EP0959525A2 - Antennenanordnung und Funkgerät - Google Patents

Antennenanordnung und Funkgerät Download PDF

Info

Publication number
EP0959525A2
EP0959525A2 EP99102339A EP99102339A EP0959525A2 EP 0959525 A2 EP0959525 A2 EP 0959525A2 EP 99102339 A EP99102339 A EP 99102339A EP 99102339 A EP99102339 A EP 99102339A EP 0959525 A2 EP0959525 A2 EP 0959525A2
Authority
EP
European Patent Office
Prior art keywords
radiator element
radio
reference potential
radiator
antenna arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99102339A
Other languages
English (en)
French (fr)
Other versions
EP0959525B1 (de
EP0959525A3 (de
Inventor
Markus Hoffmeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipcom GmbH and Co KG
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0959525A2 publication Critical patent/EP0959525A2/de
Publication of EP0959525A3 publication Critical patent/EP0959525A3/de
Application granted granted Critical
Publication of EP0959525B1 publication Critical patent/EP0959525B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic

Definitions

  • the invention relates to an antenna arrangement according to the Genus of independent claim 1 and a radio according to the genus of independent claim 8.
  • the housing on a first side a hearing device and on one second side opposite the first side Includes antenna element.
  • the antenna element is on the second side of the housing is movably mounted and points in at least a first position a directed and in at least a second position is an omnidirectional Radiation pattern on.
  • the antenna arrangement according to the invention with the features of The main claim has the advantage that at least a first radiator element and at least a second Radiator element over a reference potential surface are arranged adjacent that a feed of the first radiator element via an antenna network that the second radiator element between a high impedance and one low impedance switchable with the reference potential the reference potential surface is connected that the first Radiating element resonant at the operating wavelength is executed and that the resonance of the second Radiator element compared to the resonance of the first Radiator element is slightly out of tune. That way it is not necessary for an optional switchover between directional and omnidirectional Radiation characteristic of an antenna element movable to be carried out and thus exposed to mechanical wear. Due to the electronically implemented switching between directional radiation pattern and omnidirectional Radiation characteristics are eliminated for the user comparatively cumbersome positioning of a Antenna element, so that ease of use for the user is increased.
  • An advantage is that the slight detuning of the Resonance of the second radiator element compared to the Resonance of the first radiator element by varying the geometric dimensions of the second radiator element in Comparison to the geometric dimensions of the first Radiator element can take place. This measure requires little effort and cost in production.
  • the second radiator element via a semiconductor component, preferably a PIN diode, to connect with the reference potential. That way the switching process between a high impedance and a low-resistance connection of the second radiator element control electronically with the reference potential.
  • Another advantage is that the Semiconductor component switched into a blocking state as soon as it is determined that the connection quality falls below a first predetermined value, and that the Semiconductor component switched into a conductive state is as long as the connection quality is a second exceeds the specified value. That way, at poor connection quality automatically the second Radiator element connected to the reference potential with high resistance and thus an omnidirectional radiation pattern be achieved. Accordingly, with good Connection quality the second radiator element with low resistance to be connected to the reference potential, so that a directed radiation pattern is achieved.
  • connection quality automatically between the directional radiation characteristic, for example in the case of a radio, mainly the radiation in the Prevent the user's head, and the omnidirectional radiation pattern that mainly should ensure a good connection quality, can be switched over, when exceeding one predetermined connection quality the prevention of Irradiation in the user's head has priority.
  • Another advantage is that the impedance by means of an operating element is switchable. That way the user himself is comparatively simple, that is, without Changing the position of the antenna arrangement for example with regard to the housing of the radio, the Adjust the radiation pattern to your needs.
  • a particularly simple, low-effort and cost-saving Embodiment results in a rod-shaped Formation of the first radiator element and the second Radiator element.
  • Embodiments of the invention are in the drawing shown and in the following description explained.
  • 1 shows a first embodiment a radio with antenna arrangement according to the invention
  • Figure 2 shows a second embodiment of a radio 3 shows a third antenna arrangement according to the invention
  • Figure 4 is a flow chart for a Control of the radio with the invention Antenna arrangement
  • Figure 5 is a directed Emission characteristics
  • Figure 6 is an omnidirectional Radiation pattern.
  • 1 denotes a radio, for example a mobile, a cordless phone, a handheld radio, a Company radio, a base station or the like can.
  • a radio for example a mobile, a cordless phone, a handheld radio, a Company radio, a base station or the like can.
  • the radio 1 includes one Printed circuit board which has a reference potential surface 25.
  • the reference potential surface 25 can cover a part or also over the entire printed circuit board as in FIG. 1 expand.
  • the reference potential of the reference potential area 25 is identified by the reference symbol 80.
  • Above the Reference potential areas 25 are a first on the radio 1 Radiator element 5 and a second radiator element 10 arranged adjacent to each other.
  • a hearing device 45 is arranged on a first side surface 50 of the radio device 1, a hearing device 45 is arranged. which can include a speaker in an earpiece.
  • a second opposite the first side surface 50 Side surface of the radio device 1 is identified by the reference symbol 55 featured.
  • the second radiator element 10 is the one Hearing device 45 of the radio device 1 facing first Side surface 50 facing the first side surface 50 and the third side surface 55 connecting the third Side surface 110 arranged.
  • the first radiator element 5 is the second side surface facing away from the hearing device 45 55 arranged on the third side surface 110. There is a height 95 of the first radiator element 5 slightly less than a height 100 of the second Radiator element 10.
  • the first radiator element 5 and that second radiator element 10 form an antenna arrangement.
  • the Height 95 of the first radiator element 5 is chosen so that the radiator element is operated in its ⁇ / 4 resonance. It is fed by an antenna network 30.
  • 10 received signals are from Antenna network 30 after appropriate conversion to Playback forwarded to the hearing device 45.
  • the Antenna network 30 is also with a controller 85 of Radio 1 connected to which an input unit 90 with an operating element 40 is connected.
  • the controller 85 delivers a control signal to the anode of a PIN diode 35, whose cathode is connected to the reference potential 80.
  • the Anode of PIN diode 35 is also with the second one Radiator element 10 connected.
  • the reference potential surface 25 forms a counterweight to the antenna arrangement 5, 10. If the control 85 supplies the PIN diode 35 with a high-level control signal, the PIN diode 35 becomes conductive and the second radiator element 10 is connected at its base point 150 to the reference potential 80 with a low resistance .
  • the fed first radiator element 5 is resonant at the operating wavelength ⁇ . Due to the greater height 100 of the second antenna element 10 not being fed, its resonance frequency is slightly detuned with respect to the resonance frequency of the first antenna element 5. This results in a phase shift of the current on the second radiator element 10 compared to the fed first radiator element 5 and there is a directional effect.
  • FIG. 5 shows a directional diagram of such a directed radiation characteristic 15, the greatest directivity of which occurs at 300 ° and the lowest directivity of which occurs at 120 °.
  • the location of the hearing device 45 is therefore in the range from 60 ° to 160 ° according to FIG.
  • the controller 85 uses connection data received from the antenna network 30 to check whether the field strength of a currently established radio connection and / or an error measurement of the data stream transmitted during the radio connection and / or the like can determine whether the connection quality exceeds a second predetermined value. This can be checked, for example, by checking in the controller 85 whether the field strength of the connection and / or the error rate of the data stream transmitted during the connection are below a respectively predetermined value.
  • the PIN diode 35 is driven by the controller 85 to a high level, so that the antenna arrangement 5, 10 acts as a directional radiator and, due to its radiation characteristic, reduces the radiation of electromagnetic energy into the user's head and at the same time the efficiency of the antenna arrangement 5, 10 is increased.
  • the connection quality falls below a first, correspondingly predetermined value, for example in that the radio device 1 is positioned with the antenna arrangement 5, 10 in such a clumsy manner that the antenna arrangement 5, 10 shines in the wrong direction for the current connection
  • the controller 85 controls the PIN diode 35 at low level, so that the PIN diode 35 changes to a blocking state and the second radiator element 10 is connected at its base point 150 with high resistance to the reference potential 80.
  • the antenna arrangement 5, 10 acts as an omnidirectional radiation pattern, so that the radiation power according to FIG. 6 is approximately the same for all directions and a directional diagram with omnidirectional radiation characteristic 20 results according to FIG.
  • the antenna arrangement 5, 10 has the advantage the positive ones automatically in favorable reception situations Using the properties of a directional antenna with special high directivity in a preferred direction. Should the Directional spotlights but clumsily positioned to Example if the radio 1 is on a table and in this radiates in, the radio 1 the wrong way round in the Bag is carried and in the user's body shines, or the like, so will automatically Falling below that specified for the connection quality Upgrade the antenna arrangement 5, 10 Omnidirectional characteristic switched.
  • Switching the impedance of the PIN diode 35 between conductive and blocking state or a switchover of Radiation characteristic of the antenna arrangement 5, 10 between directional and omnidirectional radiation pattern can also by means of the control element 40 on the part of User done so that the current Radiation characteristic of the antenna arrangement 5, 10 its Can adapt to needs.
  • the effect of the second radiator element 10 in the Antenna arrangement 5, 10 depends on the impedance between the Base 150 of the second radiator element 10 and the Reference potential 80, from the geometric dimensions of the second radiator element 10 compared to the geometric dimensions of the first radiator element 5 and depends on the operating frequency used. If you use the for the GSM standard (Global System for Mobile Communications) provided operating frequency range about 0.9 to 1.0 GHz and chooses a height 105 of the second Radiator element 10, which is slightly smaller than the height 95 of the first radiator element 5 is, for the GSM operating frequency range is also an effect of second radiator element 10 as a reflector if the Impedance between the base 150 of the second Radiator element 10 and the reference potential 80 low is, that is, the PIN diode 35 conducts. In this case it works the antenna arrangement 5, 10 also as a directional radiator Directional radiation pattern from the hearing device 45 path.
  • GSM Global System for Mobile Communications
  • FIG 2 shows a further embodiment for a Radio 1 with an antenna arrangement 5 according to the invention, 10.
  • the radio device according to the invention shown in Figure 2 is there constructed the same as the radio 1 according to Figure 1 and has only the difference is that the first fed Radiator element 5 now the first side surface 50 and that second lamp element 10 of the second not supplied Side surface 55 is facing.
  • the required height 105 of the second radiator element 10 is slightly larger than which is still a quarter of the operating wavelength corresponding height 95 of the first radiator element 5 choose so that in this case the second radiator element 10 acts as a director and one away from the hearing device 45 directed radiation pattern is realized.
  • the first radiator element 5 and the second radiator element 10 rod-shaped.
  • the height 95, 100, 105 des respective radiator element 5, 10 is the height of the arranged above the reference potential surface 25 in each case Staff.
  • FIG. 3 is in a with respect to the representation of Figure 1 or FIG. 2 a side view rotated by 90 ° Embodiment shown in which the first Radiator element 5 and the second radiator element 10 F-shaped are trained.
  • a first crossbar 60 of the first Radiator element 5 and a first crossbar 65 of the second Radiator element 10 is in each case with the Reference potential 80 connected.
  • Feeding the first Radiator element 5 is carried out via a second crossbar 70 of the first radiator element 5.
  • the second crossbar 70 of the first radiator element 5 is about Antenna network 30 connected to the controller 85 to which the input unit 90 is connected to the control element 40 is.
  • To the antenna network 30 is in turn the Speakers trained hearing device 45 connected, the speaker 45 arranged in an earpiece can be.
  • a second crossbar 75 of the second Radiator element 10 is at its base point 150 to the anode the PIN diode 35 connected, also by the controller 85 is controlled.
  • the cathode of the PIN diode 35 is with connected to the reference potential 80.
  • a longitudinal beam 115 of the first radiator element 5 runs perpendicular to it two crossbars 60, 70, starting with the first crossbar 60, the ends facing away from the reference potential surface 25 connecting these two crossbeams 60, 70 to one another.
  • a longitudinal beam 120 connects the two in the same way Crossbar 65, 75 of the second radiator element 10. Instead the longitudinal beams 115, 120 can accordingly areal longitudinal elements are used.
  • the second crossbar 75 of the second Radiator element 10 at its base 150 via the PIN diode 35 high-resistance or low-resistance with the reference potential 80 are connected.
  • the resonance of the first Radiator element 5 and the second radiator element 10 is no longer determined solely by the height 95, 100, 105 of the respective radiator element 5, 10, but also by the Distance of the first crossbar 60 of the first Radiator element 5 from the second crossbar 70 of the first Radiator element 5 or by the distance of the first Crossbar 65 of the second radiator element 10 from the second Crossbar 75 of the second radiator element 10 and through Length of the longitudinal beam 115, 120 of the respective Radiator element 5, 10 determined, that is, through the entire geometric dimensions of the first radiator element 5 or the second radiator element 10.
  • the geometric dimensions of the first radiator element 5 so chosen that a at the operating frequency used Sets resonance.
  • the geometric dimensions of the second radiator element 10 are, however, compared to geometric dimensions of the first radiator element 5 so changed that for the resonance of the second Radiator element 10 a slight deviation from the Resonance of the first radiator element 5 results and that second radiator element 10 thus depending on the selected Operating frequency as a reflector or director at each low-resistance connection of base 150 of its second Crossbar 75 with the reference potential 80 in the Antenna arrangement 5, 10 can act.
  • the PIN diode 35 is in the conductive state and is the height 100 of the second radiator element 10 for one Operating frequency range from about 1.8 to 1.9 GHz slightly greater than the height 95 of the first radiator element 5, so the second radiator element 10 acts as a reflector and it the first radiator element 5 results in a directional one Radiation characteristic to the second radiator element 10 opposite direction.
  • the hearing device 45 should be at the point of Radio 1 may be arranged, which is directed Radiation characteristic of the antenna arrangement 5, 10 die has the least directivity to the radiation in the Keep the user's head as low as possible.
  • the antenna arrangement 5 acts, 10 as omnidirectional omnidirectional Radiation pattern.
  • FIG 4 is a flow chart for the operation of the Control 85 of the radio 1 with the invention Antenna arrangement 5, 10 shown.
  • the controller 85 controls the PIN diode 35 with a high level signal so that the PIN diode 35 conducts and the second radiator element 10 at its base point 150 is connected to the reference potential 80 with low resistance and the Antenna arrangement 5, 10 a directional Has radiation characteristics.
  • Program item 205 branches.
  • program point 205 checked whether the connection quality under the first according to the specified value and by appropriate Presetting or entering the user on the Input unit 90 allows an omnidirectional characteristic is. If this is the case, then a program point 210 branches, otherwise program point 220 branches.
  • At program point 220 it is checked whether at the Input unit 90 by means of control element 40 Input has been made. If this is the case, it becomes one Program point 225 branches, otherwise it becomes Program point 200 branched back. At program point 225 it is checked whether the actuation of the control element 40 a directional radiation pattern chosen by the user has been. If this is the case, then program point 200 it branches back to program point 230 otherwise branches. At program point 230 it is checked whether that Radio 1 was turned off. If this is the case, then leave the program part. Otherwise, the user an omnidirectional by means of the control element 40 Beam pattern selected and for program item 210 branches.
  • the controller 85 controls at program point 210 the PIN diode 35 with a low level signal, so that the PIN diode 35 goes into the blocking state and the Antenna arrangement 5, 10 an omnidirectional Has radiation characteristics. Then becomes one Program item 215 branches. At program point 215 checked whether the connection quality over a second predetermined value, which is preferably above the first predetermined value is too frequent and unnecessary Avoid switching the PIN diode 35. Is that the case, the program branches back to program point 200 and on directional radiation pattern switched. Otherwise is branched back to program point 210 and the Antenna arrangement 5, 10 continues with omnidirectional Radiation characteristics operated.
  • each switchable very high impedance or very low-resistance at its base with the reference potential 80 are connectable. With a low-impedance connection the not fed radiator elements at their base with the An antenna arrangement can be used with reference potential 80 realize correspondingly improved directivity.
  • a PIN diode 35 instead of a PIN diode 35, a conventional pn diode, a transistor, or some other very low-impedance or very high-impedance switchable impedance be provided.
  • the necessary for the detuning of the resonance of the second radiator element 10 with respect to the resonance of the first radiator element 5 required height difference two radiator elements 5, 10 is of the order of magnitude one-eighth of the operating wavelength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

Es wird ein Funkgerät (1) mit einer Antennenanordnung (5, 10) vorgeschlagen, die wahlweise eine gerichtete Abstrahlcharakteristik (15) oder eine omnidirektionale Abstrahlcharakteristik (20) aufweist. Dabei sind mindestens ein erstes Strahlerelement (5) und mindestens ein zweites Strahlerelement (10) über einer Bezugspotentialfläche (25) einander benachbart angeordnet. Eine Speisung des ersten Strahlerelementes (5) erfolgt über ein Antennennetzwerk (30). Das zweite Strahlerelement (10) ist zwischen einer hochohmigen und einer niederohmigen Impedanz (35) umschaltbar mit dem Bezugspotential (80) der Bezugspotentialfläche (25) verbunden. Das erste Strahlerelement (5) ist bei der Betriebswellenlänge resonant ausgeführt. Die Resonanz des zweiten Strahlerelementes (10) ist gegenüber der Resonanz des ersten Strahlerelementes (5) leicht verstimmt.

Description

Stand der Technik
Die Erfindung geht von einer Antennenanordnung nach der Gattung des unabhängigen Anspruchs 1 und von einem Funkgerät nach der Gattung des unabhängigen Anspruchs 8 aus.
Aus der noch nicht vorveröffentlichten deutschen Patentanmeldung mit dem Aktenzeichen 197 23 331 ist bereits ein Funkgerät mit einem Gehäuse bekannt, wobei das Gehäuse an einer ersten Seite eine Hörvorrichtung und an einer zweiten, der ersten Seite gegenüberliegenden Seite ein Antennenelement umfaßt. Das Antennenelement ist an der zweiten Seite des Gehäuse beweglich gelagert und weist in mindestens einer ersten Position eine gerichtete und in mindestens einer zweiten Position eine omnidirektionale Abstrahlcharakteristik auf.
Vorteile der Erfindung
Die erfindungsgemäße Antennenanordnung mit den Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß mindestens ein erstes Strahlerelement und mindestens ein zweites Strahlerelement über einer Bezugspotentialfläche einander benachbart angeordnet sind, daß eine Speisung des ersten strahlerelementes über ein Antennennetzwerk erfolgt, daß das zweite Strahlerelement zwischen einer hochohmigen und einer niederohmigen Impedanz umschaltbar mit dem Bezugspotential der Bezugspotentialfläche verbunden ist, daß das erste Strahlerelement bei der Betriebswellenlänge resonant ausgeführt ist und daß die Resonanz des zweiten Strahlerelements gegenüber der Resonanz des ersten Strahlerelementes leicht verstimmt ist. Auf diese Weise ist es nicht erforderlich, für eine wahlweise Umschaltung zwischen gerichteter und omnidirektionaler Abstrahlcharakteristik ein Antennenelement beweglich auszuführen und somit mechanischer Abnutzung auszusetzen. Durch die elektronisch realisierte Umschaltung zwischen gerichteter Abstrahlcharakteristik und omnidirektionaler Abstrahlcharakteristik entfällt für den Benutzer eine vergleichsweise umständliche Positionierung eines Antennenelementes, so daß der Bedienkomfort für den Benutzer erhöht wird.
Durch die in den Ansprüchen 2 bis 7 aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im unabhängigen Anspruch 1 angegebenen Antennenanordnung möglich.
Ein Vorteil besteht darin, daß die leichte Verstimmung der Resonanz des zweiten Strahlerelementes gegenüber der Resonanz des ersten Strahlerelementes durch Variation der geometrischen Abmessungen des zweiten Strahlerelementes im Vergleich zu den geometrischen Abmessungen des ersten Strahlerelementes erfolgen kann. Diese Maßnahme erfordert wenig Aufwand und Kosten bei der Herstellung.
Besonders vorteilhaft ist es, das zweite Strahlerelement über ein Halbleiterbauelement, vorzugsweise eine PIN-Diode, mit dem Bezugspotential zu verbinden. Auf diese Weise läßt sich der Umschaltvorgang zwischen einer hochohmigen und einer niederohmigen Verbindung des zweiten Strahlerelementes mit dem Bezugspotential elektronisch steuern.
Ein weiterer Vorteil besteht darin, daß das Halbleiterbauelement in einen sperrenden Zustand geschaltet ist, sobald festgestellt wird, daß die Verbindungsqualität einen ersten vorgegebenen Wert unterschreitet, und daß das Halbleiterbauelement in einen leitenden Zustand geschaltet ist, solange die Verbindungsqualität einen zweiten vorgegebenen Wert überschreitet. Auf diese Weise kann bei schlechter Verbindungsqualität automatisch das zweite Strahlerelement hochohmig mit dem Bezugspotential verbunden und somit eine omnidirektionale Abstrahlcharakteristik erzielt werden. Entsprechend kann bei guter Verbindungsgualität das zweite Strahlerelement niederohmig mit dem Bezugspotential verbunden werden, so daß eine gerichtete Abstrahlcharakteristik erzielt wird. Somit kann abhängig von der Verbindungsqualität automatisch zwischen der gerichteten Abstrahlcharakteristik, die beispielsweise bei einem Funkgerät hauptsächlich die Einstrahlung in den Kopf des Benutzers verhindern soll, und der omnidirektionalen Abstrahlcharakteristik, die hauptsächlich eine gute Verbindungsqualität sicherstellen soll, umgeschaltet werden, wobei bei Überschreiten einer vorgegebenen Verbindungsqualität die Verhinderung der Einstrahlung in den Kopf des Benutzers Vorrang hat.
Ein weiterer Vorteil besteht darin, daß die Impedanz mittels eines Bedienelementes umschaltbar ist. Auf diese Weise kann der Benutzer selbst vergleichsweise einfach, das heißt ohne Veränderung der Position der Antennenanordnung beispielsweise bezüglich des Gehäuses des Funkgerätes, die Abstrahlcharakteristik seinen Bedürfnissen anpassen.
Eine besonders einfache, aufwandsarme und kostensparende Ausführungsform ergibt sich bei einer stabförmigen Ausbildung des ersten Strahlerelementes und des zweiten Strahlerelementes.
Besonders vorteilhaft ist die Verwendung der erfindungsgemäßen Antennenanordnung in einem Funkgerät, wobei bei ausreichender Verbindungsqualität auf gerichtete Abstrahlung vom Kopf des Benutzers weg umgeschaltet werden kann, so daß die Einstrahlung in den Kopf des Benutzers deutlich verringert wird.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine erste Ausführungsform eines Funkgerätes mit erfindungsgemäßer Antennenanordnung, Figur 2 eine zweite Ausführungsform eines Funkgerätes mit erfindungsgemäßer Antennenanordnung, Figur 3 eine dritte Ausführungsform eines Funkgerätes mit erfindungsgemäßer Antennenanordnung, Figur 4 einen Ablaufplan für eine Steuerung des Funkgerätes mit erfindungsgemäßer Antennenanordnung, Figur 5 eine gerichtete Abstrahlcharakteristik und Figur 6 eine omnidirektionale Abstrahlcharakteristik.
Beschreibung der Ausführungsbeispiele
In Figur 1 kennzeichnet 1 ein Funkgerät, das beispielsweise ein Mobil-, ein Schnurlostelefon, ein Handfunkgerät, ein Betriebsfunkgerät, eine Basisstation oder dergleichen sein kann. Im folgenden wird ein als Mobiltelefon ausgebildetes Funkgerät 1 beschrieben. Das Funkgerät 1 umfaßt eine Leiterplatte, die eine Bezugspotentialfläche 25 aufweist.
Die Bezugspotentialfläche 25 kann sich dabei über einen Teil oder auch über die gesamte Leiterplatte wie in Figur 1 ausdehnen. Das Bezugspotential der Bezugspotentialfläche 25 ist mit dem Bezugszeichen 80 gekennzeichnet. Über der Bezugspotentialfläche 25 sind am Funkgerät 1 ein erstes Strahlerelement 5 und ein zweites Strahlerelement 10 einander benachbart angeordnet. An einer ersten Seitenfläche 50 des Funkgerätes 1 ist eine Hörvorrichtung 45 angeordnet. die einen Lautsprecher in einer Hörmuschel umfassen kann. Eine der ersten Seitenfläche 50 gegenüberliegende zweite Seitenfläche des Funkgerätes 1 ist mit dem Bezugszeichen 55 gekennzeichnet. Das zweite Strahlerelement 10 ist der der Hörvorrichtung 45 des Funkgerätes 1 zugewandten ersten Seitenfläche 50 zugewandt an einer die erste Seitenfläche 50 und die zweite Seitenfläche 55 verbindenden dritten Seitenfläche 110 angeordnet. Das erste Strahlerelement 5 ist der der Hörvorrichtung 45 abgewandten zweiten Seitenfläche 55 zugewandt an der dritten Seitenfläche 110 angeordnet. Dabei ist eine Höhe 95 des ersten Strahlerelementes 5 geringfügig kleiner als eine Höhe 100 des zweiten Strahlerelementes 10. Das erste Strahlerelement 5 und das zweite Strahlerelement 10 bilden eine Antennenanordnung. Die Höhe 95 des ersten Strahlerelementes 5 wird so gewählt, daß das Strahlerelement in seiner λ/4-Resonanz betrieben wird. Es wird von einem Antennennetzwerk 30 gespeist. Von der Antennenanordnung 5, 10 empfangene Signale werden vom Antennennetzwerk 30 nach entsprechender Umwandlung zur Wiedergabe an die Hörvorrichtung 45 weitergeleitet. Das Antennennetzwerk 30 ist außerdem mit einer Steuerung 85 des Funkgerätes 1 verbunden, an die eine Eingabeeinheit 90 mit einem Bedienelement 40 angeschlossen ist. Die Steuerung 85 liefert ein Steuersignal an die Anode einer PIN-Diode 35, deren Kathode mit dem Bezugspotential 80 verbunden ist. Die Anode der PIN-Diode 35 ist außerdem mit dem zweiten Strahlerelement 10 verbunden.
Die Bezugspotentialfläche 25 bildet ein Gegengewicht zur Antennenanordnung 5, 10. Führt die Steuerung 85 der PIN-Diode 35 ein hochpegeliges Ansteuersignal zu, so wird die PIN-Diode 35 leitend und das zweite Strahlerelement 10 wird an seinem Fußpunkt 150 niederohmig mit dem Bezugspotential 80 verbunden. Das gespeiste erste Strahlerelement 5 ist bei der Betriebswellenlänge λ resonant. Durch die größere Höhe 100 des nicht gespeisten zweiten Strahlerelementes 10 ist dessen Resonanzfrequenz gegenüber der Resonanzfrequenz des ersten Strahlerelementes 5 leicht verstimmt. Hierdurch ergibt sich eine Phasenverschiebung des Stromes auf dem zweiten Strahlerelement 10 gegenüber dem gespeisten ersten Strahlerelement 5 und es kommt zu einer Richtwirkung. Bei einem Betriebsfrequenzbereich von etwa 1,8 bis 1,9GHz, wie sie für Schnurlostelefonie nach dem DECT-Standard (Digital Enhanced Cordless Telecommunications) oder das deutsche E-Netz vorgesehen ist, ist die Höhe 95 des ersten Strahlerelementes 5 durch ungefähr ein Viertel der entsprechenden Betriebswellenlänge λ nach der Beziehung λ=c/f, wobei c die Lichtgeschwindigkeit ist, festgelegt. Wählt man die Höhe 100 des zweiten Strahlerelementes 10 geringfügig größer, eine Länge der Bezugspotentialfläche 25 zwischen 100mm und 200mm und einen Abstand zwischen dem ersten Strahlerelement 5 und dem zweiten Strahlerelement 10 von 10mm, so wirkt das zweite Strahlerelement 10 als Reflektor und die Antennenanordnung 5, 10 als Richtstrahler mit von der Hörvorrichtung 45 bzw. dem Kopf eines Benutzers wegweisender Richtwirkung. Figur 5 zeigt ein Richtdiagramm einer solchen gerichteten Abstrahlcharakteristik 15, deren größte Richtwirkung bei 300° und deren geringste Richtwirkung bei 120° auftritt. Der Ort der Hörvorrichtung 45 liegt daher gemäß Figur 5 im Bereich 60° - 160°. Die Steuerung 85 prüft anhand vom Antennennetzwerk 30 empfangener Verbindungsdaten, die die Feldstärke einer aktuell aufgebauten Funkverbindung und/oder eine Fehlermessung des bei der Funkverbindung übertragenen Datenstroms und/oder dergleichen umfassen können, ob die Verbindungsqualität einen zweiten vorgegebenen Wert überschreitet. Dies kann zum Beispiel dadurch geprüft werden, daß in der Steuerung 85 untersucht wird, ob die Feldstärke der Verbindung über und/oder die Fehlerrate des bei der Verbindung übertragenen Datenstroms unter einem jeweils vorgegebenen Wert liegen. Ist dies der Fall, so wird die PIN-Diode 35 durch die Steuerung 85 hochpegelig angesteuert, so daß die Antennenanordnung 5, 10 als Richtstrahler wirkt und durch ihre Abstrahlcharakteristik vom Kopf des Benutzers weg die Einstrahlung von elektromagnetischer Energie in den Kopf des Benutzers verringert und gleichzeitig der Wirkungsgrad der Antennenanordnung 5, 10 erhöht wird. Fällt die Verbindungsqualität unter einen ersten entsprechend vorgegebenen Wert, beispielsweise dadurch, daß das Funkgerät 1 mit der Antennenordnung 5, 10 so ungeschickt positioniert ist, daß die Antennenanordnung 5, 10 in die für die aktuelle Verbindung falsche Richtung strahlt, so steuert die Steuerung 85 die PIN-Diode 35 niederpegelig an, so daß die PIN-Diode 35 in einen sperrenden Zustand übergeht und das zweite Strahlerelement 10 an seinem Fußpunkt 150 hochohmig mit dem Bezugspotential 80 verbunden ist. In diesem Fall wirkt die Antennenanordnung 5, 10 als Rundstrahler mit omnidirektionaler Abstrahlcharakteristik, so daß die Abstrahlleistung gemäß Figur 6 für alle Richtungen ungefähr gleich groß ist und sich gemäß Figur 6 ein Richtdiagramm mit omnidirektionaler Abstrahlcharakteristik 20 ergibt.
Auf diese Weise hat die Antennenanordnung 5, 10 den Vorteil, automatisch in günstigen Empfangssituationen die positiven Eigenschaften einer Richtantenne auszunutzen mit besonders hoher Richtwirkung in einer Vorzugsrichtung. Sollte der Richtstrahler aber ungeschickt positioniert sein, zum Beispiel wenn das Funkgerät 1 auf einem Tisch liegt und in diesen hineinstrahlt, das Funkgerät 1 falsch herum in der Tasche getragen wird und in den Körper des Benutzers strahlt, oder dergleichen, so wird automatisch bei Unterschreiten des für die Verbindungsqualität vorgegebenen Wertes die Antennenanordnung 5, 10 auf Rundstrahlcharakteristik umgeschaltet.
Eine Umschaltung der Impedanz der PIN-Diode 35 zwischen leitendem und sperrendem Zustand bzw. eine Umschaltung der Abstrahlcharakteristik der Antennenanordnung 5, 10 zwischen gerichteter und omnidirektionaler Abstrahlcharakteristik kann auch mittels des Bedienelementes 40 seitens des Benutzers erfolgen, so daß dieser die aktuelle Abstrahlcharakteristik der Antennenordnung 5, 10 seinen Bedürfnissen anpassen kann.
Die Wirkung des zweiten Strahlerelementes 10 in der Antennenanordnung 5, 10 hängt von der Impedanz zwischen dem Fußpunkt 150 des zweiten Strahlerelementes 10 und dem Bezugspotential 80, von den geometrischen Abmessungen des zweiten Strahlerelementes 10 im Vergleich zu den geometrischen Abmessungen des ersten Strahlerelementes 5 und von der verwendeten Betriebsfrequenz ab. Verwendet man den für den GSM-Standard (Global System for Mobile Communications) vorgesehenen Betriebsfrequenzbereich bei etwa 0,9 bis 1,0GHz und wählt eine Höhe 105 des zweiten Strahlerelementes 10, die geringfügig kleiner als die Höhe 95 des ersten Strahlerelementes 5 ist, so ergibt sich für den GSM-Betriebsfrequenzbereich ebenfalls eine Wirkung des zweiten Strahlerelementes 10 als Reflektor, wenn die Impedanz zwischen dem Fußpunkt 150 des zweiten Strahlerelementes 10 und dem Bezugspotential 80 niederohmig ist, das heißt die PIN-Diode 35 leitet. In diesem Fall wirkt die Antennenanordnung 5, 10 ebenfalls als Richtstrahler mit gerichteter Abstrahlcharakteristik von der Hörvorrichtung 45 weg.
Figur 2 zeigt ein weiteres Ausführungsbeispiel für ein Funkgerät 1 mit einer erfindungsgemäßen Antennenanordnung 5, 10. Das erfindungsgemäße Funkgerät gemäß Figur 2 ist dabei gleich aufgebaut wie das Funkgerät 1 gemäß Figur 1 und weist nur den Unterschied auf, daß das gespeiste erste Strahlerelement 5 nun der ersten Seitenfläche 50 und das nicht gespeiste zweite Strahlerelement 10 der zweiten Seitenfläche 55 zugewandt ist. Dabei ergibt sich eine Richtwirkung der Antennenanordnung 5, 10 von der Hörvorrichtung 45 bzw. dem Kopf des Benutzers weg für den Fall, daß die Höhe 100 des zweiten Strahlerelementes 10 für einen Betriebsfrequenzbereich von etwa 1,8 bis 1,9GHz geringfügig kleiner gewählt wird als die nach wie vor einem Viertel der Betriebswellenlänge entsprechende Höhe 95 des ersten Strahlerelementes 5 und daß das zweite Strahlerelement 10 an seinem Fußpunkt 150 niederohmig über die PIN-Diode 35 mit dem Bezugspotential 80 verbunden ist. Soll eine entsprechende Richtwirkung der Antennenanordnung 5, 10 bei einem Betriebsfreguenzbereich von etwa 0,9 bis 1,0GHz erzielt werden, so ist die dafür erforderliche Höhe 105 des zweiten Strahlerelementes 10 geringfügig größer als die nach wie vor einem Viertel der Betriebswellenlänge entsprechenden Höhe 95 des ersten Strahlerelementes 5 zu wählen, so daß in diesem Fall das zweite Strahlerelement 10 als Direktor wirkt und eine von der Hörvorrichtung 45 weg gerichtete Abstrahlcharakteristik realisiert wird.
Bei den Ausführungsbeispielen gemäß Figur 1 und Figur 2 ist das erste Strahlerelement 5 und das zweite Strahlerelement 10 stabförmig ausgebildet. Die Höhe 95, 100, 105 des jeweiligen Strahlerelementes 5, 10 ist dabei die Höhe des über der Bezugspotentialfläche 25 jeweils angeordneten Stabes.
In Figur 3 ist in einer bezüglich der Darstellung von Figur 1 bzw. Figur 2 um 90° gedrehten Seitenansicht ein Ausführungsbeispiel dargestellt, bei dem das erste Strahlerelement 5 und das zweite Strahlerelement 10 F-förmig ausgebildet sind. Ein erster Querbalken 60 des ersten Strahlerelementes 5 und ein erster Querbalken 65 des zweiten Strahlerelementes 10 ist dabei jeweils mit dem Bezugspotential 80 verbunden. Die Speisung des ersten Strahlerelementes 5 erfolgt über einen zweiten Querbalken 70 des ersten Strahlerelementes 5. Der zweite Querbalken 70 des ersten Strahlerelements 5 ist dabei über das Antennennetzwerk 30 mit der Steuerung 85 verbunden, an die die Eingabeeinheit 90 mit dem Bedienelement 40 angeschlossen ist. An das Antennennetzwerk 30 ist wiederum die als Lautsprecher ausgebildete Hörvorrichtung 45 angeschlossen, wobei der Lautsprecher 45 in einer Hörmuschel angeordnet sein kann. Ein zweiter Querbalken 75 des zweiten Strahlerelementes 10 ist an seinem Fußpunkt 150 an die Anode der PIN-Diode 35 angeschlossen, die auch von der Steuerung 85 angesteuert wird. Die Kathode der PIN-Diode 35 ist mit dem Bezugspotential 80 verbunden. Ein Längsbalken 115 des ersten Strahlerelementes 5 verläuft senkrecht zu dessen beiden Querbalken 60, 70, beginnend beim ersten Querbalken 60, die der Bezugspotentialfläche 25 abgewandten Enden dieser beiden Querbalken 60, 70 miteinander verbindend. In gleicher Weise verbindet ein Längsbalken 120 die beiden Querbalken 65, 75 des zweiten Strahlerelementes 10. Anstelle der Längsbalken 115, 120 können entsprechend auch flächenhafte Längselemente eingesetzt werden. In gleicher Weise wie bei den Ausführungsbeispielen nach Figur 1 und Figur 2 kann der zweite Querbalken 75 des zweiten Strahlerelementes 10 an seinem Fußpunkt 150 über die PIN-Diode 35 hochohmig oder niederohmig mit dem Bezugspotential 80 verbunden werden. Die Resonanz des ersten Strahlerelementes 5 und des zweiten Strahlerelementes 10 wird nun nicht mehr allein durch die Höhe 95, 100, 105 des jeweiligen Strahlerelementes 5, 10, sondern auch durch den Abstand des ersten Querbalkens 60 des ersten Strahlerelementes 5 vom zweiten Querbalken 70 des ersten Strahlerelementes 5 bzw. durch den Abstand des ersten Querbalkens 65 des zweiten Strahlerelementes 10 vom zweiten Querbalken 75 des zweiten Strahlerelementes 10 und durch die Länge des Längsbalkens 115, 120 des jeweiligen Strahlerelementes 5, 10 bestimmt, also durch die gesamten geometrischen Abmessungen des ersten Strahlerelementes 5 bzw. des zweiten Strahlerelementes 10. Dabei sind die geometrischen Abmessungen des ersten Strahlerelementes 5 so gewählt, daß sich bei der verwendeten Betriebsfrequenz eine Resonanz einstellt. Die geometrischen Abmessungen des zweiten Strahlerelementes 10 sind jedoch gegenüber den geometrischen Abmessungen des ersten Strahlerelementes 5 so verändert, daß sich für die Resonanz des zweiten Strahlerelementes 10 eine geringfügige Abweichung von der Resonanz des ersten Strahlerelementes 5 ergibt und das zweite Strahlerelement 10 somit je nach gewählter Betriebsfrequenz als Reflektor oder Direktor bei jeweils niederohmiger Verbindung des Fußpunktes 150 seines zweiten Querbalkens 75 mit dem Bezugspotential 80 in der Antennenanordnung 5, 10 wirken kann. Wird beispielsweise bei ansonsten gleichen geometrischen Abmessungen die Höhe 100 des zweiten Strahlerelementes 10 für den Betriebsfrequenzbereich von etwa 1,8 bis 1,9GHz geringfügig kleiner als die Höhe 95 des ersten Strahlerelementes 5 gewählt, wobei die Höhe des jeweiligen Strahlerelementes 5, 10 jeweils der Höhe seiner Querbalken 60, 70, 65, 75 entspricht und die beiden Querbalken eines Strahlerelementes jeweils die gleiche Höhe aufweisen, so wirkt das zweite Strahlerelement 10 als Direktor, so daß sich eine gerichtete Abstrahlcharakteristik beim ersten Strahlerelement 5 in Richtung des zweiten Strahlerelementes 10 ergibt, vorausgesetzt die PIN-Diode befindet sich im leitenden Zustand.
Befindet sich die PIN-Diode 35 im leitenden Zustand und ist die Höhe 100 des zweiten Strahlerelementes 10 für einen Betriebsfrequenzbereich von etwa 1,8 bis 1,9GHz geringfügig größer als die Höhe 95 des ersten Strahlerelementes 5, so wirkt das zweite Strahlerelement 10 als Reflektor und es ergibt sich beim ersten Strahlerelement 5 eine gerichtete Abstrahlcharakteristik in zum zweiten Strahlerelement 10 entgegengesetzter Richtung.
Die Hörvorrichtung 45 sollte dabei an der Stelle des Funkgerätes 1 angeordnet sein, die bei gerichteter Abstrahlcharakteristik der Antennenanordnung 5, 10 die geringste Richtwirkung aufweist, um die Einstrahlung in den Kopf des Benutzers so gering wie möglich zu halten.
Wird die PIN-Diode 35 in den sperrenden Zustand durch die Steuerung 85 geschaltet, so wirkt die Antennenanordnung 5, 10 als Rundstrahler mit omnidirektionaler Abstrahlcharakteristik.
In Figur 4 ist ein Ablaufplan für die Funktionsweise der Steuerung 85 des Funkgerätes 1 mit der erfindungsgemäßen Antennenanordnung 5, 10 dargestellt. Bei einem Programmpunkt 200 steuert die Steuerung 85 die PIN-Diode 35 mit einem hochpegeligen Signal an, so daß die PIN-Diode 35 leitet und das zweite Strahlerelement 10 an seinem Fußpunkt 150 niederohmig mit dem Bezugspotential 80 verbunden ist und die Antennenanordnung 5, 10 eine gerichtete Abstrahlcharakteristik aufweist. Anschließend wird zu einem Programmpunkt 205 verzweigt. Bei Programmpunkt 205 wird geprüft, ob die Verbindungsqualität unter dem ersten entsprechend vorgegebenen Wert liegt und durch entsprechende Voreinstellung oder Eingabe des Benutzers an der Eingabeeinheit 90 eine Rundstrahlcharakteristik zugelassen ist. Ist dies der Fall, so wird zu einem Programmpunkt 210 verzweigt, andernfalls wird zu einem Programmpunkt 220 verzweigt. Bei Programmpunkt 220 wird geprüft, ob an der Eingabeeinheit 90 mittels des Bedienelementes 40 eine Eingabe getätigt wurde. Ist dies der Fall, so wird zu einem Programmpunkt 225 verzweigt, andernfalls wird zu Programmpunkt 200 zurückverzweigt. Bei Programmpunkt 225 wird geprüft, ob durch die Betätigung des Bedienelements 40 eine gerichtete Abstrahlcharakteristik vom Benutzer gewählt wurde. Ist dies der Fall, so wird zum Programmpunkt 200 zurückverzweigt, andernfalls wird zu Programmpunkt 230 verzweigt. Bei Programmpunkt 230 wird geprüft, ob das Funkgerät 1 ausgeschaltet wurde. Ist dies der Fall, so wird der Programmteil verlassen. Andernfalls wurde vom Benutzer mittels des Bedienelements 40 eine omnidirektionale Abstrahlcharakteristik gewählt und zu Programmpunkt 210 verzweigt. Bei Programmpunkt 210 steuert die Steuerung 85 die PIN-Diode 35 mit einem niederpegeligen Signal an, so daß die PIN-Diode 35 in den sperrenden Zustand übergeht und die Antennenanordnung 5, 10 eine omnidirektionale Abstrahlcharakteristik aufweist. Anschließend wird zu einem Programmpunkt 215 verzweigt. Bei Programmpunkt 215 wird geprüft, ob die Verbindungsqualität über einem zweiten vorgegebenen Wert liegt, der vorzugsweise über dem ersten vorgegebenen Wert liegt, um zu häufiges und unnötiges Schalten der PIN-Diode 35 zu vermeiden. Ist dies der Fall, so wird zu Programmpunkt 200 zurückverzweigt und auf gerichtete Abstrahlcharakteristik umgeschaltet. Andernfalls wird zu Programmpunkt 210 zurückverzweigt und die Antennenanordnung 5, 10 weiterhin mit omnidirektionaler Abstrahlcharakteristik betrieben.
Es kann auch vorgesehen sein, mehrere Strahlerelemente am Funkgerät 1 vorzusehen und über das Antennennetzwerk 30 zu speisen und mehrere nicht gespeiste Strahlerelemente vorzusehen, die jeweils umschaltbar sehr hochohmig oder sehr niederohmig an ihrem Fußpunkt mit dem Bezugspotential 80 verbindbar sind. Bei niederohmiger Verbindung der nicht gespeisten Strahlerelemente an ihrem Fußpunkt mit dem Bezugspotential 80 läßt sich eine Antennenanordnung mit entsprechend verbesserter Richtwirkung realisieren.
Anstelle einer PIN-Diode 35 kann auch eine herkömmliche pn-Diode, ein Transistor, oder eine auf sonstige Weise sehr niederohmig oder sehr hochohmig schaltbare Impedanz vorgesehen sein.
Für die Strahlerelemente ist keine große Höhe bei den verwendeten Betriebsfrequenzen erforderlich, so daß sie sehr einfach und platzsparend in den zum Beispiel bei Mobiltelefonen weit verbreiteten Antennenstummeln untergebracht werden können.
Die für die erforderliche Verstimmung der Resonanz des zweiten Strahlerelementes 10 gegenüber der Resonanz des ersten Strahlerelementes 5 benötigte Höhendifferenz der beiden Strahlerelemente 5, 10 liegt in der Größenordnung eines Achtzigstel der Betriebswellenlänge.

Claims (14)

  1. Antennenanordnung (5, 10), die wahlweise eine gerichtete Abstrahlcharakteristik (15) oder eine omnidirektionale Abstrahlcharakteristik (20)
    aufweist, dadurch gekennzeichnet, daß mindestens ein erstes strahlerelement (5) und mindestens ein zweites Strahlerelement (10) über einer Bezugspotentialfläche (25) einander benachbart angeordnet sind, daß eine Speisung des ersten Strahlerelementes (5) über ein Antennennetzwerk (30) erfolgt, daß das zweite Strahlerelement (10) zwischen einer hochohmigen und einer niederohmigen Impedanz (35) umschaltbar mit dem Bezugspotential (80) der Bezugspotentialfläche (25) verbunden ist, daß das erste Strahlerelement (5) bei der Betriebswellenlänge resonant ausgeführt ist und daß die Resonanz des zweiten Strahlerelementes (10) gegenüber der Resonanz des ersten Strahlerelementes (5) leicht verstimmt ist.
  2. Antennenanordnung (5, 10) nach Anspruch 1, dadurch gekennzeichnet, daß die leichte Verstimmung der Resonanz des zweiten Strahlerelementes (10) gegenüber der Resonanz des ersten Strahlerelementes (5) durch Variation der geometrischen Abmessungen des zweiten Strahlerelements (10) im Vergleich zu den geometrischen Abmessungen des ersten Strahlerelements (5) erfolgt.
  3. Antennenanordnung (5, 10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das zweite Strahlerelement (10) über ein Halbleiterbauelement (35), vorzugsweise eine PIN-Diode, mit dem Bezugspotential (80) verbunden ist.
  4. Antennenanordnung (5, 10) nach Anspruch 3, dadurch gekennzeichnet, daß das Halbleiterbauelement (35) in einen sperrenden Zustand geschaltet ist, sobald festgestellt wird, daß die Verbindungsqualität einen ersten vorgegebenen Wert unterschreitet, und daß das Halbleiterbauelement (35) in einen leitenden Zustand geschaltet ist, solange die Verbindungsqualität einen zweiten vorgegebenen Wert überschreitet.
  5. Antennenanordnung (5, 10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Impedanz (35) mittels eines Bedienelementes (40) umschaltbar ist.
  6. Funkgerät (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das erste Strahlerelement (5) und das zweite Strahlerelement (10) stabförmig ausgebildet sind.
  7. Funkgerät (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das erste Strahlerelement (5) und das zweite Strahlerelement (10) F-förmig ausgebildet sind, daß ein erster Querbalken (60) des ersten Strahlerelementes (5) und ein erster Querbalken (65) des zweiten Strahlerelementes (10) jeweils mit dem Bezugspotential (80) verbunden ist, daß die Speisung des ersten Strahlerelementes (5) über einen zweiten Querbalken (70) des ersten Strahlerelementes (5) erfolgt, daß ein zweiter Querbalken (75) des zweiten Strahlerelementes (10) zwischen der hochohmigen und der niederohmigen Impedanz (35) umschaltbar mit dem Bezugspotential (80) verbunden ist.
  8. Funkgerät (1), insbesondere Mobilfunk- oder Schnurlostelefon, mit einer Antennenanordnung (5, 10) nach einem der vorherigen Ansprüche.
  9. Funkgerät (1) nach Anspruch 8, dadurch gekennzeichnet, daß das zweite Strahlerelement (10) einer einer Hörvorrichtung (45) des Funkgerätes (1) zugewandten Seitenfläche (50) des Funkgerätes (1) zugewandt angeordnet ist und daß die geometrischen Abmessungen des zweiten Strahlerelementes (10, 10') im Vergleich zu den geometrischen Abmessungen des ersten Strahlerelementes (5) so gewählt sind, daß das zweite Strahlerelement (10) in einem Betriebsfrequenzbereich als Reflektor wirkt und daß das erste Strahlerelement (5) einer der Hörvorrichtung (45) des Funkgerätes (1) abgewandten Seitenfläche (55) des Funkgerätes (1) zugewandt angeordnet ist.
  10. Funkgerät (1) nach Anspruch 8, dadurch gekennzeichnet, daß das erste Strahlerelement (5) einer einer Hörvorrichtung (45) des Funkgerätes (1) zugewandten Seitenfläche (50) des Funkgerätes (1) zugewandt angeordnet ist und daß das zweite Strahlerelement (10) einer der Hörvorrichtung (45) des Funkgerätes (1) abgewandten Seitenfläche (55) des Funkgerätes (1) zugewandt angeordnet ist und daß die geometrischen Abmessungen des zweiten Strahlerelementes (10) im Vergleich zu den geometrischen Abmessungen des ersten Strahlerelementes (5) so gewählt sind, daß das zweite Strahlerelement (10) in einem Betriebsfrequenzbereich als Direktor wirkt.
  11. Funkgerät (1) nach Anspruch 9, dadurch gekennzeichnet, daß das zweite Strahlerelement (10) höher über der Bezugspotentialfläche (25) als das erste Strahlerelement (5) ist und daß als Betriebsfreguenzbereich etwa 1,8 bis 1,9 GHz vorgesehen sind.
  12. Funkgerät (1) nach Anspruch 10, dadurch gekennzeichnet, daß das erste Strahlerelement (5) höher über der Bezugspotentialfläche (25) als das zweite Strahlerelement (10) ist und daß als Betriebsfrequenzbereich etwa 1,8 bis 1,9 GHz vorgesehen sind.
  13. Funkgerät (1) nach Anspruch 9, dadurch gekennzeichnet, daß das erste Strahlerelement (5) höher über der Bezugspotentialfläche (25) als das zweite Strahlerelement (10) ist und daß als Betriebsfrequenzbereich etwa 0,9 bis 1,0GHz vorgesehen sind.
  14. Funkgerät (1) nach Anspruch 10, dadurch gekennzeichnet, daß das zweite Strahlerelement (10) höher über der Bezugspotentialfläche (25) als das erste Strahlerelement (5) ist und daß als Betriebsfrequenzbereich etwa 0,9 bis 1,0GHz vorgesehen sind.
EP19990102339 1998-05-23 1999-02-06 Antennenanordnung und Funkgerät Expired - Lifetime EP0959525B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823126 1998-05-23
DE1998123126 DE19823126B4 (de) 1998-05-23 1998-05-23 Funkgerät

Publications (3)

Publication Number Publication Date
EP0959525A2 true EP0959525A2 (de) 1999-11-24
EP0959525A3 EP0959525A3 (de) 2001-04-04
EP0959525B1 EP0959525B1 (de) 2009-05-13

Family

ID=7868738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19990102339 Expired - Lifetime EP0959525B1 (de) 1998-05-23 1999-02-06 Antennenanordnung und Funkgerät

Country Status (3)

Country Link
EP (1) EP0959525B1 (de)
DE (2) DE19823126B4 (de)
ES (1) ES2324747T3 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797136A1 (fr) * 1999-07-02 2001-02-02 Ninebell United Technology Co Dispositif de protection contre le rayonnement electromagnetique d'un telephone mobile
EP1109247A1 (de) * 1999-12-17 2001-06-20 Siemens Aktiengesellschaft Mobiltelephon und Verfahren zur Steuerung der in den Körper eines Nutzers gesendeten Strahlung
EP1206001A1 (de) * 2000-11-14 2002-05-15 Northrop Grumman Corporation Array-Antenne für ein zellulares Telephon
WO2004013935A1 (en) * 2002-08-01 2004-02-12 Koninklijke Philips Electronics N.V. Directional dual frequency antenna arrangement
EP1618752A2 (de) * 2003-04-25 2006-01-25 Motorola, Inc. Drahtloses kommunikationsgerät mit variablem antennenstrahlungsmuster und entsprechendes verfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725938A (en) 1970-10-05 1973-04-03 Sperry Rand Corp Direction finder system
US4700197A (en) 1984-07-02 1987-10-13 Canadian Patents & Development Ltd. Adaptive array antenna
JPH1075192A (ja) 1996-08-30 1998-03-17 Matsushita Electric Ind Co Ltd アンテナ装置
DE19723331A1 (de) 1997-06-04 1998-12-10 Bosch Gmbh Robert Funkgerät

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT393054B (de) * 1989-07-27 1991-08-12 Siemens Ag Oesterreich Sende- und/oder empfangsanordnung fuer tragbare geraete
US6034638A (en) * 1993-05-27 2000-03-07 Griffith University Antennas for use in portable communications devices
DE4334439A1 (de) * 1993-10-09 1995-04-13 Philips Patentverwaltung Funkgerät mit einer Antenne

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725938A (en) 1970-10-05 1973-04-03 Sperry Rand Corp Direction finder system
US4700197A (en) 1984-07-02 1987-10-13 Canadian Patents & Development Ltd. Adaptive array antenna
JPH1075192A (ja) 1996-08-30 1998-03-17 Matsushita Electric Ind Co Ltd アンテナ装置
DE19723331A1 (de) 1997-06-04 1998-12-10 Bosch Gmbh Robert Funkgerät

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797136A1 (fr) * 1999-07-02 2001-02-02 Ninebell United Technology Co Dispositif de protection contre le rayonnement electromagnetique d'un telephone mobile
EP1109247A1 (de) * 1999-12-17 2001-06-20 Siemens Aktiengesellschaft Mobiltelephon und Verfahren zur Steuerung der in den Körper eines Nutzers gesendeten Strahlung
EP1206001A1 (de) * 2000-11-14 2002-05-15 Northrop Grumman Corporation Array-Antenne für ein zellulares Telephon
US6437746B1 (en) 2000-11-14 2002-08-20 Northrop Grumman Corp Cellular telephone antenna array
WO2004013935A1 (en) * 2002-08-01 2004-02-12 Koninklijke Philips Electronics N.V. Directional dual frequency antenna arrangement
EP1618752A2 (de) * 2003-04-25 2006-01-25 Motorola, Inc. Drahtloses kommunikationsgerät mit variablem antennenstrahlungsmuster und entsprechendes verfahren
EP1618752A4 (de) * 2003-04-25 2006-05-24 Motorola Inc Drahtloses kommunikationsgerät mit variablem antennenstrahlungsmuster und entsprechendes verfahren

Also Published As

Publication number Publication date
EP0959525B1 (de) 2009-05-13
EP0959525A3 (de) 2001-04-04
DE19823126A1 (de) 1999-11-25
DE59915023D1 (de) 2009-06-25
ES2324747T3 (es) 2009-08-13
DE19823126B4 (de) 2012-08-23

Similar Documents

Publication Publication Date Title
DE69828113T2 (de) Doppelresonanzantennenstruktur für mehrere Frequenzbereiche
DE60001709T2 (de) Möglichkeit zur Korrektur des Strahlungsdiagramms einer linearen Antenne
DE10226910B4 (de) Oberflächenmontierbare Antenne und Verwendung derselben
DE69433150T2 (de) Antennenvorrichtung
DE60316666T2 (de) Mehrbandantenne mit Streifenleiter- und Schlitzstrukturen
DE60306513T2 (de) Antennenanordnung
DE60133703T2 (de) Eingebaute Zweibandantenne und Verfahren zum Betrieb dieser Antenne in einem mobilen Terminal
EP1204160B1 (de) Mehrband-Mikrowellenantenne
DE60209686T2 (de) Interne Mehrbandantenne
EP0841715B1 (de) Flachantenne
DE112008000578B4 (de) Antenne und Funkkommunikationsvorrichtung
DE69824262T2 (de) Antenne
DE60026276T2 (de) Antennenstruktur, Verfahren zur Kopplung eines Signals an die Antennenstruktur, Antenneneinheit und Mobilstation mit einer derartigen Antennenstruktur
DE60200738T2 (de) Antenne für mobiles Telefon
DE60126280T2 (de) Zweiband-patchantenne
DE602006000352T2 (de) Antenneneinrichtung und mobiles Endgerät, welches mit der Antenneneinrichtung ausgerüstet ist
EP1168495A2 (de) Antennenanordnung für Mobilfunktelefone
DE10347719A1 (de) Innere Antenne für ein mobiles Kommunikationsgerät
DE10215762A1 (de) Antennenvorrichtung
EP1829158A1 (de) Disc-monopol-antennenstruktur
DE10292326T5 (de) Antennenvorrichtung und drahtlose Vorrichtung die diese verwendet
EP1086509B1 (de) Antennenanordnung und funkgerät
DE19823126B4 (de) Funkgerät
EP1237224A1 (de) Antenne und Verfahren zu deren Herstellung
DE602005006016T2 (de) Mobiltelefon mit eingebauter planarer fernsehantenne zur zurückweisung von funktelefonsignalen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011004

AKX Designation fees paid

Free format text: CH DE ES FR GB IT LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IPCOM GMBH & CO. KG

17Q First examination report despatched

Effective date: 20080507

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG

REF Corresponds to:

Ref document number: 59915023

Country of ref document: DE

Date of ref document: 20090625

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2324747

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180322

Year of fee payment: 20

Ref country code: GB

Payment date: 20180221

Year of fee payment: 20

Ref country code: CH

Payment date: 20180221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180226

Year of fee payment: 20

Ref country code: SE

Payment date: 20180222

Year of fee payment: 20

Ref country code: IT

Payment date: 20180221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180430

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59915023

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190205

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190205

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190207