EP0964206B1 - Chambre de combustion de turbine à gaz à géométrie variable - Google Patents

Chambre de combustion de turbine à gaz à géométrie variable Download PDF

Info

Publication number
EP0964206B1
EP0964206B1 EP99401204A EP99401204A EP0964206B1 EP 0964206 B1 EP0964206 B1 EP 0964206B1 EP 99401204 A EP99401204 A EP 99401204A EP 99401204 A EP99401204 A EP 99401204A EP 0964206 B1 EP0964206 B1 EP 0964206B1
Authority
EP
European Patent Office
Prior art keywords
injection
combustion chamber
comburant
fact
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99401204A
Other languages
German (de)
English (en)
Other versions
EP0964206A1 (fr
Inventor
Guy Grienche
Gérard Schott
Jean-Hervé Le Gal
Gérard Martin
Patrice Laborde
Raphael Spagne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Safran Helicopter Engines SAS
Original Assignee
IFP Energies Nouvelles IFPEN
Turbomeca SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Turbomeca SA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0964206A1 publication Critical patent/EP0964206A1/fr
Application granted granted Critical
Publication of EP0964206B1 publication Critical patent/EP0964206B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow

Definitions

  • the present invention relates to the field of gas turbines and more particularly combustion chambers associated with such turbines.
  • One of the problems at the root of the present invention relates to the pollution caused by the operation of these turbines. More specifically, emissions of nitrogen oxides (NOx) and carbon monoxide Carbon (CO) must be reduced as these are the most harmful to the environment.
  • NOx nitrogen oxides
  • CO carbon monoxide Carbon
  • Nitrogen oxides are mainly thermal nitrogen oxides which are formed at high temperature, that is to say above 1700 K in combustion chambers of gas turbines where fumes have times to stay generally between 2 and 10 milliseconds.
  • Carbon monoxide (CO) is, for its part, formed at lower temperature ( ⁇ 1600 K), by incomplete combustion of the fuel.
  • the optimal temperature range to have emissions reduced in both NOx and CO is between about 1650 K and 1750 K.
  • Figure 1 illustrates, by curves (CO and NOx) the respective emissions of carbon monoxide and oxides of nitrogen depending on the temperature T (in K) under the operating conditions of a chamber of combustion of a gas turbine.
  • NO and CO emissions are thus directly related to richness of the air-fuel mixture in the combustion chamber; that is to say the ratio of air flow to fuel flow. Knowing that the richness of the mixture must be imposed, if one seeks to operate in a certain temperature range, such as that mentioned above, the adiabatic flame temperature of the mixture will vary approximately proportionally to wealth.
  • the fuel flow is the only parameter to control the operating speed of the turbine. It follows that for a given fuel flow, the air flow is perfectly fixed to a value depending only on the characteristics of the machine and in particular passage sections in the hearth. By After that, wealth is totally determined.
  • FIG. a combustion chamber having a pilot stage followed by two others stages each having an air inlet and a fuel inlet such as natural gas for example. It is then necessary to realize the combustion on each floor successively, and according to the total power demanded. The combustion-pilot is performed, regardless of the diet.
  • This solution theoretically allows to obtain acceptable wealth in the illuminated stages, for each engine speed, if a number is available sufficient floors.
  • the major disadvantage is that it requires a circuit complex fuel supply, which gives rise to problems of reliability, regulation and especially of cost.
  • Another concept for obtaining combustion chambers operating over a certain temperature range consists in equipping it with a set of flaps, valves or other closure means allow control the air flow in the fireplace, as already described in patent application FR-A-2 270 448.
  • a set of flaps, valves or other closure means allow control the air flow in the fireplace, as already described in patent application FR-A-2 270 448.
  • the order and the actuation of such elements is complex, difficult to implement.
  • the set is also expensive.
  • the present invention therefore aims to propose a reliable, simple solution to the problem of regulating wealth in a room of combustion of a gas turbine.
  • This control is to be able to achieve combustion in an optimal temperature range, particularly with regard to carbon monoxide, and nitrogen oxides.
  • the present invention thus allows automatic regulation of the combustion air flow.
  • Mechanical servoing is advantageously achieved thanks to a very limited number of parts mechanical.
  • the subject of the invention is a gas turbine combustion chamber comprising at least one so-called pilot injection zone in which at least one first pilot fuel injection means and a first first oxidant injection means associated; a combustion zone in which at least one second of main fuel injection and second injection means of associated oxidant, the assembly being maintained under pressure P2 to inside an enclosure.
  • said combustion chamber further comprises a mechanical means for regulating the second flow of oxidizer, which reacts to the pressure difference between the inside (P2) and the pressure atmospheric pressure (Po) outside the enclosure, said pressure difference being directly related to the engine regime.
  • said regulating means comprises at least one shutter element which more or less closes the second air inlets in the combustion chamber, several connecting rods between the elements shutter and a support member, a compression member, a sealing bellows placed around the compression element defining with the support member the volume at atmospheric pressure (Po) vis-à-vis the pressure vessel (P2).
  • first fuel injection means and the first oxidant injection means are disposed substantially at near the longitudinal axis (XX ') of the combustion chamber.
  • the second of main fuel injection and the second injection means of oxidant are arranged on a circumference downstream of the pilot combustion relative to the direction of flame propagation.
  • the combustion chamber according to the invention comprises a third means of injecting oxidant which opens, in the chamber of combustion, downstream of the second oxidant injection means relative to the direction of propagation of the flame.
  • the means for regulating the second oxidant flow rate allows to regulate the flow rate of the third air injection means (function of bypass).
  • the compression member may comprise a stack of washers or springs.
  • the chamber comprises three areas of grouping of the second main injection means of fuel (7) and main oxidant injection (8), each zone being angularly spaced 120 °.
  • the hearth 1 is delimited by an internal ferrule 2 which presents two different diameters: the smallest diameter contains the pilot-combustion zone 11 while the larger-diameter zone 12 is the one where the main combustion develops.
  • the pilot combustion zone 11 provides for idling combustion and the combustion can be maintained during other operation.
  • injectors 3 of fuel such as for example natural gas and injectors or air inlets 4.
  • a bottom 5 is provided to delimit zone 11.
  • the arrivals of fuel 3 and air 4 are located near the bottom 5, circumferentially, and not far from the longitudinal axis XX 'of the chamber.
  • the pilot combustion zone 11 is a zone of stability of the flame, where a flame exists whatever the operating conditions.
  • Air-turning fins 6 can be provided at level of air inlets 4.
  • the fuel injectors 3 can be implanted in these fins without departing from the scope of the invention.
  • Zone 12 therefore has a larger diameter than that of zone 11: this is where the main combustion is operated.
  • a second fuel injection means 7 is disposed at the boundary between zones 11 and 12.
  • a second injection means 8 is located near the second fuel injector 7.
  • fins 9 may also be arranged at the injectors 8.
  • means 7, 8 and 9 are located on a circumference of the shell 2, and several groups may be provided. Here three groups are planned, each one angularly spaced 120 °.
  • the general air supply is made by an annular space 13 delimited by the ferrule 2 and an outer envelope 14.
  • a pressure P2 reigns in this space; this pressure is slightly higher than the pressure P1, the difference being due to the pressure losses created by the different air inlet openings.
  • the present invention provides a means for of flow regulation, which reacts to the pressure difference between the space ring (P2) and the outside of the enclosure 14 or reigns a pressure Po ( ⁇ Atmospheric pressure).
  • the regulating means comprises a ferrule 15 capable of sliding along the axis XX 'in front of the openings 8 (preferentially equipped with fins 9) and thus allowing a variation of the section of passage of the air.
  • the ferrule 15 is fixed, by any means known per se, at the end lower part of several rods 16. At their other end, the rods 16 carry a support plate 17 which is itself linked to a compression element 18. A stack of conical washers or springs may be provided for this purpose.
  • a bellows 19 or other sealing means is also provided around the compression element 18.
  • the bellows 19 is a separation between the internal volume of the combustion chamber, where the pressures P2 and P1, and the external volume where the pressure Po prevails.
  • the ferrule 15 may be provided with additional openings which place the space 13 in communication with an annular space 21 inside the ferrule 2.
  • an additional ferrule 20 coaxial with the ferrule 2 is provided on a part of the height of the ferrule 2.
  • the ferrule 20 may have a height that corresponds to the zone 12 of combustion. On this height, the air coming from openings 10 and which passes through in the annular space 21, will allow to reject air downstream of the combustion zone 12 while cooling the walls of said zone of 12. It is thus possible to maintain an acceptable wealth within the main focus regardless of the diet.
  • the main effect of bypass 21 is limit the decline of wealth in the household 1, especially at part.
  • the openings 10 are designed so that at full charging, no air passes through them (case of Figure 4), while at charge partial or low, air passes into space 21 in order to be rejected downstream of the combustion zone 12 while cooling the wall of the ferrule 2.
  • the openings 10 are rather wide open so that air can pass through the space 21 and cool the wall 20 without participate in the combustion in zone 12. It can thus maintain a acceptable wealth in it and avoid high CO emissions.
  • the combustion chamber according to the invention does not requires no specific mechanical device for regulating arrivals air.
  • the regulation is done here of itself, by the relative pressure in the combustion chamber and therefore depending on the engine speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

La présente invention concerne le domaine des turbines à gaz et plus particulièrement des chambres de combustion associées à de telles turbines.
L'un des problèmes à l'origine de la présente invention a trait à la pollution engendrée par le fonctionnement de ces turbines. Plus précisément, les émissions d'oxydes d'azote (NOx) et de monoxyde de carbone (CO) doivent être réduites car ce sont les plus nocives pour l'environnement.
Par ailleurs des normes assez sévères, sont ou vont être en vigueur dans la plupart des pays industrialisés.
Les oxydes d'azote (NOx) sont surtout des oxydes d'azote thermiques qui se forment à haute température, c'est-à-dire au-delà de 1700 K dans des chambres de combustion de turbines à gaz où les fumées ont des temps de séjour généralement compris entre 2 et 10 millisecondes.
Le monoxyde de carbone (CO) est, quant à lui, formé à plus basse température (< 1600 K), par combustion incomplète du carburant.
Ainsi, la plage de température optimale pour avoir des émissions réduites à la fois en NOx et en CO se situe entre environ 1650 K et 1750 K. La figure 1 illustre, par des courbes (CO et NOx) les émissions respectives de monoxyde de carbone et d'oxydes d'azote en fonction de la température T (en K) dans les conditions de fonctionnement d'une chambre de combustion d'une turbine à gaz.
Les émissions de NO et de CO sont ainsi directement reliées à la richesse du mélange air-carburant dans la chambre de combustion ; c'est-à-dire au rapport entre le débit d'air et le débit de carburant. Sachant que la richesse du mélange doit être imposée, si l'on cherche à opérer dans une certaine plage de températures, telle que celle évoquée ci-dessus, la température adiabatique de flamme du mélange variera approximativement proportionnellement à la richesse.
De façon connue et conventionnelle, le débit de carburant est le seul paramètre permettant de contrôler le régime de fonctionnement de la turbine. Il s'ensuit que pour un débit de carburant donné, le débit d'air est parfaitement fixé à une valeur dépendant uniquement des caractéristiques de la machine et en particulier des sections de passage dans le foyer. Par suite, la richesse est totalement déterminée.
Cependant, la plage de richesses permettant de respecter la plage de température définie ci-dessus ne correspond pas toujours à la richesse imposée par la courbe de fonctionnement de la machine.
Plusieurs concepts sont envisageables pour remédier à ce problème.
L'un consiste à réaliser une combustion sur plusieurs étages, allumés successivement, comme cela est mieux décrit dans la demande de brevet EP-A-0 281 961. Cette solution connue est illustrée par la figure 2 où l'on voit une chambre de combustion ayant un étage pilote suivi de deux autres étages ayant chacun une entrée d'air et une entrée de carburant tel que du gaz naturel par exemple. Il s'agit alors de réaliser la combustion sur chaque étage successivement, et en fonction de la puissance totale demandée. La combustion-pilote est quant à elle, réalisée quel que soit le régime. Cette solution permet théoriquement d'obtenir des richesses acceptables dans les étages allumés, pour chaque régime moteur, si l'on dispose d'un nombre d'étages suffisant. L'inconvénient majeur est qu'elle nécessite un circuit d'alimentation en carburant complexe, d'où des problèmes de fiabilité, de régulation et surtout de coût.
Un autre concept pour obtenir des chambres de combustion opérant sur une plage de température déterminée, consiste à l'équiper d'un ensemble de volets, clapets ou autres moyens d'obturation permettent de contrôler le débit d'air dans le foyer, comme cela a déjà été décrit dans la demande de brevet FR-A-2 270 448. Bien entendu, la commande et l'actionnement de tels éléments est complexe, délicat à mettre en oeuvre. L'ensemble est en outre coûteux.
La présente invention vise donc à proposer une solution fiable, simple au problème de la régulation de la richesse dans une chambre de combustion d'une turbine à gaz.
L'objet de ce contrôle est de pouvoir réaliser une combustion dans une plage de température optimale vis-à-vis notamment des émissions de monoxyde de carbone, et d'oxydes d'azote.
La présente invention permet ainsi une régulation automatique du débit d'air de combustion. Un asservissement mécanique est avantageusement réalisé grâce à un nombre très limité de pièces mécaniques.
L'invention a pour objet une chambre de combustion de turbine à gaz comprenant au moins une zone dite d'injection-pilote dans laquelle débouchent au moins un premier moyen d'injection de carburant pilote et un premier moyen d'injection de comburant associé ; une zone de combustion principale dans laquelle débouchent au moins un deuxième moyen d'injection principale de carburant et un deuxième moyen d'injection de comburant associé, l'ensemble étant maintenu sous une pression P2 à l'intérieur d'une enceinte.
Selon l'invention, ladite chambre de combustion comprend en outre un moyen mécanique de régulation du deuxième débit de comburant, qui réagit à la différence de pression entre l'intérieur (P2) et la pression atmosphérique (Po) à l'extérieur de l'enceinte, ladite différence de pression étant directement liée au régime-moteur.
Plus précisément, ledit moyen de régulation comprend au moins un élément d'obturation qui obture plus ou moins les deuxièmes arrivées d'air dans la chambre de combustion, plusieurs tiges de liaison entre les éléments d'obturation et un élément de support, un élément de compression, un soufflet d'étanchéité placé autour de l'élément de compression délimitant avec l'élément de support le volume à pression atmosphérique (Po) vis-à-vis de l'enceinte sous pression (P2).
De façon particulière, le premier moyen d'injection de carburant et le premier moyen d'injection de comburant sont disposés sensiblement à proximité de l'axe longitudinal (XX') de la chambre de combustion.
Selon un arrangement spécifique de l'invention, le deuxième moyen d'injection principale de carburant et le deuxième moyen d'injection de comburant sont disposés sur une circonférence, en aval de la zone de combustion pilote relativement au sens de propagation de la flamme.
En outre, la chambre de combustion selon l'invention comprend un troisième moyen d'injection de comburant qui débouche, dans la chambre de combustion, en aval du deuxième moyen d'injection de comburant relativement au sens de propagation de la flamme.
Par ailleurs, le moyen de régulation du deuxième débit de comburant permet de réguler le débit du troisième moyen d'injection d'air (fonction de by-pass).
L'élément de compression peut comprendre un empilage de rondelles ou bien des ressorts.
Selon un mode de réalisation de l'invention, la chambre comprend trois zones de regroupement des deuxième moyen d'injection principal de carburant (7) et d'injection principal de comburant (8), chaque zone étant angulairement espacée de 120°.
L'invention sera mieux comprise, d'autres avantages, particularités et détails apparaítront à la lecture de la description qui va suivre, faite à titre illustratif et nullement limitatif en référence aux dessins annexés sur lesquels :
  • La figure 3 est une coupe longitudinale d'une chambre de combustion selon un mode de réalisation de l'invention;
  • La figure 4 est une coupe longitudinale de la chambre de combustion de la figure 3, dans une autre position de fonctionnement.
Sur la figure 3, le foyer 1 est délimité par une virole interne 2 qui présente ici deux diamètres différents : le plus petit diamètre renferme la zone de la combustion-pilote 11 tandis que la zone de plus grand diamètre 12 est celle où se développe la combustion principale.
La zone 11 de combustion-pilote assure la combustion au ralenti et la combustion peut y être maintenue pendant les autres régimes de fonctionnement.
Au niveau de la zone 11 débouchent respectivement des injecteurs 3 de carburant tel que par exemple du gaz naturel et des injecteurs ou des entrées d'air 4.
Un fond 5 est prévu pour délimiter la zone 11. Les arrivées de carburant 3 et d'air 4 sont situées près du fond 5, circonférentiellement, et non loin de l'axe longitudinal XX' de la chambre. La zone de combustion-pilote 11 est une zone de stabilité de la flamme, où une flamme existe quelles que soient les conditions de fonctionnement.
Des ailettes 6 de mise en rotation de l'air peuvent être prévues au niveau des arrivées d'air 4.
Les injecteurs de carburant 3 peuvent être implantés dans ces ailettes sans sortir du cadre de l'invention.
A l'intérieur de la zone 11 règne une pression donnée P1, de même que dans la zone 12.
La zone 12 présente donc un diamètre plus grand que celui de la zone 11 : c'est là qu'est opérée la combustion principale.
Ainsi un deuxième moyen d'injection de carburant 7 est disposé à la limite entre les zones 11 et 12. De même un deuxième moyen d'injection d'air 8 est situé à proximité du deuxième injecteur de carburant 7. Des ailettes 9 peuvent en outre être disposées au niveau des injecteurs 8. Les moyens 7, 8 et 9 sont situés sur une circonférence de la virole 2, et plusieurs groupements peuvent être prévus. Ici trois groupements sont prévus, chacun angulairement espacé de 120°.
En outre de l'air dit "de dilution" c'est-à-dire ne participant pas à la combustion ni au refroidissement des parois peut être introduit dans la virole 2, en aval de la zone de combustion 12, via des orifices appropriés 22.
L'alimentation générale en air se fait par un espace annulaire 13 délimité par la virole 2 et une enveloppe extérieure 14. Une pression P2 règne dans cet espace ; cette pression est légèrement supérieure à la pression P1, la différence étant due aux pertes de charge créés par les différents orifices d'entrée d'air.
Au niveau des arrivées d'air 8, la présente invention prévoit un moyen de régulation du débit, qui réagit à la différence de pression entre l'espace annulaire (P2) et l'extérieur de l'enceinte 14 ou règne une pression Po (∼ pression atmosphérique).
Lorsque le régime de la turbine augmente, la pression P2 augmente et la pression Po ne varie pas ; de la sorte, la différence de pression (P2-Po) augmente et le moyen de régulation réagit en autorisant une plus grande ouverture des arrivées d'air 8.
Plus précisément, le moyen de régulation comprend une virole 15 susceptible de coulisser selon l'axe XX' devant les ouvertures 8 (préférentiellement équipées d'ailettes 9) et permettant donc une variation de la section de passage de l'air.
Des ouvertures correspondantes sont prévues dans la virole 15, en regard des ouvertures 8 de la virole 2.
La virole 15 est fixée, par tout moyen connu en soi, à l'extrémité inférieure de plusieurs tiges 16. A leur autre extrémité, les tiges 16 portent une plaque-support 17 qui est elle-même liée à un élément de compression 18. Un empilement de rondelles coniques ou des ressorts peuvent être prévus à cet effet.
Un soufflet 19 ou autre moyen d'étanchéité est par ailleurs prévu autour de l'élément de compression 18. Le soufflet 19 est une séparation entre le volume intérieur de la chambre de combustion, où règne les pressions P2 et P1, et le volume extérieur où règne la pression Po.
Par ailleurs, la virole 15 peut être munie d'ouvertures additionnelles qui mettent en communication l'espace 13 et un espace annulaire 21 intérieur à la virole 2. Pour ce faire une virole additionnelle 20, coaxiale à la virole 2 est prévue sur une partie de la hauteur de la virole 2.
La virole 20 peut présenter une hauteur qui correspond à la zone 12 de combustion. Sur cette hauteur, l'air issu des ouvertures 10 et qui transite dans l'espace annulaire 21, va permettre de rejeter de l'air en aval de la zone de combustion 12 tout en refroidissant les parois de ladite zone de combustion 12. On peut ainsi maintenir une richesse acceptable au sein du foyer principal quel que soit le régime. L'effet principal du by-pass 21 est de limiter la décroissance de la richesse dans le foyer 1, notamment à régime partiel.
Ainsi, les ouvertures 10 sont conçues de telle sorte qu'à pleine charge, aucun air ne les traverse (cas de la figure 4), tandis qu'à charge partielle ou faible, de l'air passe dans l'espace 21 afin d'être rejeté en aval de la zone de combustion 12 tout en refroidissant la paroi de la virole 2.
Le fonctionnement de l'ensemble qui vient d'être décrit peut être résumé de la façon suivante, en comparant respectivement les figures 3 et 4.
En effet, sur la figure 3 la position des différents éléments correspond à un fonctionnement à environ 50 % de la puissance maximale. Sur la figure 4, est schématisé l'appareil tel qu'il fonctionne à 100 % de sa puissance.
Lorsqu'une puissance faible est requise (régimes de ralenti), la pression relative (P2- Po) entre l'espace annulaire 13 et l'extérieur de la virole 14, permet une ouverture limitée des arrivées d'air 8.
Simultanément, les ouvertures 10 sont plutôt largement ouvertes de sorte que de l'air peut traverser l'espace 21 et refroidir la paroi 20, sans participer à la combustion dans la zone 12. On peut ainsi maintenir une richesse acceptable dans celle-ci et éviter de fortes émissions de CO.
Lorsque la turbine fonctionne à pleine charge, la pression relative (P2-Po) est plus importante que dans le cas qui vient d'être évoqué, de sorte que la virole 15 est soulevée et découvre plus largement les ouvertures 8. Un important débit d'air peut alors pénétrer dans la chambre de combustion 12. Simultanément les ouvertures 10 sont fermées ce qui empêche l'air de venir dans l'espace annulaire 21. Une grande quantité d'air est ainsi injectée directement dans la zone de combustion principale 12, ce qui limite la richesse maximale et évite la formation de NOx.
Ainsi il apparaít que la chambre de combustion selon l'invention ne nécessite pas de dispositif mécanique spécifique de régulation des arrivées d'air. La régulation se fait ici d'elle-même, par la pression relative dans la chambre de combustion et donc en fonction du régime-moteur.

Claims (9)

  1. Chambre de combustion de turbine à gaz comprenant au moins une zone (11) dite de combustion-pilote dans laquelle débouchent au moins un premier moyen (3) d'injection de carburant pilote et un premier moyen (4) d'injection de comburant associé ; une zone (12) de combustion principale dans laquelle débouchent au moins un deuxième moyen (7) d'injection principale de carburant et un deuxième moyen (8) d'injection de comburant associé, l'ensemble étant maintenu sous une pression P2 à l'intérieur (P2) d'une enceinte (14), comprenant en outre un moyen mécanique (15, 16, 17, 18, 19) de régulation du deuxième débit de comburant, qui réagit à la différence de pression entre ladite pression à l'intérieur (P2) et la pression atmosphérique (Po) à l'extérieur de l'enceinte (14), ladite différence de pression étant directement liée au régime-moteur.
  2. Chambre de combustion selon la revendication 1, caractérisée en ce que ledit moyen de régulation comprend au moins un élément d'obturation (15) qui obture plus ou moins les deuxièmes arrivées de comburant (8) dans la chambre de combustion, plusieurs tiges de liaison (16) entre les éléments d'obturation et un élément de support (17), un élément de compression (18), un soufflet d'étanchéité (19) placé autour de l'élément de compression (18) et délimitant avec l'élément de support (17) le volume à pression atmosphérique (Po) vis-à-vis de l'enceinte sous pression (P2).
  3. Chambre de combustion selon l'une quelconque des revendications précédentes, caractérisée en ce que le premier moyen d'injection de carburant (3) et le premier moyen d'injection de comburant (4) sont disposés sensiblement à proximité de l'axe longitudinal (XX') de la chambre de combustion.
  4. Chambre de combustion selon l'une quelconque des revendications précédentes, caractérisée en ce que le deuxième moyen (7) d'injection principale de carburant et le deuxième moyen (8) d'injection de comburant sont disposés sur une circonférence, en aval de la zone (11) d'injection pilote relativement au sens de propagation de la flamme.
  5. Chambre de combustion selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre un troisième moyen d'injection de comburant qui débouche dans la chambre de combustion en aval du deuxième moyen (8) d'injection de comburant relativement au sens de propagation de la flamme.
  6. Chambre de combustion selon la revendication 5, caractérisée en ce que le moyen (15) de régulation du deuxième débit de comburant permet en outre de réguler le débit du troisième moyen d'injection de comburant.
  7. Chambre de combustion selon l'une quelconque des revendications 2 à 6, caractérisée en ce que l'élément de compression (18) comprend un empilage de rondelles coniques.
  8. Chambre de combustion selon l'une quelconque des revendications 2 à 6, caractérisée en ce que l'élément de compression (18) comprend au moins un ressort.
  9. Chambre de combustion selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend trois zones de regroupement des deuxième moyen d'injection principal de carburant (7) et d'injection principal de comburant (8), chaque zone étant angulairement espacée de 120°.
EP99401204A 1998-06-11 1999-05-18 Chambre de combustion de turbine à gaz à géométrie variable Expired - Lifetime EP0964206B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9807409 1998-06-11
FR9807409A FR2779807B1 (fr) 1998-06-11 1998-06-11 Chambre de combustion de turbine a gaz a geometrie variable

Publications (2)

Publication Number Publication Date
EP0964206A1 EP0964206A1 (fr) 1999-12-15
EP0964206B1 true EP0964206B1 (fr) 2004-12-08

Family

ID=9527308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99401204A Expired - Lifetime EP0964206B1 (fr) 1998-06-11 1999-05-18 Chambre de combustion de turbine à gaz à géométrie variable

Country Status (5)

Country Link
US (1) US6263663B1 (fr)
EP (1) EP0964206B1 (fr)
JP (1) JP4435331B2 (fr)
DE (1) DE69922437T2 (fr)
FR (1) FR2779807B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8915086B2 (en) 2006-08-07 2014-12-23 General Electric Company System for controlling combustion dynamics and method for operating the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7788897B2 (en) * 2004-06-11 2010-09-07 Vast Power Portfolio, Llc Low emissions combustion apparatus and method
JP4670035B2 (ja) * 2004-06-25 2011-04-13 独立行政法人 宇宙航空研究開発機構 ガスタービン燃焼器
JP2007113888A (ja) * 2005-10-24 2007-05-10 Kawasaki Heavy Ind Ltd ガスタービンエンジンの燃焼器構造
GB0815761D0 (en) * 2008-09-01 2008-10-08 Rolls Royce Plc Swirler for a fuel injector
US8099941B2 (en) * 2008-12-31 2012-01-24 General Electric Company Methods and systems for controlling a combustor in turbine engines
US8276386B2 (en) * 2010-09-24 2012-10-02 General Electric Company Apparatus and method for a combustor
US9316155B2 (en) * 2013-03-18 2016-04-19 General Electric Company System for providing fuel to a combustor
US9803555B2 (en) * 2014-04-23 2017-10-31 General Electric Company Fuel delivery system with moveably attached fuel tube
FR3065059B1 (fr) 2017-04-11 2020-11-06 Office National Detudes Rech Aerospatiales Foyer de turbine a gaz a geometrie variable auto-adaptative
WO2022079523A1 (fr) * 2020-10-14 2022-04-21 King Abdullah University Of Science And Technology Injecteur réglable de carburant pour commande de dynamique de flamme
GB202112641D0 (en) * 2021-09-06 2021-10-20 Rolls Royce Plc Controlling soot
CN116592391A (zh) * 2022-02-07 2023-08-15 通用电气公司 具有可变初级区燃烧室的燃烧器
CN115031260B (zh) * 2022-05-30 2023-08-22 中国人民解放军空军工程大学 一种旋转爆震燃烧室出口喉道位置固定的可调喷管
WO2024079656A1 (fr) * 2022-10-11 2024-04-18 Ecospectr Llc Brûleur par tout ou peu à écoulement à contre-courant tourbillonnaire à deux couches

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691761A (en) * 1967-11-10 1972-09-19 Squire Ronald Jackson Apparatus for regulation of airflow to flame tubes for gas turbine engines
DE2020416A1 (de) * 1970-04-27 1971-11-11 Motoren Turbinen Union Brennkammer fuer Gasturbinentriebwerke
US3869246A (en) * 1973-12-26 1975-03-04 Gen Motors Corp Variable configuration combustion apparatus
FR2270448A1 (en) * 1974-05-10 1975-12-05 Bennes Marrel Gas turbine combustion chamber - has spring loaded bellows controlling annular air flow control membrane
US4296599A (en) * 1979-03-30 1981-10-27 General Electric Company Turbine cooling air modulation apparatus
JP2644745B2 (ja) * 1987-03-06 1997-08-25 株式会社日立製作所 ガスタービン用燃焼器
FR2661714B1 (fr) * 1990-05-03 1994-06-17 Snecma Dispositif d'alimentation en comburant d'une turbine a gaz.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8915086B2 (en) 2006-08-07 2014-12-23 General Electric Company System for controlling combustion dynamics and method for operating the same

Also Published As

Publication number Publication date
JP4435331B2 (ja) 2010-03-17
FR2779807A1 (fr) 1999-12-17
DE69922437D1 (de) 2005-01-13
US6263663B1 (en) 2001-07-24
DE69922437T2 (de) 2005-12-08
EP0964206A1 (fr) 1999-12-15
FR2779807B1 (fr) 2000-07-13
JP2000009319A (ja) 2000-01-14

Similar Documents

Publication Publication Date Title
EP0964206B1 (fr) Chambre de combustion de turbine à gaz à géométrie variable
CA2646959C (fr) Systeme d&#39;injection d&#39;un melange d&#39;air et de carburant dans une chambre de combustion de turbomachine
EP0214003B1 (fr) Dispositif d&#39;injection à bol elargi pour chambre de combustion de turbomachine
EP0506516A1 (fr) Chambre de combustion de turbomachine comportant un réglage du débit de comburant
EP2951421B1 (fr) Ensemble de combustion de turbomachine comprenant un circuit d&#39;alimentation de carburant amélioré
EP1577530B1 (fr) Dispositif et méthode d&#39;allumage d&#39;un système de post-combustion pour turbo-réacteur à double flux
EP0933594A1 (fr) Chambre de combustion de turbine à gaz fonctionnant au carburant liquide
FR2627229A1 (fr) Systeme de purge pour le dispositif d&#39;injection de carburant d&#39;un moteur a turbine et ce moteur
EP0031770B1 (fr) Perfectionnements apportés aux moteurs à combustion interne suralimentés, notamment aux moteurs Diesel
FR2922629A1 (fr) Chambre de combustion a dilution optimisee et turbomachine en etant munie
CH641284A5 (fr) Dispositif regulateur de la pression d&#39;un fluide.
EP3156635A1 (fr) Moteur fusée à torche d&#39;allumage versatile
WO2009144408A2 (fr) Chambre de combustion annulaire de moteur a turbine a gaz
EP0301950B1 (fr) Moteur à combustion interne suralimenté équipé d&#39;une chambrede combustion auxiliaire
EP0499535B1 (fr) Chambre de combustion pour turboréacteur à faible niveau d&#39;émissions polluantes
EP2076659A1 (fr) Ligne d&#39;echappement munie d&#39;un injecteur de carburant et de moyens d&#39;homogeneisation des gaz brules
EP0569300B1 (fr) Chambre de combustion comportant des passages réglables d&#39;admission de comburant primaire
CA2204591A1 (fr) Systeme d&#39;injection a geometrie variable adoptant un debit d&#39;air en fonction du regime moteur
FR2704628A1 (fr) Chambre de combustion comportant un système d&#39;injection de comburant à géométrie variable.
EP0939216B1 (fr) Moteur mixte susceptible de mettre en oeuvre au moins un mode statoréacteur et un mode superstatoréacteur
FR2662783A1 (fr) Dispositif de tourbillonnement a geometrie variable et a auto-actionnement.
WO2018134501A2 (fr) Chambre de combustion de turbomachine a haute permeabilite
EP0967437B1 (fr) Amélioration aux appareils à combustion comportant plusieurs conduits de transport de comburant
FR3071550A1 (fr) Chambre annulaire de combustion
FR3068076A1 (fr) Systeme de combustion a volume constant avec flux de contournement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000615

AKX Designation fees paid

Free format text: BE DE GB IT NL

17Q First examination report despatched

Effective date: 20031015

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69922437

Country of ref document: DE

Date of ref document: 20050113

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050319

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69922437

Country of ref document: DE

Owner name: TURBOMECA, FR

Free format text: FORMER OWNERS: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR; TURBOMECA, BORDES, PYRENEES ATLANTIQUES, FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 69922437

Country of ref document: DE

Owner name: TURBOMECA, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, TURBOMECA, , FR

Effective date: 20110329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69922437

Country of ref document: DE

Representative=s name: VONNEMANN, KLOIBER & KOLLEGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130424

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69922437

Country of ref document: DE

Representative=s name: VKK PATENTANWAELTE, DE

Effective date: 20130618

Ref country code: DE

Ref legal event code: R082

Ref document number: 69922437

Country of ref document: DE

Representative=s name: VONNEMANN, KLOIBER & KOLLEGEN, DE

Effective date: 20130618

Ref country code: DE

Ref legal event code: R081

Ref document number: 69922437

Country of ref document: DE

Owner name: TURBOMECA, FR

Free format text: FORMER OWNERS: IFP ENERGIES NOUVELLES, RUEIL-MALMAISON, FR; TURBOMECA, BORDES, PYRENEES ATLANTIQUES, FR

Effective date: 20130618

Ref country code: DE

Ref legal event code: R081

Ref document number: 69922437

Country of ref document: DE

Owner name: TURBOMECA, FR

Free format text: FORMER OWNER: IFP ENERGIES NOUVELLES, TURBOMECA, , FR

Effective date: 20130618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130424

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20140116 AND 20140122

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180419

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180420

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180419

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69922437

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190517