EP0962013B1 - Lambda/4-absorber mit einstellbarer bandbreite - Google Patents

Lambda/4-absorber mit einstellbarer bandbreite Download PDF

Info

Publication number
EP0962013B1
EP0962013B1 EP98900841A EP98900841A EP0962013B1 EP 0962013 B1 EP0962013 B1 EP 0962013B1 EP 98900841 A EP98900841 A EP 98900841A EP 98900841 A EP98900841 A EP 98900841A EP 0962013 B1 EP0962013 B1 EP 0962013B1
Authority
EP
European Patent Office
Prior art keywords
absorber
absorber according
resonators
resonator
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98900841A
Other languages
English (en)
French (fr)
Other versions
EP0962013A1 (de
Inventor
Robert Van Ligten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Autoneum International AG
Original Assignee
Rieter Automotive International AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rieter Automotive International AG filed Critical Rieter Automotive International AG
Publication of EP0962013A1 publication Critical patent/EP0962013A1/de
Application granted granted Critical
Publication of EP0962013B1 publication Critical patent/EP0962013B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • the invention relates to a ⁇ / 4 absorber Absorption of sound, such as that of machines, in particular of vehicles, is produced with a variety of tubular ⁇ / 4 resonators, the mouth of which is a sound reflecting Adjacent area.
  • Helmholtz absorbers It is also known to sound absorbers from a variety differently dimensioned Helmholtz resonators build. Such Helmholtz absorbers are in the Practice not enforced for various reasons. In particular such Helmholtz absorbers are difficult to dimension and / or fabricate and unsuitable to to be used in heavily polluting environments can.
  • This difference is essentially in the same time apparent mass and compressibility of the Air in the resonator and can be recognized in particular be that with the ⁇ / 4 resonators the resonance frequency is determined directly by the standing wave, its wavelength a quarter of the length of the tubular resonator is while the acoustic functioning and resonance of Helmholtz resonators using a spring-mass system must be described and determined.
  • GB 2 038 410 is an acoustically effective lining for Aircraft engines are known in which a variety of Helmholtz resonators can be combined with ⁇ / 4 resonators. These resonators will packed as tightly as possible to achieve the highest possible absorption.
  • the Openings of these resonators are with a perforated sheet or Non-woven fabric (with a relatively high acoustic resistance) covered to the acoustic coupling to the external sound field improve.
  • DE 94 08 118 discloses a sound absorber with a plurality of tubular recesses or channels, which are in a porous Absorber material are used.
  • the openings of the individual ⁇ / 4 tubes are covered with a porous foam, a nonwoven or a thin film.
  • the cavities are with another sound-absorbing material completely or partially filled.
  • Such a ⁇ / 4 absorber is described, for example, in WO 96/23294 and comprises a multiplicity of tubular resonators, the sound openings of which adjoin a surface, in such a way that the interaction zones (in which the incident sound wave and the standing waves formed in the individual resonators are located Waves destructively interfering) of the individual resonator openings are distributed as far as possible and at the same time do not substantially overlap.
  • Such ⁇ / 4 resonators basically absorb in a narrow frequency range around their resonance frequency f 0 . The width of this frequency range depends on the quality factor Q of the resonators, respectively. on the size of the energy losses that occur during resonance.
  • ⁇ / 4 absorbers can be embedded in any dense, reverberant material, such as, for example, metal, plastic, ceramic or glass.
  • any dense, reverberant material such as, for example, metal, plastic, ceramic or glass.
  • the energy losses are very small, ie the Q factor and the terminating impedance are very high. This leads to undesirably narrow resonance absorption curves.
  • a ⁇ / 4 absorber with the features of claim 1.
  • a heat sink is formed by any material which can absorb and dissipate heat from the temperature fluctuations in the air caused by pressure fluctuations. Those skilled in the field of noise protection are familiar with such materials.
  • a plug made of closed-pore viscoelastic foam Another practical possibility is seen in the use of a plug made of closed-pore viscoelastic foam. Another possibility is to bring about energy losses in the mouth area by installing a - low - air flow resistance, for example a "grid". In the embodiment of a deep-drawn film with a cover plate, such a “grid” can be produced by not removing the end to be opened, but rather only perforating it.
  • the present invention thus allows efficient for the first time ⁇ / 4 absorber industrial, i.e. inexpensive to manufacture.
  • the present invention also enables Construction of multifrequency absorbers in a simple way, by forming a wider resonant frequency band several differently dimensioned ⁇ / 4 resonators with increased sound energy loss in the muzzle according to the invention and floor area can be combined.
  • the principle of operation of the ⁇ / 4 absorber 1 according to the invention will be explained in more detail with reference to FIG. 1. It can be seen from this figure that the opening of the ⁇ / 4 resonator 2 lies in a sound-reflecting surface A.
  • Z o is used to denote the characteristic impedance of the air.
  • the sound impedance in the floor area 3 is referred to below as Z T and, in this simplified model, encompasses all sound energy losses inside the resonator (where Z T is proportional to the quality factor Q).
  • an interaction zone S 1 is formed on the reflecting surface A, in which the incident sound wave destructively interferes with the standing wave formed in the resonator 2.
  • this can be achieved by using soft, ie viscoelastic, closed-pore foams or other heat-exchanging materials in the bottom region of the ⁇ / 4 resonators, it being possible to choose all materials which lead to energy dissipation in the event of high pressure fluctuations.
  • an impedance ratio Z T / Z o 25 results for 100% absorption. Since Z o corresponds to the characteristic impedance of the air, that is has a value of approx. 400 Ns / m 3 , the required sound impedance Z T in the floor area is approx. 25 * 400 Ns / m 3 . Unfortunately, such high impedance values are difficult to achieve today.
  • the present invention also makes use of the knowledge that the following relationship applies to the resonance frequency for the impedance ratio Z T / Z o in the bottom region 3 and the impedance ratio Z o / Z mouth in the mouth region 4:
  • Z T / Z O Z O / Zünd
  • the frequency response respectively.
  • the absorption characteristic of this resonator has a bandwidth B C of only 5.1%.
  • FIG. 2b clearly shows the absorption behavior of the multifrequency absorber according to the invention.
  • an absorption behavior is shown, as shown by curve V.
  • the curve V results from the sum of the absorption characteristics S 1 , S 2 and S 3 generated by the individual narrowband absorbers.
  • This curve V shows the disadvantages of the multifrequency absorbers created with conventional narrowband absorbers.
  • This curve V follows the frequency response of the individual narrowband absorbers and drops sharply between the corresponding resonance frequencies f 1 , f 2 and f 3 , ie shows poor absorption in this intermediate range.
  • the ⁇ / 4 absorbers according to the invention it is possible to create a broad absorption band W with a constantly high absorption capacity. It is clear from FIG. 2b that the ⁇ / 4 absorbers according to the invention have a larger bandwidth B than the conventional narrowband absorbers. In the case of multifrequency absorbers, this leads to significant overlaps in the absorption characteristics T 1 , T 2 and T 3 of the individual ⁇ / 4 absorbers in the areas lying between the individual resonance frequencies f 1 , f 2 and f 3 .
  • Figures 3a, 3b, 3c and 3d show embodiments of the ⁇ / 4 absorber according to the invention. From Figure 3a it can be seen that the resonator 2 has a head part 5, in which has a variety of perforations, in particular Slots 6 is introduced. In addition to such a headboard 5 of such, can according to the invention a soft or in the bottom region 3 of the resonator 2 heat-exchanging material 7 may be attached (FIGS. 3a, 3c). In a further embodiment of the grid-like Headboard 5 can instead of slit-like perforations 6 holes 8 can also be provided (Figure 3b).
  • a suitable energy-dissipating Materials 7 are materials to be considered which has a large heat capacity relative to air and a have as large a surface as possible, such as open-pore Foam with small cells, cotton-like fibers, granular marerial or porous ceramic material. As soft Materials come in closed pore, viscoelastic Foams or other materials in question at high Pressure fluctuations dissipate energy.
  • Figure 4 shows another industrially in a simple manner Realizable multi-frequency absorber 9 with a variety different sized resonators 2.
  • this one from one Nonwoven fabric or foam carrier layer 10, in which tubular depressions 11 are formed.
  • These tubular depressions 11 can be with a Adhesive layer 12 to be coated on the one hand, the pores of the To close the carrier layer 10 in this area, and on the other hand, a cover film 13 on this carrier layer 10 to fix.
  • the holes 8 or slots according to the invention 6 can be introduced into this cover sheet 13.
  • the molded one Carrier layer 10 instead of being provided with a cover film 11, to be attached to a solid outer skin, e.g. a bonnet and the perforations 8, 6 in the deformed area 14 to mount the carrier layer 10.
  • the ⁇ / 4 absorbers according to the invention can be simplified Manufacture wise industrially.
  • these are extruded in a known manner, for example as extruded Plates with tube-like depressions, which are covered with a second plate become.
  • these can be according to the invention Absorber also with the help of deep-drawing or Manufacture injection molding technology.
  • In another form of production can directly corrugated material into which the perforations according to the invention introduced will be used.
  • ⁇ / 4 resonators according to the invention in a suitable manner can be dimensioned and / or differently dimensioned ⁇ / 4 resonators to form a broadband absorber can be combined with each other.
  • the resonators according to the invention individually, in Groups with similar resonators (monofrequency absorbers) or in groups with different dimensions Resonators (multifrequency absorbers) manufactured and used can be.
  • the inventive Absorber also with conventional fibrous or foamed absorbers can be combined and in particular be coordinated so that this in the area of the absorption drop are effective against low frequencies.
  • Your preferred application is in land and aircraft seen just like transformers, generators, Gearboxes or other machines of any kind.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)

Description

Die vorliegende. Erfindung betrifft einen λ/4-Absorber zur Absorption von Schall, wie er von Maschinen, insbesondere von Fahrzeugen, erzeugt wird, mit einer Vielzahl röhrchenförmiger λ/4-Resonatoren, deren Mündung an eine schallreflektierende Fläche angrenzt.
Das Bestreben der modernen Fahrzeug- und Maschinenindustrie ist es, die von den Maschinen resp. Fahrzeugen erzeugten Geräusche zu verringern oder ganz zu eliminieren. Zur Schallabsorption werden heute im wesentlichen Matten aus Faserdämmstoffen oder offenporige Schäume verwendet, die um die Lärmquellen gelegt werden resp. in deren unmittelbarer Umgebung montiert werden. Deren Verwendung ist jedoch in stark verschmutzenden Umgebungen eingeschränkt, da sich diese offenporigen Materialien rasch mit Oel, Wasser oder Staub anreichern und dadurch ihre schallabsorbierende Wirksamkeit verlieren.
Es ist auch bekannt, Schallabsorber aus einer Vielzahl unterschiedlich dimensionierter Helmholtz-Resonatoren aufzubauen. Solche Helmholtz-Absorber haben sich in der Praxis aus verschiedenen Gründen nicht durchgesetzt. Insbesondere sind solche Helmholtz-Absorber nur schwierig zu dimensionieren und/oder zu fabrizieren und ungeeignet, um in stark verschmutzenden Umgebungen verwendet werden zu können.
Es sind deshalb auch schon Schallabsorber vorgeschlagen worden, die aus einer Vielzahl röhrchenförmiger Resonatoren bestehen. Diese röhrchenförmigen Resonatoren können derart montiert werden, dass sich allfällige Verschmutzungen oder Nässe darin nicht verfangen können. Darüberhinaus unterscheiden sich diese röhrchenförmigen Resonatoren in ihrer akustischen Funktionsweise von Helmholtz-Resonatoren und sind dem Fachmann unter dem Namen λ/4-Resonatoren bekannt. Dieser Unterschied liegt im wesentlichen in der gleichzeitig in Erscheinung tretenden Masse und Kompressibilität der Luft im Resonator und kann insbesondere daran erkannt werden, dass bei den λ/4-Resonatoren die Resonanzfrequenz direkt durch die stehende Welle bestimmt wird, deren Wellenlänge ein Viertel der Länge des röhrchenförmigen Resonators ist, während die akustische Funktionsweise und Resonanz von Helmholtz-Resonatoren durch ein Feder-Masse-System beschrieben und bestimmt werden muss.
Aus der GB 2 038 410 ist eine akustisch wirksame Auskleidung für Flugzeugtriebwerke bekannt, bei welcher eine Vielzahl von Helmholtz-Resonatoren mit λ/4-Resonatoren kombiniert werden. Diese Resonatoren werden so dicht wie möglich gepackt, um eine möglichst hohe Absorption zu erzielen. Die Öffnungen dieser Resonatoren sind mit einem perforierten Blech oder einem Faservlies (mit einem verhältnismässig hohem akustischem Widerstand) abgedeckt, um die akustische Ankopplung an das äussere Schallfeld zu verbessern.
Die DE 94 08 118 offenbart einen Schallabsorber mit einer Mehrzahl von röhrchenförmigen Aussparungen oder Kanälen, welche in ein poröses Absorbermaterial eingesetzt sind. Die Öffnungen der einzelnen λ/4-Röhrchen sind mit einem porösen Schaum, einem Vliesstoff oder einer dünnen Folie abgedeckt. In einer bevorzugten Ausführungsform sind die Hohlräume mit einem weiteren schallabsorbierenden Material ganz oder teilweise ausgefüllt.
Bei praktischen Ausführungen der Helmholtz-Resonatoren lassen sich verschiedene Annahmen, welche zur Vorausberechnung der Resonanzfrequenz getroffen werden, nicht realisieren. So können bspw. die Wände der Helmholtzresonatoren nicht so steif gebaut werden, dass sich diese unter den Druckschwankungen bei Resonanz nicht deformieren, oder kann die Masse der Luft im Halsbereich der Helmholtzresonatoren nicht exakt bestimmt werden. Die Vorteile der λ/4-Resonatoren gegenüber den Helmholtz-Resonatoren sind also im wesentlichen in der genaueren Vorausbestimmbarkeit der Absorptionswirkung, deren geringeren Verschmutzungsgefahr und deren einfacheren Dimensionierung und Fabrikation zu sehen.
Ein solcher λ/4-Absorber ist bspw. in der WO 96/23294 beschrieben und umfasst eine Vielzahl röhrchenförmiger Resonatoren, deren Schallöffnungen an eine Fläche angrenzen, derart, dass die Wechselwirkungszonen (in denen die auftreffende Schallwelle und die in den einzelnen Resohatoren ausgebildeten stehenden Wellen destruktiv interferierenden) der einzelnen Resonatorenöffnungen möglichst flächendeckend verteilt sind und gleichzeitig nicht wesentlich überlappen. Solche λ/4-Resonatoren absorbieren grundsätzlich in einem engen Frequenzbereich, um deren Resonanzfrequenz f0. Die Breite dieses Frequenzbereichs ist abhängig vom Qualitätsfaktor Q der Resonatoren, resp. von der Grösse der Energieverluste, welche bei der Resonanz auftreten. λ/4-Absorber können, wie in dieser WO 96/23294 beschrieben, in einem beliebig dichten, schallharten Material eingebettet sein, wie bspw. Metall, Kunststoff, Keramik oder Glas. Bei der praktischen Anwendung dieser Absorber, insbesondere wenn ein breiteres Frequenzband durch eine Vielzahl von Resonatoren unterschiedlicher Länge erreicht werden soll, ist es wichtig, die Energieverluste in einfacher Weise beeinflussen zu können. Bei gewissen Ausführungsformen, z.B. bei tiefgezogenen Halbröhrchen, welche mit einer Platte komplettiert werden, sind die Energieverluste sehr klein, d.h. der Q-Faktor und die Abschlussimpedanz sehr hoch. Dies führt zu unerwünscht schmalen Resonanz-Absorptionskurven.
Es ist also Ziel der vorliegenden Erfindung, akustisch hochwirksame λ/4-Absorber mit einstellbare Bandbreite in einfacher Weise herstellen zu können.
Erfindungsgemäss wird dies durch einen λ/4-Absorber mit den Merkmalen des Anspruchs 1 erreicht. Insbesondere wird vorgesehen, die Schallimpedanz ZMünd im Mündungsbereich der λ/4-Resonatoren durch einen perforierten Kopfteil zu erhöhen, eventuell auch zusätzliche Energieverluste im Bodenbereich durch das Einsetzen von weichem und/oder wärmetauschendem Material zu erzeugen, um so ZT zu reduzieren. Dies kann also dadurch erreicht werden, dass im Bodenbereich der Resonatoren, wo die Druckschwankungen sehr gross sind, eine Wärmesenke mit grosser Kontaktfläche zur Luft vorgesehen wird. Eine solche Wärmesenke wird durch jedes Material gebildet, welches aus den von Druckschwankungen erzeugten Temperaturfluktuationen der Luft Wärme aufnehmen und ableiten kann. Der Fachmann auf dem Gebiet des Lärmschutzes kennt solche Materialien zur Genüge. Eine andere praktische Möglichkeit wird in der Verwendung eines Pfropfens aus geschlossenporigem viskoelastischen Schaum gesehen.
Eine andere Möglichkeit besteht darin, im Mündungsbereich Energieverluste herbeizuführen, indem man einen - niedrigen - Luftströmungwiderstand einbaut, z.B. ein "Gitter". Bei der Ausführungsform aus einer tiefgezogenen Folie mit Abdeckplatte kann ein solches "Gitter" erzeugt werden, indem man das zu öffnende Ende nicht entfernt, sondern nur perforiert.
Es erweist sich als überraschend, dass durch die Behinderung der Luftströmung im Mündungsbereich der λ/4-Absorber nicht grundsätzlich deren Absorptionsvermögen beeinträchtigt wird, sondern dass dadurch eine Absorption mit grösserer Bandbreite des Resonanzfrequenzgangs erreicht werden kann.
Die vorliegende Erfindung erlaubt also erstmals effiziente λ/4-Absorber industriell, d.h. kostengünstig herzustellen. Darüberhinaus ermöglicht die vorliegende Erfindung auch die Konstruktion von Multifrequenzabsorbern in einfacher Weise, indem zur Bildung eines breiteren Resonanzfrequenzbandes mehrere verschieden dimensionierte λ/4-Resonatoren mit erfindungsgemäss erhöhtem Schallenergieverlust im Mündungs- und Bodenbereich kombiniert werden.
Im folgenden soll die Erfindung anhand der Figuren und mit Hilfe von Ausführungsbeispielen näher erläutert werden. Dabei zeigen:
Fig. 1:
Prinzipschema zur Funktionsweise der λ/4-Resonatoren;
Fig. 2a:
Diagramm zum Absorptionsverhalten des erfindungsgemässen λ/4-Absorbers;
Fig. 2b:
Diagramm zum Absorptionsverhalten des erfindungsgemässen Multifrequenz-Absorbers;
Fig. 3a:
Ansicht einer ersten Ausführungsform eines Resonators mit geschlitztem Kopfteil für den erfindungsgemässen λ/4-Absorber;
Fig. 3b:
Ansicht einer zweiten Ausführungsform eines Resonators mit gelochtem Kopfteil für den erfindungsgemässen λ/4-Absorber;
Fig. 3c:
Ansicht einer weiteren Ausführungsform eines Resonators mit wärmetauschendem Material im Bodenteil für den erfindungsgemässen λ/4-Absorber;
Fig. 3d:
Ansicht einer besonderen Ausführungsform eines Resonators bei dem Mündungsbereich und Bodenbereich gegeneinander geneigt sind;
Fig. 4:
Querschnitt einer praktischen Ausführungsform des erfindungsgemässen λ/4-Absorbers.
Die prinzipielle Funktionsweise der erfindungsgemässen λ/4-Absorber 1 soll anhand der Figur 1 näher erläutert werden. Aus dieser Figur ist ersichtlich, dass die Öffnung des λ/4-Resonators 2 in einer schallreflektierenden Fläche A liegt. Im folgenden soll mit Zo die charakteristische Impedanz der Luft bezeichnet werden. Die Schallimpedanz im Bodenbereich 3 wird im folgenden mit ZT bezeichnet und umfasst in diesem vereinfachten Modell alle Schallenergieverluste im Innern des Resonators, (wobei ZT proportional zum Qualitätsfaktor Q ist). Für eine vorgegebene Länge 1 und eine vorgegebenen Querschnittsfläche S2 des λ/4-Resonators 2 bildet sich auf der reflektierenden Fläche A eine Wechselwirkungszone S1 aus, in welcher die auftreffende Schallwelle mit der im Resonator 2 gebildeten stehenden Welle destruktiv interferiert. Diese Wechselwirkungszone S1 ist auch als "äquivalente Absorptionsfläche" bekannt. Bei einer 100% Absorption wird im wesentlichen die Schallimpedanz im Bereich der Wechselwirkungszone S1 der charakteristischen Impedanz Zo der Luft entsprechen. Setzt man ausserdem voraus, dass im Falle einer 100% Absorption im Mündungsbereich 4 des λ/4-Resonators 2 der Schalldruck und der Teilchenfluss kontinuierlich sind, lässt sich folgende einfache Gleichung aufstellen: S1/S2 = ZT/Zo.
Dies gilt, wie in der genannten WO 96/23294 dargestellt, nicht nur für senkrecht zur Fläche stehende Resonatoren, sondern ebenso gut auch für an oder in dieser Fläche eingebaute Resonatoren. Wenn diese Gleichung nicht erfüllt ist, besteht keine 100% Absorption, d.h. besteht eine Restreflektion, welche entweder von Reflektionen an der reflektierenden Fläche A oder von Reflektionen am Resonatorboden 3 dominiert wird. Wenn man einen Absorber 1 mit hohem Absorptionsvermögen konstruieren will, sind also S1, S2 und ZT nicht frei wählbar und müssen aufeinander abgestimmt werden. Darüberhinaus bestimmt die gewünschte Bandbreite des Frequenzgangs den Wert von ZT. Demzufolge ist es wichtig, ZT und damit die Energieverluste im Resonator in gewünschter Weise einstellen zu können. Dies kann erfindungsgemäss durch das Einsetzen von weichen, d.h. viskoelastischen, geschlossenporigen Schäumen oder andere wärmetauschende Materialien im Bodenbereich der λ/4-Resonatoren erzielt werden, wobei alle Materialien gewählt werden können, welche bei hohen Druckschwankungen zu Energiedissipationen führen.
Nimmt man bspw. einen Resonator 2, für welchen das Flächenverhältnis S1/S2 = 25 ist, dann ergibt sich für eine 100% Absorption ein Impedanzverhältnis ZT/Zo = 25. Da Zo der charakteristischen Impedanz der Luft entspricht, also einen Wert von ca. 400 Ns/m3 aufweist, beträgt die erforderliche Schallimpedanz ZT im Bodenbereich ca. 25 * 400 Ns/m3. Leider sind derartig hohe Impedanzwerte heute nur schwierig zu realisieren.
Die vorliegende Erfindung macht darüberhinaus von der Erkenntnis Gebrauch, dass bei der Resonanzfrequenz für das Impedanzverhältnis ZT/Zo im Bodenbereich 3 und das Impedanzverhältnis Zo/ZMünd im Mündungsbereich 4 folgende Beziehung gilt: ZT/Zo = Zo/ZMünd
Dies führt zu der überraschenden Einsicht, dass anstelle einer Erhöhung der Energieverluste im Bodenbereich 3 des λ/4-Resonators 2, ebensogut die Energieverluste im Mündungsbereich 4 desselben erhöht werden können.
Für obiges Beispiel, bei welchem S1/S2 = 25 gewählt worden ist, ergibt sich damit ein Impedanzverhältnis Zo/ZMünd = 25, resp. ZMünd = 1/25 * Zo = 1/25 * 400 Ns/m3. Dieser Wert entspricht etwa dem Strömungswiderstand, resp. der Schallimpedanz eines grobmaschigen Gitters (Fliegengitter) und kann damit in einfacher Weise, d.h. industriell realisiert werden.
Grundsätzlich könnte man jedoch an jeder Stelle des Resonators durch den Einbau geeigneter Luftströmungswiderstände die gewünschten Energiedissipationen herbeiführen.
Diese Überlegungen können durch experimentelle Messungen, wie in Figur 2a dargestellt, bestätigt werden. Kurve C in Figur 2a zeigt den Frequenzgang eines 84mm tiefen und 14mm Innendurchmesser aufweisenden λ/4-Absorbers mit einem Flächenverhältnis von S1/S2 = 50, welcher keine Mittel zur Erhöhung des Schallenergieverlustes aufweist. Der Frequenzgang, resp. die Absorptions-Charakteristik dieses Resonators weist eine Bandbreite BC von lediglich 5.1% auf.
Kurve D in Figur 2a stellt den Frequenzgang eines erfindungsgemässen akustisch optimierten λ/4-Absorbers dar. Bei diesem Absorber beträgt das Flächenverhältnis S1/S2 = 25 und weist die Absorptions-Charakteristik eine Bandbreite BD von ca. 11% auf.
Diese Kurven machen deutlich, dass durch die Veränderung des Luftströmungswiderstandes, resp. der Schallimpedanz im Mündungsbereich 4 und/oder im Bodenbereich 3 des Resonators 2 die Frequenzgangbreite B beeinflusst werden kann und gleichzeitig eine fast 100% Absorption realisierbar ist.
Figur 2b macht das Absportionsverhalten des erfindungsgemässen Multifrequenz-Absorbers deutlich. Bei der Verwendung konventioneller λ/4-Resonatoren (Schmalbandabsorber) mit unterschiedlicher Resonanzfrequenz zeigt sich ein Absorptionsverhalten, wie dies durch die Kurve V dargestellt ist. Die Kurve V ergibt sich aus der Summe der von den einzelnen Schmalbandabsorbern erzeugten Absorptionscharakteristiken S1, S2 und S3. Diese Kurve V macht die Nachteile der mit herkömmlichen Schmalbandabsorbern geschaffenen Multifrequenzabsorbern deutlich. Diese Kurve V folgt dem Frequenzgang der einzelnen Schmalbandabsorber und fällt zwischen den entsprechenden Resonanzfrequenzen f1, f2 und f3 stark ab, d.h. zeigt in diesem Zwischenbereich eine schlechte Absorption. Demgegenüber ist es mit den erfindungsgemässen λ/4-Absorbern möglich, ein breites Absorptionsband W mit konstant hohem Absorptionsvermögen zu schaffen. Aus Figur 2b wird deutlich, dass die erfindungsgemässen λ/4-Absorber gegenüber den konventionellen Schmalbandabsorbern eine grössere Bandbreite B aufweisen. Dies führt bei Multifrequenzabsorbern zu wesentlichen Überlappungen der Absorptionscharakteristiken T1, T2 und T3 der einzelnen λ/4-Absorber in den zwischen den einzelnen Resonanzfrequenzen f1, f2 und f3 liegenden Bereichen. Diese Überlappungen führen dazu, dass die Summe W der durch die erfindungsgemässen Einzelabsorber erzeugten Absorptionen T1, T2 und T3 auch im Bereich zwischen den Resonanzfrequenzen f1, f2 und f3 zu einer fast 100% Absorption führt. Dies zeigt die Kurve W deutlich. Damit wird auch deutlich, dass mit den erfindungsgemässen λ/4-Absorbern Multifrequenz-absorber mit einer beliebigen Absorptionscharakteristik geschaffen werden können.
Figuren 3a, 3b, 3c und 3d zeigen Ausführungsformen der erfindungsgemässen λ/4-Absorber. Aus Figur 3a ist ersichtlich, dass der Resonator 2 einen Kopfteil 5 aufweist, in welchem eine Vielzahl von Perforationen, insbesondere Schlitze 6 eingebracht ist. In Ergönzung eines solchen Kopfteils 5 eines solchen, kann erfindungsgemäss im Bodenbereich 3 des Resonators 2 ein weiches oder wärmetauschendes Material 7 angebracht sein (Figuren 3a, 3c). In einer weiteren Ausgestaltung des gitterartigen Kopfteils 5 können anstelle von schlitzartigen Perforationen 6 auch Löcher 8 vorgesehen sein (Figur 3b). Die geometrische Gestaltung des Resonators 2, die Wahl des wärmetauschenden Materials 7 und die Form, Dimensionierung und Anzahl der Perforationen 6, 8 liegen im Bereich des gewöhnlichen fachmännischen Handelns. In Figur 3d ist eine besondere Ausführungsform dargestellt, bei welcher der λ/4-Resonator als Raumkörper mit zwei trapezförmigen Seitenflächen ausgebildet ist. Dies führt dazu, dass der Mündungsbereich 4 und der Bodenbereich 3, respektive die Öffnungsfläche und die Bodenfläche gegeneinander geneigt sind. Damit kann bspw. in vorgesehener Weise die Fläche des Bodenbereichs 3 vergrössert werden und damit dessen dissipative Wirksamkeit beeinflusst werden. Auf dieselbe Weise bereiches 4 geneigt werden. Als geeignete energiedissipierende Materialien 7 sind solche Materialien zu betrachten, die relativ zu Luft eine grosse Wärmekapazität und eine möglichst grosse Oberfläche aufweisen, wie bspw. offenporiger Schaum mit kleinen Zellen, watteartige Faserstoffe, körniges Marerial oder poröses Keramikmaterial. Als weiche Materialien kommen geschlossenporige, viskoelastische Schäume oder andere Materialien in Frage, die bei hohen Druckschwankungen Energie dissipieren.
Figur 4 zeigt einen anderen industriell in einfacher Weise realisierbaren Multifrequenzabsorber 9 mit einer Vielzahl unterschiedlich dimensionierter Resonatoren 2. In einer bevorzugten Ausführungsform weist dieser eine aus einem Faservlies oder Schaum gefertigte Trägerschicht 10 auf, in welche röhrchenförmige Vertiefungen 11 eingeformt sind. Diese röhrchenförmigen Vertiefungen 11 können mit einer Klebschicht 12 überzogen sein, um einerseits die Poren der Trägerschicht 10 in diesem Bereich zu verschliessen, und andererseits eine Deckfolie 13 an dieser Trägerschicht 10 zu befestigen. Die erfindungsgemässen Löcher 8 oder Schlitze 6 können in dieser Deckfolie 13 eingebracht werden. Für bestimmte Anwendungen ist auch vorgesehen, die geformte Trägerschicht 10, statt mit einer Deckfolie 11 zu versehen, an einer festen Aussenhaut, bspw. einer Motorhaube, anzubringen und die Perforationen 8, 6 im verformten Bereich 14 der Trägerschicht 10 anzubringen.
Die erfindungsgemässen λ/4-Absorber lassen sich in einfacher Weise industriell fertigen. Insbesondere können diese in bekannter Weise extrudiert werden, bspw. als extrudierte Platten mit röhrchenartigen Vertiefungen, welche mit einer zweiten Platte abgedeckt werden, hergestellt werden. Je nach Anwendungsbereich lassen sich diese erfindungsgemässen Absorber auch mit Hilfe der Tiefzieh- oder Spritzgiesstechnik herstellen. In einer weiteren Fertigungsform kann direkt wellkartonartiges Material, in welches die erfindungsgemässen Perforationen eingebracht werden, verwendet werden.
Es versteht sich, dass für die jeweiligen Anwendungen, die erfindungsgemässen λ/4-Resonatoren in geeigneter Weise dimensioniert werden können und/oder unterschiedlich dimensionierte λ/4-Resonatoren zur Bildung eines Breitbandabsorbers miteinander kombiniert werden können. Es versteht sich auch, dass die erfindungsgemässen Resonatoren, einzeln, in Gruppen mit gleichartigen Resonatoren (Monofrequenzabsorber) oder in Gruppen mit unterschiedlich dimensionierten Resonatoren (Multifrequenzabsorber) hergestellt und eingesetzt werden können. Selbstverständlich können die erfindungsgemässen Absorber auch mit herkömmlichen faserigen oder geschäumten Absorbern kombiniert werden und insbesondere so abgestimmt sein, dass diese im Bereich des Absorptionsabfalls gegen tiefe Frequenzen wirksam sind. Ihre bevorzugte Anwendung wird in Land- und Luftfahrzeugen ebenso gesehen, wie bei Transformatoren, Generatoren, Getrieben oder anderen Maschinen jeder Art.
Anwendungen im Fahrzeugbau liegen insbesondere bei Absorptionsbauteilen an Motorhauben, an Stirnwänden und Radkästen, insbesondere motorseitig, an Dachhimmeln, Türverkleidungen resp. Türhohlkörpern und Kofferraumdeckeln, in Lieferwagen oder Lastwagen, im Ladebereich, am Dach oder an den Wänden. Es versteht sich, dass diese Absorber auch im Hochbau oder Strassenbau eingesetzt werden können, insbesondere an Wänden und Decken von Wohn- oder Arbeitsräumen, in Fabrikhallen, Sporthallen, Tunnels oder an Schallschirmen entlang von Strassen oder Bahntrassées.

Claims (10)

  1. λ/4-Absorber zur Absorption von Schall, wie er von Maschinen, insbesondere von Fahrzeugen, erzeugt wird, mit mehreren röhrchenförmigen λ/4-Resonatoren (2), deren Mündungen an eine schallreflektierende Fläche (A) angrenzen, wobei die Mündungen der einzelnen λ/4-Resonatoren (2) voneinander beabstandet sind, derart dass die Wechselwirkungszonen der einzelnen Resonatorenöffnungen, in welchen die auftreffende Schallwelle mit der im Resonator gebildeten stehenden Wellen destruktiv interferiert, möglichst flächendeckend ver-teilt sind und gleichzeitig nicht wesentlich überlappen, dadurch gekennzeichnet, dass zur Einstellung der Bandbreite (B) des Resonanzfrequenzgangs (C, D) der einzelnen λ/4-Resonatoren (2), diese mit Mitteln zur Änderung der Schallenergieverluste im Mündungsbereich (4) versehen sind, welche Mittel einen niedrigen Luftströmungswiderstand aufweisen, der etwa demjenigen eines grobmaschigen Gitters entspricht.
  2. λ/4-Absorber nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel (6) zur Änderung des Energieverlustes im Mündungsbereich (4) ein Kopfteil (5) mit einer Mehrzahl schlitzförmiger Perforationen (6) umfassen.
  3. λ/4-Absorber nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel (8) zur Änderung des Energieverlustes im Mündungsbereich (4) ein Kopfteil (5) mit einer Mehrzahl lochförmiger Perforationen (8) umfassen.
  4. λ/4-Absorber nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel (6, 8) zur Änderung des Energieverlustes im Mündungsbereich (4) ein gitterartiges Kopfteil (5) umfassen.
  5. λ/4-Absorber nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das Kopfteil (5) integrierender Bestandteil des λ/4-Absorbers (2) ist.
  6. λ/4-Absorber nach Anspruch 1, dadurch gekennzeichnet, dass weitere Mittel (7) zur Änderung des Energieverlustes im Bodenbereich (3) des λ/4-Resonators (2) vorgesehen sind.
  7. λ/4-Absorber nach Anspruch 6, dadurch gekennzeichnet, dass die Mittel (7) zur Änderung des Energieverlustes im Bodenbereich (3) ein im Bodenteil des Resonators (2) vorgesehenes weiches und/oder wärmetauschendes Material umfassen.
  8. λ/4-Absorber nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Mündungsbereich (4) und der Bodenbereich (3) gegeneinander geneigt sind.
  9. Verwendung eines λ/4-Absorbers nach einem der Ansprüche 1 bis 8 als Multifrequenz-Absorber.
  10. Verwendung eines λ/4-Absorbers nach einem der Ansprüche 1 bis 8 als Monofrequenz-Absorber.
EP98900841A 1997-02-19 1998-02-04 Lambda/4-absorber mit einstellbarer bandbreite Expired - Lifetime EP0962013B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH38997 1997-02-19
CH00389/97A CH691942A5 (de) 1997-02-19 1997-02-19 Lambda/4-Absorber mit einstellbarer Bandbreite.
PCT/CH1998/000041 WO1998037541A1 (de) 1997-02-19 1998-02-04 μ/4-ABSORBER MIT EINSTELLBARER BANDBREITE

Publications (2)

Publication Number Publication Date
EP0962013A1 EP0962013A1 (de) 1999-12-08
EP0962013B1 true EP0962013B1 (de) 2002-01-02

Family

ID=4185895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98900841A Expired - Lifetime EP0962013B1 (de) 1997-02-19 1998-02-04 Lambda/4-absorber mit einstellbarer bandbreite

Country Status (7)

Country Link
US (1) US6167985B1 (de)
EP (1) EP0962013B1 (de)
JP (1) JP3242931B2 (de)
AR (1) AR011841A1 (de)
CH (1) CH691942A5 (de)
DE (1) DE59802792D1 (de)
WO (1) WO1998037541A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010006419U1 (de) 2010-05-04 2010-09-02 Emico Gmbh Breitbandig dämpfende Vorrichtung zur Schalldämpfung bei Industrieeinrichtungen, Großanlagen oder Maschinen
CN102013251A (zh) * 2009-09-07 2011-04-13 雅马哈株式会社 声学共鸣装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE508526C2 (sv) * 1997-02-12 1998-10-12 Saab Automobile Förfarande och anordning för ljuddämpning i hjul
US6821597B1 (en) 1999-03-10 2004-11-23 Magee Rieter Automotive Systems Method for manufacturing a sound insulating structure and the structure produced thereby
JP3736790B2 (ja) * 2000-04-21 2006-01-18 三菱重工業株式会社 アクティブ遮音壁
US20020153199A1 (en) * 2001-02-09 2002-10-24 Schroer Daniel R. Sound absorbing foam
US6648100B2 (en) 2001-10-24 2003-11-18 Lear Corporation Method of tuning acoustical absorption in a vehicle interior
US7029242B2 (en) * 2003-11-14 2006-04-18 Tecumseh Products Company Hermetic compressor with one-quarter wavelength tuner
US7497301B2 (en) * 2005-01-27 2009-03-03 Fleetguard, Inc. Tubular acoustic silencer
US10072256B2 (en) * 2006-05-22 2018-09-11 Abbott Products Gmbh Process for separating and determining the viral load in a pancreatin sample
WO2008154215A1 (en) * 2007-06-11 2008-12-18 Bonnie Schnitta Architectural acoustic device
JP5326472B2 (ja) * 2007-10-11 2013-10-30 ヤマハ株式会社 吸音構造
EP2085962A2 (de) * 2008-02-01 2009-08-05 Yamaha Corporation Schallabsorbierende Struktur und Fahrzeugkomponente mit schallabsorbierenden Eigenschaften
US20090223738A1 (en) * 2008-02-22 2009-09-10 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorption property
US8006802B2 (en) * 2008-09-02 2011-08-30 Yamaha Corporation Acoustic structure and acoustic room
JP5691197B2 (ja) * 2009-03-06 2015-04-01 ヤマハ株式会社 音響構造体、プログラムおよび設計装置
ITPI20100033A1 (it) * 2010-03-23 2011-09-24 Federico Nardini Dispositivo fonoassorbente particolarmente per barriere antirumore.
JP5958523B2 (ja) * 2010-05-17 2016-08-02 ヤマハ株式会社 音響構造体
US8393437B2 (en) * 2011-02-15 2013-03-12 Westinghouse Electric Company Llc Noise and vibration mitigation system for nuclear reactors employing an acoustic side branch resonator
JP2013015118A (ja) * 2011-07-06 2013-01-24 Toyota Boshoku Corp 吸音構造体
JP5810884B2 (ja) * 2011-12-15 2015-11-11 ヤマハ株式会社 音響構造体
FR3010225B1 (fr) * 2013-08-29 2016-12-30 Centre Nat Rech Scient Panneau acoustique absorbant
JP6327932B2 (ja) * 2014-05-07 2018-05-23 大成建設株式会社 ヘルムホルツ共鳴を利用した吸音器
US9618151B2 (en) 2015-02-26 2017-04-11 Adriaan DeVilliers Compact modular low resistance broadband acoustic silencer
US11047304B2 (en) * 2018-08-08 2021-06-29 General Electric Company Acoustic cores with sound-attenuating protuberances
DE102020100445A1 (de) 2020-01-10 2021-07-15 Viessmann Werke Gmbh & Co Kg Wärmetechnisches Gerät
US11854522B2 (en) * 2020-11-10 2023-12-26 Toyota Motor Engineering & Manufacturing North America, Inc. Sound absorbing structure having one or more acoustic scatterers attached to a transparent panel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160491A (en) * 1978-07-25 1979-07-10 Bridgestone Tire Co., Ltd. Perlite sound absorbing plate and sound insulating wall composed of the same
GB2038410B (en) * 1978-12-27 1982-11-17 Rolls Royce Acoustic lining utilising resonance
US4441578A (en) * 1981-02-02 1984-04-10 Rohr Industries, Inc. Encapsulated bulk absorber acoustic treatments for aircraft engine application
DE3133844A1 (de) * 1981-08-27 1983-03-17 Intreprinderea de Prefabricate din Beton "Granitul", Bucuresti Fertigteilelement zur schalldaemmung
FR2615994B1 (fr) * 1987-05-25 1989-07-28 Alsthom Revetement de paroi absorbant les ondes acoustiques en milieu liquide
JPH02122923A (ja) * 1988-11-01 1990-05-10 Fuji Heavy Ind Ltd 複合材パネルおよびその製造方法
US5457291A (en) * 1992-02-13 1995-10-10 Richardson; Brian E. Sound-attenuating panel
DE9408118U1 (de) * 1994-05-17 1995-09-14 M. Faist GmbH & Co KG, 86381 Krumbach Schallabsorber
CH690143A5 (de) * 1995-01-27 2000-05-15 Rieter Automotive Int Ag Lambda/4-Schallabsorber.
JP3119193B2 (ja) * 1997-03-07 2000-12-18 日産自動車株式会社 遮音板構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013251A (zh) * 2009-09-07 2011-04-13 雅马哈株式会社 声学共鸣装置
DE202010006419U1 (de) 2010-05-04 2010-09-02 Emico Gmbh Breitbandig dämpfende Vorrichtung zur Schalldämpfung bei Industrieeinrichtungen, Großanlagen oder Maschinen
WO2011138004A1 (de) 2010-05-04 2011-11-10 Emico Gmbh Breitbandig dämpfende vorrichtung zur schalldämpfung bei industrieeinrichtungen, grossanlagen oder maschinen

Also Published As

Publication number Publication date
EP0962013A1 (de) 1999-12-08
US6167985B1 (en) 2001-01-02
CH691942A5 (de) 2001-11-30
JP2001512582A (ja) 2001-08-21
WO1998037541A1 (de) 1998-08-27
JP3242931B2 (ja) 2001-12-25
AR011841A1 (es) 2000-09-13
DE59802792D1 (de) 2002-02-28

Similar Documents

Publication Publication Date Title
EP0962013B1 (de) Lambda/4-absorber mit einstellbarer bandbreite
DE10347084B4 (de) Abstimmbare, den Schall absorbierende, und die Luft filternde Dämpfungseinrichtung und Herstellungsverfahren
EP0806030B1 (de) l/4-SCALLABSORBER
EP1562743B1 (de) Schallisolierender hitzeschutzschild
EP1697923B1 (de) Luftschallabsorbierendes bauteil
DE4414566C2 (de) Luftschalldämpfer
EP0677429B1 (de) Schallabsorber für Kraftfahrzeuge
DE2408028C3 (de)
DE112005003232T5 (de) Schallschluckende Struktur
EP0781445A1 (de) Schichtenabsorber zum absorbieren von akustischen schallwellen
DE112018000866B4 (de) Schallabsorbierender Körper und schallabsorbierende Struktur
DE10228395C1 (de) Schall-Absorber
DE602004002864T2 (de) Bauteil zur geräuschmindenderung, insbesondere bodenplatte eines fahrzeuges
EP0683480B1 (de) Schallabsorber
DE102004050649A1 (de) Schallabsorbierender Hitzeschild
EP0605784B1 (de) Akustikplatte
DE60118221T2 (de) Schallabsorptionsvorrichtung
EP3246479B1 (de) Absorbereinheit zum absorbieren von schall
EP0682335B1 (de) Lamellenabsorber
DE3412432A1 (de) Schallabsorbierendes bauelement
DE2437947C3 (de) Anordnung zur Absorption von Luftschall
DE102019128209B4 (de) Schallabsorbierende Vorrichtung mit Noppenfolienverbund und Verwendung
DE2609872A1 (de) Schalldaempfer fuer stroemungskanaele
DE102011107484A1 (de) Schallabsorber für eine Wand oder eine Decke
DE202006017814U1 (de) Schallabsorbierendes Hitzeschild

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: LAMBDA/4 ABSORBER WITH ADJUSTABLE BAND WIDTH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010625

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020122

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020222

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020227

Year of fee payment: 5

REF Corresponds to:

Ref document number: 59802792

Country of ref document: DE

Date of ref document: 20020228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020318

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GRAF, SEIFERT + PARTNER PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020328

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050204