EP0935054A2 - Electromagnetic actuator - Google Patents

Electromagnetic actuator Download PDF

Info

Publication number
EP0935054A2
EP0935054A2 EP99100674A EP99100674A EP0935054A2 EP 0935054 A2 EP0935054 A2 EP 0935054A2 EP 99100674 A EP99100674 A EP 99100674A EP 99100674 A EP99100674 A EP 99100674A EP 0935054 A2 EP0935054 A2 EP 0935054A2
Authority
EP
European Patent Office
Prior art keywords
armature
magnet
electromagnets
opening
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99100674A
Other languages
German (de)
French (fr)
Other versions
EP0935054A3 (en
Inventor
Matthias Gramann
Thomas Röckl
Michael Nagel
Rudolf Wilczek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conti Temic Microelectronic GmbH
Original Assignee
Temic Telefunken Microelectronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Temic Telefunken Microelectronic GmbH filed Critical Temic Telefunken Microelectronic GmbH
Publication of EP0935054A2 publication Critical patent/EP0935054A2/en
Publication of EP0935054A3 publication Critical patent/EP0935054A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the invention relates to an electromagnetic actuator according to the Preamble of claim 1.
  • Such an electromagnetic actuator is for example from DE 296 04 946 U1 known.
  • This known actuator has one as an electromagnet executed opening magnet, a spaced from this, also designed as an electromagnet closer magnet as well as an anchor, which is connected via a plunger with a gas exchange valve Active connection is established.
  • For opening and closing the gas exchange valve is switched on by alternating energization of the two electromagnets generates magnetic force acting through the armature, through which the armature between two opposite pole faces of these electromagnets back and forth is moved here.
  • the main disadvantage of this actuator is that during the opening process, in which the armature from the pole face of the closer magnet to Pole face of the opening magnet is moved, in contrast to the closing process, in which the armature from the pole face of the opening magnet to the pole face of the closer magnet is moved, work against the high gas pressure must be done in the combustion chamber.
  • the opening process therefore takes longer than the closing process, which is unfavorable to the dynamic Properties of the actuator affects.
  • the invention has for its object an electromagnetic actuator according to the preamble of claim 1 to specify the improved has dynamic properties, in particular it should Enable faster opening of the gas exchange valve.
  • the actuator has a space between the Pole surfaces of the two electromagnets, d. H. the range of motion of the anchor, enclosing two-part connecting sleeve, which consists of an am Opener magnets attached ferromagnetic partial sleeve and one on Closer magnet assembled non-ferromagnetic partial sleeve is.
  • the connecting sleeve fulfills two functions: firstly it keeps the two electromagnets in their relatively spaced apart Position fixed and on the other hand it causes due to the low magnetic Resistance of their ferromagnetic partial sleeve an increase the magnetic force acting on the armature over long armature travel lengths of the opening magnet.
  • the anchor has one in the middle tap into the armature attached to the opening magnet into a extend into the complementary recess of the opening magnet. Similar Like the ferromagnetic partial sleeve, this pin also works for large ones Armature stroke lengths reduce the effective in the magnetic circuit Air gap, which leads to a further increase in the magnetic force of the opening magnet leads.
  • the armature preferably has a cross section at least in a partial area with decreasing thickness towards anchor edge, the change the thickness is advantageously chosen such that the magnetic River normal areas within this sub-area almost the same are great. This leads to a reduction in the accelerated Mass, which leads to a further improvement in the actuator dynamics.
  • the Pole surfaces of the electromagnets are preferred in their geometric shape complementary to the respective anchor surfaces facing them executed so that the distance between the armature surface and the pole face of the respective electromagnets in contact with the respective electromagnet Anchor is negligible small.
  • the actuator has a gas exchange valve 5 in Force-acting plunger 4, one with the plunger 4 transverse to the longitudinal axis of the plunger, d.
  • H. Anchor 1 fastened transversely to the anchor stroke path, and also an as opening magnet 2 acting first electromagnet and as Closer magnet 3 acting second electromagnet.
  • the two Electromagnets 2, 3 are arranged at a distance from one another and have opposite pole faces 21, 31 between which the armature 1 by alternately energizing the excitation coils 20, 30 in the direction of Ram longitudinal axis is movable.
  • ferromagnetic Sub-sleeve 70 and a non-ferromagnetic sub-sleeve 71 assembled two-part connecting sleeve 7 connected to each other, which the space 90, 91 between the pole faces 21, 31 against contamination seals and the electromagnets 2, 3 in their from each other holds spaced position.
  • the ferromagnetic partial sleeve 70 is included on the opening magnet 2 and the non-ferromagnetic partial sleeve 71 on Closer magnet 3 attached.
  • the two partial sleeves 70, 71 are on their End faces 72, for example by means of a soldered or adhesive connection, with one another connected.
  • Two counteracting actuating springs 60, 63 which are between the opening magnet 3 and the gas exchange valve 5 are arranged and by means of two Spring plate 61, 62 on the actuator or cylinder head 8 of the internal combustion engine are fixed, cause the armature 1 in the de-energized state of the excitation coils 20, 30 in an intermediate position approximately in the middle between the Pole surfaces 21, 31 of the electromagnet 2, 3 is held.
  • To close of the gas exchange valve 5 becomes the excitation coil 30 of the closing magnet 3 energized so that the armature 1 due to the magnetic force then acting on it is moved in the direction of the pole face 31 of the closer magnet 3 and is held there until the flow of electricity is interrupted.
  • the armature 1 has in the middle of the opening magnet 2 facing Side on a pin 11, which is advantageously cylindrical with a recess for receiving the plunger 4 and which in the case of armature 1 resting on the opening magnet 2 into a pin 11 complementary recess 22 of the opening magnet 2 is inserted.
  • the height of the pin 11 is equal to the height of the protruding from the pole face 21 Part of the ferromagnetic sub-sleeve 70, i.e. H.
  • the armature 1 furthermore has a partial area with a direction toward the armature edge decreasing thickness, the change in thickness chosen in this way is that the surfaces normal to the magnetic flux within this Partial area are almost the same size.
  • the inner and outer surface areas 12, 13 are perpendicular to the armature stroke and are from the opening magnet 2 tightened anchor 1 at corresponding surface areas of the pole face 21 of the opening magnet 2 or are negligible of these via air gaps Size spaced.
  • An anchor is also conceivable, in which the partial area is also in the direction Anchor edge of decreasing thickness through appropriate three-dimensional Design of the armature surface facing the closer magnet 3 is formed.
  • the surface of the anchor on the Opener magnet 2 facing side in the surrounding the pin 11 Area just be executed.
  • the yokes of the electromagnet 2, 3 and the armature 1 are made of soft magnetic Made of materials with high magnetic permeability. You point in top view, d. H. in a projection plane perpendicular to the anchor stroke, a rectangular cross-section so that you get an optimal Utilization of space achieved when installing the actuator in the internal combustion engine.
  • the magnetic force-stroke characteristic curves of the two electromagnets 2, 3 differ in that the magnetic force F MO of the opening magnet 2 is greater than that of the same from a certain stroke d x , ie from a certain value of the armature stroke path length d 0 Value of the armature stroke length d S magnetic force F MS of the make magnet 3 acting on the armature 1.
  • the change in the magnetic energy along the armature travel d 0 or d S is decisive for the magnitude of the magnetic force F MO or F MS .
  • this change is essentially determined by the change in the magnetic resistance of the air gap 90 between the armature 1 and the pole face 31 of the closing magnet 3, ie by the armature travel d S.
  • the magnetic resistances of the armature 1 and the closing magnet 3 can be neglected for large armature travel lengths d S.
  • the magnetic force F MS of the closing magnet 3 acting on the armature 1 is inversely proportional to the square of the armature stroke path length d S and is only limited by the magnetic resistance of the armature 1 and the closing magnet 3 at very small armature stroke path lengths d S.
  • the change in magnetic energy is determined both by the armature travel d 0 and by the size of the air gap 92 between the ferromagnetic partial sleeve 70 and armature 1 and by the size of the air gap 93 between the side surfaces of the pin 11 and the depression 22. If the armature 1 is in a position within the ferromagnetic partial sleeve 70, due to its low magnetic resistance, this forms a magnetic secondary shot in the magnetic circuit of the opening magnet 2, so that a large part of the magnetic flux is conducted to the armature 1 via the ferromagnetic partial sleeve 70 .
  • the magnetic field lines of the magnetic flux running through the air gap 92 between ferromagnetic sleeve 70 and armature 1 have only small field components in the direction of the armature stroke path and therefore only make a small contribution to the magnetic force F MO of the opening magnet 2 oriented in the armature stroke path direction.
  • the change in magnetic energy is essentially caused by the change in the magnetic resistance of the air gap between the end face 72 of the ferromagnetic sleeve 70 and armature 1 and by the change in the magnetic resistance of the air gap between the edges of the pin 11 and the recess 22. Because of the small size of these air gaps, the magnetic force F MO of the opening magnet 2 acting on the armature 1 is greater for large armature travel lengths d 0 than the magnetic force F MS of the closing magnet 3 with the same length of armature travel d S.
  • the geometric dimensions of the armature 1, the ferromagnetic partial sleeve 70 and the pole face of the opening magnet 2 are chosen such that the magnetic force-stroke characteristic curve F MO of the opening magnet 2 has a local maximum at maximum armature stroke path length d 0 , which is sufficiently large to allow for the To at least partially compensate for pressure force which acts on the gas exchange valve 5 at the time the armature 1 is released from the closing magnet 3 due to the internal gas pressure in the combustion chamber.
  • the damping of the spring-mass system formed from the armature 1, the tappet 4, the gas exchange valve 5, the actuating springs 60, 63 and the spring plates 61, 62 is approximately the same in both directions of movement of the armature 1, so that the Times within which the armature 1 is moved from one pole face 21 or 31 to the other pole face 31 or 21 are essentially the same for both directions of movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

The actuator has a two-part connecting sleeve enclosing the intermediate vol. between the pole surfaces of an electromagnet. The sleeve consists of a ferromagnetic part sleeve (70) attached to an opener magnet (2) and a non-ferromagnetic part sleeve (71) attached to a closer magnet (3).

Description

Die Erfindung betrifft einen elektromagnetischen Aktuator gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to an electromagnetic actuator according to the Preamble of claim 1.

Ein derartiger elektromagnetische Aktuator ist beispielsweise aus der DE 296 04 946 U1 bekannt. Dieser vorbekannte Aktuator weist einen als Elektromagnet ausgeführten Öffnermagneten, einen von diesem beabstandet angeordneten, ebenfalls als Elektromagnet ausgeführten Schließermagneten sowie einen Anker auf, der über einen Stößel mit einem Gaswechselventil in Wirkverbindung steht. Zum Öffnen und Schließen des Gaswechselventils wird durch abwechselnde Bestromung der beiden Elektromagnete eine auf den Anker wirkende Magnetkraft erzeugt, durch die der Anker zwischen zwei sich gegenüberliegenden Polflächen dieser Elektromagnete hin und her bewegt wird.Such an electromagnetic actuator is for example from DE 296 04 946 U1 known. This known actuator has one as an electromagnet executed opening magnet, a spaced from this, also designed as an electromagnet closer magnet as well as an anchor, which is connected via a plunger with a gas exchange valve Active connection is established. For opening and closing the gas exchange valve is switched on by alternating energization of the two electromagnets generates magnetic force acting through the armature, through which the armature between two opposite pole faces of these electromagnets back and forth is moved here.

Der wesentliche Nachteil dieses Aktuators liegt darin, daß beim Öffnungsvorgang, bei dem der Anker von der Polfläche des Schließermagneten zur Polfläche des Öffnermagneten bewegt wird, im Gegensatz zum Schließvorgang, bei dem der Anker von der Polfläche des Öffnermagneten zur Polfläche des Schließermagneten bewegt wird, Arbeit gegen den hohen Gasinnendruck in der Brennkammer geleistet werden muß. Der Öffnungsvorgang dauert daher länger als der Schließvorgang, was Sich ungünstig auf die dynamischen Eigenschaften des Aktuators auswirkt.The main disadvantage of this actuator is that during the opening process, in which the armature from the pole face of the closer magnet to Pole face of the opening magnet is moved, in contrast to the closing process, in which the armature from the pole face of the opening magnet to the pole face of the closer magnet is moved, work against the high gas pressure must be done in the combustion chamber. The opening process therefore takes longer than the closing process, which is unfavorable to the dynamic Properties of the actuator affects.

Der Erfindung liegt die Aufgabe zugrunde, einen elektromagnetischen Aktuator gemaß dem Oberbegriff des Patentanspruchs 1 anzugeben, der verbesserte dynamische Eigenschaften aufweist, insbesondere soll er ein schnelleres Öffnen des Gaswechselventils ermöglichen. The invention has for its object an electromagnetic actuator according to the preamble of claim 1 to specify the improved has dynamic properties, in particular it should Enable faster opening of the gas exchange valve.

Die Aufgabe wird durch die Merkmale im Kennzeichnen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen ergeben sich aus den Unteransprüchen.The object is achieved by the features in the characterizing claim 1 solved. Advantageous refinements and developments result itself from the subclaims.

Erfindungsgemäß weist der Aktuator eine den Zwischenraum zwischen den Polflächen der beiden Elektromagnete, d. h. den Bewegungsraum des Ankers, umschließende zweiteilige Verbindungshülse auf, welche aus einer am Öffnermagneten befestigten ferromagnetischen Teilhülse und einer am Schließermagneten befestigten nichtferromagnetischen Teilhülse zusammengesetzt ist. Die Verbindungshülse erfüllt zwei Funktionen: zum einen hält sie die beiden Elektromagnete in ihrer relativ zueinander beabstandeten Position fest und zum anderen bewirkt sie aufgrund des geringen magnetischen Widerstandes ihrer ferromagnetischen Teilhülse eine Anhebung der bei großen Ankerhubweglängen auf den Anker wirkenden Magnetkraft des Öffnermagneten. Ursache dieser Magnetkraftanhebung ist der zwischen Anker und Polfläche des Öffnermagneten wirksame Luftspalt, der bei großen Ankerhubweglängen durch die ferromagnetische Teilhülse auf den Luftspalt zwischen der Stirnfläche der ferromagnetischen Teilhülse und Anker reduziert wird.According to the invention, the actuator has a space between the Pole surfaces of the two electromagnets, d. H. the range of motion of the anchor, enclosing two-part connecting sleeve, which consists of an am Opener magnets attached ferromagnetic partial sleeve and one on Closer magnet assembled non-ferromagnetic partial sleeve is. The connecting sleeve fulfills two functions: firstly it keeps the two electromagnets in their relatively spaced apart Position fixed and on the other hand it causes due to the low magnetic Resistance of their ferromagnetic partial sleeve an increase the magnetic force acting on the armature over long armature travel lengths of the opening magnet. The reason for this increase in magnetic force is that between Armature and pole face of the opening magnet effective air gap, which at large Armature stroke lengths through the ferromagnetic partial sleeve on the Air gap between the end face of the ferromagnetic partial sleeve and armature is reduced.

In einer vorteilhaften Weiterbildung weist der Anker in seiner Mitte einen zapfen auf, der bei am Öffnermagneten anliegenden Anker in eine zum zapfen komplementäre Vertiefung des Öffnermagneten hineinreicht. Ähnlich wie die ferromagnetische Teilhülse bewirkt auch dieser zapfen für große Ankerhubweglängen eine Reduzierung des im Magnetkreis wirksamen Luftspaltes, was zu einer weiteren Anhebung der Magnetkraft des Öffnermagneten führt.In an advantageous development, the anchor has one in the middle tap into the armature attached to the opening magnet into a extend into the complementary recess of the opening magnet. Similar Like the ferromagnetic partial sleeve, this pin also works for large ones Armature stroke lengths reduce the effective in the magnetic circuit Air gap, which leads to a further increase in the magnetic force of the opening magnet leads.

Der Anker weist vorzugsweise zumindest in einem Teilbereich einen Querschnitt mit in Richtung Ankerrand abnehmender Dicke auf, wobei die Änderung der Dicke vorteilhafterweise derart gewählt ist, daß die zum magnetischen Fluß normalen Flächen innerhalb dieses Teilbereichs nahezu gleich groß sind. Hierdurch erreicht man eine Reduzierung der beschleunigten Masse, was zu einer weiteren Verbesserung der Aktordynamik führt. Die Polflächen der Elektromagnete sind in ihrer geometrischen Form vorzugsweise komplementär zu den ihnen jeweils zugewandten Ankeroberflächen ausgeführt, so daß der Abstand zwischen Ankeroberfläche und Polfläche des jeweiligen Elektromagneten bei am jeweiligen Elektromagneten anliegenden Anker vernachlässigbar klein ist.The armature preferably has a cross section at least in a partial area with decreasing thickness towards anchor edge, the change the thickness is advantageously chosen such that the magnetic River normal areas within this sub-area almost the same are great. This leads to a reduction in the accelerated Mass, which leads to a further improvement in the actuator dynamics. The Pole surfaces of the electromagnets are preferred in their geometric shape complementary to the respective anchor surfaces facing them executed so that the distance between the armature surface and the pole face of the respective electromagnets in contact with the respective electromagnet Anchor is negligible small.

Die Erfindung wird im folgenden anhand eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die Figuren näher beschrieben. Es zeigen:

Figur 1:
einen Aktuator zur elektromagnetischen Steuerung eines Gaswechselventils in einer Brennkraftmaschine,
Figur 2:
Magnetkraft-Hub-Kennlinien der Elektromagnete aus Figur 1.
The invention is described below with reference to a preferred embodiment with reference to the figures. Show it:
Figure 1:
an actuator for the electromagnetic control of a gas exchange valve in an internal combustion engine,
Figure 2:
Magnetic force-stroke characteristic curves of the electromagnets from FIG. 1.

Gemäß Figur 1 weist der Aktuator einen mit einem Gaswechselventil 5 in Kraftwirkung stehenden Stößel 4, einen mit dem Stößel 4 quer zur Stößel-Längsachse, d. h. quer zum Ankerhubweg befestigten Anker 1, sowie einen als Öffnermagnet 2 wirkenden ersten Elektromagneten und einen als Schließermagnet 3 wirkenden zweiten Elektromagneten auf. Die beiden Elektromagnete 2, 3 sind voneinander beabstandet angeordnet und weisen sich gegenüberliegende Polflächen 21, 31 auf, zwischen denen der Anker 1 durch abwechselnde Bestromung der Erregerspulen 20, 30 in Richtung der Stößel-Längsachse bewegbar ist. Sie sind mittels einer aus einer ferromagnetischen Teilhülse 70 und einer nichtferromagnetischen Teilhülse 71 zusammengesetzten zweiteiligen Verbindungshülse 7 miteinander verbunden, welche den Zwischenraum 90, 91 zwischen den Polflächen 21, 31 gegen Verunreinigungen abdichtet und die Elektromagnete 2, 3 in ihrer voneinander beabstandeten Position festhält. Die ferromagnetische Teilhülse 70 ist dabei am Öffnermagneten 2 und die nichtferromagnetische Teilhülse 71 am Schließermagneten 3 befestigt. Die beiden Teilhülsen 70, 71 sind an ihren Stirnflächen 72, beispielsweise durch eine Löt- oder Klebeverbindung, miteinander verbunden.According to FIG. 1, the actuator has a gas exchange valve 5 in Force-acting plunger 4, one with the plunger 4 transverse to the longitudinal axis of the plunger, d. H. Anchor 1 fastened transversely to the anchor stroke path, and also an as opening magnet 2 acting first electromagnet and as Closer magnet 3 acting second electromagnet. The two Electromagnets 2, 3 are arranged at a distance from one another and have opposite pole faces 21, 31 between which the armature 1 by alternately energizing the excitation coils 20, 30 in the direction of Ram longitudinal axis is movable. They are made from a ferromagnetic Sub-sleeve 70 and a non-ferromagnetic sub-sleeve 71 assembled two-part connecting sleeve 7 connected to each other, which the space 90, 91 between the pole faces 21, 31 against contamination seals and the electromagnets 2, 3 in their from each other holds spaced position. The ferromagnetic partial sleeve 70 is included on the opening magnet 2 and the non-ferromagnetic partial sleeve 71 on Closer magnet 3 attached. The two partial sleeves 70, 71 are on their End faces 72, for example by means of a soldered or adhesive connection, with one another connected.

Zwei gegensinnig wirkende stellfedern 60, 63, die zwischen dem Öffnermagneten 3 und dem Gaswechselventil 5 angeordnet sind und mittels zweier Federteller 61, 62 am Aktuator bzw. Zylinderkopf 8 der Brennkraftmaschine befestigt sind, bewirken, daß der Anker 1 im stromlosen Zustand der Erregerspulen 20, 30 in einer Zwischenstellung etwa in der Mitte zwischen den Polflächen 21, 31 der Elektromagnete 2, 3 festgehalten wird. Zum Schließen des Gaswechselventils 5 wird die Erregerspule 30 des Schließermagneten 3 bestromt, so daß der Anker 1 aufgrund der dann auf ihn wirkenden Magnetkraft in Richtung Polfläche 31 des Schließermagneten 3 bewegt wird und dort bis zur Unterbrechung des Stromflusses festgehalten wird. Entsprechend wird der Anker 1 zum Öffnen des Gaswechselventils 5 durch Bestromung der Erregerspule 20 des Öffnermagneten 2 zu dessen Polfläche 21 hin bewegt und dort bis zur Unterbrechung des Stromflusses festgehalten.Two counteracting actuating springs 60, 63, which are between the opening magnet 3 and the gas exchange valve 5 are arranged and by means of two Spring plate 61, 62 on the actuator or cylinder head 8 of the internal combustion engine are fixed, cause the armature 1 in the de-energized state of the excitation coils 20, 30 in an intermediate position approximately in the middle between the Pole surfaces 21, 31 of the electromagnet 2, 3 is held. To close of the gas exchange valve 5 becomes the excitation coil 30 of the closing magnet 3 energized so that the armature 1 due to the magnetic force then acting on it is moved in the direction of the pole face 31 of the closer magnet 3 and is held there until the flow of electricity is interrupted. Corresponding the armature 1 for opening the gas exchange valve 5 by energization the excitation coil 20 of the opening magnet 2 to the pole face 21 thereof moved there and held there until the current flow was interrupted.

Der Anker 1 weist in der Mitte seiner dem Öffnermagneten 2 zugewandten Seite einen Zapfen 11 auf, welcher vorteilhafterweise zylinderförmig mit einer Aussparung zur Aufnahme des Stößels 4 ausgeführt ist und welcher bei am Öffnermagneten 2 anliegendem Anker 1 in eine zum Zapfen 11 komplementäre Vertiefung 22 des Öffnermagneten 2 hineingeführt ist. Die Höhe des Zapfens 11 ist gleich der Höhe des die Polfläche 21 überragenden Teils der ferromagnetischen Teilhülse 70, d. h. gleich der Höhe des von der ferromagnetischen Teilhülse 70 begrenzten Teils des Zwischenraumes 90, 91. Bei am Schließermagneten 3 anliegendem Anker 1 sind die Stirnfläche 72 der ferromagnetischen Teilhülse 70 und die der Stirnfläche 72 nächstliegende Kante des Ankers 1 sowie die einander nächstliegenden Kanten des Zapfens 11 und der Vertiefung 22 in Richtung des Ankerhubweges jeweils um etwa 0,1 mm voneinander beabstandet.The armature 1 has in the middle of the opening magnet 2 facing Side on a pin 11, which is advantageously cylindrical with a recess for receiving the plunger 4 and which in the case of armature 1 resting on the opening magnet 2 into a pin 11 complementary recess 22 of the opening magnet 2 is inserted. The The height of the pin 11 is equal to the height of the protruding from the pole face 21 Part of the ferromagnetic sub-sleeve 70, i.e. H. equal to the amount of the ferromagnetic partial sleeve 70 limited part of the space 90, 91st When the armature 1 is in contact with the closer magnet 3, the end face 72 the ferromagnetic partial sleeve 70 and the one closest to the end face 72 Edge of the armature 1 and the edges of the pin which are closest to one another 11 and the recess 22 in the direction of the armature stroke spaced about 0.1 mm apart.

Der Anker 1 weist ferner einen Teilbereich mit in Richtung Ankerrand kontinuierlich abnehmender Dicke auf, wobei die Änderung der Dicke derart gewählt ist, daß die zum magnetischen Fluß normalen Flächen innerhalb dieses Teilbereichs nahezu gleich groß sind. Dieses erreicht man im vorliegenden Beispiel dadurch, daß die dem Schließermagneten 3 zugewandte Oberfläche des Ankers 1 im wesentlichen eben ausgeführt ist und die dem Öffnermagneten 2 zugewandte Oberfläche des Ankers 1 derart ausgeführt ist, daß sie einen um den Zapfen 11 verlaufenden inneren ebenen Flächenbereich 12, einen zum inneren Flächenbereich 12 parallel versetzten äußeren ebenen Flächenbereich 13 und einen durch den inneren und äußeren Flächenbereich 12, 13 begrenzten dreidimensionalen Flächenbereich 14 aufweist, welcher die Oberfläche des Teilbereichs mit in Richtung Ankerrand abnehmender Dicke bildet. Der innere und äußere Flächenbereich 12, 13 stehen senkrecht zum Ankerhubweg und liegen bei vom Öffnermagneten 2 angezogenem Anker 1 an entsprechenden Flächenbereichen der Polfläche 21 des Öffnermagneten 2 an oder sind von diesen über Luftspalte vernachlässigbarer Größe beabstandet.The armature 1 furthermore has a partial area with a direction toward the armature edge decreasing thickness, the change in thickness chosen in this way is that the surfaces normal to the magnetic flux within this Partial area are almost the same size. This is achieved in the present Example in that the surface facing the closer magnet 3 the armature 1 is essentially flat and the opening magnet 2 facing surface of the armature 1 is designed such that they have an inner flat surface area running around the pin 11 12, an outer offset parallel to the inner surface area 12 flat surface area 13 and one through the inner and outer surface area 12, 13 has limited three-dimensional surface area 14, which the surface of the section with towards the anchor edge decreasing thickness forms. The inner and outer surface areas 12, 13 are perpendicular to the armature stroke and are from the opening magnet 2 tightened anchor 1 at corresponding surface areas of the pole face 21 of the opening magnet 2 or are negligible of these via air gaps Size spaced.

Denkbar ist weiterhin auch ein Anker, bei dem der Teilbereich mit in Richtung Ankerrand abnehmender Dicke durch entsprechende dreidimensionale Gestaltung der dem Schließermagneten 3 zugewandten Ankeroberfläche gebildet wird. In diesem Fall kann die Oberfläche des Ankers auf der dem Öffnermagneten 2 zugewandten Seite in dem den zapfen 11 umgebenden Bereich eben ausgeführt sein.An anchor is also conceivable, in which the partial area is also in the direction Anchor edge of decreasing thickness through appropriate three-dimensional Design of the armature surface facing the closer magnet 3 is formed. In this case, the surface of the anchor on the Opener magnet 2 facing side in the surrounding the pin 11 Area just be executed.

Die Joche der Elektromagnete 2,3 und der Anker 1 sind aus weichmagnetischen Materialien mit hoher magnetischer Permeabilität gefertigt. Sie weisen in Draufsicht, d. h. in einer zum Ankerhubweg senkrechten Projektionsebene, einen rechteckigen Querschnitt auf, so daß man eine optimale Raumausnützung beim Einbau des Aktuators in die Brennkraftmaschine erreicht.The yokes of the electromagnet 2, 3 and the armature 1 are made of soft magnetic Made of materials with high magnetic permeability. You point in top view, d. H. in a projection plane perpendicular to the anchor stroke, a rectangular cross-section so that you get an optimal Utilization of space achieved when installing the actuator in the internal combustion engine.

Gemäß Figur 2 unterscheiden sich die Magnetkraft-Hub-Kennlinien der beiden Elektromagnete 2, 3 dadurch, daß die Magnetkraft FMO des Öffnermagneten 2 ab einem bestimmten Hub dx, d. h. ab einem bestimmten Wert der Ankerhubweglänge d0, größer ist als die bei gleichem Wert der Ankerhubweglänge dS auf den Anker 1 wirkende Magnetkraft FMS des Schließermagneten 3.According to FIG. 2, the magnetic force-stroke characteristic curves of the two electromagnets 2, 3 differ in that the magnetic force F MO of the opening magnet 2 is greater than that of the same from a certain stroke d x , ie from a certain value of the armature stroke path length d 0 Value of the armature stroke length d S magnetic force F MS of the make magnet 3 acting on the armature 1.

Für die Größe der Magnetkraft FMO bzw. FMS ist die Änderung der magnetischen Energie längs des Ankerhubweges d0 bzw. dS maßgebend. Beim Schließermagnet 3 wird diese Änderung im wesentlichen durch die Änderung des magnetischen Widerstandes des Luftspaltes 90 zwischen Anker 1 und Polfläche 31 des Schließermagneten 3, d. h. durch den Ankerhubweg dS, bestimmt. Die magnetischen Widerstände des Ankers 1 und des Schließermagneten 3 können für große Ankerhubweglängen dS vernachlässigt werden. In diesem Fall ist die auf den Anker 1 wirkende Magnetkraft FMS des Schließmagneten 3 umgekehrt proportional zum Quadrat der Ankerhubweglänge dS und wird erst bei sehr kleinen Ankerhubweglängen dS durch den magnetischen Widerstand des Ankers 1 und des Schließermagneten 3 begrenzt. The change in the magnetic energy along the armature travel d 0 or d S is decisive for the magnitude of the magnetic force F MO or F MS . In the closing magnet 3, this change is essentially determined by the change in the magnetic resistance of the air gap 90 between the armature 1 and the pole face 31 of the closing magnet 3, ie by the armature travel d S. The magnetic resistances of the armature 1 and the closing magnet 3 can be neglected for large armature travel lengths d S. In this case, the magnetic force F MS of the closing magnet 3 acting on the armature 1 is inversely proportional to the square of the armature stroke path length d S and is only limited by the magnetic resistance of the armature 1 and the closing magnet 3 at very small armature stroke path lengths d S.

Beim Öffnermagneten 2 wird die Änderung der magnetischen Energie hingegen sowohl durch den Ankerhubweg d0 als auch durch die Große des Luftspaltes 92 zwischen ferromagnetischer Teilhülse 70 und Anker 1 sowie durch die Größe des Luftspaltes 93 zwischen den Seitenflächen des Zapfens 11 und der Vertiefung 22 bestimmt. Befindet sich der Anker 1 nämlich in einer Position innerhalb der ferromagnetischen Teilhülse 70, bildet diese aufgrund ihres geringen magnetischen Widerstandes einen magnetischen Nebenschuß im magnetischen Kreis des Öffnermagneten 2, so daß ein großer Teil des magnetischen Flusses über die ferromagnetische Teilhülse 70 zum Anker 1 geleitet wird. Die durch den Luftspalt 92 zwischen ferromagnetischer Hülse 70 und Anker 1 verlaufenden Magnetfeldlinien des magnetischen Flusses weisen in Richtung des Ankerhubweges lediglich geringe Feldkomponenten auf und liefern daher auch nur einen geringen Beitrag zu der in Ankerhubweg-Richtung ausgerichteten Magnetkraft FMO des Öffnermagneten 2. Gleiches gilt auch für die durch den Luftspalt 93 zwischen den Seitenwänden des Zapfens 11 und der Vertiefung 22 verlaufenden Magnetfeldlinien. Bei geringer Ankerhubweglänge d0 ist Magnetkraft FMO des Öffnermagneten 2 infolgedessen geringer als die bei gleicher Ankerhubweglänge dS auf den Anker 1 wirkende Magnetkraft FMS des Schließermagneten 3.In the case of the opening magnet 2, on the other hand, the change in magnetic energy is determined both by the armature travel d 0 and by the size of the air gap 92 between the ferromagnetic partial sleeve 70 and armature 1 and by the size of the air gap 93 between the side surfaces of the pin 11 and the depression 22. If the armature 1 is in a position within the ferromagnetic partial sleeve 70, due to its low magnetic resistance, this forms a magnetic secondary shot in the magnetic circuit of the opening magnet 2, so that a large part of the magnetic flux is conducted to the armature 1 via the ferromagnetic partial sleeve 70 . The magnetic field lines of the magnetic flux running through the air gap 92 between ferromagnetic sleeve 70 and armature 1 have only small field components in the direction of the armature stroke path and therefore only make a small contribution to the magnetic force F MO of the opening magnet 2 oriented in the armature stroke path direction. The same applies also for the magnetic field lines running through the air gap 93 between the side walls of the pin 11 and the recess 22. With a small armature stroke path length d 0 , the magnetic force F MO of the opening magnet 2 is consequently less than the magnetic force F MS of the closing magnet 3 acting on the armature 1 with the same armature stroke path length d S.

Befindet sich der Anker 1 jedoch in einer Position außerhalb der ferromagnetischen Teilhülse 70, d. h. weit entfernt von der Polfläche 21 des Öffnermagneten 2, wird die Änderung der magnetischen Energie im wesentlichen durch die Änderung des magnetischen Widerstandes des Luftspaltes zwischen der Stirnfläche 72 der ferromagnetischen Hülse 70 und Anker 1 sowie durch die Änderung des magnetischen Widerstandes des Luftspaltes zwischen den Kanten des Zapfens 11 und der Vertiefung 22 bestimmt. Aufgrund der geringen Größe dieser Luftspalte ist die auf den Anker 1 wirkende Magnetkraft FMO des Öffnermagneten 2 für große Ankerhubweglängen d0 größer als die Magnetkraft FMS des Schließermagneten 3 bei gleich großer Ankerhubweglänge dS. Die geometrischen Abmessungen des Ankers 1, der ferromagnetischen Teilhülse 70 und der Polfläche des Öffnermagneten 2 sind derart gewählt, daß die Magnetkraft-Hub-Kennlinie FMO des Öffnermagneten 2 bei maximaler Ankerhubweglänge d0 ein lokales Maximum aufweist, das ausreichend groß ist, um die Druckkraft, die zu dem Zeitpunkt des Loslösens des Ankers 1 von dem Schließermagneten 3 aufgrund des Gasinnendrucks in der Brennkammer auf das Gaswechselventil 5 wirkt, zumindest teilweise zu kompensieren. Infolgedessen ist die Dämpfung des aus dem Anker 1, dem Stößel 4, dem Gaswechselventil 5, den Stellfedern 60, 63 und den Federtellern 61, 62 gebildeten Feder-Masse-Systems in beiden Bewegungsrichtungen des Ankers 1 in etwa gleich groß, so daß auch die Zeiten, innerhalb derer der Anker 1 von der einen Polfläche 21 bzw. 31 zur anderen Polfläche 31 bzw. 21 bewegt wird, für beide Bewegungsrichtungen im wesentlichen gleich sind.However, if the armature 1 is in a position outside the ferromagnetic partial sleeve 70, ie far from the pole face 21 of the opening magnet 2, the change in magnetic energy is essentially caused by the change in the magnetic resistance of the air gap between the end face 72 of the ferromagnetic sleeve 70 and armature 1 and by the change in the magnetic resistance of the air gap between the edges of the pin 11 and the recess 22. Because of the small size of these air gaps, the magnetic force F MO of the opening magnet 2 acting on the armature 1 is greater for large armature travel lengths d 0 than the magnetic force F MS of the closing magnet 3 with the same length of armature travel d S. The geometric dimensions of the armature 1, the ferromagnetic partial sleeve 70 and the pole face of the opening magnet 2 are chosen such that the magnetic force-stroke characteristic curve F MO of the opening magnet 2 has a local maximum at maximum armature stroke path length d 0 , which is sufficiently large to allow for the To at least partially compensate for pressure force which acts on the gas exchange valve 5 at the time the armature 1 is released from the closing magnet 3 due to the internal gas pressure in the combustion chamber. As a result, the damping of the spring-mass system formed from the armature 1, the tappet 4, the gas exchange valve 5, the actuating springs 60, 63 and the spring plates 61, 62 is approximately the same in both directions of movement of the armature 1, so that the Times within which the armature 1 is moved from one pole face 21 or 31 to the other pole face 31 or 21 are essentially the same for both directions of movement.

Claims (6)

Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils (5) in einer Brennkraftmaschine, mit zwei voneinander beabstandet angeordneten Elektromagneten (2, 3), von denen der eine als Öffnermagnet (2) zur Erzeugung einer Magnetkraft zum Öffnen des Gaswechselventils (5) und der andere als Schließermagnet (3) zur Erzeugung einer Magnetkraft zum Schließen des Gaswechselventils (5) vorgesehen ist, und mit einem zwischen sich gegenüberliegenden Polflächen (21, 31) der Elektromagnete (2, 3) durch Magnetkraft bewegbaren Anker (1), der mit dem Gaswechselventil (5) in Wirkverbindung steht, dadurch gekennzeichnet, daß der Aktuator eine den Zwischenraum (90, 91) zwischen den Polflächen (21, 31) der Elektromagnete (2, 3) umschließende zweiteilige Verbindungshülse (7) aus einer am Öffnermagneten (2) befestigten ferromagnetischen Teilhülse (70) und einer am Schließermagneten (3) befestigten nichtferromagnetischen Teilhülse (71) aufweist.Electromagnetic actuator for actuating a gas exchange valve (5) in an internal combustion engine, with two spaced apart Electromagnets (2, 3), one of which is used as an opening magnet (2) Generation of a magnetic force for opening the gas exchange valve (5) and other than closing magnet (3) for generating a magnetic force for closing of the gas exchange valve (5) is provided, and with one between them opposite pole faces (21, 31) of the electromagnets (2, 3) by magnetic force movable armature (1), which is operatively connected to the gas exchange valve (5) stands, characterized in that the actuator an the gap (90, 91) between the pole faces (21, 31) of the electromagnets (2, 3) enclosing two-part connecting sleeve (7) from one on the opening magnet (2) attached ferromagnetic partial sleeve (70) and one on Closer magnet (3) attached non-ferromagnetic partial sleeve (71) having. Aktuator nach Anspruch 1, dadurch gekennzeichnet, daß der Anker (1) in seiner Mitte einen Zapfen (11) aufweist, der bei am Öffnermagneten (2) anliegendem Anker (1) in eine zum Zapfen (11) komplementäre Vertiefung (22) des Öffnermagneten (2) hineingeführt ist.Actuator according to claim 1, characterized in that the armature (1) in has a pin (11) in its center, which is in contact with the opening magnet (2) Armature (1) in a recess (22) complementary to the pin (11) of the opening magnet (2) is inserted. Aktuator nach Anspruch 2, dadurch gekennzeichnet, daß die Höhe des Zapfens (11) und die Höhe des von der ferromagnetischen Teilhülse (70) begrenzten Teils des Zwischenraumes (90, 91) zwischen den Polflächen (21, 31) der Elektromagnete (2, 3) möglichst gleich sind.Actuator according to claim 2, characterized in that the height of the Pin (11) and the height of the ferromagnetic partial sleeve (70) limited Part of the space (90, 91) between the pole faces (21, 31) the electromagnets (2, 3) are as identical as possible. Aktuator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Anker (1) zumindest in einem Teilbereich eine in Richtung Ankerrand abnehmende Dicke aufweist.Actuator according to one of the preceding claims, characterized in that that the anchor (1) at least in a partial area in the direction of the anchor edge has decreasing thickness. Aktuator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Polflächen (21, 31) der Elektromagnete (2, 3) jeweils komplementär zu der dem jeweiligen Elektromagneten (2, 3) zugewandten Oberfläche des Ankers (1) ausgeführt sind.Actuator according to one of the preceding claims, characterized in that that the pole faces (21, 31) of the electromagnets (2, 3) are each complementary to the surface facing the respective electromagnet (2, 3) of the armature (1) are executed. Aktuator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die dem Schließermagneten (3) zugewandte Oberflächenseite des Ankers (1) im wesentlichen eben ist.Actuator according to one of the preceding claims, characterized in that that the closer magnet (3) facing the surface of the Anchor (1) is essentially flat.
EP99100674A 1998-02-04 1999-01-15 Electromagnetic actuator Withdrawn EP0935054A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19804225 1998-02-04
DE19804225A DE19804225C1 (en) 1998-02-04 1998-02-04 Electromagnetic actuator for gas changeover valve of internal combustion engine

Publications (2)

Publication Number Publication Date
EP0935054A2 true EP0935054A2 (en) 1999-08-11
EP0935054A3 EP0935054A3 (en) 1999-08-18

Family

ID=7856523

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99100674A Withdrawn EP0935054A3 (en) 1998-02-04 1999-01-15 Electromagnetic actuator

Country Status (3)

Country Link
US (1) US6037851A (en)
EP (1) EP0935054A3 (en)
DE (1) DE19804225C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10029292B4 (en) * 2000-06-14 2005-08-04 Daimlerchrysler Ag Internal combustion engine with electromagnetic valve control

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2792109B1 (en) * 1999-04-12 2001-06-01 Schneider Electric Sa ELECTROMAGNET WITH SIMPLIFIED MAGNETIC CIRCUIT
DE19922424C2 (en) * 1999-05-14 2003-04-30 Siemens Ag Electromagnetic actuator
DE19953788A1 (en) * 1999-11-09 2001-05-10 Bosch Gmbh Robert Electromagnetic actuator
US20050076866A1 (en) * 2003-10-14 2005-04-14 Hopper Mark L. Electromechanical valve actuator
US7255073B2 (en) * 2003-10-14 2007-08-14 Visteon Global Technologies, Inc. Electromechanical valve actuator beginning of stroke damper
WO2005043266A2 (en) * 2003-10-31 2005-05-12 Massachusetts Institute Of Technology Variable reluctance fast positioning system and methods
US7305942B2 (en) * 2005-02-23 2007-12-11 Visteon Global Technologies, Inc. Electromechanical valve actuator
US7270093B2 (en) * 2005-04-19 2007-09-18 Len Development Services Corp. Internal combustion engine with electronic valve actuators and control system therefor
US8037853B2 (en) * 2005-04-19 2011-10-18 Len Development Services Usa, Llc Internal combustion engine with electronic valve actuators and control system therefor
WO2007006399A1 (en) * 2005-07-13 2007-01-18 Roche Diagnostics Gmbh Lancet device
US20160327176A1 (en) * 2014-01-21 2016-11-10 Honda Motor Co., Ltd. Electromagnetic actuator and solenoid-valve device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29604946U1 (en) 1996-03-16 1997-07-17 Fev Motorentech Gmbh & Co Kg Electromagnetic actuator for a gas exchange valve with valve clearance compensation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2901210A (en) * 1953-06-29 1959-08-25 Phillips Petroleum Co Electro-magnetic device
US4361309A (en) * 1980-06-23 1982-11-30 Niipondenso Co., Ltd. Electromagnetic actuator
DE3223557A1 (en) * 1982-06-24 1983-12-29 Robert Bosch Gmbh, 7000 Stuttgart ELECTRIC ACTUATOR
DE3826975A1 (en) * 1988-08-09 1990-02-15 Meyer Hans Wilhelm CONTROL DEVICE FOR A GAS EXCHANGE VALVE
DE3826977A1 (en) * 1988-08-09 1990-02-15 Meyer Hans Wilhelm CONTROL DEVICE FOR A GAS EXCHANGE VALVE OF AN INTERNAL COMBUSTION ENGINE
DE3905023A1 (en) * 1989-02-18 1990-08-30 Voith Gmbh J M ELECTROMAGNET WITH A SUBMERSIBLE
US5074259A (en) * 1990-05-09 1991-12-24 Pavo Pusic Electrically operated cylinder valve
JP3186462B2 (en) * 1994-09-22 2001-07-11 トヨタ自動車株式会社 Electromagnetic valve drive for internal combustion engine
JPH09317419A (en) * 1996-05-28 1997-12-09 Toyota Motor Corp Malfunction detection method for electromagnetically driven intake and exhaust valve
US5730091A (en) * 1996-11-12 1998-03-24 Ford Global Technologies, Inc. Soft landing electromechanically actuated engine valve
DE29620741U1 (en) * 1996-11-29 1998-03-26 Fev Motorentech Gmbh & Co Kg Narrow-build electromagnetic actuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29604946U1 (en) 1996-03-16 1997-07-17 Fev Motorentech Gmbh & Co Kg Electromagnetic actuator for a gas exchange valve with valve clearance compensation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10029292B4 (en) * 2000-06-14 2005-08-04 Daimlerchrysler Ag Internal combustion engine with electromagnetic valve control

Also Published As

Publication number Publication date
US6037851A (en) 2000-03-14
EP0935054A3 (en) 1999-08-18
DE19804225C1 (en) 1999-05-06

Similar Documents

Publication Publication Date Title
EP2158596B1 (en) Electromagnetic actuating device
DE3311250C2 (en) Device for the electromagnetic actuation of a gas exchange valve for positive displacement machines
DE3024109A1 (en) ELECTROMAGNETIC OPERATING DEVICE
EP2050107A1 (en) Electromagnetic actuating apparatus
DE3031354A1 (en) ELECTROMAGNETIC ARRANGEMENT
EP0935054A2 (en) Electromagnetic actuator
DE19808492A1 (en) Electromagnetic actuator for activation of positioning element
DE202004006156U1 (en) Solenoid actuator for a valve
DE19751609B4 (en) Narrow-building electromagnetic actuator
DE3527174A1 (en) DOUBLE ACTING SOLENOID VALVE
EP0748416B1 (en) Electromagnetically actuated valve in an internal combustion engine
DE3834445A1 (en) ELECTROMAGNETIC INJECTION VALVE WITH TIP ANCHOR
DE102006025397B4 (en) Electromagnetically driven valve
DE602004007420T2 (en) Electromagnetic actuator for actuating a gas exchange valve on a reciprocating internal combustion engine and internal combustion engine with such an actuator
EP0793004B1 (en) Electromagnetic valve control
DE19805171C2 (en) Electromagnet and use of the same
DE3928066A1 (en) EM valve opening and closing device - has two magnet systems of small dimensions to reduce reaction time
DE19852287C2 (en) Electromagnetic actuator and use of the actuator
DE10051076C2 (en) Method for producing an electromagnetic actuator
DE3018972C2 (en) magnetic valve
EP3361085A1 (en) Electromagnetic switching valve and high-pressure fuel pump
EP1479880B1 (en) Valve drive with electromagnets and permanent magnets
DE7036653U (en) ELECTROMAGNETIC DEVICE.
EP0924395A2 (en) Method of manufacturing an electromagnetic actuator
DE10317644A1 (en) Electromagnetic actuator with asymmetrical magnetic circuit design for actuating a gas exchange valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991224

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TEMIC TELEFUNKEN MICROELECTRONIC GMBH

AKX Designation fees paid

Free format text: DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTI TEMIC MICROELECTRONIC GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020220