EP0966411B1 - Use of aerogels for deadening structure-borne and/or impact sounds - Google Patents

Use of aerogels for deadening structure-borne and/or impact sounds Download PDF

Info

Publication number
EP0966411B1
EP0966411B1 EP98904115A EP98904115A EP0966411B1 EP 0966411 B1 EP0966411 B1 EP 0966411B1 EP 98904115 A EP98904115 A EP 98904115A EP 98904115 A EP98904115 A EP 98904115A EP 0966411 B1 EP0966411 B1 EP 0966411B1
Authority
EP
European Patent Office
Prior art keywords
airgel
aerogels
binder
composite material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98904115A
Other languages
German (de)
French (fr)
Other versions
EP0966411A1 (en
Inventor
Fritz Schwertfeger
Marc Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corp filed Critical Cabot Corp
Publication of EP0966411A1 publication Critical patent/EP0966411A1/en
Application granted granted Critical
Publication of EP0966411B1 publication Critical patent/EP0966411B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • E04F15/20Separately-laid insulating layers; Other additional insulating measures; Floating floors for sound insulation

Definitions

  • the invention relates to the use of aerogels Sound insulation.
  • structure-borne noise is found in solid materials propagating sound understood. Impact sound is understood to be the sound e.g. when walking on a ceiling or moving chairs as Structure-borne noise arises and is partially emitted as airborne sound (Company name of Rhinolith Dämmstoffe GmbH; Technical information: In 150 building physics 6/96; and Reichardt, W .; Basics of technical acoustics; Academic Publishing Company, für; 1968).
  • blowing agents such as CFCs, CO 2 or pentane.
  • CFCs CFCs
  • CO 2 carbon dioxide
  • pentane a blowing agent
  • Aerogels especially those with porosities above 60% and densities below 0.6 g / cm 3, have an extremely low thermal conductivity. You will therefore find application as a heat insulation material such. B. is described in EP-A-0 171 722. In addition, the speed of sound in aerogels has a very low value for solids, which can be used to manufacture airborne sound insulation materials.
  • Aerogels in the wider sense i.e. in the sense of "gel with air as Dispersants "are prepared by drying a suitable gel.
  • airgel in this sense includes aerogels in the narrower sense, Xerogels and cryogels.
  • a dried gel is used as an airgel in the Narrower sense when the liquid of the gel is at temperatures above the critical temperature and starting from pressures above of the critical pressure is largely removed. Will the liquid of the Gels, on the other hand, are subcritical, for example with the formation of a liquid-vapor boundary phase removed, then the resulting gel is often called also as a xerogel.
  • aerogels in the present application are aerogels in the broader sense, i.e. in the sense of “gel with air as a dispersant ".
  • the aerogels obtained by supercritical drying are general hydrophilic or only briefly hydrophobic, whereas subcritical dried aerogels due to their manufacturing process (in general silylation before drying) are permanently hydrophobic.
  • aerogels can basically also be used in inorganic and divide organic aerogels, whereby inorganic aerogels have been around 1931 are known (S.S. Kistler, Nature 1931,127,741), and whereas organic aerogels from a wide variety of starting materials, e.g. from melamine formaldehyde, only known for a few years (R.W. Pekala, J. Mater. Sci. 1989, 24, 3221).
  • Airgel-containing composite materials are known because of their low Thermal conduction can be used as thermal insulation materials.
  • Composite materials are described, for example, in EP-A-0 340 707, EP-A-0 667 370, WO 96/12683, WO 96/15997, WO 96/15998, DE-A-44 30 642 and DE-A-44 30 669.
  • Another area of application for such insulation materials is insulation between individual foundations, e.g. B. machine foundations, or Foundations of separately founded buildings or parts of buildings.
  • the object of the present invention was therefore, on the one hand, to add new materials develop that are suitable for the body and impact sound insulation, the can be produced easily and in any form and at the location of the Use can still be changed in size, and on the other hand for new ones Find applications for aerogels.
  • airgel particles Impact sound insulation which is characterized in that the size of the airgel particles is in the range of 50 ⁇ m to 10 mm.
  • aerogels are those based on metal oxides which are suitable for sol-gel technology (CJ Brinker, GW Scherer, Sol-Gel-Science, 1990, chapters 2 and 3), such as Si or Al compounds , or those based on organic substances which are suitable for the sol-gel technique, such as melamine formaldehyde condensates (US Pat. No. 5,086,085) or resorcinol formaldehyde condensates (US Pat. No. 4,873,218). Mixtures of the materials mentioned above can also be used. Aerogels containing Si compounds and in particular SiO 2 aerogels are preferably used.
  • the airgel particles have permanently hydrophobic surface groups.
  • trimethylsilyl groups is particularly advantageous for permanent hydrophobization of the airgel.
  • these groups such as. B. described in WO 94/25149 or German patent application 196 48 798.6, or by gas phase reaction between the airgel and, for example, an activated trialkylsilane derivative, such as a chlorotrialkylsilane or a hexaalkyldisilazane (compare R. Iler, The Chemistry of Silica, Wiley & Sons, 1979).
  • an activated trialkylsilane derivative such as a chlorotrialkylsilane or a hexaalkyldisilazane (compare R. Iler, The Chemistry of Silica, Wiley & Sons, 1979).
  • the hydrophobic surface groups produced in this way further reduce the dielectric loss factor and the dielectric constant.
  • Airgel particles with hydrophilic surface groups can vary depending on the air humidity Adsorb water, causing the Dielectric constant and the dielectric loss factor with the Humidity can vary. This is often the case for electronic applications not wanted.
  • the use of airgel particles with hydrophobic Surface groups prevent this variation because no water adsorbs becomes.
  • the selection of the residues also depends on the typical application temperature.
  • the thermal conductivity of the aerogels decreases with increasing porosity and decreasing density. Aerogels with porosities above 60% and densities below 0.6 g / cm 3 are therefore preferred. Aerogels with densities below 0.2 g / cm 3 are particularly preferred.
  • the airgel particles are in shape a composite material used, in principle all from the prior art Airgel-containing composite materials known in the art are suitable.
  • a composite material which contains 5 to 97% by volume of airgel particles is particularly preferred and contains at least one binder.
  • the binder forms a matrix that connects the airgel particles or encloses itself and as a continuous phase through the whole Composite material pulls.
  • a content of airgel particles that is significantly above 97% by volume would increase lead to a binder content of less than 3% by volume. In this case its proportion too low to ensure an adequate connection of the airgel particles with each other, as well as mechanical pressure and bending strength guarantee.
  • the proportion of airgel particles is preferably in the range from 10 to 97 Vol .-% and particularly preferably in the range of 40 to 95 vol .-%.
  • a particularly high proportion of airgel particles can be found in the composite material by using an appropriate distribution of grain sizes.
  • the airgel particles are small in relation to the total thickness of the Molding. Large airgel particles are also sensitive to mechanical damage. Therefore, the size of the Airgel particles in the range from 50 ⁇ m to 10 mm, particularly preferred between 200 ⁇ m and 5 mm.
  • binder Basically all known organic and inorganic Binder suitable for the production of the composite materials. It is not decisive whether the binder is amorphous, semi-crystalline and / or crystalline is present.
  • the binder is either in liquid form, i.e. as a liquid. Melt. Solution, dispersion or suspension used, or upper than solid powder used.
  • the binder can also be foamed Form.
  • binders used as a liquid, melt, solution, dispersion, Suspension or as a solid powder are acrylates, Aluminum phosphates, cyanoacrylates, cycloolefin copolymers, epoxy resins, Ethylene vinyl acetate copolymers, formaldehyde condensates, urea resins, Melamine formaldehyde resins, methacrylates, phenolic resins, polyamides, Polybenzimidazoles, polyethylene terephthalates. Polyethylene waxes, polyimides, Polystyrenes, polyurethanes, polyvinyl acetates, polyvinyl alcohols, Polyvinyl butyrals, resorcinols, silicones and silicone resins.
  • the binder is generally in an amount of 3 to 95 vol .-% of Composite material used, preferably in an amount of 3 to 90 vol .-% and particularly preferably in an amount of 5 to 60% by volume.
  • the selection of the binder takes place depending on the desired mechanical and thermal properties of the composite material.
  • the binders preference is also given to selecting those products which essentially do not penetrate into the interior of the porous airgel particles.
  • the penetration of the binder into the interior of the airgel particles can be influenced not only by the choice of the binder but also by various parameters, such as pressure, temperature and processing time.
  • the composite material can also contain up to 85% by volume of fillers.
  • fibers, nonwovens, woven fabrics, felts and residues or wastes thereof can be used in particular. Film snippets and / or film remnants can also be used for this purpose.
  • the composite material can contain other fillers e.g. for coloring, for To achieve special decorative effects or to set the liability of Glue included on the surface.
  • the proportion of fillers is preferably based on the Composite material, below 70% and particularly preferably in the range from 0 to 50 Vol .-%.
  • Coupleding agents can also be used. They bring about better contact of the binders with the surface of the airgel particles and can also be a solid Binding both with the airgel particles and with the binder or if necessary go into the fillers.
  • the molded articles produced according to the invention from airgel granules preferably have a density of less than 0.6 g / cm 3 and preferably an improvement in the body or impact sound insulation of more than 12 dB.
  • the improvement in body and impact sound insulation is particularly preferably above 14 dB.
  • the fire class of the composite material is determined by the fire class of the Airgel and the binder determined.
  • the composite materials can still be used with suitable Materials are laminated, such as. B. silicone resin adhesives.
  • suitable Materials such as. B. silicone resin adhesives.
  • fire protection agents known to those skilled in the art is possible.
  • the airgel-containing composite material can be produced in that you mix airgel and binder, bring them into the desired shape and cures.
  • the airgel particles connected to one another by means of at least one binder.
  • the Connection of the individual particles to one another can be quasi punctiform respectively.
  • a surface coating can, for example, by Spraying the airgel particles with the binder (e.g. as a solution, Melt, suspension or dispersion) can be achieved.
  • the coated Particles are then, for example, pressed into a shaped body and hardened.
  • the Gusset voices between the individual particles in whole or in part from Binder filled can be, for example by making the airgel particles with a powder Binder mixes into the desired shape and hardens.
  • the mixing can be carried out in any conceivable way. So on the one hand it is possible to put in at least two components simultaneously to introduce the mixing device, but on the other hand, one of the Components submitted and the other (s) are then added.
  • the mixing device necessary for the mixing is also in no way limited. Any can be known to those skilled in the art for this purpose Mixing device can be used.
  • the mixing process continues carried out until an approximately even distribution of the airgel particles is present in the composition.
  • the mixing process can both over the duration and, for example, over the speed the mixing device can be regulated.
  • the mixture is pressed. It is possible for the specialist, for the respective application select the appropriate press and press tool. by virtue of the high air content of the airgel-containing molding compounds is the use of Vacuum presses advantageous.
  • the Airgel-containing molding compounds are pressed into sheets. To bake the To avoid molding compound on the pressing tool, for example press rams, can the airgel-containing mixture to be compressed be used with release paper or Separating film to be separated against the pressing tool.
  • the mechanical The strength of the airgel-containing plates can be increased by lamination Fabrics, foils, hard foils or hardboard on the board surface be improved.
  • the fabrics, foils, hard foils or hardboard can both later and in the manufacture of the Composite material are applied to the airgel-containing plates. The latter is preferred and can preferably be carried out in one work step Insert the fabrics, foils, hard foils or hardboard in the mold and placing on the airgel-containing molding compound to be compressed and subsequent pressing under pressure and temperature into one Airgel-containing composite panel.
  • the pressing takes place in the depending on the binder used generally at pressures from 1 to 1000 bar in any shape.
  • the mixture can be hardened during the pressing process Temperatures from 0 ° C to 300 ° C are brought. But it is also possible the mixture at temperatures significantly lower than those required for curing used lying, pressing and then without exercising Curing pressure.
  • heat can additionally be brought into the plates with the aid of suitable radiation sources. If, as in the case of polyvinyl butyrals, the binder used couples with microwaves, this radiation source is preferred.
  • the invention is described in more detail below on the basis of exemplary embodiments, without being restricted thereby.
  • the aerogels were analogous to that disclosed in DE-A-43 42 548 Process manufactured.
  • the thermal conductivities of the airgel granules were measured using a Heating wire method (see e.g. O. Nielsen, G. Joschenpöhler, J. classical, J. Fricke, High Temperatures-High Pressures, Vol. 21, 267-274 (1989)).
  • the Thermal conductivities of the moldings were measured in accordance with DIN 52612. As That became a measure for the improvement of the body and impact sound insulation Impact sound improvement measure determined according to DIN 52210.
  • Shaped body made of 50 vol .-% airgel and 50 vol .-% polyvinyl butyral
  • hydrophobic airgel granulate 50% by volume of hydrophobic airgel granules (solid density 130 kg / m 3 ) and 50% by volume of a polyvinyl butyral powder (solid density 1100 kg / m 3 ) are mixed intimately.
  • the percentage volume relates to the target volume of the molded body.
  • the hydrophobic airgel granulate has a grain size greater than 650 ⁇ m, a BET surface area of 640 m 2 / g and a thermal conductivity of 11 mW / mK.
  • Mowital® Polymer F
  • Hoechst AG Hoechst AG
  • the bottom of the mold is covered with release paper. Then the Airgel-containing molding compound evenly distributed and all with one Release paper covered. It is at 220 ° C for 30 minutes to a thickness of 18 mm pressed.
  • the molded body obtained has a density of 280 kg / m 3 and a thermal conductivity of 40 mW / mK.
  • the impact sound improvement measure is 19 dB.
  • Shaped body made of 80 vol .-% airgel, 18 vol .-% polyvinyl butyral and 2 vol .-% polyethylene terephthalate
  • hydrophobic airgel granulate has a grain size greater than 650 ⁇ m.
  • Mowital® Polymer F
  • Hoechst AG with a grain size of around 50 ⁇ m is used as the polyvinyl butyral powder.
  • Trevira® high-strength fibers are used as the fiber material.
  • the bottom of the mold is covered with release paper. Then the Airgel-containing molding compound evenly distributed and all with one Release paper covered. It is at 220 ° C for 30 minutes to a thickness of 18 mm pressed.
  • the molded body obtained has a density of 250 kg / m 3 and a thermal conductivity of 25 mW / mK.
  • the impact sound improvement measure is 22 dB.
  • Shaped body made of 90 vol .-% airgel and 10 vol .-% dispersion adhesive
  • hydrophobic airgel granules solid density 130 kg / m 3
  • the percentage volume relates to the target volume of the dry molded body.
  • the hydrophobic airgel granulate has a grain size greater than 650 ⁇ m, a BET surface area of 640 m 2 / g and a thermal conductivity of 11 mW / mK.
  • the Mowilith® dispersion VDM1340 (Hoechst AG) is used as the dispersion adhesive.
  • the bottom of the mold is covered with release paper. Then the Airgel-containing molding compound evenly distributed and all with one Release paper covered. It is left at 190 ° C for 15 minutes to a thickness of 18 mm pressed.
  • the molded body obtained has a density of 200 kg / m 3 and a thermal conductivity of 29 mW / mK.
  • the impact sound improvement measure is 24 dB.

Description

Die Erfindung betrifft die Verwendung von Aerogelen zur Trittschalldämmung.The invention relates to the use of aerogels Sound insulation.

Im Rahmen dieser Schrift wird unter Körperschall sich in festen Stoffen ausbreitender Schall verstanden. Unter Trittschall wird der Schall verstanden, der z.B. beim Begehen einer Decke oder Verrücken von Stühlen als Körperschall entsteht und teilweise als Luftschall abgestrahlt wird (Firmenschrift der Rhinolith Dämmstoffe GmbH; Technische Informationen: In 150 Bauphysik 6/96; sowie Reichardt, W.; Grundlagen der technischen Akustik; Akademische Verlagsgesellschaft, Leipzig; 1968).In the context of this document, structure-borne noise is found in solid materials propagating sound understood. Impact sound is understood to be the sound e.g. when walking on a ceiling or moving chairs as Structure-borne noise arises and is partially emitted as airborne sound (Company name of Rhinolith Dämmstoffe GmbH; Technical information: In 150 building physics 6/96; and Reichardt, W .; Basics of technical acoustics; Academic Publishing Company, Leipzig; 1968).

Konventionelle Körperschall- und Trittschalldämmstoffe auf Basis von Polystyrol, Polyolefinen und Polyurethanen werden unter Verwendung von Treibmitteln, wie z.B. FCKW's, CO2 oder Pentan hergestellt. Die durch das Treibmittel verursachte Zellenstruktur des Schaumstoffs ist für das hohe Körper- und Trittschalldämmvermögen verantwortlich. Derartige Treibmittel belasten jedoch die Umwelt, da sie langsam in die Atmosphäre entweichen.Conventional structure-borne noise and impact sound insulation materials based on polystyrene, polyolefins and polyurethanes are produced using blowing agents such as CFCs, CO 2 or pentane. The cellular structure of the foam caused by the blowing agent is responsible for the high level of body and impact sound insulation. However, such blowing agents pollute the environment because they slowly escape into the atmosphere.

Andere Körper- und Trittschalldämmstoffe auf Basis von Mineral- oder Glasfaserwolle können bei ihrer Herstellung, Montage und Demontage sowie während der Dauer Ihres Einsatzes Fasern und/oder Faserbruchstücke emittieren. Dies führt zu einer Belastung der Umwelt und der Menschen, die mit diesen Stoffen umgehen bzw. ihnen ausgesetzt sind.Other body and impact sound insulation materials based on mineral or Glass fiber wool can be used in their manufacture, assembly and disassembly as well fibers and / or fiber fragments for the duration of your deployment emit. This leads to a burden on the environment and the people who handle or are exposed to these substances.

Aerogele, insbesondere solche mit Porositäten über 60 % und Dichten unter 0,6 g/cm3 weisen eine äußerst geringe thermische Leitfähigkeit auf. Sie finden deshalb Anwendung als Wärmeisolationsmaterial, wie z. B. in der EP-A-0 171 722 beschrieben. Daneben hat die Schallgeschwindigkeit in Aerogelen einen für Feststoffe sehr geringen Wert, was sich zur Herstellung von Luftschalldämmaterialien nutzen läßt.Aerogels, especially those with porosities above 60% and densities below 0.6 g / cm 3, have an extremely low thermal conductivity. You will therefore find application as a heat insulation material such. B. is described in EP-A-0 171 722. In addition, the speed of sound in aerogels has a very low value for solids, which can be used to manufacture airborne sound insulation materials.

Aerogele im weiteren Sinn, d.h. im Sinne von "Gel mit Luft als Dispersionsmittel", werden durch Trocknung eines geeigneten Gels hergestellt. Unter den Begriff "Aerogel" in diesem Sinne fallen Aerogele im engeren Sinn, Xerogele und Kryogele. Dabei wird ein getrocknetes Gel als Aerogel im engeren Sinn bezeichnet, wenn die Flüssigkeit des Gels bei Temperaturen oberhalb der kritischen Temperatur und ausgehend von Drücken oberhalb des kritischen Druckes weitestgehend entfernt wird. Wird die Flüssigkeit des Gels dagegen unterkritisch, beispielsweise unter Bildung einer Flüssig-Dampf-Grenzphase entfernt, dann bezeichnet man das entstandene Gel vielfach auch als Xerogel.Aerogels in the wider sense, i.e. in the sense of "gel with air as Dispersants "are prepared by drying a suitable gel. The term "airgel" in this sense includes aerogels in the narrower sense, Xerogels and cryogels. A dried gel is used as an airgel in the Narrower sense when the liquid of the gel is at temperatures above the critical temperature and starting from pressures above of the critical pressure is largely removed. Will the liquid of the Gels, on the other hand, are subcritical, for example with the formation of a liquid-vapor boundary phase removed, then the resulting gel is often called also as a xerogel.

Bei der Verwendung des Begriffs Aerogele in der vorliegenden Anmeldung handelt es sich um Aerogele im weiteren Sinn, d.h. im Sinn von "Gel mit Luft als Dispersionsmittel".When using the term aerogels in the present application are aerogels in the broader sense, i.e. in the sense of "gel with air as a dispersant ".

Verschiedene Verfahren zur Herstellung von Aerogelen durch über- bzw. unterkritische Trocknung werden z.B. in der EP-A-0 396 076, der WO 92/03378, der WO 94/25149, der WO 92/20623 und der EP-A-0 658 513 offenbart.Different processes for the production of aerogels by over- or subcritical drying are e.g. in EP-A-0 396 076, WO 92/03378, WO 94/25149, WO 92/20623 and EP-A-0 658 513.

Die durch überkritische Trocknung erhaltenen Aerogele sind im allgemeinen hydrophil oder nur kurzzeitig hydrophob, wohingegen unterkritisch getrocknete Aerogele bedingt durch ihr Herstellungsverfahren (im allgemeinen Silylierung vor der Trocknung) dauerhaft hydrophob sind.The aerogels obtained by supercritical drying are general hydrophilic or only briefly hydrophobic, whereas subcritical dried aerogels due to their manufacturing process (in general silylation before drying) are permanently hydrophobic.

Darüber hinaus lassen sich Aerogele grundsätzlich auch in anorganische und organische Aerogele unterteilen, wobei anorganische Aerogele schon seit 1931 bekannt sind (S.S.Kistler, Nature 1931,127,741), und wohingegen organische Aerogele aus den unterschiedlichsten Ausgangsmaterialien, z.B. aus Melaminformaldehyd, erst seit einigen Jahren bekannt sind (R.W. Pekala, J. Mater. Sci. 1989, 24, 3221).In addition, aerogels can basically also be used in inorganic and divide organic aerogels, whereby inorganic aerogels have been around 1931 are known (S.S. Kistler, Nature 1931,127,741), and whereas organic aerogels from a wide variety of starting materials, e.g. from melamine formaldehyde, only known for a few years (R.W. Pekala, J. Mater. Sci. 1989, 24, 3221).

Bekannt sind aerogelhaltige Verbundmaterialien, die aufgrund ihrer geringen Wärmeleitung als Wärmedämmaterialien eingesetzt werden. Derartige Verbundmaterialien werden beispielsweise in der EP-A-0 340 707, der EP-A-0 667 370, der WO 96/12683, der WO 96/15997, der WO 96/15998, der DE-A-44 30 642 und der DE-A-44 30 669 offenbart.Airgel-containing composite materials are known because of their low Thermal conduction can be used as thermal insulation materials. such Composite materials are described, for example, in EP-A-0 340 707, EP-A-0 667 370, WO 96/12683, WO 96/15997, WO 96/15998, DE-A-44 30 642 and DE-A-44 30 669.

In DE-A 44 30 642, der DE-A 44 30 669, der WO 96/19607, der US 5 306 555 und der deutschen Patentanmeldung 195 33 564.3 wird darüber hinaus das Luftschalldämmverhalten aerogelhaltiger Verbundmaterialien offenbart.In DE-A 44 30 642, DE-A 44 30 669, WO 96/19607, US 5 306 555 and German Patent application 195 33 564.3 is also the Airborne sound insulation behavior of airgel-containing composite materials disclosed.

Von großem Vorteil wäre ein Material, das neben guten Wärmeisolationseigenschaften gleichzeitig über gute Körper- und/oder Trittschalldämmeigenschaften verfügt.A material that is not only good but would also be of great advantage Thermal insulation properties at the same time over good body and / or Impact sound insulation properties.

Im besonderen gilf dies für Isolationsaufgaben in der Gebäudetechnik. Als Beispiel sei die Trittschalldämmung im Fußbodenbereich erwähnt. Hier würde der Einsatz eines derartigen Dämmaterials zu geringeren Isolationshöhen und damit zu einem Gewinn an Raumhöhe führen. Bei gleichbleibender Raumhöhe ließe sich so der Baumaterialbedarf sowie die Bauhöhe eines mehrgeschossigen Gebäudes reduzieren. Besitzt das derartige Dämmaterial zudem eine geringere Dichte als bisherige Dämmkonstruktionen, so hat dies positive Auswirkungen auf die gesamte Statik, da das Gebäude insgesamt leichter ausgeführt werden kann. Ist ein System, das ein derartiges Dämmaterial enthält, unabhängig von der äußeren Witterung montier- bzw. verarbeitbar und benötigt keine oder nur geringe Trocknungs- bzw. Abbindezeiten, führt dies zu einer großen Zeit- und damit Kostenersparnis bei der Errichtung des gesamten Gebäudes.This applies in particular to insulation tasks in building technology. As An example is the impact sound insulation in the floor area. Here would the use of such insulation material to lower insulation heights and thus lead to a gain in room height. With the same The height of the building material and the height of one could be increased reduce multi-storey building. Has such insulation it also has a lower density than previous insulation constructions positive impact on the entire statics, since the building as a whole can be carried out more easily. Is a system that is such Insulation material contains, regardless of the external weather, assembly or processable and requires little or no drying or Setting times, this leads to a large saving of time and thus costs the construction of the entire building.

Ein weiteres Einsatzgebiet derartiger Dämmmaterialien ist die Isolierung zwischen Einzelfundamenten, wie z. B. Maschinenfundamenten, oder Fundamenten getrennt gegründeter Gebäude bzw. Gebäudeteile.Another area of application for such insulation materials is insulation between individual foundations, e.g. B. machine foundations, or Foundations of separately founded buildings or parts of buildings.

Aufgabe der vorliegenden Erfindung war es daher, einerseits neue Materialien zu entwickeln, die für die Körper- und Trittschalldämmung geeignet sind, die einfach sowie in beliebiger Form hergestellt werden können sowie am Ort der Verwendung noch in ihrer Größe veränderbar sind, und andererseits nach neuen Anwendungen für Aerogele zu suchen.The object of the present invention was therefore, on the one hand, to add new materials develop that are suitable for the body and impact sound insulation, the can be produced easily and in any form and at the location of the Use can still be changed in size, and on the other hand for new ones Find applications for aerogels.

Diese Aufgabe wird gelöst durch die Verwendung von Aerogel-Partikeln zur Trittschalldämmung, die dadurch gekennzeichnet ist, daß die Größe der Aerogel-Partikel im Bereich von 50 µm bis 10 mm liegt.This object is achieved through the use of airgel particles Impact sound insulation, which is characterized in that the size of the airgel particles is in the range of 50 µm to 10 mm.

Im allgemeinen verwendete Aerogele sind solche auf Basis von Metalloxiden, die für die Sol-Gel-Technik geeignet sind (C. J. Brinker, G.W. Scherer, Sol-Gel-Science, 1990, Kap. 2 und 3), wie beispielsweise Si oder AI-Verbindungen, oder solche auf der Basis organischer Stoffe, die für die Sol-Gel-Technik geeignet sind, wie Melaminformaldehydkondensate (US-A-5,086,085) oder Resorcinformaldehydkondensate (US-A-4,873,218).Es können auch Mischungen der oben genannten Materialien verwendet werden. Bevorzugt verwendet werden Aerogele, enthaltend Si-Verbindungen und insbesondere SiO2-Aerogele.Generally used aerogels are those based on metal oxides which are suitable for sol-gel technology (CJ Brinker, GW Scherer, Sol-Gel-Science, 1990, chapters 2 and 3), such as Si or Al compounds , or those based on organic substances which are suitable for the sol-gel technique, such as melamine formaldehyde condensates (US Pat. No. 5,086,085) or resorcinol formaldehyde condensates (US Pat. No. 4,873,218). Mixtures of the materials mentioned above can also be used. Aerogels containing Si compounds and in particular SiO 2 aerogels are preferably used.

In einer besonders bevorzugten Ausführungsform weisen die Aerogel-Partikel dauerhaft hydrophobe Oberflächengruppen auf. Geeignete Gruppen zur dauerhaften Hydrophobisierung sind beispielsweise Silylgruppen der allgemeinen Formel -Si(R)n, wobei n = 1, 2 oder 3 ist, vorzugsweise trisubstituierte Silylgruppen, wobei die Reste R im allgemeinen unabhängig voneinander gleich oder verschieden je ein Wasserstoffatom oder ein nicht reaktiver, organischer, linearer, verzweigter, cyclischer, aromatischer oder heteroaromatischer Rest, vorzugsweise C1-C18-Alkyl oder C6-C14-Aryl, besonders bevorzugt C1-C6-Alkyl, Cyclohexyl oder Phenyl, insbesondere Methyl oder Ethyl, sind. Besonders vorteilhaft zur dauerhaften Hydrophobisierung des Aerogels ist die Verwendung von Trimethylsilylgruppen. Die Einbringung dieser Gruppen kann, wie z. B. in der WO 94/25149 oder der deutschen Patentanmeldung 196 48 798.6 beschrieben, erfolgen, oder durch Gasphasenreaktion zwischen dem Aerogel und beispielsweise einem aktivierten Trialkylsilanderivat, wie z.B. einem Chlortrialkylsilan oder einem Hexaalkyldisilazan (vergleiche R. Iler, The Chemistry of Silica, Wiley & Sons, 1979), geschehen. Verglichen mit OH-Gruppen vermindern die so hergestellten hydrophoben Oberflächengruppen weiterhin den dielektrischen Verlustfaktor und die Dielektrizitätskonstante.In a particularly preferred embodiment, the airgel particles have permanently hydrophobic surface groups. Suitable groups for permanent hydrophobization are, for example, silyl groups of the general formula -Si (R) n , where n = 1, 2 or 3, preferably trisubstituted silyl groups, the radicals R generally being the same or different, independently of one another, a hydrogen atom or a non-reactive one , organic, linear, branched, cyclic, aromatic or heteroaromatic radical, preferably C 1 -C 18 alkyl or C 6 -C 14 aryl, particularly preferably C 1 -C 6 alkyl, cyclohexyl or phenyl, in particular methyl or ethyl, are. The use of trimethylsilyl groups is particularly advantageous for permanent hydrophobization of the airgel. The introduction of these groups, such as. B. described in WO 94/25149 or German patent application 196 48 798.6, or by gas phase reaction between the airgel and, for example, an activated trialkylsilane derivative, such as a chlorotrialkylsilane or a hexaalkyldisilazane (compare R. Iler, The Chemistry of Silica, Wiley & Sons, 1979). Compared with OH groups, the hydrophobic surface groups produced in this way further reduce the dielectric loss factor and the dielectric constant.

Aerogel-Partikel mit hydrophilen Oberflächengruppen können je nach Luftfeuchtigkeit Wasser adsorbieren, was dazu führt, daß die Dielektrizitätskonstante und der dielektrische Verlustfaktor mit der Luftfeuchtigkeit variieren können. Dies ist für elektronische Anwendungen oft nicht erwünscht. Die Verwendung von Aerogel-Partikeln mit hydrophoben Oberflächengruppen verhindert diese Variation, da kein Wasser adsorbiert wird. Die Auswahl der Reste richtet sich außerdem nach der typischen Anwendungstemperatur.Airgel particles with hydrophilic surface groups can vary depending on the air humidity Adsorb water, causing the Dielectric constant and the dielectric loss factor with the Humidity can vary. This is often the case for electronic applications not wanted. The use of airgel particles with hydrophobic Surface groups prevent this variation because no water adsorbs becomes. The selection of the residues also depends on the typical application temperature.

Darüber hinaus gilt, daß die thermische Leitfähigkeit der Aerogele mit zunehmender Porosität und abnehmender Dichte abnimmt. Bevorzugt sind deshalb Aerogele mit Porositäten über 60 % und Dichten unter 0,6 g/cm3. Besonders bevorzugt sind Aerogele mit Dichten unter 0,2 g/cm3. In addition, the thermal conductivity of the aerogels decreases with increasing porosity and decreasing density. Aerogels with porosities above 60% and densities below 0.6 g / cm 3 are therefore preferred. Aerogels with densities below 0.2 g / cm 3 are particularly preferred.

In einer bevorzugten Ausführungsform werden die Aerogel-Partikel in Form eines Verbundmaterials eingesetzt, wobei prinzipiell alle aus dem Stand der Technik bekannten aerogelhaltigen Verbundmaterialien geeignet sind.In a preferred embodiment, the airgel particles are in shape a composite material used, in principle all from the prior art Airgel-containing composite materials known in the art are suitable.

Besonders bevorzugt ist ein Verbundmaterial das 5 bis 97 Vol.-% Aerogel-Partikel und mindestens ein Bindemittel enthält.A composite material which contains 5 to 97% by volume of airgel particles is particularly preferred and contains at least one binder.

Das Bindemittel bildet eine Matrix, die die Aerogel-Partikel verbindet bzw. umschließt und sich als durchgehende Phase durch das gesamte Verbundmaterial zieht.The binder forms a matrix that connects the airgel particles or encloses itself and as a continuous phase through the whole Composite material pulls.

Bei einem Gehalt an Aerogel-Partikel, der signifikant unter 5 Vol.-% in der Zusammensetzung liegt, würde aufgrund des niedrigen Anteils der Aerogel-Partikel in der Zusammensetzung deren positive Eigenschaften in hohem Maße verloren gehen. Eine solche Zusammensetzung würde nicht mehr die guten Körper- und/oder Trittschalldämmeigenschaften aufweisen.With a content of airgel particles that are significantly below 5 vol .-% in the Composition would be due to the low proportion of airgel particles in the composition their positive properties in high Dimensions are lost. Such a composition would no longer be the have good body and / or impact sound insulation properties.

Ein Gehalt an Aerogel-Partikel, der signifikant über 97 Vol.-% liegt, würde zu einem Gehalt an Bindemittel von unter 3 Vol.-% führen. In diesem Fall wäre dessen Anteil zu niedrig, um eine ausreichende Verbindung der Aerogel-Partikel untereinander, sowie mechanische Druck- und Biegefestigkeit zu gewährleisten.A content of airgel particles that is significantly above 97% by volume would increase lead to a binder content of less than 3% by volume. In this case its proportion too low to ensure an adequate connection of the airgel particles with each other, as well as mechanical pressure and bending strength guarantee.

Vorzugsweise liegt der Anteil der Aerogel-Partikel im Bereich von 10 bis 97 Vol.-% und besonders bevorzugt im Bereich von 40 bis 95 Vol.-%.The proportion of airgel particles is preferably in the range from 10 to 97 Vol .-% and particularly preferably in the range of 40 to 95 vol .-%.

Ein besonders hoher Anteil an Aerogel-Partikeln läßt sich im Verbundmaterial durch Verwendung einer geeigneten Verteilung der Korngrößen erreichen. A particularly high proportion of airgel particles can be found in the composite material by using an appropriate distribution of grain sizes.

Ein Beispiel dafür ist die Verwendung von Aerogel-Partikeln, die eine logarithmische Normalverteilung der Korngröße aufweisen.An example of this is the use of airgel particles, one have logarithmic normal distribution of grain size.

Um einen möglichst hohen Füllgrad zu erreichen, ist es ebenfalls günstig, wenn die Aerogel-Partikel klein sind im Verhältnis zur Gesamtdicke des Formteiles. Ferner sind große Aerogel-Partikel empfindlich gegenüber mechanischer Beschädigung. Vorzugsweise liegt deshalb die Größe der Aerogel-Partikel im Bereich von 50 µm bis 10 mm, besonders bevorzugt zwischen 200 µm und 5 mm.In order to achieve the highest possible degree of filling, it is also favorable if the airgel particles are small in relation to the total thickness of the Molding. Large airgel particles are also sensitive to mechanical damage. Therefore, the size of the Airgel particles in the range from 50 μm to 10 mm, particularly preferred between 200 µm and 5 mm.

Grundsätzlich sind alle bekannten organischen und anorganischen Bindemittel zur Herstellung der Verbundmaterialien geeignet. Dabei ist nicht entscheidend, ob das Bindemittel amorph, semikristallin und/oder kristallin vorliegt. Das Bindemittel wird entweder in flüssiger Form, d.h. als Flüssigkeit. Schmelze. Lösung, Dispersion oder Suspension verwendet, oder ober als festes Pulver eingesetzt.Basically all known organic and inorganic Binder suitable for the production of the composite materials. It is not decisive whether the binder is amorphous, semi-crystalline and / or crystalline is present. The binder is either in liquid form, i.e. as a liquid. Melt. Solution, dispersion or suspension used, or upper than solid powder used.

Es können sowohl physikalisch als auch chemisch härtende EinkomponentenSysteme sowie Zwei- bzw. Mehrkomponenten-Systeme bzw. Mischungen derselben verwendet werden. Das Bindemittel kann auch in geschäumter Form vorliegen.Both physically and chemically curing one-component systems can be used as well as two- or multi-component systems or mixtures the same can be used. The binder can also be foamed Form.

Beispiele für Bindemittel die als Flüssigkeit, Schmelze, Lösung, Dispersion, Suspension oder als festes Pulver verwendet werden können sind Acrylate, Aluminiumphosphate, Cyanacrylate, Cycloolefin-Copolymere, Epoxidharze, Ethylenvinylacetat-Copolymere, Formaldehydkondensate, Harnstoffharze, Melaminformaldehydharze, Methacrylate, Phenolharze, Polyamide, Polybenzimidazole, Polyethylenterephthalate. Polyethylenwachse, Polyimide, Polystyrole, Polyurethane, Polyvinylacetate, Polyvinylalkohole, Polyvinylbutyrale, Resorcinharze, Silikone und Silikonharze. Examples of binders used as a liquid, melt, solution, dispersion, Suspension or as a solid powder are acrylates, Aluminum phosphates, cyanoacrylates, cycloolefin copolymers, epoxy resins, Ethylene vinyl acetate copolymers, formaldehyde condensates, urea resins, Melamine formaldehyde resins, methacrylates, phenolic resins, polyamides, Polybenzimidazoles, polyethylene terephthalates. Polyethylene waxes, polyimides, Polystyrenes, polyurethanes, polyvinyl acetates, polyvinyl alcohols, Polyvinyl butyrals, resorcinols, silicones and silicone resins.

Das Bindemittel wird im allgemeinen in einer Menge von 3 bis 95 Vol.-% des Verbundmaterials verwendet, vorzugsweise in einer Menge von 3 bis 90 Vol.-% und besonders bevorzugt in einer Menge von 5 bis 60 Vol.-%. Die Auswahl des Bindemittels erfolgt je nach den gewünschten mechanischen und thermischen Eigenschaften des Verbundmaterials.The binder is generally in an amount of 3 to 95 vol .-% of Composite material used, preferably in an amount of 3 to 90 vol .-% and particularly preferably in an amount of 5 to 60% by volume. The selection of the binder takes place depending on the desired mechanical and thermal properties of the composite material.

Bei der Auswahl der Bindemittel wählt man darüber hinaus vorzugsweise solche Produkte aus, die im wesentlichen nicht in das Innere der porösen Aerogel-Partikel eindringen. Das Eindringen des Bindemittels in das Innere der Aerogel-Partikel kann außer über die Auswahl des Bindemittels auch über verschiedene Parameter, wie z.B. Druck, Temperatur und Verarbeitungszeit, beeinflußt werden.
Darüber hinaus kann das Verbundmaterial auch noch bis zu 85 Vol.-% an Füllstoffen enthalten. Zur Verbesserung der mechanischen Eigenschaften können dazu insbesondere Fasern, Vliese, Gewebe, Filze sowie Reste bzw. Abfälle derselben eingesetzt werden. Zu diesem Zweck können auch Folienschnipsel und/oder Folienreste verwendet werden.
When selecting the binders, preference is also given to selecting those products which essentially do not penetrate into the interior of the porous airgel particles. The penetration of the binder into the interior of the airgel particles can be influenced not only by the choice of the binder but also by various parameters, such as pressure, temperature and processing time.
In addition, the composite material can also contain up to 85% by volume of fillers. To improve the mechanical properties, fibers, nonwovens, woven fabrics, felts and residues or wastes thereof can be used in particular. Film snippets and / or film remnants can also be used for this purpose.

Des weiteren kann das Verbundmaterial weitere Füllstoffe z.B. zur Färbung, zur Erzielung besonderer dekorativer Effekte oder zur Einstellung der Haftung von Klebern auf der Oberfläche enthalten.Furthermore, the composite material can contain other fillers e.g. for coloring, for To achieve special decorative effects or to set the liability of Glue included on the surface.

Vorzugsweise liegt der Anteil der Füllstoffe, bezogen auf das Verbundmaterial, unter 70 % und besonders bevorzugt im Bereich von 0 bis 50 Vol.-%.The proportion of fillers is preferably based on the Composite material, below 70% and particularly preferably in the range from 0 to 50 Vol .-%.

Werden Aerogel-Partikel mit hydrophoben Oberflächengruppen in Verbindung mit hydrophoben Bindemitteln verwendet, erhält man ein hydrophobes Verbundmaterial.Are airgel particles with hydrophobic surface groups in Used in conjunction with hydrophobic binders, one obtains hydrophobic composite material.

Sollte das Verbundmaterial aufgrund des verwendeten Bindemittels und/oder aufgrund von hydrophilen Aerogel-Partikeln hydrophil sein, kann gegebenenfalls eine nachträgliche Behandlung erfolgen, die dem Verbundmaterial hydrophobe Eigenschaften verleiht. Dazu eignen sich alle dem Fachmann für diesen Zweck bekannten Stoffe, die dem Verbundmaterial eine hydrophobe Oberfläche verleihen, wie z. B. Lacke, Folien, Silylierungsmittel, Silikonharze sowie anorganische und/oder organische Bindemittel.Should the composite material be due to the binder used and / or may be hydrophilic due to hydrophilic airgel particles if necessary, a subsequent treatment that the Composite material gives hydrophobic properties. All are suitable for this substances known to the person skilled in the art for this purpose, which Give composite material a hydrophobic surface, such as. B. paints, Films, silylating agents, silicone resins and inorganic and / or organic binders.

Weiterhin können auch beim Verkleben sogenannte "coupling agents" eingesetzt werden. Sie bewirken einen besseren Kontakt der Bindemittel mit der Oberfläche der Aerogel-Partikel und können darüber hinaus eine feste Bindung sowohl mit den Aerogel-Partikeln als auch mit dem Bindemittel oder gegebenenfalls den Füllstoffen eingehen.Furthermore, so-called "coupling agents" can also be used. They bring about better contact of the binders with the surface of the airgel particles and can also be a solid Binding both with the airgel particles and with the binder or if necessary go into the fillers.

Die erfindungsgemäß aus Aerogel-Granulat hergestellten Formkörper weisen vorzugsweise eine Dichte von weniger als 0,6 g/cm3 und vorzugsweise eine Verbesserung der Körper- bzw. Trittschalldämmung von mehr als 12 dB auf. Besonders bevorzugt liegt die Verbesserung der Körper- bzw. Trittschalldämmung über 14 dB.The molded articles produced according to the invention from airgel granules preferably have a density of less than 0.6 g / cm 3 and preferably an improvement in the body or impact sound insulation of more than 12 dB. The improvement in body and impact sound insulation is particularly preferably above 14 dB.

Die Brandklasse des Verbundmaterials wird durch die Brandklasse des Aerogels und des Bindemittels bestimmt. Um eine möglichst günstige Brandklasse des Verbundmaterials zu erhalten (schwer entflammbar oder unbrennbar), können die Verbundmaterialien noch mit geeigneten Materialien kaschiert werden, wie z. B. Silikonharzklebstoffen. Weiterhin ist die Verwendung von dem Fachmann bekannten Brandschutzmitteln möglich. Darüber hinaus sind auch sämtliche dem Fachmann bekannten Beschichtungen möglich, die z. B. schmutzabweisend und/oder hydrophob sind.The fire class of the composite material is determined by the fire class of the Airgel and the binder determined. To be as cheap as possible Preserve fire class of the composite material (flame retardant or non-flammable), the composite materials can still be used with suitable Materials are laminated, such as. B. silicone resin adhesives. Furthermore, the Use of fire protection agents known to those skilled in the art is possible. In addition, all are known to the expert Coatings possible, the z. B. dirt-repellent and / or hydrophobic are.

Das aerogelhaltige Verbundmaterial kann dadurch hergestellt werden, daß man Aerogel und Bindemittel mischt, in die gewünschte Form bringt und aushärtet.The airgel-containing composite material can be produced in that you mix airgel and binder, bring them into the desired shape and cures.

Bei der Herstellung der Verbundmaterialien werden die Aerogel-Partikel mittels mindestens einem Bindemittel miteinander verbunden. Die Verbindung der einzelnen Partikel miteinander kann dabei quasi punktförmig erfolgen. Eine solche oberflächliche Beschichtung kann beispielsweise durch Besprühen der Aerogel-Partikel mit dem Bindemittel (z.B. als Lösung, Schmelze, Suspension oder Dispersion) erreicht werden. Die beschichteten Partikel werden dann beispielsweise zu einem Formkörper gepreßt und ausgehärtet.When manufacturing the composite materials, the airgel particles connected to one another by means of at least one binder. The Connection of the individual particles to one another can be quasi punctiform respectively. Such a surface coating can, for example, by Spraying the airgel particles with the binder (e.g. as a solution, Melt, suspension or dispersion) can be achieved. The coated Particles are then, for example, pressed into a shaped body and hardened.

In einer bevorzugten Ausführungsform wird zusätzlich auch das Zwickelvoiumen zwischen den einzelnen Partikeln ganz oder teilweise vom Bindemittel ausgefüllt. Eine solche Zusammensetzung läßt sich beispielsweise herstellen, indem man die Aerogel-Partikel mit einem pulverförmigen Bindemittel mischt in die gewünschte Form bringt und aushärtet.In a preferred embodiment, the Gusset voices between the individual particles in whole or in part from Binder filled. Such a composition can be, for example by making the airgel particles with a powder Binder mixes into the desired shape and hardens.

Das Mischen kann dabei in jeder nur denkbaren Weise durchgeführt werden. So ist es einerseits möglich, die mindestens zwei Komponenten gleichzeitig in die Mischvorrichtung einzubringen, andererseits kann aber auch eine der Komponenten vorgelegt und die andere(n) dann zugesetzt werden.The mixing can be carried out in any conceivable way. So on the one hand it is possible to put in at least two components simultaneously to introduce the mixing device, but on the other hand, one of the Components submitted and the other (s) are then added.

Auch die für das Mischen notwendige Mischvorrichtung ist in keinster Weise beschränkt. Es kann jede dem Fachmann für diesen Zweck bekannte Mischvorrichtung verwendet werden. Der Mischvorgang wird solange durchgeführt, bis eine annähernd gleichmäßige Verteilung der Aerogel-Partikel in der Zusammensetzung vorliegt. Dabei kann der Mischvorgang sowohl über die Zeitdauer als auch beispielsweise über die Geschwindigkeit der Mischvorrichtung geregelt werden.The mixing device necessary for the mixing is also in no way limited. Any can be known to those skilled in the art for this purpose Mixing device can be used. The mixing process continues carried out until an approximately even distribution of the airgel particles is present in the composition. The mixing process can both over the duration and, for example, over the speed the mixing device can be regulated.

Danach erfolgt die Formgebung und das Aushärten des Gemisches, was je nach Art des Bindemittels durch Erwärmen und/oder Verdampfen des verwendeten Lösungs- und/oder Dispersionsmittels oder aber, bei Verwendung von Schmelzen, durch Abkühlen unter die Schmelztemperatur des Bindemittels oder durch chemische Reaktion des Bindemittels bzw. der Bindemittel erfolgt.This is followed by the shaping and curing of the mixture, whichever by type of binder by heating and / or evaporating the used solvent and / or dispersant or, at Use of melts, by cooling below the melting temperature of the binder or by chemical reaction of the binder or Binder takes place.

In einer bevorzugten Ausführungsform wird das Gemisch verpreßt. Dabei ist es dem Fachmann möglich, für den jeweiligen Anwendungszweck die geeignete Presse und das geeignete Preßwerkzeug auszuwählen. Aufgrund des hohen Luftanteils der aerogelhaltigen Preßmassen ist der Einsatz von Vakuumpressen vorteilhaft. In einer bevorzugten Ausführungsform werden die aerogelhaltigen Preßmassen zu Platten verpreßt. Um ein Anbacken der Preßmasse an das Preßwerkzeug, beispielsweise Preßstempel, zu vermeiden, kann das zu verpressende, aerogelhaltige Gemisch mit Trennpapier bzw. Trennfolie gegen das Preßwerkzeug abgetrennt werden. Die mechanische Festigkeit der aerogelhaltigen Platten kann durch Auflaminieren von Geweben, Folien, Hartfolien oder Hartfaserplatten auf die Plattenoberfläche verbessert werden. Die Gewebe, Folien, Hartfolien oder Hartfaserplatten können sowohl nachträglich als auch bei der Herstellung des Verbundmaterials auf die aerogelhaltigen Platten aufgebracht werden. Letzteres ist bevorzugt und kann vorzugsweise in einem Arbeitsschritt durch Einlegen der Gewebe, Folien, Hartfolien oder Hartfaserplatten in die Preßform und Auflegen auf die zu verpressende, aerogelhaltige Preßmasse und anschließendes Verpressen unter Druck und Temperatur zu einer aerogelhaltigen Verbundplatte erfolgen.In a preferred embodiment, the mixture is pressed. It is possible for the specialist, for the respective application select the appropriate press and press tool. by virtue of the high air content of the airgel-containing molding compounds is the use of Vacuum presses advantageous. In a preferred embodiment, the Airgel-containing molding compounds are pressed into sheets. To bake the To avoid molding compound on the pressing tool, for example press rams, can the airgel-containing mixture to be compressed be used with release paper or Separating film to be separated against the pressing tool. The mechanical The strength of the airgel-containing plates can be increased by lamination Fabrics, foils, hard foils or hardboard on the board surface be improved. The fabrics, foils, hard foils or hardboard can both later and in the manufacture of the Composite material are applied to the airgel-containing plates. The latter is preferred and can preferably be carried out in one work step Insert the fabrics, foils, hard foils or hardboard in the mold and placing on the airgel-containing molding compound to be compressed and subsequent pressing under pressure and temperature into one Airgel-containing composite panel.

Das Verpressen findet in Abhängigkeit vom verwendeten Bindemittel im allgemeinen bei Pressdrücken von 1 bis 1000 bar in beliebigen Formen statt. Zur Aushärtung kann das Gemisch während des Preßvorgangs auf Temperaturen von 0°C bis 300°C gebracht werden. Es ist aber auch möglich das Gemisch bei Temperaturen, die signifikant unter denen zur Aushärtung verwendeten liegen, zu verpressen und anschließend ohne Ausübung eines Druckes auszuhärten.The pressing takes place in the depending on the binder used generally at pressures from 1 to 1000 bar in any shape. The mixture can be hardened during the pressing process Temperatures from 0 ° C to 300 ° C are brought. But it is also possible the mixture at temperatures significantly lower than those required for curing used lying, pressing and then without exercising Curing pressure.

Bei Verbundmaterialien, die einen besonders hohen Volumenanteil an Aerogel-Partikeln enthalten und deren Wärmeleitfähigkeit entsprechend schlecht ist, kann zusätzlich mit Hilfe geeigneter Strahlungsquellen Wärme in die Platten gebracht werden. Koppelt, wie im Falle von Polyvinylbutyralen, das verwendete Bindemittel mit Mikrowellen, so ist diese Strahlungsquelle bevorzugt.
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher beschrieben, ohne dadurch beschränkt zu werden.
In the case of composite materials which contain a particularly high volume fraction of airgel particles and whose thermal conductivity is correspondingly poor, heat can additionally be brought into the plates with the aid of suitable radiation sources. If, as in the case of polyvinyl butyrals, the binder used couples with microwaves, this radiation source is preferred.
The invention is described in more detail below on the basis of exemplary embodiments, without being restricted thereby.

Die Aerogele wurden analog dem in der DE-A-43 42 548 offenbarten Verfahren hergestellt.The aerogels were analogous to that disclosed in DE-A-43 42 548 Process manufactured.

Die Wärmeleitfähigkeiten der Aerogel-Granulate wurden mit einer Heizdrahtmethode (siehe z.B. O. Nielsen, G. Rüschenpöhler, J. Groß, J. Fricke, High Temperatures-High Pressures, Vol. 21, 267 - 274 (1989)) gemessen. Die Wärmeleitfähigkeiten der Formkörper wurden nach DIN 52612 gemessen. Als Maß für die Verbesserung der Körper- bzw. Trittschalldämmung wurde das Trittschallverbesserungsmaß nach DIN 52210 bestimmt. The thermal conductivities of the airgel granules were measured using a Heating wire method (see e.g. O. Nielsen, G. Rüschenpöhler, J. Groß, J. Fricke, High Temperatures-High Pressures, Vol. 21, 267-274 (1989)). The Thermal conductivities of the moldings were measured in accordance with DIN 52612. As That became a measure for the improvement of the body and impact sound insulation Impact sound improvement measure determined according to DIN 52210.

Beispiel 1example 1 Formkörper aus 50 Vol.-% Aerogel und 50 Vol.-% PolyvinylbutyralShaped body made of 50 vol .-% airgel and 50 vol .-% polyvinyl butyral

Es werden 50 Vol.-% hydrophobes Aerogel-Granulat (Festkörperdichte 130 kg/m3) und 50 Vol.-% eines Polyvinylbutyralpulvers (Festkörperdichte 1100 kg/m3) innig vermischt. Das prozentuale Volumen bezieht sich dabei auf das Zielvolumen des Formkörpers. Das hydrophobe Aerogel-Granulat hat eine Korngröße größer 650 µm, eine BET-Oberfläche von 640 m2/g und eine Wärmeleitfähigkeit von 11 mW/mK. Als Polyvinylbutyralpulver wird Mowital® (Polymer F) (Hoechst AG) mit einer Körnung um 50 µm verwendet.50% by volume of hydrophobic airgel granules (solid density 130 kg / m 3 ) and 50% by volume of a polyvinyl butyral powder (solid density 1100 kg / m 3 ) are mixed intimately. The percentage volume relates to the target volume of the molded body. The hydrophobic airgel granulate has a grain size greater than 650 µm, a BET surface area of 640 m 2 / g and a thermal conductivity of 11 mW / mK. Mowital® (Polymer F) (Hoechst AG) with a grain size of around 50 µm is used as the polyvinyl butyral powder.

Der Boden der Preßform wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 220°C für 30 Minuten auf eine Dicke von 18 mm gepreßt.The bottom of the mold is covered with release paper. Then the Airgel-containing molding compound evenly distributed and all with one Release paper covered. It is at 220 ° C for 30 minutes to a thickness of 18 mm pressed.

Der erhaltene Formkörper hat eine Dichte von 280 kg/m3 und eine Wärmeleitfähigkeit von 40 mW/mK. Das Trittschallverbesserungsmaß beträgt 19 dB.The molded body obtained has a density of 280 kg / m 3 and a thermal conductivity of 40 mW / mK. The impact sound improvement measure is 19 dB.

Beispiel 2Example 2 Formkörper aus 80 Vol.-% Aerogel, 18 Vol.-% Polyvinylbutyral und 2 Vol.-% PolyethylenterephthalatfasernShaped body made of 80 vol .-% airgel, 18 vol .-% polyvinyl butyral and 2 vol .-% polyethylene terephthalate

Es werden 80 Vol.-% hydrophobes Aerogel-Granulaf (Festkörperdichte 130 kg/m3) und 18 Vol.-% eines Polyvinylbutyralpulvers (Festkörperdichte 1100 kg/m3) und 2 Vol.-% Polyethylenterephthalatfasern innig vermischt. Das prozentuale Volumen bezieht sich dabei auf das Zielvolumen des Formkörpers. Das hydrophobe Aerogel-Granulat hat eine Korngröße größer 650 µm. eine BET-Oberfläche von 640 m2/g und eine Wärmeleitfähigkeit von 11 mW/mK. Als Polyvinylbutyralpulver wird Mowital® (Polymer F) (Hoechst AG) mit einer Körnung um 50 µm verwendet. Ais Fasermaterial werden Trevira® Hochfest Fasern (Hoechst AG) verwendet.80% by volume of hydrophobic airgel granules (solid density 130 kg / m 3 ) and 18% by volume of a polyvinyl butyral powder (solid density 1100 kg / m 3 ) and 2% by volume of polyethylene terephthalate fibers are intimately mixed. The percentage volume relates to the target volume of the molded body. The hydrophobic airgel granulate has a grain size greater than 650 µm. a BET surface area of 640 m 2 / g and a thermal conductivity of 11 mW / mK. Mowital® (Polymer F) (Hoechst AG) with a grain size of around 50 µm is used as the polyvinyl butyral powder. Trevira® high-strength fibers (Hoechst AG) are used as the fiber material.

Der Boden der Preßform wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 220°C für 30 Minuten auf eine Dicke von 18 mm gepreßt.The bottom of the mold is covered with release paper. Then the Airgel-containing molding compound evenly distributed and all with one Release paper covered. It is at 220 ° C for 30 minutes to a thickness of 18 mm pressed.

Der erhaltene Formkörper hat eine Dichte von 250 kg/m3 und eine Wärmeleitfähigkeit von 25 mW/mK. Das Trittschallverbesserungsmaß beträgt 22 dB.The molded body obtained has a density of 250 kg / m 3 and a thermal conductivity of 25 mW / mK. The impact sound improvement measure is 22 dB.

Beispiel 3Example 3 Formkörper aus 90 Vol.-% Aerogel und 10 Vol.-% DispersionsklebstoffShaped body made of 90 vol .-% airgel and 10 vol .-% dispersion adhesive

Es werden 90 Vol.-% hydrophobes Aerogel-Granulat (Festkörperdichte 130 kg/m3) mit 10 Vol.-% der Mowilith®-Dispersion VDM1340 in einem Mischer besprüht. Das prozentuale Volumen bezieht sich dabei auf dos Zielvolumen des trockenen Formkörpers. Das hydrophobe Aerogel-Granulat hat eine Korngröße größer 650 µm, eine BET-Oberfläche von 640 m2/g und eine Wärmeleitfähigkeit von 11 mW/mK. Als Dispersionsklebstoff wird die Mowilith®-Dispersion VDM1340 (Hoechst AG) verwendet.90% by volume of hydrophobic airgel granules (solid density 130 kg / m 3 ) are sprayed with 10% by volume of the Mowilith® dispersion VDM1340 in a mixer. The percentage volume relates to the target volume of the dry molded body. The hydrophobic airgel granulate has a grain size greater than 650 µm, a BET surface area of 640 m 2 / g and a thermal conductivity of 11 mW / mK. The Mowilith® dispersion VDM1340 (Hoechst AG) is used as the dispersion adhesive.

Der Boden der Preßform wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 190°C für 15 Minuten auf eine Dicke von 18 mm gepreßt.The bottom of the mold is covered with release paper. Then the Airgel-containing molding compound evenly distributed and all with one Release paper covered. It is left at 190 ° C for 15 minutes to a thickness of 18 mm pressed.

Der erhaltene Formkörper hat eine Dichte von 200 kg/m3 und eine Wärmeleitfähigkeit von 29 mW/mK. Das Trittschallverbesserungsmaß beträgt 24 dB.The molded body obtained has a density of 200 kg / m 3 and a thermal conductivity of 29 mW / mK. The impact sound improvement measure is 24 dB.

Claims (6)

  1. Use of aerogel particles for deadening structure-borne and/or impact sounds, characterized in that the size of the aerogel particles is in the range of 50 µm to 10 mm.
  2. Use according to claim 1, characterized in using, as aerogel particles, those which contain Si compounds, and preferably SiO2 aerogels.
  3. Use according to claim 1 or 2, characterized in that the aerogel particles have permanent hydrophobic surface groups.
  4. Use according to at least one of the preceeding claims, characterized in that the aerogel particles have porosities of over 60 % and densities below 0.6 g/cm3.
  5. Use according to at least one of the preceeding claims, characterized in that the aerogel particles are employed in the form of a composite material.
  6. Use according to claim 5, characterized in that the proportion of aerogel particles in the composite material is in the range of 5 to 97 % by volume.
EP98904115A 1997-01-24 1998-01-22 Use of aerogels for deadening structure-borne and/or impact sounds Expired - Lifetime EP0966411B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19702238A DE19702238A1 (en) 1997-01-24 1997-01-24 Use of aerogels for body and / or impact sound insulation
DE19702238 1997-01-24
PCT/EP1998/000328 WO1998032708A1 (en) 1997-01-24 1998-01-22 Use of aerogels for deadening structure-borne and/or impact sounds

Publications (2)

Publication Number Publication Date
EP0966411A1 EP0966411A1 (en) 1999-12-29
EP0966411B1 true EP0966411B1 (en) 2003-04-02

Family

ID=7818094

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98904115A Expired - Lifetime EP0966411B1 (en) 1997-01-24 1998-01-22 Use of aerogels for deadening structure-borne and/or impact sounds

Country Status (8)

Country Link
US (1) US6598358B1 (en)
EP (1) EP0966411B1 (en)
JP (2) JP4776744B2 (en)
KR (1) KR20000070449A (en)
CN (1) CN1200904C (en)
DE (2) DE19702238A1 (en)
ES (1) ES2193513T3 (en)
WO (1) WO1998032708A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1103524A3 (en) * 1999-11-29 2002-07-31 Matsushita Electric Industrial Co., Ltd. Method of drying wet silica gel
DE10057368A1 (en) * 2000-11-18 2002-05-23 Bayerische Motoren Werke Ag Insulation layer, in particular for motor vehicle body parts
US7621299B2 (en) * 2003-10-03 2009-11-24 Cabot Corporation Method and apparatus for filling a vessel with particulate matter
US7641954B2 (en) * 2003-10-03 2010-01-05 Cabot Corporation Insulated panel and glazing system comprising the same
WO2006030555A1 (en) * 2004-09-15 2006-03-23 Kazuo Uejima Mat for acoustic apparatus
DE102004047552B4 (en) * 2004-09-30 2006-12-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Production of airgel composite materials
US7270851B2 (en) * 2004-11-04 2007-09-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method
US7635411B2 (en) * 2004-12-15 2009-12-22 Cabot Corporation Aerogel containing blanket
US7444687B2 (en) * 2005-08-29 2008-11-04 3M Innovative Properties Company Hearing protective device that includes cellular earmuffs
US20070044206A1 (en) * 2005-08-29 2007-03-01 Sato Luciana M Hearing protective earmuff device having frictionally engageable ear cups
US8541496B2 (en) * 2005-12-29 2013-09-24 Joel Sereboff Energy absorbing composition and impact and sound absorbing applications thereof
US8987367B2 (en) 2005-12-29 2015-03-24 Joel L. Sereboff Energy absorbing composition and impact and sound absorbing applications thereof
US7754791B2 (en) * 2005-12-29 2010-07-13 Sereflex Group LLC Energy absorbing composition and impact and sound absorbing applications thereof
US7790787B2 (en) * 2006-05-03 2010-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Aerogel/polymer composite materials
US20080029336A1 (en) * 2006-06-10 2008-02-07 Patrick Sigler Acoustic panel
US20090189111A1 (en) * 2006-08-16 2009-07-30 Hitachi Chemical Co., Ltd. Composites for sound control applications
US8505857B2 (en) 2006-08-18 2013-08-13 Kellogg Brown & Root Llc Systems and methods for supporting a pipe
US7997541B2 (en) * 2006-08-18 2011-08-16 Kellogg Brown & Root Llc Systems and methods for supporting a pipe
CA2712682A1 (en) * 2008-02-05 2009-08-13 Guy Leath Gettle Blast effect mitigating assembly using aerogels
KR100840891B1 (en) 2008-03-19 2008-06-24 주식회사 에스공사 A paint composition for reducing noise
EP2638540A4 (en) 2010-11-09 2017-11-08 California Institute of Technology Acoustic suppression systems and related methods
JP6955840B2 (en) * 2014-01-31 2021-10-27 積水化学工業株式会社 Laminated glass and how to attach the laminated glass
KR101566743B1 (en) * 2014-04-18 2015-11-06 현대자동차 주식회사 Exhaust valve for engine
KR101684504B1 (en) * 2014-09-22 2016-12-20 현대자동차 주식회사 Engine radiate noise reduction structure
CN105089234A (en) * 2015-08-26 2015-11-25 桂林威迈壁纸有限公司 Heat and sound insulation night-luminous wallpaper
US10839784B1 (en) * 2016-11-03 2020-11-17 LJ Avalon LLC Sound reducing panel
CN107016988B (en) * 2017-03-03 2021-02-05 中南大学 Light anti-sound material and preparation method thereof
DE102017119096A1 (en) 2017-08-21 2019-02-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wood-concrete ceiling
CN112795048B (en) * 2021-02-03 2023-04-11 峰特(浙江)新材料有限公司 Mixed aerogel modified melamine foam and application thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814968A1 (en) 1988-05-03 1989-11-16 Basf Ag DENSITY DENSITY 0.1 TO 0.4 G / CM (UP ARROW) 3 (UP ARROW)
JPH02141194U (en) * 1989-04-27 1990-11-27
CH684206A5 (en) * 1990-11-12 1994-07-29 Matec Holding Disposable heat shield.
JP2756366B2 (en) * 1990-11-27 1998-05-25 松下電工株式会社 Method for producing hydrophobic airgel
EP0509603B1 (en) * 1991-04-15 2001-09-12 Matsushita Electric Works, Ltd. Sound absorptive material
US5306555A (en) 1991-09-18 1994-04-26 Battelle Memorial Institute Aerogel matrix composites
JPH05146670A (en) * 1991-12-02 1993-06-15 Ngk Spark Plug Co Ltd Capsule material, production thereof and shaped body consisting of the capsule material
JP2659155B2 (en) * 1992-02-03 1997-09-30 松下電工株式会社 Method for producing hydrophobic airgel
JPH06158840A (en) * 1992-11-24 1994-06-07 Konekuteito:Kk Floor structure, floor construction method and floor board
DE4316540A1 (en) * 1993-05-18 1994-11-24 Hoechst Ag Process for subcritical drying of aerogels
DE4430642A1 (en) * 1994-08-29 1996-03-07 Hoechst Ag Airgel and xerogel composites, processes for their production and their use
DE4430669A1 (en) * 1994-08-29 1996-03-07 Hoechst Ag Process for the production of fiber-reinforced xerogels and their use
JPH08109363A (en) * 1994-10-13 1996-04-30 Fujikura Ltd Electric-sensitive type sound wave absorption-controlling fluid composition
DE4437424A1 (en) * 1994-10-20 1996-04-25 Hoechst Ag Airgel-containing composition, process for its preparation and its use
DE4441567A1 (en) * 1994-11-23 1996-05-30 Hoechst Ag Airgel-containing composite material, process for its production and its use
DK0793626T3 (en) * 1994-11-23 1999-08-16 Cabot Corp Aerogel-containing composite material, method of manufacture thereof and its use
RU2147054C1 (en) * 1994-12-21 2000-03-27 Кэбот Корпорейшн Nonwoven combined material containing bicomponent fibers and method of its production
DE19507732A1 (en) * 1995-03-07 1996-09-12 Hoechst Ag Transparent component containing at least one fiber-reinforced airgel plate and / or mat

Also Published As

Publication number Publication date
US6598358B1 (en) 2003-07-29
JP2001509767A (en) 2001-07-24
JP2011080064A (en) 2011-04-21
JP4776744B2 (en) 2011-09-21
CN1249729A (en) 2000-04-05
KR20000070449A (en) 2000-11-25
JP5547028B2 (en) 2014-07-09
DE59807740D1 (en) 2003-05-08
WO1998032708A1 (en) 1998-07-30
DE19702238A1 (en) 1998-08-06
ES2193513T3 (en) 2003-11-01
EP0966411A1 (en) 1999-12-29
CN1200904C (en) 2005-05-11

Similar Documents

Publication Publication Date Title
EP0966411B1 (en) Use of aerogels for deadening structure-borne and/or impact sounds
EP0954438B1 (en) Multilayer composite materials with at least one aerogel-containing layer and at least one layer containing polyethylene terephthalate fibres, process for producing the same and their use
EP0963358B1 (en) Multilayer composite materials with at least one aerogel-containing layer and at least one other layer, process for producing the same and their use
EP0850206B1 (en) Aerogel and adhesive-containing composite, process for its production and its use
EP0793626B1 (en) Composite material containing aerogel, process for manufacturing said material and the use thereof
EP0793627B1 (en) Composite material containing aerogel, process for manufacturing the same and the use thereof
DE4310191C2 (en) Laminated fibreboard
WO1996012683A1 (en) Composition containing an aerogel, method of producing said composition and the use thereof
WO1996019607A1 (en) Nonwoven fabric-aerogel composite material containing two-component fibres, a method of producing said material and the use thereof
WO1997010188A1 (en) Fibre-containing aerogel composite material
DE102010029513A1 (en) Insulation with layer structure
EP2527124A1 (en) Method for producing a moulded part comprising a cavity structure for acoustic and/or thermal insulation and moulded part for acoustic and/or thermal insulation
EP2649118B1 (en) Composite material comprising nanoporous particles
DE10241978A1 (en) Noninflammable, moisture regulated and sound absorbing mold parts useful as noninflammable and sound insulating wall and roof coverings and having good electromagnetic screening properties
DE19634109C2 (en) Airgel- and plastic-containing, transparent composite material, process for its production and its use
EP2638217B1 (en) Aerogel-aerogel composite material
DE19533565A1 (en) Composite useful as insulation in electronics and thermal insulation
DE19653807A1 (en) Water resistant mineral acoustic insulation board
DE102020118734A1 (en) Airgel-containing insulation layer
DE10360749B3 (en) Inorganic fire and thermal insulation paste and their manufacture
DE19622865A1 (en) Composite with uniform low thermal conductivity and dielectric constant
DE202007002288U1 (en) Shaped soundproofing material with fire-retardant equipment
AT402068B (en) Fire-resistant coating
DE10060875A1 (en) Mineral molded body used in the production of fire protection boards and heat insulating plates contains expanded glass granules as light filler, and an alkali silicate as binder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20000710

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CABOT CORPORATION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030402

REF Corresponds to:

Ref document number: 59807740

Country of ref document: DE

Date of ref document: 20030508

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2193513

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040123

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040801

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050122

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59807740

Country of ref document: DE

Representative=s name: MAI DOERR BESIER PATENTANWAELTE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141230

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141226

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150126

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59807740

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160122

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160122

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201