EP0947685A2 - Compression ignition type engine - Google Patents

Compression ignition type engine Download PDF

Info

Publication number
EP0947685A2
EP0947685A2 EP99106388A EP99106388A EP0947685A2 EP 0947685 A2 EP0947685 A2 EP 0947685A2 EP 99106388 A EP99106388 A EP 99106388A EP 99106388 A EP99106388 A EP 99106388A EP 0947685 A2 EP0947685 A2 EP 0947685A2
Authority
EP
European Patent Office
Prior art keywords
combustion
air
fuel ratio
amount
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99106388A
Other languages
German (de)
French (fr)
Other versions
EP0947685B1 (en
EP0947685A3 (en
Inventor
Nobumoto Toyota Jidosha Kabushiki Kaisha Ohashi
Toshiaki Toyota Jidosha Kabushiki Kaisha Tanaka
Eiji Toyota Jidosha Kabushiki Kaisha Iwasaki
Shinya Toyota Jidosha Kabushiki Kaisha Hirota
Kouji Toyota Jidosha Kabushiki Kaisha YOSHIZAKI
Kasuhiro Toyota Jidosha Kabushiki Kaisha Itoh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of EP0947685A2 publication Critical patent/EP0947685A2/en
Publication of EP0947685A3 publication Critical patent/EP0947685A3/en
Application granted granted Critical
Publication of EP0947685B1 publication Critical patent/EP0947685B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3827Common rail control systems for diesel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0022Controlling intake air for diesel engines by throttle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/32Air-fuel ratio control in a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a compression ignition type engine.
  • the production of NOx has been suppressed by connecting the engine exhaust passage and the engine intake passage by an exhaust gas recirculation (EGR) passage so as to cause the exhaust gas, that is, the EGR gas, to recirculate in the engine intake passage through the EGR passage.
  • EGR exhaust gas recirculation
  • the EGR gas has a relatively high specific heat and therefore can absorb a large amount of heat, so the larger the amount of EGR gas, that is, the higher the EGR rate (amount of EGR gas/(amount of EGR gas + amount of intake air), the lower the combustion temperature in the engine intake passage.
  • the EGR rate amount of EGR gas/(amount of EGR gas + amount of intake air
  • the EGR rate was set within a range not exceeding the maximum allowable limit (for example, see Japanese Unexamined Patent Publication (Kokai) No. 4-334750).
  • the maximum allowable limit of the EGR rate differed considerably according to the type of the engine and the fuel, but was from 30 percent to 50 percent or so. Accordingly, in conventional diesel engines, the EGR rate was suppressed to 30 percent to 50 percent at a maximum.
  • the present inventors discovered in the process of studies on the combustion in diesel engines that if the EGR rate is made larger than the maximum allowable limit, the smoke sharply increases as explained above, but there is a peak to the amount of the smoke produced and once this peak is passed, if the EGR rate is made further larger, the smoke starts to sharply decrease and that if the EGR rate is made at least 70 percent during engine idling or if the EGR gas is force cooled and the EGR rate is made at least 55 percent or so, the amount of production of smoke will become almost zero, that is, almost no soot will be produced. Further, they found that the amount of NOx produced at this time was extremely small.
  • the temperatures of the fuel and the gas around the fuel at the time of combustion in the combustion chamber are suppressed to less than the temperature at which the growth of the hydrocarbons stops midway, soot is no longer produced.
  • the temperatures of the fuel and the gas around the fuel at the time of combustion in the combustion chamber can be suppressed to less than the temperature at which the growth of the hydrocarbons stops midway by adjusting the amount of heat absorbed by the gas around the fuel.
  • the hydrocarbons stopped in growth midway before becoming soot can be easily removed by after-treatment using an oxidation catalyst etc. This is the basic thinking behind this new system of combustion.
  • a catalyst having an oxidation action etc. normally carries platinum or another precious metal.
  • the precious metal is gradually made to oxidize if the precious metal is continuously exposed to an oxygen rich state. If the precious metal is made to oxidize, the activity of the catalyst, that is, the oxidation action, will decline and accordingly the action in removing the hydrocarbons will gradually decline.
  • An object of the present invention is to provide a compression ignition type engine designed to prevent a decline in the activity of a catalyst carrying a precious metal by using this new method of combustion.
  • a compression ignition type engine in which an amount of production of soot gradually increases and then peaks when an amount of inert gas supplied in a combustion chamber increases and in which a further increase of the amount of inert gas supplied in the combustion chamber results in a temperature of fuel and surrounding gas in the combustion chamber becoming lower than a temperature of production of soot and therefore almost no production of soot any longer, said engine comprising: a catalyst arranged in an engine exhaust passage and carrying a precious metal; switching means for selectively switching between a first combustion where the amount of the inert gas supplied to the combustion chamber is larger than the amount of inert gas where the amount of production of soot peaks and almost no soot is produced and a second combustion where the amount of inert gas supplied to the combustion chamber is smaller than the amount of inert gas where the amount of production of soot peaks; and air-fuel ratio control means for making an air-fuel ratio at least temporarily rich under the first combustion when switching from the first combustion to second combustion or switching from the
  • Figure 1 is a view of the case of application of the present invention to a four-stroke compression ignition type engine.
  • FIG. 1 shows an engine body, 2 a cylinder block, 3 a cylinder head, 4 a piston, 5 a combustion chamber, 6 an electrically controlled fuel injector, 7 an intake valve, 8 an intake port, 9 an exhaust valve, and 10 an exhaust port.
  • the intake port 8 is connected through a corresponding intake tube 11 to the surge tank 12.
  • the surge tank 12 is connected through an intake duct 13 to an air cleaner 14.
  • a throttle valve 16 driven by an electric motor 15 is arranged in the intake duct 13.
  • the exhaust port 10 is connected through an exhaust manifold 17 and exhaust tube 18 to a catalytic converter 20 housing a catalyst 19 having an oxidation action.
  • An air-fuel ratio sensor 21 is arranged in the exhaust manifold 17.
  • the exhaust manifold 17 and surge tank 12 are connected with each other through an EGR passage 22.
  • An electrically controlled EGR control valve 23 is arranged in an EGR passage 22.
  • a cooling apparatus 24 for cooling the EGR gas flowing through the EGR passage 22 is provided around the EGR passage 22. In the embodiment shown in Fig. 1, the engine cooling water is guided to the cooling apparatus 24 where the engine cooling water is used to cool the EGR gas.
  • each fuel injector 6 is connected through a fuel supply tube 25 to the fuel reservoir, that is, a common rail 26.
  • Fuel is supplied to the common rail 26 from an electrically controlled variable discharge fuel pump 27.
  • Fuel supplied in the common rail 26 is supplied through each fuel supply tube 25 to the fuel injectors 6.
  • a fuel pressure sensor 28 for detecting the fuel pressure in the common rail 26 is attached to the common rail 26. The amount of discharge of the fuel pump 27 is controlled based on the output signal of the fuel pressure sensor 28 so that the fuel pressure in the common rail 26 becomes the target fuel pressure.
  • the electronic control unit 30 is comprised of a digital computer and is provided with a ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, a backup RAM 33a connected to a constant power source, an input port 35, and an output port 36 connected with each other by a bidirectional bus 31.
  • the output signal of the air-fuel ratio sensor 21 is input through a corresponding AD converter 37 to the input port 35. Further, the output signal of the fuel pressure sensor 28 is input through a corresponding AD converter 37 to the input port 35.
  • the accelerator pedal 40 has connected to it a load sensor 41 for generating an output voltage proportional to the amount of depression L of the accelerator pedal 40.
  • the output voltage of the load sensor 41 is input through a corresponding AD converter 37 to the input port 35. Further, the input port 35 has connected to it a crank angle sensor 42 for generating an output pulse each time the crankshaft rotates by for example 30°. On the other hand, the output port 36 has connected to it through a corresponding drive circuit 38 the fuel injector 6, electric motor 15, EGR control valve 23, and fuel pump 27.
  • FIG. 2 shows an example of an experiment showing the changes in the output torque and the changes in the amount of smoke, HC, CO, and NOx exhausted when changing the air-fuel ratio A/F (abscissa in Fig. 2) by changing the opening degree of the throttle valve 16 and the EGR rate at the time of engine low load operation.
  • the EGR rate becomes larger the smaller the air-fuel ratio A/F.
  • the EGR rate becomes over 65 percent.
  • Figure 3A shows the changes in compression pressure in the combustion chamber 5 when the amount of smoke produced is the greatest near an air-fuel ratio A/F of 21.
  • Figure 3B shows the changes in compression pressure in the combustion chamber 5 when the amount of smoke produced is substantially zero near an air-fuel ratio A/F of 18.
  • the combustion pressure is lower in the case shown in Fig. 3B where the amount of smoke produced is substantially zero than the case shown in Fig. 3A where the amount of smoke produced is large.
  • the temperature of the fuel and its surroundings when the process of production of hydrocarbons stops in the state of the soot precursor that is, the above certain temperature
  • soot precursor or a state of hydrocarbons before this can be easily removed by after-treatment using an oxidation catalyst etc.
  • a soot precursor or a state of hydrocarbons before this can be easily removed by after-treatment using an oxidation catalyst etc.
  • the new combustion system used in the present invention is based on the idea of exhausting the hydrocarbons from the combustion chamber 5 in the form of a soot precursor or a state before that without allowing the production of soot in the combustion chamber 5 and causing the hydrocarbons to oxidize by an oxidation catalyst etc.
  • the vaporized fuel will immediately react with the oxygen in the air and burn.
  • the temperature of the air away from the fuel does not rise that much. Only the temperature around the fuel becomes locally extremely high. That is, at this time, the air away from the fuel does not absorb the heat of combustion of the fuel much at all. In this case, since the combustion temperature becomes extremely high locally, the unburned hydrocarbons receiving the heat of combustion produce soot.
  • the inert gas is preferably a gas with a large specific heat.
  • EGR gas since CO 2 and EGR gas have relatively large specific heats, it may be said to be preferable to use EGR gas as the inert gas.
  • Figure 5 shows the relationship between the EGR rate and smoke when changing the degree of cooling of the EGR gas using the EGR gas as an inert gas. That is, in Fig. 5, the curve A shows the case when force cooling the EGR gas to maintain the temperature of the EGR gas at about 90°C, the curve B shows the case when cooling the EGR gas by a small sized cooling device, and the curve C shows the case when not force cooling the EGR gas.
  • Fig. 5 shows the amount of smoke produced when the engine load is relatively high.
  • the EGR rate where the amount of soot produced peaks falls somewhat and the lower limit of the EGR rate where almost no soot is produced any longer falls somewhat as well.
  • the lower limit of the EGR rate where almost no soot is produced any longer changes in accordance with the degree of cooling of the EGR gas and the engine load.
  • Figure 6 shows the amount of mixed gas of EGR gas and air, the ratio of air in the mixed gas, and the ratio of EGR gas in the mixed gas required for making the temperatures of the fuel and the gas around it at the time of combustion a temperature lower than the temperature at which soot is produced in the case of use of EGR gas as an inert gas.
  • the ordinate shows the total amount of suction gas taken into the combustion chamber 5.
  • the broken line Y shows the total amount of suction gas able to be taken into the combustion chamber 5 when supercharging is not being performed.
  • the abscissa shows the required load.
  • Z1 shows the low load operating region.
  • the ratio of air that is, the amount of air in the mixed gas
  • the ratio of air and the amount of injected fuel becomes the stoichiometric air-fuel ratio.
  • the ratio of EGR gas that is, the amount of EGR gas in the mixed gas
  • the total amount of suction gas taken into the combustion chamber 5 is made the solid line X in Fig. 6 and the ratio between the amount of air and amount of EGR gas in the total amount of suction gas X is made the ratio shown in Fig. 6, the temperatures of the fuel and the gas around it becomes a temperature lower than the temperature at which soot is produced and therefore no soot at all is produced any longer. Further, the amount of NOx produced at this time is around 10 ppm or less and therefore the amount of NOx produced becomes extremely small.
  • the amount of fuel injected increases, the amount of heat generated at the time of combustion increases, so to maintain the temperatures of the fuel and the gas around it at a temperature lower than the temperature at which soot is produced, the amount of heat absorbed by the EGR gas must be increased. Therefore, as shown in Fig. 6, the amount of EGR gas has to be increased the greater the amount of injected fuel. That is, the amount of EGR gas has to be increased as the required load becomes higher.
  • the total amount of suction gas X required for inhibiting the production of soot exceeds the total amount of suction gas Y which can be taken in. Therefore, in this case, to supply the total amount of suction gas X required for inhibiting the production of soot into the combustion chamber 5, it is necessary to supercharge or pressurize both of the EGR gas and the suction gas or the EGR gas.
  • the total amount of suction gas X matches with the total amount of suction gas Y which can be taken in. Therefore, in the case, to inhibit the production of soot, the amount of air is reduced somewhat to increase the amount of EGR gas and the fuel is made to burn in a state where the air-fuel ratio is rich.
  • Fig. 6 shows the case of combustion of fuel at the stoichiometric air-fuel ratio.
  • the low load operating region Z1 shown in Fig. 6 even if the amount of air is made smaller than the amount of air shown in Fig. 6, that is, even if the air-fuel ratio is made rich, it is possible to obstruct the production of soot and make the amount of NOx produced around 10 ppm or less.
  • the low load region Z1 shown in Fig. 6 even if the amount of air is made greater than the amount of air shown in Fig. 6, that is, the average value of the air-fuel ratio is made a lean air-fuel ratio of 17 to 18, it is possible to obstruct the production of soot and make the amount of NOx produced around 10 ppm or less.
  • the first combustion that is, the low temperature combustion
  • the second combustion that is, the conventionally normally performed combustion
  • the second combustion means combustion where the amount of inert gas in the combustion chamber is smaller than the amount of inert gas where the amount of production of soot peaks.
  • the solid line in Fig. 7A shows the relationship between the average gas temperature Tg in the combustion chamber 5 when the first combustion is performed and the crank angle.
  • the broken line in Fig. 7A shows the relationship between the average gas temperature Tg in the combustion chamber 5 when the second combustion is performed and the crank angle.
  • the solid line in Fig. 7B shows the relationship between the temperature Tf of the fuel and the gas surrounding it when first combustion is being performed and the crank angle.
  • the broken line in Fig. 7B shows the relationship between the temperature Tf of the fuel and the gas surrounding it when the second combustion is being performed and the crank angle.
  • the amount of EGR gas is larger compared with when the second combustion, that is, the conventional ordinary combustion, is being performed, therefore as shown in Fig. 7A, before top dead center of the compression stroke, that is, during the compression stroke, the average temperature Tg of the gas at the time of the first combustion shown by the solid line becomes higher than the average temperature Tg of the gas at the time of the second combustion shown by the broken line. Note that at this time, as shown by Fig. 7B, the temperature Tf of the fuel and the gas around it becomes substantially the same temperature as the average temperature Tg of the gas.
  • the average temperature Tg of the gas in the combustion chamber 5 near top dead center of the compression stroke becomes higher when the first combustion is being performed compared with when the second combustion is being performed.
  • the average temperature Tg of the gas in the combustion chamber 5 after the end of the combustion, that is, in the latter half of the expansion stroke, in other words, the temperature of the burned gas in the combustion chamber 5 becomes higher when the first combustion is being performed compared with when the second combustion is being performed.
  • the temperature Tf of the fuel and the gas around it at the time of combustion becomes considerably low, but the burned gas in the combustion chamber 5 becomes conversely higher compared with when the second combustion is performed, therefore the temperature of the exhaust gas from the combustion chamber 5 also becomes higher compared with when the second combustion is performed.
  • Figure 8 shows a first operating region I where the first combustion, that is, the low temperature combustion, is performed, and a second operating region II where the second combustion, that is, the combustion by the conventional combustion method, is performed.
  • the abscissa L shows the amount of depression of the accelerator pedal 40, that is, the required load
  • the ordinate N shows the engine speed.
  • X(N) shows a first boundary between the first operating region I and the second operating region II
  • Y(N) shows a second boundary between the first operating region I and the second operating region II.
  • the change of the operating region from the first operating region I to the second operating region II is judged based on the first boundary X(N), while the change of the operating region from the second boundary region II to the first operating region I is judged based on the second boundary Y(N).
  • the second boundary Y(N) is made the low load side from the first boundary X(N) by ⁇ L(N).
  • ⁇ L(N) is a function of the engine rotational speed N. ⁇ L(N) becomes smaller the higher the engine speed N.
  • an oxidation catalyst, three-way catalyst, or NOx absorbent may be used as the catalyst 19.
  • An NOx absorbent has the function of absorbing the NOx when the average air-fuel ratio in the combustion chamber 5 is lean and releasing the NOx when the average air-fuel ratio in the combustion chamber 5 becomes the stoichiometric air-fuel ratio or rich.
  • the NOx absorbent is for example comprised of alumina as a carrier and, on the carrier, for example, at least one of potassium K, sodium Na, lithium Li, cesium Cs, and other alkali metals, barium Ba, calcium Ca, and other alkali earths, lanthanum La, yttrium Y, and other rare earths plus platinum Pt or another precious metal is carried.
  • the oxidation catalyst of course, and also the three-way catalyst and NOx absorbent have an oxidation function, therefore the three-way catalyst and NOx absorbent can be used as the catalyst 19 as explained above.
  • Figure 10 shows the output of the air-fuel ratio sensor 21. As shown in Fig. 10, the output current I of the air-fuel ratio sensor 21 changes in accordance with the air-fuel ratio A/F. Therefore, it is possible to determine the air-fuel ratio from the output current I of the air-fuel ratio sensor 21.
  • Figure 11 shows the opening degrees of the throttle valve 16, the opening degree of the EGR control valve 23, the EGR rate, the air-fuel ratio, the injection timing, and the amount of injection with respect to the required load L.
  • the opening degree of the throttle valve 16 is gradually increased from close to the fully closed state to the half opened state as the required load L becomes higher, while the opening degree of the EGR control valve 23 is gradually increased from close to the fully closed state to the fully opened state as the required load L becomes higher.
  • the EGR rate is made about 70 percent and the air-fuel ratio is made a slightly lean air-fuel ratio.
  • the opening degree of the throttle valve 16 and the opening degree of the EGR control valve 23 are controlled so that the EGR rate becomes about 70 percent and the air-fuel ratio becomes a slightly lean air-fuel ratio.
  • the air-fuel ratio is controlled to the target lean air-fuel ratio by correcting the opening degree of the EGR control valve 23 based on the output signal of the air-fuel ratio sensor 21.
  • the fuel is injected before top dead center of the compression stroke TDC. In this case, the injection start timing ⁇ S becomes later the higher the required load L. The injection end timing ⁇ E also becomes later the later the injection start timing ⁇ S.
  • the throttle valve 16 is made to close to close to the fully closed state.
  • the EGR control valve 23 is also made to close to close to the fully closed state. If the throttle valve 16 closes to close to the fully closed state, the pressure in the combustion chamber 5 at the start of compression will become low, so the compression pressure will become small. If the compression pressure becomes small, the amount of compression work by the piston 4 becomes small, so the vibration of the engine body 1 becomes smaller. That is, during idling operation, the throttle valve 16 can be closed to close to the fully closed state to suppress vibration in the engine body 1.
  • the opening degree of the throttle valve 16 is increased in a step-like manner from the half opened state to the fully opened state.
  • the EGR rate is reduced in a step-like manner from about 70 percent to less than 40 percent and the air-fuel ratio is increased in a step-like manner. That is, since the EGR rate jumps over the range of EGR rates (Fig. 5) where a large amount of smoke is produced, there is no longer a large amount of smoke produced when the engine operating state changes from the first operating region I to the second operating region II.
  • the conventionally performed combustion is performed in the second operating region II.
  • this combustion method some soot and NOx are produced, but the heat efficiency is higher than with the low temperature combustion, so if the engine operating state changes from the first operating region I to the second operating region II, the amount of injection is reduced in a step-like manner as shown in Fig. 11.
  • the throttle valve 16 In the second operating region II, the throttle valve 16 is held in the fully opened state except in portions and the opening degree of the EGR control valve 23 is gradually made smaller the higher the required load L. Therefore, in the operating region II, the EGR rate becomes lower the higher the required load L and the air-fuel ratio becomes smaller the higher the required load L. Even if the required load L becomes high, however, the air-fuel ratio is made a lean air-fuel ratio. Further, in the second operating region II, the injection start timing ⁇ S is made close to top dead center of the compression stroke TDC.
  • Figure 12 shows the air-fuel ratio A/F in the first operating region I.
  • the air-fuel ratios between the curves are determined by proportional distribution.
  • the air-fuel ratio becomes lean.
  • the air-fuel ratio A/F is made leaner the lower the required load L.
  • the air-fuel ratio A/F is made larger as the required load L becomes lower.
  • the target opening degrees ST of the throttle valve 16 required for making the air-fuel ratio the target air-fuel ratios shown in Fig. 12 are stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 13A. Further, the target opening degrees of the EGR control valve 23 required for making the air-fuel ratio the target air-fuel ratios shown in Fig. 12 are stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 13B.
  • the target opening degrees ST of the throttle valve 16 required for making the air-fuel ratio these target air-fuel ratios are stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 15A.
  • the target opening degrees SE of the EGR control valve 23 required for making the air-fuel ratio these target air-fuel ratios are stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 15B.
  • Figure 16 shows the relationship between various temperatures and the required load L.
  • Ta shows the temperature of the exhaust gas flowing into the catalyst 19 when the first combustion, that is, when low temperature combustion, is being performed in the first operating region I
  • Tb shows the temperature of the catalyst bed of the catalyst 19 at that time
  • Tc shows the temperature of the catalyst bed of the catalyst 19 when the second combustion is being performed in the first operating region I and second operating region II.
  • the temperature of the exhaust gas becomes higher than when the second combustion is being performed, therefore with the same required load L, the temperature Ta of the exhaust gas at the time of low temperature combustion becomes higher than the temperature Tc of the catalyst bed at the time of second combustion.
  • the higher the required load L the larger the amount of heat generated at the time of combustion, so the higher the required load L, the higher the temperature Ta of the exhaust gas flowing into the catalyst 19.
  • the air-fuel ratio is made lean both when first combustion is being performed and when second combustion is being performed. If combustion is continued under a lean air-fuel ratio in this way, however, as explained at the start, the precious metal carried in the catalyst 19 will be made to oxidize and as a result the activity of the catalyst 19 will decline. In this case, the activity of the catalyst 19 can be restored by making the temperature of the catalyst bed high and making the air-fuel ratio rich.
  • the temperature Tb of the catalyst bed becomes higher. Further, when low temperature combustion is being performed, no soot is generated even if the air-fuel ratio is made rich. Therefore, in the present invention, when low temperature combustion is being performed, the air-fuel ratio is made rich so as to restore the activity of the catalyst 19.
  • the temperature Tb of the catalyst bed becomes higher the higher the required load L.
  • the temperature Tb of the catalyst bed becomes highest immediately before the operating region of the engine changes from the first operating region I to the second operating region II and immediately after the operating region of the engine changes from the second operating region II to the first operating region I. Therefore, in the first embodiment of the present invention, the air-fuel ratio is made rich immediately before the operating region of the engine changes from the first operating region I to the second operating region II and immediately after the operating region of the engine changes from the second operating region II to the first operating region I.
  • Figure 17 shows the case where the required load L exceeds the first boundary X(N) at the time t 0 .
  • the required load L exceeds the first boundary X(N)
  • the throttle valve 16 is made to open in a step-like manner and the second combustion is switched to.
  • Fig. 18 shows the case where the required load L has become lower than the second boundary Y(N).
  • the throttle valve 16 is made to close in a step-like manner and the second combustion is switched to the first combustion.
  • the air-fuel ratio is made rich for the time t2.
  • step 100 it is judged if the flag I showing that the operating state of the engine is the first operating region I has been set or not.
  • the routine proceeds to step 101, where it is judged if the required load L has become larger than the first boundary X(N) or not.
  • L ⁇ X(N) the routine proceeds to step 106, where low temperature combustion is performed.
  • the target opening degree ST of the throttle valve 16 is calculated from the map shown in Fig. 13A and the opening degree of the throttle valve 16 is made this target opening degree ST.
  • the target opening degree SE of the EGR control valve 23 is calculated from the map shown in Fig. 13B and the opening degree of the EGR control valve 23 is made that target opening degree SE.
  • step 101 when it is judged at step 101 that L > X(N), the routine proceeds to step 102, where it is judged if a time t1 has elapsed from when L became greater than X(N). When the time t1 has not elapsed, the routine proceeds to step 103, where the rich flag is set. When the rich flag is set, the routine proceeds through steps 106, 107, and 108 to step 110, where fuel is injected to give a rich air-fuel ratio. At this time, the low temperature combustion is performed under a rich air-fuel ratio.
  • step 104 the rich flag is reset
  • step 105 the flag I is reset
  • step 116 the routine proceeds to step 116, where second combustion is performed.
  • the target opening degree ST of the throttle valve 16 is calculated from the map shown in Fig. 15A and the opening degree of the throttle valve 16 is made the target opening degree ST.
  • the target opening degree SE of the EGR control valve 23 is calculated from the map shown in Fig. 15B and the opening degree of the EGR control valve 23 is made that target opening degree SE.
  • fuel is injected to give a lean air-fuel ratio shown in Fig. 14. The second combustion is performed under a lean air-fuel ratio at this time.
  • step 100 the routine proceeds from step 100 to step 111, where it is judged if the required load L has become smaller than the second boundary Y(N).
  • step 111 the routine proceeds to step 116, where the second combustion is performed under a lean air-fuel ratio.
  • step 112 when it is judged at step 111 that L ⁇ Y(N), the routine proceeds to step 112, where it is judged if the time t2 has elapsed from when L became smaller than Y (N). When the time t2 has not elapsed, the routine proceeds to step 113, where the rich flag is set. When the rich flag is set, the routine proceeds through steps 106, 107, and 108 to step 110, where fuel is injected to give a rich air-fuel ratio. The low temperature combustion is performed under the rich air-fuel ratio at this time.
  • step 112 When it is judged at step 112 that the time t2 has elapsed, the routine proceeds to step 114, where the rich flag is reset, then the routine proceeds to step 115, where the flag I is set. Next, the routine proceeds through steps 106, 107, and 108 to step 109, where the low temperature combustion is performed under a lean air-fuel ratio.
  • Figure 20 shows the air-fuel ratio A/F in the first operating region I.
  • the air-fuel ratios between the curves are determined by proportional distribution.
  • a curve showing the stoichiometric air-fuel ratio extends substantially at a position of a somewhat smaller required load L than the second boundary Y(N) an equal interval away from the second boundary Y(N).
  • a rich region where the air-fuel ratio is rich extends in a band between the curve showing the stoichiometric air-fuel ratio and the first boundary X(N). In this rich region, the air-fuel ratio A/F becomes richer the higher the required load L.
  • the target opening degree ST of the throttle valve 16 required for making the air-fuel ratio the target air-fuel ratio shown in Fig. 20 is stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 21A, while the target opening degree SE of the EGR control valve 23 required for making the air-fuel ratio the target air-fuel ratio shown in Fig. 20 is stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 21B.
  • the air-fuel ratio at the time of the second combustion is made the lean air-fuel ratio shown in Fig. 14, therefore the target opening degree ST of the throttle valve 16 and the target opening degree SE of the EGR control valve 23 at the time of the second combustion are calculated from the maps shown in Figs. 15A and 15B.
  • the air-fuel ratio changes through a rich region air-fuel ratio to the lean air-fuel ratio of the time of second combustion.
  • the air-fuel ratio changes from a rich region air-fuel ratio to a lean air-fuel ratio.
  • step 200 it is judged if the flag I showing that the operating state of the engine is the first operating region I has been set or not.
  • the routine proceeds to step 201, where it is judged if the required load L has become larger than the first boundary X(N) or not.
  • L ⁇ X(N) the routine proceeds to step 203, where low temperature combustion is performed.
  • the target opening degree ST of the throttle valve 16 is calculated from the map shown in Fig. 21A and the opening degree of the throttle valve 16 is made this target opening degree ST.
  • the target opening degree SE of the EGR control valve 23 is calculated from the map shown in Fig. 21B and the opening degree of the EGR control valve 23 is made that target opening degree SE.
  • fuel is injected to give the air-fuel ratio shown in Fig. 20. The low temperature combustion is performed at this time.
  • step 201 when it is judged at step 201 that L > X(N), the routine proceeds to step 202, where it is judged if the flag I has been reset, then the routine proceeds to step 208, where the second combustion is performed.
  • the target opening degree ST of the throttle valve 16 is calculated from the map shown in Fig. 15A and the opening degree of the throttle valve 16 is made the target opening degree ST.
  • the target opening degree SE of the EGR control valve 23 is calculated from the map shown in Fig. 15B and the opening degree of the EGR control valve 23 is made that target opening degree SE.
  • fuel is injected to give a lean air-fuel ratio shown in Fig. 14.
  • step 200 the routine proceeds from step 200 to step 206, where it is judged if the required load L has become smaller than the second boundary Y(N).
  • L ⁇ Y(N) the routine proceeds to step 208, where the second combustion is performed under a lean air-fuel ratio.
  • step 206 when it is judged at step 206 that L ⁇ Y(N), the routine proceeds to step 207, where the flag I is set, then the routine proceeds to step 203, where the low temperature combustion is performed.
  • FIG 23 shows another embodiment.
  • another catalyst 50 having an oxidation action is arranged downstream of the catalyst 19 having the oxidation action.
  • this catalyst 50 it is possible to also use an oxidation catalyst, three-way catalyst, or NOx absorbent.
  • the NOx absorbents 19 and 50 have a NOx absorbing and releasing action by which they absorb NOx when the air-fuel ratio is lean and release the absorbed NOx when the air-fuel ratio becomes the stoichiometric air-fuel ratio or rich.
  • the NOx absorbents 19 and 50 actually perform this NOx absorbing and releasing action, but there are parts of the detailed mechanism for this absorbing and releasing action which are not clear. This absorbing and releasing action however is believed to be due to the mechanism shown in Figs. 24A and 24B. This mechanism will be explained next taking as an example the case of carrying platinum Pt and barium Ba on a carrier, but the same mechanism acts even if using another precious metal, alkali metal, alkali earth, or rare earth.
  • combustion is normally performed with a lean air-fuel ratio.
  • the oxygen concentration in the exhaust gas is high.
  • the oxygen O 2 adheres to the surface of the platinum Pt in the form of O 2 - or O 2- .
  • the NO in the exhaust gas reacts with the O 2 - or O 2- on the surface of the platinum Pt to become NO 2 (2NO + O 2 ⁇ 2NO 2 ).
  • part of the NO 2 which is produced is oxidized on the platinum Pt, absorbed in the absorbent, bonds with the barium oxide BaO, and is diffused inside the absorbent in the form of the nitrate ions NO 3 - as shown in Fig. 24A.
  • the NOx is absorbed in the NOx absorbents 19 and 50. So long as the oxygen concentration in the inflowing exhaust gas is high, NO 2 is produced on the surface of the platinum Pt. So long as the NOx absorption capacity of the absorbent is not saturated, the NO 2 is absorbed in the absorbent and nitrate ions NO 3 - are produced.
  • the air-fuel ratio is made rich immediately before switching from the first combustion to the second combustion and immediately after switching from the second combustion to the first combustion. If the air-fuel ratio is made rich, the oxygen concentration in the exhaust gas falls, and the amount of production of NO 2 falls, the reaction proceeds in the reverse direction (NO 3 - ⁇ NO 2 ) and the nitrate ions NO 3 - in the absorbent are released from the absorbent in the form of NO 2 . The NOx released from the NOx absorbents 19 and 50 at this time is reduced by the large amounts of unburnt HC and CO contained in the exhaust gas as shown by Fig. 24B.
  • a compression ignition type engine wherein a first combustion where the amount of the recirculated exhaust gas supplied to the combustion chamber is larger than the amount of recirculated exhaust gas where the amount of production of soot peaks and almost no soot is produced and a second combustion where the amount of recirculated exhaust gas supplied to the combustion chamber is smaller than the amount of recirculated exhaust gas where the amount of production of soot peaks are selectively switched between and wherein the air-fuel ratio is temporarily made rich immediately before switching from the first combustion to the second combustion or immediately after switching from the second combustion to the first combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

A compression ignition type engine, wherein a first combustion where the amount of the recirculated exhaust gas supplied to the combustion chamber is larger than the amount of recirculated exhaust gas where the amount of production of soot peaks and almost no soot is produced and a second combustion where the amount of recirculated exhaust gas supplied to the combustion chamber is smaller than the amount of recirculated exhaust gas where the amount of production of soot peaks are selectively switched between and wherein the air-fuel ratio is temporarily made rich immediately before switching from the first combustion to the second combustion or immediately after switching from the second combustion to the first combustion. <IMAGE>

Description

BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a compression ignition type engine.
2. Description of the Related Art
In the past, in an internal combustion engine, for example, a diesel engine, the production of NOx has been suppressed by connecting the engine exhaust passage and the engine intake passage by an exhaust gas recirculation (EGR) passage so as to cause the exhaust gas, that is, the EGR gas, to recirculate in the engine intake passage through the EGR passage. In this case, the EGR gas has a relatively high specific heat and therefore can absorb a large amount of heat, so the larger the amount of EGR gas, that is, the higher the EGR rate (amount of EGR gas/(amount of EGR gas + amount of intake air), the lower the combustion temperature in the engine intake passage. When the combustion temperature falls, the amount of NOx produced falls and therefore the higher the EGR rate, the lower the amount of NOx produced.
In this way, in the past, the higher the EGR rate, the lower the amount of NOx produced can become. If the EGR rate is increased, however, the amount of soot produced, that is, the smoke, starts to sharply rise when the EGR rate passes a certain limit. In this point, in the past, it was believed that if the EGR rate was increased, the smoke would increase without limit. Therefore, it was believed that the EGR rate at which smoke starts to rise sharply was the maximum allowable limit of the EGR rate.
Therefore, in the past, the EGR rate was set within a range not exceeding the maximum allowable limit (for example, see Japanese Unexamined Patent Publication (Kokai) No. 4-334750). The maximum allowable limit of the EGR rate differed considerably according to the type of the engine and the fuel, but was from 30 percent to 50 percent or so. Accordingly, in conventional diesel engines, the EGR rate was suppressed to 30 percent to 50 percent at a maximum.
Since it was believed in the past that there was a maximum allowable limit to the EGR rate, in the past the EGR rate had been set so that the amount of NOx and smoke produced would become as small as possible within a range not exceeding that maximum allowable limit. Even if the EGR rate is set in this way so that the amount of NOx and smoke produced becomes as small as possible, however, there are limits to the reduction of the amount of production of NOx and smoke. In practice, therefore, a considerable amount of NO and smoke continues being produced.
The present inventors, however, discovered in the process of studies on the combustion in diesel engines that if the EGR rate is made larger than the maximum allowable limit, the smoke sharply increases as explained above, but there is a peak to the amount of the smoke produced and once this peak is passed, if the EGR rate is made further larger, the smoke starts to sharply decrease and that if the EGR rate is made at least 70 percent during engine idling or if the EGR gas is force cooled and the EGR rate is made at least 55 percent or so, the amount of production of smoke will become almost zero, that is, almost no soot will be produced. Further, they found that the amount of NOx produced at this time was extremely small. They engaged in further studies later based on this discovery to determine the reasons why soot was not produced and as a result constructed a new system of combustion able to simultaneously reduce the soot and NOx more than ever before. This new system of combustion will be explained in detail later, but briefly it is based on the idea of stopping the growth of hydrocarbons into soot at a stage before the hydrocarbons grow.
That is, what was found from repeated experiments and research was that the growth of hydrocarbons into soot stops at a stage before that happens when the temperatures of the fuel and the gas around the fuel at the time of combustion in the combustion chamber are lower than a certain temperature and the hydrocarbons grow to soot all at once when the temperatures of the fuel and the gas around the fuel become higher than a certain temperature. In this case, the temperatures of the fuel and the gas around the fuel are greatly affected by the heat absorbing action of the gas around the fuel at the time of combustion of the fuel. By adjusting the amount of heat absorbed by the gas around the fuel in accordance with the amount of heat generated at the time of combustion of the fuel, it is possible to control the temperatures of the fuel and the gas around the fuel.
Therefore, if the temperatures of the fuel and the gas around the fuel at the time of combustion in the combustion chamber are suppressed to less than the temperature at which the growth of the hydrocarbons stops midway, soot is no longer produced. The temperatures of the fuel and the gas around the fuel at the time of combustion in the combustion chamber can be suppressed to less than the temperature at which the growth of the hydrocarbons stops midway by adjusting the amount of heat absorbed by the gas around the fuel. On the other hand, the hydrocarbons stopped in growth midway before becoming soot can be easily removed by after-treatment using an oxidation catalyst etc. This is the basic thinking behind this new system of combustion.
In this new method of combustion, however, while soot is not produced as explained above, hydrocarbons are exhausted, so it is necessary to place a catalyst having an oxidation action etc. in the engine exhaust passage to remove the hydrocarbons. A catalyst having an oxidation action etc., however, normally carries platinum or another precious metal. The precious metal is gradually made to oxidize if the precious metal is continuously exposed to an oxygen rich state. If the precious metal is made to oxidize, the activity of the catalyst, that is, the oxidation action, will decline and accordingly the action in removing the hydrocarbons will gradually decline.
In this case, however, it is possible to restore the activity of the catalyst by making the temperature of the catalyst bed higher and making the air-fuel ratio rich. That is, if the air-fuel ratio is made rich in the state of a low catalyst bed temperature, the unburned hydrocarbons will cover the surface of the precious metal and therefore in this case the activity of the catalyst will end up declining. As opposed to this, if the air-fuel ratio is made rich in the state of a high catalyst bed temperature, the oxygen bonded to the precious metal will be used for oxidizing action of the unburned hydrocarbons and as a result the precious metal will be reduced and accordingly the activity of the catalyst will be restored.
In this way, it is possible to restore the activity of the catalyst by making the temperature of the catalyst bed high and making the air-fuel ratio rich. In a conventional diesel engine, however, if the air-fuel ratio is made rich, a large amount of soot is produced. Therefore, it is not possible to make the air-fuel ratio rich in a conventional diesel engine. As opposed to this, in the new method of combustion explained above, as will be discussed later, almost no soot is produced even if the temperature of the catalyst bed becomes high and the air-fuel ratio is made rich. That is, under the new method of combustion, it is easy to create an operating state where the temperature of the catalyst bed is high and the air-fuel ratio is rich.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a compression ignition type engine designed to prevent a decline in the activity of a catalyst carrying a precious metal by using this new method of combustion.
According to the present invention, there is provided a compression ignition type engine in which an amount of production of soot gradually increases and then peaks when an amount of inert gas supplied in a combustion chamber increases and in which a further increase of the amount of inert gas supplied in the combustion chamber results in a temperature of fuel and surrounding gas in the combustion chamber becoming lower than a temperature of production of soot and therefore almost no production of soot any longer, said engine comprising: a catalyst arranged in an engine exhaust passage and carrying a precious metal; switching means for selectively switching between a first combustion where the amount of the inert gas supplied to the combustion chamber is larger than the amount of inert gas where the amount of production of soot peaks and almost no soot is produced and a second combustion where the amount of inert gas supplied to the combustion chamber is smaller than the amount of inert gas where the amount of production of soot peaks; and air-fuel ratio control means for making an air-fuel ratio at least temporarily rich under the first combustion when switching from the first combustion to second combustion or switching from the second combustion to the first combustion.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention may be more fully understood from the description of the preferred embodiments of the invention set forth below together with the accompanying drawings, in which:
  • Fig. 1 is an overall view of a compression ignition type engine;
  • Fig. 2 is a view of the amount of generation of smoke and NOx;
  • Figs. 3A and 3B are views of the combustion pressure;
  • Fig. 4 is a view of a fuel molecule;
  • Fig. 5 is a view of the relationship between the amount of smoke produced and the EGR rate;
  • Fig. 6 is a view of the relationship between the amount of injected fuel and the amount of mixed gas;
  • Figs. 7A and 7B are views of the change in the average gas temperature Tg in the combustion chamber and the temperature Tf of the fuel and the gas around it;
  • Fig. 8 is a view of a first operating region I and a second operating region II;
  • Fig. 9 is a view of the relationship between ΔL(N) and the engine speed N;
  • Fig. 10 is a view of the output of the air-fuel ratio sensor;
  • Fig. 11 is a view of the opening degree of a throttle valve etc.;
  • Fig. 12 is a view of the air-fuel ratio in a first operating region I;
  • Figs. 13A and 13B are views of maps of the target opening degree of a throttle valve etc.;
  • Fig. 14 is a view of an air-fuel ratio in a second combustion etc.;
  • Figs. 15A and 15B are views of a target opening degree of a throttle valve etc.;
  • Fig. 16 is a view of a temperature Ta of exhaust gas flowing into a catalyst and temperatures Tb and Tc of the catalyst bed;
  • Fig. 17 is a time chart of the time for switching from low temperature combustion to second combustion;
  • Fig. 18 is a time chart of the time for switching from second combustion to low temperature combustion;
  • Fig. 19 is a flow chart of the control of engine operation;
  • Fig. 20 is a view of the air-fuel ratio in the first operating region I;
  • Figs. 21A and 21B are views of maps of the target opening degree of the throttle valve etc.;
  • Fig. 22 is a flow chart of another embodiment for control of the engine operation;
  • Fig. 23 is an overview of another embodiment of a compression ignition type engine; and
  • Figs. 24A and 24B are views for explaining the NOx absorption and release action.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
    Figure 1 is a view of the case of application of the present invention to a four-stroke compression ignition type engine.
    Referring to Fig. 1, 1 shows an engine body, 2 a cylinder block, 3 a cylinder head, 4 a piston, 5 a combustion chamber, 6 an electrically controlled fuel injector, 7 an intake valve, 8 an intake port, 9 an exhaust valve, and 10 an exhaust port. The intake port 8 is connected through a corresponding intake tube 11 to the surge tank 12. The surge tank 12 is connected through an intake duct 13 to an air cleaner 14. A throttle valve 16 driven by an electric motor 15 is arranged in the intake duct 13. On the other hand, the exhaust port 10 is connected through an exhaust manifold 17 and exhaust tube 18 to a catalytic converter 20 housing a catalyst 19 having an oxidation action. An air-fuel ratio sensor 21 is arranged in the exhaust manifold 17.
    The exhaust manifold 17 and surge tank 12 are connected with each other through an EGR passage 22. An electrically controlled EGR control valve 23 is arranged in an EGR passage 22. Further, a cooling apparatus 24 for cooling the EGR gas flowing through the EGR passage 22 is provided around the EGR passage 22. In the embodiment shown in Fig. 1, the engine cooling water is guided to the cooling apparatus 24 where the engine cooling water is used to cool the EGR gas.
    On the other hand, each fuel injector 6 is connected through a fuel supply tube 25 to the fuel reservoir, that is, a common rail 26. Fuel is supplied to the common rail 26 from an electrically controlled variable discharge fuel pump 27. Fuel supplied in the common rail 26 is supplied through each fuel supply tube 25 to the fuel injectors 6. A fuel pressure sensor 28 for detecting the fuel pressure in the common rail 26 is attached to the common rail 26. The amount of discharge of the fuel pump 27 is controlled based on the output signal of the fuel pressure sensor 28 so that the fuel pressure in the common rail 26 becomes the target fuel pressure.
    The electronic control unit 30 is comprised of a digital computer and is provided with a ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, a backup RAM 33a connected to a constant power source, an input port 35, and an output port 36 connected with each other by a bidirectional bus 31. The output signal of the air-fuel ratio sensor 21 is input through a corresponding AD converter 37 to the input port 35. Further, the output signal of the fuel pressure sensor 28 is input through a corresponding AD converter 37 to the input port 35. The accelerator pedal 40 has connected to it a load sensor 41 for generating an output voltage proportional to the amount of depression L of the accelerator pedal 40. The output voltage of the load sensor 41 is input through a corresponding AD converter 37 to the input port 35. Further, the input port 35 has connected to it a crank angle sensor 42 for generating an output pulse each time the crankshaft rotates by for example 30°. On the other hand, the output port 36 has connected to it through a corresponding drive circuit 38 the fuel injector 6, electric motor 15, EGR control valve 23, and fuel pump 27.
    Figure 2 shows an example of an experiment showing the changes in the output torque and the changes in the amount of smoke, HC, CO, and NOx exhausted when changing the air-fuel ratio A/F (abscissa in Fig. 2) by changing the opening degree of the throttle valve 16 and the EGR rate at the time of engine low load operation. As will be understood from Fig. 2, in this experiment, the EGR rate becomes larger the smaller the air-fuel ratio A/F. When below the stoichiometric air-fuel ratio (≒ 14.6), the EGR rate becomes over 65 percent.
    As shown in Fig. 2, if increasing the EGR rate to reduce the air-fuel ratio A/F, when the EGR rate becomes close to 40 percent and the air-fuel ratio A/F becomes 30 degrees, the amount of smoke produced starts to increase. Next, when the EGR rate is further raised and the air-fuel ratio A/F is made smaller, the amount of smoke produced sharply increases and peaks. Next, when the EGR rate is further raised and the air-fuel ratio A/F is made smaller, the smoke sharply falls. When the EGR rate is made over 65 percent and the air-fuel ratio A/F becomes close to 15.0, the smoke produced becomes substantially zero. That is, almost no soot is produced any longer. At this time, the output torque of the engine falls somewhat and the amount of NOx produced becomes considerably lower. On the other hand, at this time, the amounts of HC and CO produced start to increase.
    Figure 3A shows the changes in compression pressure in the combustion chamber 5 when the amount of smoke produced is the greatest near an air-fuel ratio A/F of 21. Figure 3B shows the changes in compression pressure in the combustion chamber 5 when the amount of smoke produced is substantially zero near an air-fuel ratio A/F of 18. As will be understood from a comparison of Fig. 3A and Fig. 3B, the combustion pressure is lower in the case shown in Fig. 3B where the amount of smoke produced is substantially zero than the case shown in Fig. 3A where the amount of smoke produced is large.
    The following may be said from the results of the experiment shown in Fig. 2 and Figs. 3A and 3B. That is, first, when the air-fuel ratio A/F is less than 15.0 and the amount of smoke produced is substantially zero, the amount of NOx produced falls considerably as shown in Fig. 2. The fact that the amount of NOx produced falls means that the combustion temperature in the combustion chamber 5 falls. Therefore, it can be said that when almost no soot is produced, the combustion temperature in the combustion chamber 5 becomes lower. The same thing may be said from Figs. 3A and 3B. That is, in the state shown in Fig. 3B where almost no soot is produced, the combustion pressure becomes lower, therefore the combustion temperature in the combustion chamber 5 becomes lower at this time.
    Second, when the amount of smoke produced, that is, the amount of soot produced, becomes substantially zero, as shown in Fig. 2, the amounts of HC and CO exhausted increase. This means that the hydrocarbons are exhausted without growing into soot. That is, the straight chain hydrocarbons and aromatic hydrocarbons contained in the fuel and shown in Fig. 4 decompose when raised in temperature in an oxygen poor state resulting in the formation of a precursor of soot. Next, soot mainly comprised of solid masses of carbon atoms is produced. In this case, the actual process of production of soot is complicated. How the precursor of soot is formed is not clear, but whatever the case, the hydrocarbons shown in Fig. 4 grow to soot through the soot precursor. Therefore, as explained above, when the amount of production of soot becomes substantially zero, the amount of exhaust of HC and CO increases as shown in Fig. 2, but the HC at this time is a soot precursor or a state of hydrocarbons before that.
    Summarizing these considerations based on the results of the experiments shown in Fig. 2 and Figs. 3A and 3B, when the combustion temperature in the combustion chamber 5 is low, the amount of soot produced becomes substantially zero. At this time, a soot precursor or a state of hydrocarbons before that is exhausted from the combustion chamber 5. More detailed experiments and studies were conducted on this. As a result, it was learned that when the temperatures of the fuel and the gas around the fuel in the combustion chamber 5 are below a certain temperature, the process of growth of soot stops midway, that is, no soot at all is produced and that when the temperature of the fuel and its surroundings in the combustion chamber 5 becomes higher than a certain temperature, soot is produced.
    The temperature of the fuel and its surroundings when the process of production of hydrocarbons stops in the state of the soot precursor, that is, the above certain temperature, changes depending on various factors such as the type of the fuel, the air-fuel ratio, and the compression ratio, so it cannot be said what degree it is, but this certain temperature is deeply related with the amount of production of NOx. Therefore, this certain temperature can be defined to a certain degree from the amount of production of NOx. That is, the greater the EGR rate, the lower the temperature of the fuel and the gas surrounding it at the time of combustion and the lower the amount of NOx produced. At this time, when the amount of NOx produced becomes around 10 ppm or less, almost no soot is produced any more. Therefore, the above certain temperature substantially matches the temperature when the amount of NOx produced becomes 10 ppm or less.
    Once soot is produced, it is impossible to remove it by after-treatment using an oxidation catalyst etc. As opposed to this, a soot precursor or a state of hydrocarbons before this can be easily removed by after-treatment using an oxidation catalyst etc. Considering after-treatment by an oxidation catalyst etc., there is an extremely great difference between whether the hydrocarbons are exhausted from the combustion chamber 5 in the form of a soot precursor or a state before that or exhausted from the combustion chamber 5 in the form of soot. The new combustion system used in the present invention is based on the idea of exhausting the hydrocarbons from the combustion chamber 5 in the form of a soot precursor or a state before that without allowing the production of soot in the combustion chamber 5 and causing the hydrocarbons to oxidize by an oxidation catalyst etc.
    Now, to stop the growth of hydrocarbons in the state before the production of soot, it is necessary to suppress the temperatures of the fuel and the gas around it at the time of combustion in the combustion chamber 5 to a temperature lower than the temperature where soot is produced. In this case, it was learned that the heat absorbing action of the gas around the fuel at the time of combustion of the fuel has an extremely great effect in suppression of the temperatures of the fuel and the gas around it.
    That is, if there is only air around the fuel, the vaporized fuel will immediately react with the oxygen in the air and burn. In this case, the temperature of the air away from the fuel does not rise that much. Only the temperature around the fuel becomes locally extremely high. That is, at this time, the air away from the fuel does not absorb the heat of combustion of the fuel much at all. In this case, since the combustion temperature becomes extremely high locally, the unburned hydrocarbons receiving the heat of combustion produce soot.
    On the other hand, when there is fuel in a mixed gas of a large amount of inert gas and a small amount of air, the situation is somewhat different. In this case, the evaporated fuel disperses in the surroundings and reacts with the oxygen mixed in the inert gas to burn. In this case, the heat of combustion is absorbed by the surrounding inert gas, so the combustion temperature no longer rises that much. That is, it becomes possible to keep the combustion temperature low. That is, the presence of inert gas plays an important role in the suppression of the combustion temperature. It is possible to keep the combustion temperature low by the heat absorbing action of the inert gas.
    In this case, to suppress the temperatures of the fuel and the gas around it to a temperature lower than the temperature at which soot is produced, an amount of inert gas enough to absorb an amount of heat sufficient for lowering the temperatures is required. Therefore, if the amount of fuel increases, the amount of inert gas required increases along with the same. Note that in this case the larger the specific heat of the inert gas, the stronger the heat absorbing action. Therefore, the inert gas is preferably a gas with a large specific heat. In this regard, since CO2 and EGR gas have relatively large specific heats, it may be said to be preferable to use EGR gas as the inert gas.
    Figure 5 shows the relationship between the EGR rate and smoke when changing the degree of cooling of the EGR gas using the EGR gas as an inert gas. That is, in Fig. 5, the curve A shows the case when force cooling the EGR gas to maintain the temperature of the EGR gas at about 90°C, the curve B shows the case when cooling the EGR gas by a small sized cooling device, and the curve C shows the case when not force cooling the EGR gas.
    As shown by the curve A in Fig. 5, when force cooling the EGR gas, the amount of soot produced peaks when the EGR rate becomes slightly lower than 50 percent. In this case, almost no soot is produced any longer when the EGR rate is made more than about 55 percent.
    On the other hand, as shown by the curve B in Fig. 5, when slightly cooling the EGR gas, the amount of soot produced peaks when the EGR rate becomes slightly higher than 50 percent. In this case, almost no soot is produced any longer when the EGR rate is made more than about 65 percent.
    Further, as shown by the curve C in Fig. 5, when not force cooling the EGR gas, the amount of soot produced peaks when the EGR rate is near 55 percent. In this case, almost no soot is produced any longer when the EGR rate is made more than about 70 percent.
    Note that Fig. 5 shows the amount of smoke produced when the engine load is relatively high. When the engine load becomes smaller, the EGR rate where the amount of soot produced peaks falls somewhat and the lower limit of the EGR rate where almost no soot is produced any longer falls somewhat as well. In this way, the lower limit of the EGR rate where almost no soot is produced any longer changes in accordance with the degree of cooling of the EGR gas and the engine load.
    Figure 6 shows the amount of mixed gas of EGR gas and air, the ratio of air in the mixed gas, and the ratio of EGR gas in the mixed gas required for making the temperatures of the fuel and the gas around it at the time of combustion a temperature lower than the temperature at which soot is produced in the case of use of EGR gas as an inert gas. Note that in Fig. 6, the ordinate shows the total amount of suction gas taken into the combustion chamber 5. The broken line Y shows the total amount of suction gas able to be taken into the combustion chamber 5 when supercharging is not being performed. Further, the abscissa shows the required load. Z1 shows the low load operating region.
    Referring to Fig. 6, the ratio of air, that is, the amount of air in the mixed gas, shows the amount of air necessary for causing the injected fuel to completely burn. That is, in the case shown in Fig. 6, the ratio of the amount of air and the amount of injected fuel becomes the stoichiometric air-fuel ratio. On the other hand, in Fig. 6, the ratio of EGR gas, that is, the amount of EGR gas in the mixed gas, shows the minimum amount of EGR gas required for making the temperatures of the fuel and the gas around it a temperature lower than the temperature at which soot is produced. This amount of EGR gas is, expressed in terms of the EGR rate, about at least 55 percent and, in the embodiment shown in Fig. 6, is at least 70 percent. That is, if the total amount of suction gas taken into the combustion chamber 5 is made the solid line X in Fig. 6 and the ratio between the amount of air and amount of EGR gas in the total amount of suction gas X is made the ratio shown in Fig. 6, the temperatures of the fuel and the gas around it becomes a temperature lower than the temperature at which soot is produced and therefore no soot at all is produced any longer. Further, the amount of NOx produced at this time is around 10 ppm or less and therefore the amount of NOx produced becomes extremely small.
    If the amount of fuel injected increases, the amount of heat generated at the time of combustion increases, so to maintain the temperatures of the fuel and the gas around it at a temperature lower than the temperature at which soot is produced, the amount of heat absorbed by the EGR gas must be increased. Therefore, as shown in Fig. 6, the amount of EGR gas has to be increased the greater the amount of injected fuel. That is, the amount of EGR gas has to be increased as the required load becomes higher.
    On the other hand, in the load region Z2 of Fig. 6, the total amount of suction gas X required for inhibiting the production of soot exceeds the total amount of suction gas Y which can be taken in. Therefore, in this case, to supply the total amount of suction gas X required for inhibiting the production of soot into the combustion chamber 5, it is necessary to supercharge or pressurize both of the EGR gas and the suction gas or the EGR gas. When not supercharging or pressurizing the EGR gas etc., in the load region Z2, the total amount of suction gas X matches with the total amount of suction gas Y which can be taken in. Therefore, in the case, to inhibit the production of soot, the amount of air is reduced somewhat to increase the amount of EGR gas and the fuel is made to burn in a state where the air-fuel ratio is rich.
    As explained above, Fig. 6 shows the case of combustion of fuel at the stoichiometric air-fuel ratio. In the low load operating region Z1 shown in Fig. 6, even if the amount of air is made smaller than the amount of air shown in Fig. 6, that is, even if the air-fuel ratio is made rich, it is possible to obstruct the production of soot and make the amount of NOx produced around 10 ppm or less. Further, in the low load region Z1 shown in Fig. 6, even if the amount of air is made greater than the amount of air shown in Fig. 6, that is, the average value of the air-fuel ratio is made a lean air-fuel ratio of 17 to 18, it is possible to obstruct the production of soot and make the amount of NOx produced around 10 ppm or less.
    That is, when the air-fuel ratio is made rich, the fuel becomes in excess, but since the fuel temperature is suppressed to a low temperature, the excess fuel does not grow into soot and therefore soot is not produced. Further, at this time, only an extremely small amount of NOx is produced. On the other hand, when the average air-fuel ratio is lean or when the air-fuel ratio is the stoichiometric air-fuel ratio, a small amount of soot is produced if the combustion temperature becomes higher, but in the present invention, the combustion temperature is suppressed to a low temperature, so no soot at all is produced. Further, only an extremely small amount of NOx is produced.
    In this way, in the engine low load operating region Z1, regardless of the air-fuel ratio, that is, whether the air-fuel ratio is rich or the stoichiometric air-fuel ratio or the average air-fuel ratio is lean, no soot is produced and the amount of NOx produced becomes extremely small. Therefore, considering the improvement of the fuel efficiency, it may be said to be preferable to make the average air-fuel ratio lean.
    It is however only possible to suppress the temperature of the fuel and the gas surrounding it at the time of combustion in the combustion chamber to less than the temperature where the growth of the hydrocarbons is stopped midway at the time of a relatively low engine load where the amount of heat generated by the combustion is small. Accordingly, in this embodiment of the present invention, when the engine load is relatively low, the temperature of the fuel and the gas surrounding it is suppressed to less than the temperature where the growth of the hydrocarbons stops midway and first combustion, that is, low temperature combustion, is performed. When the engine load is relatively high, second combustion, that is, the conventionally normally performed combustion, is performed. Note that the first combustion, that is, the low temperature combustion, as clear from the explanation up to here, means combustion where the amount of inert gas in the combustion chamber is larger than the amount of inert gas where the amount of production of the soot peaks and where almost no soot is produced, while the second combustion, that is, the conventionally normally performed combustion, means combustion where the amount of inert gas in the combustion chamber is smaller than the amount of inert gas where the amount of production of soot peaks.
    The solid line in Fig. 7A shows the relationship between the average gas temperature Tg in the combustion chamber 5 when the first combustion is performed and the crank angle. The broken line in Fig. 7A shows the relationship between the average gas temperature Tg in the combustion chamber 5 when the second combustion is performed and the crank angle. Further, the solid line in Fig. 7B shows the relationship between the temperature Tf of the fuel and the gas surrounding it when first combustion is being performed and the crank angle. The broken line in Fig. 7B shows the relationship between the temperature Tf of the fuel and the gas surrounding it when the second combustion is being performed and the crank angle.
    When the first combustion, that is, the low temperature combustion, is being performed, the amount of EGR gas is larger compared with when the second combustion, that is, the conventional ordinary combustion, is being performed, therefore as shown in Fig. 7A, before top dead center of the compression stroke, that is, during the compression stroke, the average temperature Tg of the gas at the time of the first combustion shown by the solid line becomes higher than the average temperature Tg of the gas at the time of the second combustion shown by the broken line. Note that at this time, as shown by Fig. 7B, the temperature Tf of the fuel and the gas around it becomes substantially the same temperature as the average temperature Tg of the gas.
    Next, combustion is started near top dead center of the compression stroke, but in this case, when first combustion is being performed, as shown by the solid line in Fig. 7B, the temperature Tf of the fuel and the gas around it does not become that high. As opposed to this, when second combustion is being performed, as shown by the broken line in Fig. 7B, the temperature Tf of the fuel and the gas around it becomes extremely high. When second combustion is being performed in this way, the temperature Tf of the fuel and the gas around it becomes considerably higher than when the first combustion is being performed, but the temperature of the other gas, constituting the major part, becomes lower when the second combustion is being performed compared with when the first combustion is being performed. Therefore, as shown by Fig. 7A, the average temperature Tg of the gas in the combustion chamber 5 near top dead center of the compression stroke becomes higher when the first combustion is being performed compared with when the second combustion is being performed. As a result, as shown by Fig. 7A, the average temperature Tg of the gas in the combustion chamber 5 after the end of the combustion, that is, in the latter half of the expansion stroke, in other words, the temperature of the burned gas in the combustion chamber 5, becomes higher when the first combustion is being performed compared with when the second combustion is being performed.
    When the first combustion, that is, when the low temperature combustion, is being performed, compared with when the second combustion is being performed, the temperature Tf of the fuel and the gas around it at the time of combustion becomes considerably low, but the burned gas in the combustion chamber 5 becomes conversely higher compared with when the second combustion is performed, therefore the temperature of the exhaust gas from the combustion chamber 5 also becomes higher compared with when the second combustion is performed.
    Figure 8 shows a first operating region I where the first combustion, that is, the low temperature combustion, is performed, and a second operating region II where the second combustion, that is, the combustion by the conventional combustion method, is performed. Note that in Fig. 8, the abscissa L shows the amount of depression of the accelerator pedal 40, that is, the required load, and the ordinate N shows the engine speed. Further, in Fig. 8, X(N) shows a first boundary between the first operating region I and the second operating region II, while Y(N) shows a second boundary between the first operating region I and the second operating region II. The change of the operating region from the first operating region I to the second operating region II is judged based on the first boundary X(N), while the change of the operating region from the second boundary region II to the first operating region I is judged based on the second boundary Y(N).
    That is, when the engine operating region is the first operating region I and low temperature combustion is being performed, if the required load L exceeds the first boundary X(N), which is a function of the engine rotational speed N, it is judged that the operating region has shifted to the second operating region II and combustion by the conventional combustion method is performed. Next, when the required load L becomes lower than the second boundary Y(N), which is a function of the engine rotational speed N, it is judged that the operating region has shifted to the first operating region I and low temperature combustion again is performed.
    Note that in this embodiment of the present invention, the second boundary Y(N) is made the low load side from the first boundary X(N) by ΔL(N). As shown in Fig. 8 and Fig. 9, ΔL(N) is a function of the engine rotational speed N. ΔL(N) becomes smaller the higher the engine speed N.
    When low temperature combustion is being performed when the engine is operating in the first operating region I, almost no soot is produced, but instead the unburnt hydrocarbons are exhausted from the combustion chamber 5 in the form of a soot precursor or a state before that. At this time, the unburnt hydrocarbons exhausted from the combustion chamber 5 may be oxidized by the catalyst 19 having the oxidation function.
    As the catalyst 19, an oxidation catalyst, three-way catalyst, or NOx absorbent may be used. An NOx absorbent has the function of absorbing the NOx when the average air-fuel ratio in the combustion chamber 5 is lean and releasing the NOx when the average air-fuel ratio in the combustion chamber 5 becomes the stoichiometric air-fuel ratio or rich.
    The NOx absorbent is for example comprised of alumina as a carrier and, on the carrier, for example, at least one of potassium K, sodium Na, lithium Li, cesium Cs, and other alkali metals, barium Ba, calcium Ca, and other alkali earths, lanthanum La, yttrium Y, and other rare earths plus platinum Pt or another precious metal is carried.
    The oxidation catalyst, of course, and also the three-way catalyst and NOx absorbent have an oxidation function, therefore the three-way catalyst and NOx absorbent can be used as the catalyst 19 as explained above.
    Figure 10 shows the output of the air-fuel ratio sensor 21. As shown in Fig. 10, the output current I of the air-fuel ratio sensor 21 changes in accordance with the air-fuel ratio A/F. Therefore, it is possible to determine the air-fuel ratio from the output current I of the air-fuel ratio sensor 21.
    The control of the operation in the first operating region I and the second operating region II will be explained next with reference to Fig. 11.
    Figure 11 shows the opening degrees of the throttle valve 16, the opening degree of the EGR control valve 23, the EGR rate, the air-fuel ratio, the injection timing, and the amount of injection with respect to the required load L. As shown in Fig. 11, in the first operating region I with the low required load L, the opening degree of the throttle valve 16 is gradually increased from close to the fully closed state to the half opened state as the required load L becomes higher, while the opening degree of the EGR control valve 23 is gradually increased from close to the fully closed state to the fully opened state as the required load L becomes higher. Further, in the example shown in Fig. 11, in the first operating region I, the EGR rate is made about 70 percent and the air-fuel ratio is made a slightly lean air-fuel ratio.
    In other words, in the first operating region I, the opening degree of the throttle valve 16 and the opening degree of the EGR control valve 23 are controlled so that the EGR rate becomes about 70 percent and the air-fuel ratio becomes a slightly lean air-fuel ratio. Note that at this time, the air-fuel ratio is controlled to the target lean air-fuel ratio by correcting the opening degree of the EGR control valve 23 based on the output signal of the air-fuel ratio sensor 21. Further, in the first operating region I, the fuel is injected before top dead center of the compression stroke TDC. In this case, the injection start timing S becomes later the higher the required load L. The injection end timing E also becomes later the later the injection start timing S.
    Note that, during idling operation, the throttle valve 16 is made to close to close to the fully closed state. At this time, the EGR control valve 23 is also made to close to close to the fully closed state. If the throttle valve 16 closes to close to the fully closed state, the pressure in the combustion chamber 5 at the start of compression will become low, so the compression pressure will become small. If the compression pressure becomes small, the amount of compression work by the piston 4 becomes small, so the vibration of the engine body 1 becomes smaller. That is, during idling operation, the throttle valve 16 can be closed to close to the fully closed state to suppress vibration in the engine body 1.
    When the engine is operating in the first operating region I, almost no soot or NOx is produced and hydrocarbons in the form of a soot precursor or its previous state contained in the exhaust gas can be oxidized by the catalyst 19.
    On the other hand, if the engine operating state changes from the first operating region I to the second operating region II, the opening degree of the throttle valve 16 is increased in a step-like manner from the half opened state to the fully opened state. At this time, in the example shown in Fig. 11, the EGR rate is reduced in a step-like manner from about 70 percent to less than 40 percent and the air-fuel ratio is increased in a step-like manner. That is, since the EGR rate jumps over the range of EGR rates (Fig. 5) where a large amount of smoke is produced, there is no longer a large amount of smoke produced when the engine operating state changes from the first operating region I to the second operating region II.
    In the second operating region II, the conventionally performed combustion is performed. In this combustion method, some soot and NOx are produced, but the heat efficiency is higher than with the low temperature combustion, so if the engine operating state changes from the first operating region I to the second operating region II, the amount of injection is reduced in a step-like manner as shown in Fig. 11.
    In the second operating region II, the throttle valve 16 is held in the fully opened state except in portions and the opening degree of the EGR control valve 23 is gradually made smaller the higher the required load L. Therefore, in the operating region II, the EGR rate becomes lower the higher the required load L and the air-fuel ratio becomes smaller the higher the required load L. Even if the required load L becomes high, however, the air-fuel ratio is made a lean air-fuel ratio. Further, in the second operating region II, the injection start timing S is made close to top dead center of the compression stroke TDC.
    Figure 12 shows the air-fuel ratio A/F in the first operating region I. In Fig. 12, the curves shown by A/F = 15.5, A/F = 16, A/F = 17, and A/F = 18 show when the air-fuel ratio is 15.5, 16, 17, and 18. The air-fuel ratios between the curves are determined by proportional distribution. As shown in Fig. 12, in the first operating region, the air-fuel ratio becomes lean. Further, in the first operating region I, the air-fuel ratio A/F is made leaner the lower the required load L.
    That is, the lower the required load L, the smaller the amount of heat generated by the combustion. Accordingly, the lower the required load L, the more low temperature combustion can be performed even if the EGR rate is lowered. If the EGR rate is lowered, the air-fuel ratio becomes larger. Therefore, as shown in Fig. 12, the air-fuel ratio A/F is made larger as the required load L becomes lower. The larger the air-fuel ratio A/F becomes, the more improved the fuel efficiency. Therefore to make the air-fuel ratio as lean as possible, in the embodiment according to the present invention, the air-fuel ratio A/F is made larger the lower the required load L becomes.
    Note that the target opening degrees ST of the throttle valve 16 required for making the air-fuel ratio the target air-fuel ratios shown in Fig. 12 are stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 13A. Further, the target opening degrees of the EGR control valve 23 required for making the air-fuel ratio the target air-fuel ratios shown in Fig. 12 are stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 13B.
    Figure 14 shows the target air-fuel ratio at the time of second combustion, that is, normal combustion by the conventional combustion method. Note that in Fig. 14, the curves indicated by A/F = 24, A/F = 35, A/F = 45, and A/F = 60 respectively show the target air- fuel ratios 24, 35, 45, and 60. The target opening degrees ST of the throttle valve 16 required for making the air-fuel ratio these target air-fuel ratios are stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 15A. The target opening degrees SE of the EGR control valve 23 required for making the air-fuel ratio these target air-fuel ratios are stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 15B.
    Figure 16 shows the relationship between various temperatures and the required load L. In Fig. 16, Ta shows the temperature of the exhaust gas flowing into the catalyst 19 when the first combustion, that is, when low temperature combustion, is being performed in the first operating region I, while Tb shows the temperature of the catalyst bed of the catalyst 19 at that time. Further, Tc shows the temperature of the catalyst bed of the catalyst 19 when the second combustion is being performed in the first operating region I and second operating region II.
    As explained above, when low temperature combustion is being performed, the temperature of the exhaust gas becomes higher than when the second combustion is being performed, therefore with the same required load L, the temperature Ta of the exhaust gas at the time of low temperature combustion becomes higher than the temperature Tc of the catalyst bed at the time of second combustion. Even when low temperature combustion is being performed, the higher the required load L, the larger the amount of heat generated at the time of combustion, so the higher the required load L, the higher the temperature Ta of the exhaust gas flowing into the catalyst 19. On the other hand, at the time of low temperature combustion, large amounts of unburned HC and CO are exhausted from the engine, so the temperature Tb of the catalyst bed of the catalyst 19 becomes considerably higher compared with the temperature Ta of the exhaust gas flowing into the catalyst 19 due to the heat of oxidation reaction of the unburned HC and CO.
    In this embodiment of the present invention, as shown in Fig. 12 and Fig. 14, the air-fuel ratio is made lean both when first combustion is being performed and when second combustion is being performed. If combustion is continued under a lean air-fuel ratio in this way, however, as explained at the start, the precious metal carried in the catalyst 19 will be made to oxidize and as a result the activity of the catalyst 19 will decline. In this case, the activity of the catalyst 19 can be restored by making the temperature of the catalyst bed high and making the air-fuel ratio rich.
    As shown in Fig. 16, however, when low temperature combustion is being performed, the temperature Tb of the catalyst bed becomes higher. Further, when low temperature combustion is being performed, no soot is generated even if the air-fuel ratio is made rich. Therefore, in the present invention, when low temperature combustion is being performed, the air-fuel ratio is made rich so as to restore the activity of the catalyst 19.
    Note that as will be understood from Fig. 16, when low temperature combustion is being performed, the temperature Tb of the catalyst bed becomes higher the higher the required load L. In other words, the temperature Tb of the catalyst bed becomes highest immediately before the operating region of the engine changes from the first operating region I to the second operating region II and immediately after the operating region of the engine changes from the second operating region II to the first operating region I. Therefore, in the first embodiment of the present invention, the air-fuel ratio is made rich immediately before the operating region of the engine changes from the first operating region I to the second operating region II and immediately after the operating region of the engine changes from the second operating region II to the first operating region I.
    This will be explained next more specifically with reference to Fig. 17 and Fig. 18. Figure 17 shows the case where the required load L exceeds the first boundary X(N) at the time t0. In the first embodiment, as shown in Fig. 17, even when the required load L exceeds the first boundary X(N), low temperature combustion continues to be performed and the air-fuel ratio is made rich for the time t1 under the low temperature combustion. Next, when the time t1 passes, the throttle valve 16 is made to open in a step-like manner and the second combustion is switched to.
    On the other hand, Fig. 18 shows the case where the required load L has become lower than the second boundary Y(N). As shown in Fig. 18, when the required load L becomes lower than the second boundary Y(N) as well, the throttle valve 16 is made to close in a step-like manner and the second combustion is switched to the first combustion. When the second combustion is switched to the first combustion, the air-fuel ratio is made rich for the time t2.
    Next, the control of the operation will be explained with reference to Fig. 19.
    Referring to Fig. 19, first, at step 100, it is judged if the flag I showing that the operating state of the engine is the first operating region I has been set or not. When the flag I has been set, that is, when the engine operating state is the first operating region I, the routine proceeds to step 101, where it is judged if the required load L has become larger than the first boundary X(N) or not. When L ≤ X(N), the routine proceeds to step 106, where low temperature combustion is performed.
    That is, at step 106, the target opening degree ST of the throttle valve 16 is calculated from the map shown in Fig. 13A and the opening degree of the throttle valve 16 is made this target opening degree ST. Next, at step 107, the target opening degree SE of the EGR control valve 23 is calculated from the map shown in Fig. 13B and the opening degree of the EGR control valve 23 is made that target opening degree SE. Next, at step 108, it is judged if a rich flag set immediately before switching from the low temperature combustion to the second combustion has been set or not. When the rich flag has not been set, the routine proceeds to step 109, where the fuel is injected to give the lean air-fuel ratio shown in Fig. 12. The low temperature combustion is performed under this lean air-fuel ratio at this time.
    On the other hand, when it is judged at step 101 that L > X(N), the routine proceeds to step 102, where it is judged if a time t1 has elapsed from when L became greater than X(N). When the time t1 has not elapsed, the routine proceeds to step 103, where the rich flag is set. When the rich flag is set, the routine proceeds through steps 106, 107, and 108 to step 110, where fuel is injected to give a rich air-fuel ratio. At this time, the low temperature combustion is performed under a rich air-fuel ratio.
    When it is judged at step 102 that the time t1 has elapsed, the routine proceeds to step 104, where the rich flag is reset, then the routine proceeds to step 105, where the flag I is reset. Next, the routine proceeds to step 116, where second combustion is performed.
    That is, at step 116, the target opening degree ST of the throttle valve 16 is calculated from the map shown in Fig. 15A and the opening degree of the throttle valve 16 is made the target opening degree ST. Next, at step 117, the target opening degree SE of the EGR control valve 23 is calculated from the map shown in Fig. 15B and the opening degree of the EGR control valve 23 is made that target opening degree SE. Next, at step 118, fuel is injected to give a lean air-fuel ratio shown in Fig. 14. The second combustion is performed under a lean air-fuel ratio at this time.
    When the flag I is reset, at the next processing cycle, the routine proceeds from step 100 to step 111, where it is judged if the required load L has become smaller than the second boundary Y(N). When L ≥ Y(N), the routine proceeds to step 116, where the second combustion is performed under a lean air-fuel ratio.
    On the other hand, when it is judged at step 111 that L < Y(N), the routine proceeds to step 112, where it is judged if the time t2 has elapsed from when L became smaller than Y (N). When the time t2 has not elapsed, the routine proceeds to step 113, where the rich flag is set. When the rich flag is set, the routine proceeds through steps 106, 107, and 108 to step 110, where fuel is injected to give a rich air-fuel ratio. The low temperature combustion is performed under the rich air-fuel ratio at this time.
    When it is judged at step 112 that the time t2 has elapsed, the routine proceeds to step 114, where the rich flag is reset, then the routine proceeds to step 115, where the flag I is set. Next, the routine proceeds through steps 106, 107, and 108 to step 109, where the low temperature combustion is performed under a lean air-fuel ratio.
    Next, a second embodiment will be explained with reference to Fig. 20.
    Figure 20 shows the air-fuel ratio A/F in the first operating region I. In Fig. 20, the curves shown by A/F = 14, A/F = 15.5, A/F = 16, A/F = 17, and A/F = 18 show when the air-fuel ratio is 14, 15.5, 16, 17, and 18. The air-fuel ratios between the curves are determined by proportional distribution. As shown in Fig. 20, in the second embodiment, a curve showing the stoichiometric air-fuel ratio extends substantially at a position of a somewhat smaller required load L than the second boundary Y(N) an equal interval away from the second boundary Y(N). A rich region where the air-fuel ratio is rich extends in a band between the curve showing the stoichiometric air-fuel ratio and the first boundary X(N). In this rich region, the air-fuel ratio A/F becomes richer the higher the required load L.
    On the other hand, in the region of a required load L lower than the curve showing the stoichiometric air-fuel ratio, the air-fuel ratio becomes lean. Further, in this region, the air-fuel ratio A/F becomes leaner the lower the required load L. The target opening degree ST of the throttle valve 16 required for making the air-fuel ratio the target air-fuel ratio shown in Fig. 20 is stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 21A, while the target opening degree SE of the EGR control valve 23 required for making the air-fuel ratio the target air-fuel ratio shown in Fig. 20 is stored in advance in the ROM 32 in the form of a map as a function of the required load L and the engine rotational speed N as shown in Fig. 21B.
    Note that in the second embodiment as well, the air-fuel ratio at the time of the second combustion is made the lean air-fuel ratio shown in Fig. 14, therefore the target opening degree ST of the throttle valve 16 and the target opening degree SE of the EGR control valve 23 at the time of the second combustion are calculated from the maps shown in Figs. 15A and 15B.
    In the second embodiment, if the required load L becomes higher when low temperature combustion is being performed under a lean air-fuel ratio, the air-fuel ratio changes through a rich region air-fuel ratio to the lean air-fuel ratio of the time of second combustion. On the other hand, if the required load L becomes low when second combustion is being performed and low temperature combustion is shifted to, the air-fuel ratio changes from a rich region air-fuel ratio to a lean air-fuel ratio.
    Next, the control of the operation will be explained with reference to Fig. 22.
    Referring to Fig. 22, first, at step 200, it is judged if the flag I showing that the operating state of the engine is the first operating region I has been set or not. When the flag I has been set, that is, when the engine operating state is the first operating region I, the routine proceeds to step 201, where it is judged if the required load L has become larger than the first boundary X(N) or not. When L ≤ X(N), the routine proceeds to step 203, where low temperature combustion is performed.
    That is, at step 203, the target opening degree ST of the throttle valve 16 is calculated from the map shown in Fig. 21A and the opening degree of the throttle valve 16 is made this target opening degree ST. Next, at step 204, the target opening degree SE of the EGR control valve 23 is calculated from the map shown in Fig. 21B and the opening degree of the EGR control valve 23 is made that target opening degree SE. Next, at step 205, fuel is injected to give the air-fuel ratio shown in Fig. 20. The low temperature combustion is performed at this time.
    On the other hand, when it is judged at step 201 that L > X(N), the routine proceeds to step 202, where it is judged if the flag I has been reset, then the routine proceeds to step 208, where the second combustion is performed.
    That is, at step 208, the target opening degree ST of the throttle valve 16 is calculated from the map shown in Fig. 15A and the opening degree of the throttle valve 16 is made the target opening degree ST. Next, at step 209, the target opening degree SE of the EGR control valve 23 is calculated from the map shown in Fig. 15B and the opening degree of the EGR control valve 23 is made that target opening degree SE. Next, at step 210, fuel is injected to give a lean air-fuel ratio shown in Fig. 14.
    When the flag I is reset, at the next processing cycle, the routine proceeds from step 200 to step 206, where it is judged if the required load L has become smaller than the second boundary Y(N). When L ≥ Y(N), the routine proceeds to step 208, where the second combustion is performed under a lean air-fuel ratio.
    On the other hand, when it is judged at step 206 that L < Y(N), the routine proceeds to step 207, where the flag I is set, then the routine proceeds to step 203, where the low temperature combustion is performed.
    Figure 23 shows another embodiment. In this embodiment, another catalyst 50 having an oxidation action is arranged downstream of the catalyst 19 having the oxidation action. As this catalyst 50, it is possible to also use an oxidation catalyst, three-way catalyst, or NOx absorbent.
    Next, an explanation will be made of the case of use of an NOx absorbent as the catalyst 19 or catalyst 50.
    As explained above, the NOx absorbents 19 and 50 have a NOx absorbing and releasing action by which they absorb NOx when the air-fuel ratio is lean and release the absorbed NOx when the air-fuel ratio becomes the stoichiometric air-fuel ratio or rich.
    If arranging the NOx absorbents 19 and 50 in the engine exhaust passage, the NOx absorbents 19 and 50 actually perform this NOx absorbing and releasing action, but there are parts of the detailed mechanism for this absorbing and releasing action which are not clear. This absorbing and releasing action however is believed to be due to the mechanism shown in Figs. 24A and 24B. This mechanism will be explained next taking as an example the case of carrying platinum Pt and barium Ba on a carrier, but the same mechanism acts even if using another precious metal, alkali metal, alkali earth, or rare earth.
    In this embodiment of the present invention, combustion is normally performed with a lean air-fuel ratio. When performing combustion with a lean air-fuel ratio in this way, the oxygen concentration in the exhaust gas is high. At this time, as shown in Fig. 24A, the oxygen O2 adheres to the surface of the platinum Pt in the form of O2 - or O2-. On the other hand, the NO in the exhaust gas reacts with the O2 - or O2- on the surface of the platinum Pt to become NO2 (2NO + O2 → 2NO2). Next, part of the NO2 which is produced is oxidized on the platinum Pt, absorbed in the absorbent, bonds with the barium oxide BaO, and is diffused inside the absorbent in the form of the nitrate ions NO3 - as shown in Fig. 24A. In this way, the NOx is absorbed in the NOx absorbents 19 and 50. So long as the oxygen concentration in the inflowing exhaust gas is high, NO2 is produced on the surface of the platinum Pt. So long as the NOx absorption capacity of the absorbent is not saturated, the NO2 is absorbed in the absorbent and nitrate ions NO3 - are produced.
    As opposed to this, in this embodiment of the present invention, the air-fuel ratio is made rich immediately before switching from the first combustion to the second combustion and immediately after switching from the second combustion to the first combustion. If the air-fuel ratio is made rich, the oxygen concentration in the exhaust gas falls, and the amount of production of NO2 falls, the reaction proceeds in the reverse direction (NO3 - → NO2) and the nitrate ions NO3 - in the absorbent are released from the absorbent in the form of NO2. The NOx released from the NOx absorbents 19 and 50 at this time is reduced by the large amounts of unburnt HC and CO contained in the exhaust gas as shown by Fig. 24B. In this way, when there is no longer NO2 on the surface of the platinum Pt, NO2 is successively released from the absorbents. Therefore, if the air-fuel ratio is made rich, the NOx is released from the NOx absorbents 19 and 50 in a short period and the released NOx is reduced, so it becomes possible to prevent the NOx from being released into the atmosphere.
    In this way, when an NOx absorbent is used as the catalyst 19 or catalyst 50, the release of NOx into the atmosphere is prevented. Further, almost no soot is produced even if the air-fuel ratio is made rich at the time of low temperature combustion and NOx is released from the NOx absorbent.
    According to the present invention, as explained above, it is possible to prevent a decline in the activity of a catalyst carrying a precious metal.
    While the invention has been described by reference to specific embodiments chosen for purposes of illustration, it should be apparent that numerous modifications could be made thereto by those skilled in the art without departing from the basic concept and scope of the invention.
    A compression ignition type engine, wherein a first combustion where the amount of the recirculated exhaust gas supplied to the combustion chamber is larger than the amount of recirculated exhaust gas where the amount of production of soot peaks and almost no soot is produced and a second combustion where the amount of recirculated exhaust gas supplied to the combustion chamber is smaller than the amount of recirculated exhaust gas where the amount of production of soot peaks are selectively switched between and wherein the air-fuel ratio is temporarily made rich immediately before switching from the first combustion to the second combustion or immediately after switching from the second combustion to the first combustion.

    Claims (8)

    1. A compression ignition type engine in which an amount of production of soot gradually increases and then peaks when an amount of inert gas supplied in a combustion chamber increases and in which a further increase of the amount of inert gas supplied in the combustion chamber results in a temperature of fuel and surrounding gas in the combustion chamber becoming lower than a temperature of production of soot and therefore almost no production of soot any longer, said engine comprising:
      a catalyst arranged in an engine exhaust passage and carrying a precious metal;
      switching means for selectively switching between a first combustion where the amount of the inert gas supplied to the combustion chamber is larger than the amount of inert gas where the amount of production of soot peaks and almost no soot is produced and a second combustion where the amount of inert gas supplied to the combustion chamber is smaller than the amount of inert gas where the amount of production of soot peaks; and
      air-fuel ratio control means for making an air-fuel ratio at least temporarily rich under the first combustion when switching from the first combustion to second combustion or switching from the second combustion to the first combustion.
    2. A compression ignition type engine as set forth in claim 1, wherein the first combustion and the second combustion are normally performed under a lean air-fuel ratio and wherein said air-fuel ratio control means makes the air-fuel ratio under the first combustion temporarily rich when switching from the first combustion to the second combustion or when switching from the second combustion to the first combustion.
    3. A compression ignition type engine as set forth in claim 2, wherein: an engine operating region is divided into a low load side first operating region where the first combustion is performed and a high load side second operating region where the second combustion is performed, and said air-fuel ratio control means makes the air-fuel ratio under the first combustion temporarily rich when the engine operating state is switched from the first operating region to the second operating region or when the engine operating state is switched from the second operating region to the first operating region.
    4. A compression ignition type engine as set forth in claim 1, wherein: an engine operating region is divided into a low load side region where the first combustion is performed under a lean air-fuel ratio, a high load side region where the second combustion is performed under a lean air-fuel ratio, and a region between said low load side region and high load side region where the first combustion is performed under a rich air-fuel ratio, and the first combustion is performed under a rich air-fuel ratio when the engine operating state is switched from the low load side region to the high load side region or when the engine operating state is switched from the high load side region to the low load side region.
    5. A compression ignition type engine as set forth in claim 1, wherein an exhaust gas recirculation apparatus is provided for recirculating exhaust gas exhausted from a combustion chamber into an engine intake passage and wherein the inert gas is comprised of recirculated exhaust gas.
    6. A compression ignition type engine as set forth in claim 5, wherein an exhaust gas recirculation rate when the first combustion is being performed is more than about 55 percent and the exhaust gas recirculation rate when the second combustion is being performed is less than about 50 percent.
    7. A compression ignition type engine as set forth in claim 1, wherein the catalyst is comprised of at least one of an oxidation catalyst and a three-way catalyst.
    8. A compression ignition type engine as set forth in claim 1, wherein the catalyst is comprised of a NOx absorbent which absorbs NOx contained in an exhaust gas when an air-fuel ratio of exhaust gas flowing into the NOx absorbent is lean and releases the absorbed NOx when the air-fuel ratio of exhaust gas flowing into the NOx absorbent is the stoichiometric air-fuel ratio or rich.
    EP99106388A 1998-03-30 1999-03-29 Compression ignition type engine Expired - Lifetime EP0947685B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    JP08374898A JP3405183B2 (en) 1998-03-30 1998-03-30 Compression ignition type internal combustion engine
    JP8374898 1998-03-30

    Publications (3)

    Publication Number Publication Date
    EP0947685A2 true EP0947685A2 (en) 1999-10-06
    EP0947685A3 EP0947685A3 (en) 2001-04-11
    EP0947685B1 EP0947685B1 (en) 2004-06-16

    Family

    ID=13811162

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99106388A Expired - Lifetime EP0947685B1 (en) 1998-03-30 1999-03-29 Compression ignition type engine

    Country Status (4)

    Country Link
    US (1) US6101999A (en)
    EP (1) EP0947685B1 (en)
    JP (1) JP3405183B2 (en)
    DE (1) DE69917966T2 (en)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6209515B1 (en) * 1998-07-15 2001-04-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine, controller and method
    CN1102426C (en) * 2000-09-14 2003-03-05 西南石油学院 Process for rapidly preparing inertial gas in-situ
    EP1422409A1 (en) * 2001-08-27 2004-05-26 Yanmar Co., Ltd. Method of controlling operation of internal combustion engine
    EP1722086A1 (en) * 2005-05-03 2006-11-15 C.R.F. Società Consortile per Azioni Method of controlling air intake flow of an internal combustion engine, in particular for regenerating a nitric oxide adsorber

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP4191320B2 (en) * 1999-05-31 2008-12-03 本田技研工業株式会社 EGR control device for internal combustion engine
    US6681564B2 (en) * 2001-02-05 2004-01-27 Komatsu Ltd. Exhaust gas deNOx apparatus for engine
    JP3893953B2 (en) * 2001-11-26 2007-03-14 株式会社デンソー Fuel supply / injection system
    JP3929296B2 (en) 2001-11-30 2007-06-13 トヨタ自動車株式会社 Internal combustion engine
    US20070234720A1 (en) * 2004-08-12 2007-10-11 Borgwarner Inc. Exhaust gas recirculation valve
    US7213586B2 (en) * 2004-08-12 2007-05-08 Borgwarner Inc. Exhaust gas recirculation valve
    WO2006096750A1 (en) 2005-03-08 2006-09-14 Borgwarner Inc. Egr valve having rest position
    JP2007297918A (en) * 2006-04-27 2007-11-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
    JP4816606B2 (en) * 2007-09-18 2011-11-16 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
    JP4905327B2 (en) * 2007-11-13 2012-03-28 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
    US9175622B2 (en) * 2010-04-22 2015-11-03 International Engine Intellectual Property Company, Llc Engine emission control strategy for smoke and NOx
    WO2013118173A1 (en) * 2012-02-08 2013-08-15 トヨタ自動車株式会社 Control device for internal combustion engine
    JP6414117B2 (en) * 2016-03-28 2018-10-31 トヨタ自動車株式会社 Internal combustion engine
    JP6589938B2 (en) * 2017-06-02 2019-10-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH04334750A (en) 1991-05-08 1992-11-20 Nissan Motor Co Ltd Exhaust circulation device of diesel engine with supercharger

    Family Cites Families (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4142493A (en) * 1977-09-29 1979-03-06 The Bendix Corporation Closed loop exhaust gas recirculation control system
    JPS58222962A (en) * 1982-06-18 1983-12-24 Honda Motor Co Ltd Exhaust reflux controlling method of internal- combustion engine for vehicle
    JP2586218B2 (en) * 1990-12-07 1997-02-26 トヨタ自動車株式会社 Control device for internal combustion engine
    JP2864896B2 (en) * 1992-10-01 1999-03-08 日産自動車株式会社 Control unit for diesel engine
    JP3237308B2 (en) * 1993-06-04 2001-12-10 日産自動車株式会社 Control unit for diesel engine
    JP2888744B2 (en) * 1993-10-19 1999-05-10 本田技研工業株式会社 Control device for internal combustion engine
    KR0150432B1 (en) * 1994-05-10 1998-10-01 나까무라 유이찌 Apparatus and method for injernal combustion engine
    JP3460338B2 (en) * 1994-10-31 2003-10-27 株式会社デンソー Exhaust gas recirculation control device for internal combustion engine
    JP3079933B2 (en) * 1995-02-14 2000-08-21 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
    JP3152106B2 (en) * 1995-05-16 2001-04-03 三菱自動車工業株式会社 Control device for in-cylinder injection spark ignition internal combustion engine
    US5743243A (en) * 1996-04-23 1998-04-28 Toyota Jidosha Kubushiki Kaisha Compression-ignition type engine
    JP3198972B2 (en) * 1996-06-28 2001-08-13 三菱自動車工業株式会社 Lean-burn internal combustion engine
    JP3183225B2 (en) * 1996-09-17 2001-07-09 トヨタ自動車株式会社 Fuel injection control device for stratified combustion internal combustion engine
    JP3144327B2 (en) * 1996-12-19 2001-03-12 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine
    JPH10184417A (en) * 1996-12-25 1998-07-14 Hitachi Ltd Controller of cylinder injection type internal combustion engine
    JP3116876B2 (en) * 1997-05-21 2000-12-11 トヨタ自動車株式会社 Internal combustion engine
    JP3680491B2 (en) * 1997-06-02 2005-08-10 日産自動車株式会社 Control device for internal combustion engine
    JPH10339215A (en) * 1997-06-09 1998-12-22 Nissan Motor Co Ltd Egr control device of engine
    JP3578597B2 (en) * 1997-06-30 2004-10-20 株式会社日立ユニシアオートモティブ Control device for direct injection spark ignition type internal combustion engine
    JP3683681B2 (en) * 1997-06-30 2005-08-17 株式会社日立製作所 Control device for direct-injection spark-ignition internal combustion engine
    JP3094974B2 (en) * 1997-09-16 2000-10-03 トヨタ自動車株式会社 Compression ignition type internal combustion engine
    JPH1193731A (en) * 1997-09-18 1999-04-06 Toyota Motor Corp Fuel injection control device for cylinder injection internal combustion engine

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH04334750A (en) 1991-05-08 1992-11-20 Nissan Motor Co Ltd Exhaust circulation device of diesel engine with supercharger

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6209515B1 (en) * 1998-07-15 2001-04-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine, controller and method
    CN1102426C (en) * 2000-09-14 2003-03-05 西南石油学院 Process for rapidly preparing inertial gas in-situ
    EP1422409A1 (en) * 2001-08-27 2004-05-26 Yanmar Co., Ltd. Method of controlling operation of internal combustion engine
    EP1422409A4 (en) * 2001-08-27 2007-08-22 Yanmar Co Ltd Method of controlling operation of internal combustion engine
    EP1722086A1 (en) * 2005-05-03 2006-11-15 C.R.F. Società Consortile per Azioni Method of controlling air intake flow of an internal combustion engine, in particular for regenerating a nitric oxide adsorber
    US7918083B2 (en) 2005-05-03 2011-04-05 C.F.R. Societa Consortile Per Azioni Method of controlling air intake flow of an internal combustion engine, in particular for regenerating a nitric oxide adsorber

    Also Published As

    Publication number Publication date
    DE69917966T2 (en) 2005-06-23
    JP3405183B2 (en) 2003-05-12
    DE69917966D1 (en) 2004-07-22
    US6101999A (en) 2000-08-15
    EP0947685B1 (en) 2004-06-16
    EP0947685A3 (en) 2001-04-11
    JPH11280509A (en) 1999-10-12

    Similar Documents

    Publication Publication Date Title
    EP0879946B1 (en) An internal combustion engine
    EP0896141B1 (en) Combustion and gas recirculation control in an internal-combustion engine
    EP0943790B1 (en) Compression ignition type engine
    US6276130B1 (en) Internal combustion engine
    EP0947685B1 (en) Compression ignition type engine
    US6470850B1 (en) Internal combustion engine
    US6131388A (en) Compression ignition type engine
    EP1132597B1 (en) Internal combustion engine
    EP1079084B1 (en) Internal combustion engine
    JP3551789B2 (en) Internal combustion engine
    JP3555439B2 (en) Compression ignition type internal combustion engine
    JP4285105B2 (en) Exhaust gas purification method for internal combustion engine
    JP3551790B2 (en) Internal combustion engine
    JP3551771B2 (en) Internal combustion engine
    KR100289916B1 (en) An internal combustion engine
    JP3551797B2 (en) Internal combustion engine
    JP3551785B2 (en) Internal combustion engine
    JP3551757B2 (en) Compression ignition type internal combustion engine
    JP3405167B2 (en) Compression ignition type internal combustion engine
    JP3427754B2 (en) Internal combustion engine
    JP3424561B2 (en) Internal combustion engine
    JP4165036B2 (en) Internal combustion engine
    JP3405197B2 (en) Internal combustion engine
    EP0997625A2 (en) An internal combustion engine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990329

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Free format text: DE FR GB IT

    17Q First examination report despatched

    Effective date: 20030415

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    REF Corresponds to:

    Ref document number: 69917966

    Country of ref document: DE

    Date of ref document: 20040722

    Kind code of ref document: P

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050317

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 746

    Effective date: 20070417

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20120321

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20130327

    Year of fee payment: 15

    Ref country code: FR

    Payment date: 20130325

    Year of fee payment: 15

    Ref country code: GB

    Payment date: 20130327

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69917966

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20140329

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20141128

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69917966

    Country of ref document: DE

    Effective date: 20141001

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20141001

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140329

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140329