.
  • the nut 234 is generally hollow and houses a first spring 236 engaged around a post 238 of a ferrule 240.
  • the spring applies about 0,45-0,90 kg(1-2 pounds) of pressure on the ferrule 240.
  • Side wall ports are formed in the nut 234 for freely allowing the dielectric fluid to flow therein.
  • the ferrule 240 is of standard design having a thinned region allowing a certain degree of axial and angular movement with regard to the C-ring 232.
  • a second coil spring 242 is disposed within the retainer 228 and is captured between the end wall 244 thereof at one end, and the edge of the holder 230 at the other end.
  • An optical fiber 237 is supported by a bifurcation tubing 239.
  • the end of the tubine 239 is epoxied into the ferrule 240.
  • the ferrule assembly including the ferrule 240, the nut 234 and the holder 230 are spring biased forwardly by the spring 242.
  • the ferrule 240 when the connector halves are joined, the ferrule 240 includes an optical interface 246 that is in intimate contact with the optical interface 208 of the optical plug contact 88.
  • Each ferrule 206 and 240 is thus spring biased against each other to achieve a certain degree of elastic deformation of the interface surfaces and provide a high-quality, physical contact between the end faces of the optical fibers 148 and 62.
  • a stainless steel end cap 248 and a ceramic split sleeve 250 are situated in the angled bore 152 formed in the mid-body 114.
  • An annular channel area 252 exists around a portion of the end cap 248 to provide a flow of dielectric fluid around the ferrule 240.
  • the end of the end cap 248 has a flared entry 254 providing guidance of the optical plug ferrule 206 therein.
  • the optical receptacle assembly 150 includes dual coil springs. While the coil spring 236 applies a force of about 0.45-0.9 kg (1-2 pounds) on the ferrule 240, the other coil spring 242 is selected with a higher spring force. The spring 242 and the associated components assure that a force of no more than about 0.45-0.9 kg (1-2 pounds) is exerted between the faces 208 and 246 of the optical ferrules 206 and 240. This is due to the forces exerted on the optical ferrules 206 and 240 by the respective coil springs 210 and 236.
  • the ferrules 206 and 240 experience about 0.46-0.9 kg (1-2 pounds) of force at the interface, whereby the faces experience an elastic deformation sufficient for optimum transfer of optical signals. If the optical plug contact 88 is pushed into the receptacle assembly 150 with a force greater than necessary, the frontal edge of the adapter cap 218 engages with the flared opening 254 of the end cap 248, thereby forcing the ferrule 240 and the associated components of the assembly into the retainer 228, against the force of the third coil spring 242. This arrangement thus assures that the optical faces 208 and 246 of the ferrules 206 and 240 do not experience forces therebetween that could compromise the quality of optical coupling therebetween.
  • the ceramic split sleeve 250 is of standard design, including an axial slit in the side wall.
  • the ferrule 240 is interference fit within the split sleeve 250, as is the ferrule 206 of the optical plug contact 88. With a precision interface fit between the split sleeve 250 and the ferrules, and both ferrules being spring biased against each other, a precision optical interface is provided.
  • a wetmate connector of the joined chamber type in which the signal contacts remain in a protective dielectric medium before, during and after mating and demating.
  • Elaborate dielectric fluid make-up techniques are not necessary, as the volume of the dielectric chambers does not substantially change during mating and demating of the connector halves.
  • the engagement of the signal contacts is carried out by movement of the telescopic cover sleeve of the connector plug that allows a flexible tube to splay radially outwardly.
  • the flexible tube has fixed at the free end thereof a signal contact that mates with a complementary contact housed in a peripheral portion of the connector receptacle half.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Claims (25)

  1. Zusammengesteckter Kammerverbinder mit:
    einer Verbindereinsteckhälfte (10), die aufweist:
    mindestens einen Signalkontakt (88), der an eine Signalleitung angeschlossen ist, die von der Verbinderhälfte (10) getragen wird;
    eine erste Kammer (24), die in der Verbinderhälfte (10) untergebracht ist, um den Signalkontakt (88) in einem dielektrischen Fluid aufzunehmen, wobei die erste Kammer (24) eine Öffnung hat, die von einem ersten beweglichen Teil (90) abgedichtet wird;
    einer Verbinderaufnahmehälfte (110), die zum Eingriff mit der Verbinderhälfte (10) gestaltet ist und die aufweist:
    mindestens einen komplementären Signalkontakt (150), der an eine Signalleitung (148) angeschlossen ist, die von der Verbinderaufnahmehälfte (110) getragen wird und die mit dem Signalkontakt (88) der Verbinderhälfte (10) zusammenpasst;
    eine zweite Kammer (140), die in der Verbinderaufmahmehälfte (110) untergebracht ist, um den komplementären Signalkontakt (150) in einem dielektrischen Fluid zu enthalten, wobei die zweite Kammer (140) eine Öffnung besitzt, die von einem zweiten bewegbaren Teil (160) versiegelt wird, und die in einem Ringraum in einem Umfangsteil der Verbinderaufnahmehälfte (110) gebildet ist;
       wobei die Verbindereinsteckhälfte (10) so gebaut ist, dass in gekoppeltem Zustand mit der Verbinderaufnahmehälfte (110) die bewegbaren Teile (90, 160) so bewegt werden, dass sie eine Fluidströmungsverbindung zwischen den Kammern (24, 140) bilden, so dass die Kammern (24, 140) zu einer gemeinsamen Kammer verbunden sind, und wobei der Signalkontakt (88) und der komplementäre Signalkontakt (150) in der gemeinsamen Kammer verbunden sind und in dem dielektrischen Fluid verbleiben;
    dadurch gekennzeichnet, dass die Verbindereinsteckhälfte einen flexiblen Schlauch einschließt, der die Signalleitung führt, die an die Verbindereinsteckhälfte angeschlossenist, und die so gestaltet ist, dass sie sich bei der Verbindung mit der Verbindereinsteckhälfte nach außen erweitert.
  2. Der zusammengesteckte Kammerverbinder nach Anspruch 1, wobei das erste bewegbare Teil, das zu der Verbindereinsteckhälfte gehört, als Folge des Kontakts mit der Verbinderaufnahmehälfte bewegt wird.
  3. Der zusammengesteckte Kammerverbinder nach Anspruch 2, wobei jedes der bewegbaren Teile gegen Bewegung durch die andere Verbinderhälfte durch eine Feder vorgespannt ist.
  4. Der zusammengesteckte Kammerverbinder nach Anspruch 3, wobei eine Federvorspannung durch einen Schraubenfeder vorgesehen ist.
  5. Der zusammengesteckte Kammerverbinder nach Anspruch 1, wobei die bewegbaren Teile jeweils eine zylinderförmige Muffe aufweisen.
  6. Der zusammengesteckte Kammerverbinder nach Anspruch 5, wobei während des Eingriffs der Verbinderhälften jede der zylinderförmigen Muffen gegenüber der anderen Verbinderhälfte abgedichtet ist.
  7. Der zusammengesteckte Kammerverbinder nach Anspruch 1, wobei die Verbindereinsteckhälfte einen Kolben aufweist, der in Abhängigkeit vom Zusammensrtecken der Verbinderhälften bewegbar ist, um eine Abdichtung mit dem zweiten bewegbaren Teil der Verbinderaufnahmehälfte zu bewirken, und der bewegbar ist, um ein externes Fluid aus der Verbindereinsteckhälfte zu treiben.
  8. Der zusammengesteckte Kammerverbinder nach Anspruch 7, ferner mit einer dielektrischen Strömungsverbindung in der Verbinderaufnahmehälfte, die die zweite Kammer in der Verbinderaufnahmehälfte mit der ersten Kammer in der Verbindereinsteckhälfte in Abhängigkeit von einer Bewegung des zweiten bewegbaren Teils durch den Kolben verbindet.
  9. Der zusammengesteckte Kammerverbinder nach Anspruch 1, wobei die Verbinderaufnahmehälfte einen zentralen Hohlraum aufweist, der so gestaltet ist, dass er ein externes Fluid aufnimmt, und wobei die Verbindereinsteckhälfte einen Kolben umfasst, um zumindest einen Teil des externen Fluids aus der Verbinderaufnahmehälfte während des Verbindens von Verbindereinsteckhälfte und -aufnahmehälfte auszutreiben.
  10. Der zusammengesteckte Kammerverbinder nach Anspruch 9, wobei der Kolben so gestaltet ist, dass er den zentralen Hohlraum verschließt und das zweite bewegbare Teil der Verbinderaufnahmehälfte bewegt.
  11. Der zusammengesteckte Kammerverbinder nach Anspruch 10, wobei der Kolben zum Austreiben des externen Fluids aus dem zentralen Hohlraum gestaltet ist.
  12. Der zusammengesteckte Kammerverbinder nach Anspruch 1, wobei das erste bewegbare Teil der Verbindereinsteckhälfte in Abhängigkeit vom Eingriff mit der Verbinderaufnahmehälfte bewegbar ist, um eine Öffnung in der ersten Kammer zu schaffen, die in der Verbindereinsteckhälfte untergebracht ist, und um die dielektrischen Kammern über eine Fluidströmungsöffnung in der Verbinderaufnahmehälfte zu verbinden.
  13. Der zusammengesteckte Kammerverbinder nach Anspruch 1, wobei die Signalleitungen zum Übertragen von optischen Signalen ausgestaltet sind.
  14. Der zusammengesteckte Kammerverbinder nach Anspruch 1, wobei der flexible Schlauch mit einem Ende an die Verbindereinsteckhälfte angeschlossen ist und wobei einer der Kontakte an das freie Ende des Schlauchs angebracht ist, und wobei der flexible Schlauch eines der bewegbaren Teile derart kontaktiert, dass es bei einer Bewegung in eine Stellung, die die erste Kammer in der Verbindereinsteckhälfte öffnet, durch die Öffnung radial nach außen gedrückt wird.
  15. Der zusammengesteckte Kammerverbinder nach Anspruch 14, wobei das eine Ende des flexiblen Schlauchs an die Verbindereinsteckhälfte angeschlossen ist, sodass in einem entspannten Zustand der flexible Schlauch radial nach außen von der Verbindereinsteckhälfte gedrückt wird.
  16. Der zusammengesteckte Kammerverbinder nach Anspruch 14, ferner mit einer flexiblen Schlauchfuhrung zur Beibehaltung einer Ausrichtung des flexiblen Schlauchs während seiner Ausbringung in einen entspannten Zustand
  17. Der zusammengesteckte Kammerverbinder nach Anspruch 1, wobei die Kammern etwa im Wesentlichen das gleichen Volumen haben, und zwar vor, während und nach dem Zusammenstecken von Steckereinsteckhälfte und -aufnahmehälfte.
  18. Der zusammengesteckte Kammerverbinder nach Anspruch 1, wobei die Einsteckhälfte (10) aufweist:
    ein Gehäuse (12) mit einem darin befestigten länglichen Kolben (66);
    einer Abdeckmuffe (90), die an das Gehäuse (12) angesiegelt ist, um mit diesem teleskopisch bewegbar zu sein, wobei die Abdeckmuffe (90) sich von dem Gehäuse (12) erstreckt und an den Kolben (66) abgedichtet angeschlossen ist, um dadurch eine dielektrische Kammer (24) in dem Gehäuse (12) zu bilden;
    einen flexiblen Schlauch (60), der an den Kolben (66) in einer solchen Weise angebracht ist, dass er sich radial nach außen in einen entspannten Zustand erweitert, und der von der Abdeckmuffe (90) erfassbar ist, um den flexiblen Schlauch (60) radial nach innen zu verformen, wenn die Abdeckmuffe (90) teleskopisch in eine Stellung bewegt wird, in der die dielektrische Kammer (24) abgedichtet ist, und die es dem flexiblen Schlauch (60) erlaubt, sich radial nach außen zu erweitern, wenn die Abdeckmuffe (90) teleskopisch in eine Stellung bewegt wird, um eine Öffnung in der dielektrischen Kammer (24) zu bilden;
    einen Signalkontakt (88), der an einem freien Ende des flexiblen Schlauchs (60) befestigt ist; und
    eine Signalleitung (52), die an den Signalkontakt (88) angeschlossen ist.
  19. Die Verbindereinsteckhälfte von Anspruch 18, ferner mit einer flexiblen Schlauchführung, die an den Kolben angeschlossen ist, um eine Führung für den flexiblen Schlauch während dessen radialer Aufweitung zu bilden.
  20. Die Verbindereinsteckhälfte von Anspruch 18, ferner mit einer Anzahl von flexiblen Schläuchen und zugehörigen Signalkontakten, die ringförmig um den Kolben angeordnet sind.
  21. Die Verbindereinsteckhälfte von Anspruch 19, wobei mindestens einer der Signalkontakte ein elektrisches Signal führt, und wobei ein anderer der Signalkontakte optische Signale überträgt.
  22. Die Verbindereinsteckhälfte von Anspruch 18, ferner mit einer Schraubenfeder zum Vorspannen der Abdeckmuffe in eine Position, in der die dielektrische Kammer verschlossen abgedichtet ist.
  23. Der zusammengesteckte Kammerverbinder nach Anspruch 1, wobei die Aufnahmehälfte (110) aufweist:
    ein Gehäuse (124), das an einem Ende einen frontalen Abschnitt zum Aufnehmen einer komplementären Verbinderhälfte aufweist und das am gegenüberliegenden Ende davon eine Öffnung besitzt, durch die ein externes Fluid in einen zentralen Hohlraum (174) der Verbinderaufnahmehälfte (110) eintreten kann;
       wobei das Gehäuse (124) eine eingeformte Ringkammer aufweist, die den zentralen Hohlraum (174) umgibt, wobei die Ringkammer eine dielektrische Kammer (140) bildet;
       einen Signalkontakt (150), der an der dielektrischen Kammer (140) befestigt ist; und eine Abdeckmuffe (160), die teleskopisch in dem Gehäuse (124) von einer ersten Position, in der sie die dielektrische Kammer (140) und den Signalkontakt (150) gegenüber dem zentralen Hohlraum (174) abdichtet, und in eine zweite Position bewegbar ist, in der der Signalkontakt (150) gegenüber dem zentralen Hohlraum (174) exponiert ist.
  24. Die Verbinderaufnahmehälfte von Anspruch 23, wobei der Signalkontakt in einer Bohrung aufgenommen ist, die unter einem Winkel in Bezug auf die axiale Mittellinie des zentralen Hohlraums angeordnet ist.
  25. Die Verbinderaufnahmehälfte nach Anspruch 23, ferner mit einer dielektrischen Strömungsverbindung zwischen der dielektrischen Kammer und dem zentralen Hohlraum, wobei die dielektrische Strömungsverbindung von der Abdeckmuffe abgedichtet wird, wenn die Verbinderaufnahmehälfte gelöst ist.
EP98908899A 1997-04-07 1998-03-04 Steckverbinder mit zusammengeschlossenen kammern Expired - Lifetime EP0974174B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/826,705 US5838857A (en) 1997-04-07 1997-04-07 Joined chamber connector
US826705 1997-04-07
PCT/US1998/004166 WO1998045899A1 (en) 1997-04-07 1998-03-04 Joined chamber connector

Publications (2)

Publication Number Publication Date
EP0974174A1 EP0974174A1 (de) 2000-01-26
EP0974174B1 true EP0974174B1 (de) 2003-06-04

Family

ID=25247302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98908899A Expired - Lifetime EP0974174B1 (de) 1997-04-07 1998-03-04 Steckverbinder mit zusammengeschlossenen kammern

Country Status (5)

Country Link
US (1) US5838857A (de)
EP (1) EP0974174B1 (de)
AU (1) AU8311298A (de)
DE (1) DE69815333D1 (de)
WO (1) WO1998045899A1 (de)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO975959A (no) * 1997-12-18 1999-01-11 Abb Research Ltd Anordning ved terminering av kabel
US5930427A (en) * 1998-01-20 1999-07-27 G & H Technology, Inc. Fiber optics connector
US6095838A (en) * 1998-09-21 2000-08-01 Brickett; Benjamin P. Sliding bypass valve connector
CA2288319A1 (en) * 1998-12-18 2000-06-18 Siecor Operations, Llc Permanent ferrule housing assembly
GB0026582D0 (en) * 2000-10-31 2000-12-13 Tronic Ltd Connector
US6929404B2 (en) * 2000-10-31 2005-08-16 Tronic Limited Connector for making an optical connection underwater
US6866427B2 (en) * 2001-11-13 2005-03-15 Lumenyte International Corporation Fiber optic LED light
JP2003205447A (ja) * 2002-01-08 2003-07-22 Nippon Electric Glass Co Ltd 光ファイバ付フェルール端面の研磨方法、光コネクタの組立方法、及び光ファイバ成端キット
GB0208954D0 (en) * 2002-04-19 2002-05-29 Hawke Cable Glands Ltd An electrical connector
DE102004059258B4 (de) * 2004-12-09 2006-09-07 Gisma Steckverbinder Gmbh Lichtwellenleiter-Steckverbinder
US7503395B2 (en) * 2005-05-21 2009-03-17 Schlumberger Technology Corporation Downhole connection system
US7640977B2 (en) * 2005-11-29 2010-01-05 Schlumberger Technology Corporation System and method for connecting multiple stage completions
US7900698B2 (en) * 2007-08-13 2011-03-08 Baker Hughes Incorporated Downhole wet-mate connector debris exclusion system
US20090078429A1 (en) * 2007-09-05 2009-03-26 Schlumberger Technology Corporation System and method for engaging well equipment in a wellbore
US8496064B2 (en) * 2007-09-05 2013-07-30 Schlumberger Technology Corporation System and method for engaging completions in a wellbore
US8192089B2 (en) 2007-09-24 2012-06-05 Teledyne Instruments, Inc. Wet mate connector
US7618198B2 (en) * 2007-09-24 2009-11-17 Teledyne Odi, Inc. Harsh environment connector
US8226303B2 (en) 2009-11-30 2012-07-24 Toth John R Global link connector system
FR2961026B1 (fr) * 2010-06-07 2015-04-17 Multi Holding Ag Element male de raccordement electrique, vehicule et station de recharge comportant un tel element male, et ensemble de raccordement electrique
WO2012064594A1 (en) * 2010-11-09 2012-05-18 Corning Cable Systems Llc Ferrules having optical pathways and fiber optic connectors using same
WO2012071214A1 (en) 2010-11-22 2012-05-31 James Cairns Dual reservoir coupler
US8668229B2 (en) 2010-11-30 2014-03-11 Baker Hughes Incorporated Contamination resistant connecting system and method
US9690052B2 (en) * 2013-03-15 2017-06-27 Deeplinc, Inc. Composite connection system
GB2517256B (en) * 2013-06-12 2015-07-01 Power Logic South Africa Pty Ltd Device for shifting one structure with respect to another
US8757892B1 (en) * 2013-07-23 2014-06-24 Brantner & Associates, Inc. Connector
EP2853680A1 (de) 2013-09-30 2015-04-01 Siemens Aktiengesellschaft Spülanordnung
EP2853679A1 (de) * 2013-09-30 2015-04-01 Siemens Aktiengesellschaft Verbinder für den Unterseegebrauch
WO2015089440A1 (en) 2013-12-12 2015-06-18 Teledyne Instruments, Inc. Subsea optical connector using multiple seals
WO2016004226A1 (en) 2014-07-02 2016-01-07 Teledyne Instruments, Inc. Non-pressure compensated, wet-mateable plug for feedthrough and other subsea systems
US9270051B1 (en) * 2014-09-04 2016-02-23 Ametek Scp, Inc. Wet mate connector
US9551205B2 (en) 2014-12-23 2017-01-24 Teledyne Instruments, Inc. Modular securing device for ROV and diver mate-able subsea applications
US9388643B1 (en) 2015-01-12 2016-07-12 Teledyne Instruments, Inc. Harsh environment pressure compensator for inline cable termination
EP3211466B1 (de) * 2016-02-23 2018-12-12 Siemens Aktiengesellschaft Steckerteil einer verbindungseinheit
US9832549B2 (en) 2016-03-14 2017-11-28 Teledyne Instruments, Inc. System, method, and apparatus for subsea optical to electrical distribution
WO2017161185A1 (en) 2016-03-17 2017-09-21 Ormond Energy Innovations Inc. Protective fiber optic termination, system, and method of using same
US10727954B2 (en) 2016-06-14 2020-07-28 Teledyne Instruments, Inc. Long distance subsea can bus distribution system
AU2017300621B2 (en) 2016-07-19 2022-01-13 Siemens Energy Global GmbH & Co. KG Connector unit and method
CN107728259A (zh) * 2016-08-10 2018-02-23 泰科电子(上海)有限公司 连接器
US9979491B2 (en) 2016-09-22 2018-05-22 Teledyne Instruments, Inc. Subsea power-over-fiber can bus converter
US10141682B2 (en) 2016-12-21 2018-11-27 Teledyne Instruments, Inc. Subsea electrical connector with removable ROV mating tool
CA3081323A1 (en) 2017-10-30 2019-05-09 Ormond Energy Innovations Inc. Sealed connector with triggered mating and method of using same
WO2019143658A1 (en) 2018-01-16 2019-07-25 Pontus Subsea Connectors Llc Device for sealably connecting circuits in contaminated environments and methods of using and making same
JP2020034639A (ja) * 2018-08-28 2020-03-05 株式会社フジクラ 光コネクタ及び光コネクタシステム
EP4085520A4 (de) * 2020-01-03 2024-02-28 C Motive Tech Inc Elektrostatischer motor
NO20230573A1 (en) 2020-11-18 2023-05-16 Schlumberger Technology Bv Fiber optic wetmate
US11831103B1 (en) * 2021-01-14 2023-11-28 Lockheed Martin Corporation Self-aligning connector assembly

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1203852A (en) * 1967-05-19 1970-09-03 Bolkow Gmbh Electric plug connection
US3508188A (en) * 1968-08-27 1970-04-21 Jon R Buck Underwater electrical quick disconnect
US3845450A (en) * 1972-12-26 1974-10-29 Bendix Corp Underwater electrical connector
US4373767A (en) * 1980-09-22 1983-02-15 Cairns James L Underwater coaxial connector
FR2529396A1 (fr) * 1982-06-24 1983-12-30 Souriau & Cie Connecteur electrique etanche utilisable en milieu liquide
US4606603A (en) * 1983-04-07 1986-08-19 Lockheed Corporation Underwater connector including integral bladder and seal with a set of constricting means
US4666242A (en) * 1984-06-21 1987-05-19 Lockheed Corporation Underwater electro-optical connector including cable terminal unit with electro-optical probe
WO1986002173A1 (en) * 1984-10-03 1986-04-10 Lockheed Corporation Underwater-mateable optical fiber connector
GB2168500B (en) * 1984-12-12 1988-09-07 Stc Plc Optical fibre connector
NO170959C (no) * 1986-06-23 1994-11-03 Tronic Electronic Services Lim Elektrisk kontaktsett, særlig for bruk under vann
US4948377A (en) * 1988-02-18 1990-08-14 Cairns James L Submersible electrical connector
US5203805A (en) * 1990-03-02 1993-04-20 Cairns James L Underwater electrical connector
US5194012A (en) * 1991-07-30 1993-03-16 Cairns James L Spark-proof hostile environment connector
GB2264201B (en) * 1992-02-13 1996-06-05 Swift 943 Ltd Electrical connector
US5685727A (en) * 1995-01-20 1997-11-11 Ocean Design, Inc. Underwater mateable connector

Also Published As

Publication number Publication date
US5838857A (en) 1998-11-17
EP0974174A1 (de) 2000-01-26
AU8311298A (en) 1998-10-30
WO1998045899A1 (en) 1998-10-15
DE69815333D1 (de) 2003-07-10

Similar Documents

Publication Publication Date Title
EP0974174B1 (de) Steckverbinder mit zusammengeschlossenen kammern
US7618198B2 (en) Harsh environment connector
US5171158A (en) Underwater multiple contact electrical connector
US8511908B2 (en) Wet mate connector
US4756595A (en) Optical fiber connector for high pressure environments
US5899765A (en) Dual bladder connector
US6315461B1 (en) Wet mateable connector
US4696540A (en) Optical fibre connector having particular utility for underwater use
US6332787B1 (en) Wet-mateable electro-optical connector
US6464405B2 (en) Wet-mateable electro-optical connector
US6736545B2 (en) Wet mateable connector
US5645442A (en) Sealed, Fluid-filled electrical connector
US5203805A (en) Underwater electrical connector
US6929404B2 (en) Connector for making an optical connection underwater
US5873750A (en) Underwater connector assembly
US4887883A (en) Undersea wet-mateable fiber optic connector
US10236623B1 (en) Connector for sealably engaging and disengaging contacts, and methods of making and/or using same
EP0198071A1 (de) Faseroptische kupplung für unterwassergebrauch
US4940416A (en) Pressure compensating connector assembly
US10634853B2 (en) Device for sealably connecting circuits in contaminated environments and methods of using and making same
GB2376086A (en) Connection device for optical fibres
WO1991015882A1 (en) Underwater multiple contact electrical connector
GB2342461A (en) Submersible connector
CN110780390A (zh) 一种水下插拔光纤连接器插头及其组件
WO1991013474A1 (en) Underwater electrical connector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FI FR GB IE IT LU NL PT SE

17Q First examination report despatched

Effective date: 20010508

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE DK ES FI FR GB IE IT LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030604

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030604

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030604

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69815333

Country of ref document: DE

Date of ref document: 20030710

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030904

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030904

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030915

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040304

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040304

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040305

EN Fr: translation not filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170327

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170324

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180303