EP0931604B1 - Method and apparatus for manufacturing composite camshafts - Google Patents

Method and apparatus for manufacturing composite camshafts Download PDF

Info

Publication number
EP0931604B1
EP0931604B1 EP98123711A EP98123711A EP0931604B1 EP 0931604 B1 EP0931604 B1 EP 0931604B1 EP 98123711 A EP98123711 A EP 98123711A EP 98123711 A EP98123711 A EP 98123711A EP 0931604 B1 EP0931604 B1 EP 0931604B1
Authority
EP
European Patent Office
Prior art keywords
hollow shaft
cam
bearing point
expanded
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98123711A
Other languages
German (de)
French (fr)
Other versions
EP0931604A1 (en
Inventor
Henning Blöcker
Klaus Brandes
Martin Dr. Krüssmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0931604A1 publication Critical patent/EP0931604A1/en
Application granted granted Critical
Publication of EP0931604B1 publication Critical patent/EP0931604B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/08Tube expanders
    • B21D39/20Tube expanders with mandrels, e.g. expandable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/06Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes in openings, e.g. rolling-in
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/08Tube expanders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/84Making other particular articles other parts for engines, e.g. connecting-rods
    • B21D53/845Making camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0475Hollow camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/01Tools for producing, mounting or adjusting, e.g. some part of the distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49293Camshaft making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49805Shaping by direct application of fluent pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49895Associating parts by use of aligning means [e.g., use of a drift pin or a "fixture"]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49915Overedge assembling of seated part
    • Y10T29/4992Overedge assembling of seated part by flaring inserted cup or tube end
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49938Radially expanding part in cavity, aperture, or hollow body
    • Y10T29/4994Radially expanding internal tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53796Puller or pusher means, contained force multiplying operator
    • Y10T29/5383Puller or pusher means, contained force multiplying operator having fluid operator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53961Means to assemble or disassemble with work-holder for assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53996Means to assemble or disassemble by deforming

Definitions

  • the invention relates to a method for the production of assembled camshafts according to the preamble of claim 1 and an apparatus for carrying it out.
  • the cam belt undershoots a certain thickness, can a durable joining of the cam on the hollow shaft in achieving a Preßverbundes between the hollow shaft and cam can not be achieved because the cam is not sufficient rigidity has more to absorb the joining stress.
  • an average pipe outside diameter to comply with, on the one hand, the camshaft and the Bearing has sufficient rigidity and the bearing point a sufficient wear resistance is given and
  • the cam belt is still strong enough to absorb of the cam for the joining tension. This is constructively feasible.
  • the bearing sleeves may occasionally only very thin (about 1mm) be measured, creating a Durability on the hollow shaft under load in motor operation practically is not given.
  • the invention is based on the object, a method and a Show apparatus for producing a built-up camshaft, by means of which or in a simple way the reliability ensures the camshaft in each engine operation is and the camshaft is due to the individual Engine design differently positioned thrust bearing arbitrary can be adapted.
  • the hollow shaft outer diameter of the undeformed Output shaft largely independent of the bearing diameter be selected, whereby with a suitable choice of the outer diameter the hollow shaft of this is sized so large that a sufficient flexural rigidity for every engine operating situation the hollow shaft is guaranteed, and at the same time so small is dimensioned that the cam due to a sufficient cam belt thickness still has so much rigidity that this the joint stresses in the mating hydroforming the Hollow shaft on the one hand and on the other hand in engine operation gleichweicher Load even without suffering damage can.
  • Fig. 1 is a device 1 for the production of a built Camshaft 2 shown which a plurality of successively arranged Tools 3 for positioning and holding the cams 4, which is pneumatically aligned in the tools 3 become.
  • These tools 3 are located between one Hohlwellenzu evaluation 5 and a clamping tool 6, the Hollow shaft 7 at one end with a gripper 8 in a centric Position fixed.
  • the hollow shaft 7 is doing before the fixation through the feed 5 through the cam holes 9 in the Tools 3 held cam 4 threaded through.
  • On hollow shaft averted Page 10 of the clamping tool 6 is a with attached to an insertion funnel 11 provided probe insertion 12, by means of which a lance-shaped probe 13 (FIG. 2) exactly centered in the clamped hollow shaft 7 can be inserted is.
  • the probe 13 consists essentially of a metal rod, the a central with a fluid high pressure generating plant fluidly connected pressure fluid guide channel 14 has. From Pressure fluid guide channel 14 branches axially spaced apart Transverse channels 15 and 16 from, the outlet openings 17 and 18th have in the probe shell 38. It is conceivable that in the field of Outlet openings 17 and 18 in the probe sheath 38 has a circumferential Recess is incorporated, which is an annular forms the hollow shaft 7 open pressure chamber. This will be a simultaneous and uniform high-pressure admission of the respective Aufweitstelle the hollow shaft 7 reaches, creating a Contour equality of the expanded location of the hollow shaft 7 achieved becomes.
  • the expansion area 19 and the section 21 are each by the sealing arrangement for the hollow shaft forming sealing body pairs in the form of two axially spaced annular seals 24,25 axially bounded on both sides, which are supported by the probe 13 and for the holder in the probe sheath 38 each two circumferential Receiving grooves 26 are formed.
  • the ring seals 24,25 are supported radially on the inner side 27 of the hollow shaft. 7 sealing off.
  • the seal body pairs includes the Sealing arrangement for the bearing 20, a support tool 28th (Fig. 3a, b) and 29 (Fig. 4a, b), in the position of use on the outside the hollow shaft 7 circumferentially, leaving the widening Area 19 of the hollow shaft 7 rests rigidly and the ring seals 24,25 covers.
  • the support tool 28 or 29 consists of three jaw-like segments 39,40,41, their division joints 42 offset in contact with the hollow shaft 7 by about 120 ° to each other are arranged.
  • the probe 13th inserted into the hollow shaft 7, wherein the probe 13 with the Outlet openings 17,18 of the transverse channels 15,16 of the pressure fluid guide channel 14 exactly on the respective expansion area 19 and the portion 21 are axially aligned.
  • the hollow shaft 7 can previously as already described by the cam holes. 9 the cam 4 are threaded through. Alternatively, however, can equally the cams 4 on a tightly clamped hollow shaft 7 postponed and positioned there in the intended relative position become.
  • the cams 4 are now with play - representative characterized by the clearance gap 30 in Fig. 2 - on the Hollow shaft 7 positioned. Then the support tools 28 and 29 moved radially to the hollow shaft 7, until this at her issue.
  • the support tool 28 or 29 is in the position of use rigid, so immovable, arranged and covers it in such a way the ring seals 24,25, that a lifting of the voltage applied to these Hollow shaft material under the fluid high pressure is avoided by the ring seals 24,25, what else a Loss whose sealing effect would result.
  • the formation of the bearing 20 and the joining operation of the cam 4 on the hollow shaft. 7 take place sequentially, wherein the bearing 20 first formed becomes.
  • a pressure relief valve 37 is arranged, which blocks the transverse channel 15, when the bearing 20 is subjected to internal high pressure.
  • the respective cam 4 is on the hollow shaft 7 in a provisional Fuhrage pushed or takes in a threading the hollow shaft 7 in the cam 4 a provisional Fügelage on.
  • the bearing 20 as desired according to FIG. 4a, b in a simple manner in the form of a bulge 36 by about 1-2 mm expanded. Accordingly, however, the counter bearing must be formed dome-shaped on the engine, which in turn some Effort means.
  • the transverse channel 15 is released and the section 21 of Hollow shaft 7 in a second forming process with an opposite the above-described expansion pressure for the bearing 20, in particular the calibration pressure much lower internal high pressure acted upon by the local expansion of the Hollow shaft 7 of the cam 4 to form a Preßverbundes she is joined.
  • the shortening of the hollow shaft 7 at this Second transformation is not significant because the hollow shaft. 7 there only expands by about 0.2 mm.
  • Using of the support tool 29, it is useful to further widening to avoid during the joining process, in the transverse channel 16 also provide a pressure relief valve, this locks in the mentioned joining.
  • the hollow shaft 7 is the desired camshaft 2, as shown Fig. 5 can be seen.
  • the pressurized fluid is released, the Support tools 28 and 29 removed and the probe 13 from the Camshaft 2 pulled out.
  • the clamping is released and the finished camshaft 2 removed for further installation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Gears, Cams (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von gebauten Nockenwellen gemäß dem Oberbegriff des Patentanspruches 1 und eine Vorrichtung zur Durchführung desselben.The invention relates to a method for the production of assembled camshafts according to the preamble of claim 1 and an apparatus for carrying it out.

Bei herkömmlichen gebauten Nockenwellen darf der nach den Abmaßen der Lagerschalen sich richtende Rohraußendurchmesser nicht ein bestimmtes Maß unterschreiten, damit die Steifigkeit der Nockenwelle insgesamt und die Verschleißfestigkeit der Lagerstellen der Nockenwelle gewährleistet ist. Gleichzeitig entspricht der Rohraußendurchmesser dem Bohrungsdurchmesser des auf die Hohlwelle aufgeschobenen Nockens. Da der Nocken eine vorgegebene definierte Erstreckung in Querrichtung zur Hohlwelle aufweist, um die Betätigung der Gaswechselventile funktionsgerecht auszuführen, wird der Nockengurt, also der Nockenabschnitt, der den sogenannten Grundkreis des Nockens bildet, um so dünner je größer der Rohraußendurchmesser der Hohlwelle ist. Wenn nun der Nockengurt eine gewisse Dicke unterscheitet, kann eine haltbare Fügung des Nockens auf der Hohlwelle bei der Erreichung eines Preßverbundes zwischen Hohlwelle und Nocken nicht mehr erreicht werden, da der Nocken keine genügende Steifigkeit mehr besitzt um die Fügespannung aufzunehmen. Somit ist für die Fertigung der Nockenwelle ein mittlerer Rohraußendurchmesser einzuhalten, bei dem einerseits die Nockenwelle und die Lagerstelle eine ausreichende Steifigkeit aufweist und der Lagerstelle eine genügende Verschleißfestigkeit gegeben ist und andererseits der Nockengurt noch stark genug ist, um die Aufnahmefähigkeit des Nockens für die Fügespannung zu gewährleisten. Dies ist konstruktiv machbar. Allerdings ist das motorische Gegenlager für die Lagerstellen der Nockenwelle, die Lagerschalen, aus Bauraumgründen bei manchen Motoren aufgrund von der spezifischen Bauweise des Motors in einer Position angeordnet, in der die Nockenwelle an seiner Lagerstelle von ihm beabstandet ist. Die Überbrückung der Beabstandung wird, wie aus der EP 0 328 010 A1 beispielsweise ersichtlich ist, in der im übrigen das Fügen der Nocken unter Innenhochdruckbeaufschlagung durch eine in die Hohlwelle eingeführte Lanze erfolgt, in aller Regel durch die Befestigung von Lagerhülsen auf der Nockenwelle an der Position der Lagerstellen erreicht. Die Lagerhülsen haben jedoch zum Nachteil, daß sie zum einen ein eigenständiges Bauteil sind und damit einer gesonderten Herstellung bedürfen. Außerdem sind sie in aufwendiger und in erheblichem Maße kostensteigernder Weise zur Erlangung einer qualitativ hochwertigen Oberfläche feinzubearbeiten und auf der Hohlwelle drehfest anzubringen. Zum anderen dürfen die Lagerhülsen bisweilen nur sehr dünn (ca. 1mm) bemessen sein, wodurch eine Haltbarkeit auf der Hohlwelle unter Last im Motorbetrieb praktisch nicht gegeben ist.With conventional built-up camshafts may be the dimensions the cups do not directing pipe outside diameter fall below a certain level, so that the rigidity of the Overall camshaft and the wear resistance of bearings the camshaft is guaranteed. At the same time corresponds the pipe outside diameter the bore diameter of pushed onto the hollow shaft cam. Since the cam a predetermined defined extent in the transverse direction to the hollow shaft has to function the operation of the gas exchange valves execute, the cam belt, so the cam section, which forms the so-called base circle of the cam the thinner the larger the outer tube diameter of the hollow shaft. Now if the cam belt undershoots a certain thickness, can a durable joining of the cam on the hollow shaft in achieving a Preßverbundes between the hollow shaft and cam can not be achieved because the cam is not sufficient rigidity has more to absorb the joining stress. Thus is For the production of the camshaft, an average pipe outside diameter to comply with, on the one hand, the camshaft and the Bearing has sufficient rigidity and the bearing point a sufficient wear resistance is given and On the other hand, the cam belt is still strong enough to absorb of the cam for the joining tension. This is constructively feasible. However, that's motor Counter bearing for the bearing points of the camshaft, the bearing shells, for reasons of space in some engines due to the specific design of the engine arranged in a position in the the camshaft at its deposit from him is spaced. The bridging of the spacing is how from EP 0 328 010 A1, for example, can be seen in the in the rest, the joining of the cams under Innenhochdruckbeaufschlagung by a lance introduced into the hollow shaft, in usually by the attachment of bearing sleeves on the camshaft reached at the position of the bearings. The bearing sleeves However, they have the disadvantage that they are independent Component are and thus a separate production require. Moreover, they are elaborate and substantial Measures cost-increasing to obtain a qualitative Fine finish high-quality surface and on the hollow shaft rotatably to install. On the other hand, the bearing sleeves may occasionally only very thin (about 1mm) be measured, creating a Durability on the hollow shaft under load in motor operation practically is not given.

Aus der DE 37 04 092 C1 ist eine gattungsgemäße gebaute Nockenwelle bekannt, bei der eine Lagerstelle aus der Hohlwelle mittels aufweitendem Innenhochdruckumformen ausgeformt wird. Hierbei wird die Hohlwelle samt den auf dieser zu fügenden Nocken in eine hohle Aufnahmeform eines aus zumindest zwei Matrizen bestehenden Innenhochdruck-Umformwerkzeuges eingebracht und dort positioniert, worauf bei geschlossenem Werkzeug und Anlegen eines fluidischen Innenhochdruckes in der Hohlwelle diese aufgeweitet wird und an Stelle der Nocken mit diesen verpreßt wird. Gleichzeitig werden die Lagerstellen entsprechend dem zu überbrückenden Abstand zum Gegenlager aufgeweitet. Nachteilig ist hierbei die aufwendige Vorrichtung mit einer Presse, die die gesamte Zuhaltekraft für das Innenhochdruckumformwerkzeug bzw. für die projizierte Fläche des Werkstückes aufbringen muß. Des weiteren fließt Material der Hohlwelle beim innenhochdruckbedingten Aufweiten im Bereich der eingelegten Nocken in Richtung der Fugen zwischen Werkzeug und Nocken, wodurch sich entsprechend beidseitig der Stirnseiten des Nockens im Übergang Nockenstirnseite zu Hohlwelle radial nach außen drängende Materialanstauungen in der Hohlwelle ausbilden. Durch diese Anstauungen werden im Nocken Zugspannungsspitzen erzeugt, die zu einem erhöhten Verschleiß der Nockenlaufbahn führen. Außerdem wirkt im Motorbetrieb durch Lastwechsel ein dynamisches Kraftmoment in axialer und radialer Richtung auf die Anstauungen, was zu einem Lockern des Nockens auf der Welle führt. Insgesamt ist das bekannte Verfahren bzw. die Vorrichtung zur Herstellung einer gebauten Nockenwelle aufgrund der vorgenannten Probleme - wenn überhaupt - nur begrenzt in Fahrzeugen einsatztauglich.From DE 37 04 092 C1 is a generic built camshaft known, in which a bearing point from the hollow shaft by means expanding hydroforming is formed. in this connection is the hollow shaft together with the cams to be joined on this in a hollow receiving form of one of at least two matrices existing internal high pressure forming tool introduced and positioned there, whereupon with the tool closed and applying a fluidic internal high pressure in the hollow shaft this is widened and pressed in place of the cam with these becomes. At the same time, the bearings become the same expanded bridging distance to the anvil. adversely Here is the expensive device with a press, the the total closing force for the hydroforming tool or must apply for the projected surface of the workpiece. Furthermore, material of the hollow shaft flows during the internal high-pressure induced Widening in the area of the inserted cams in the direction the joints between the tool and cam, resulting in corresponding on both sides of the end faces of the cam in the transition Cam face to hollow shaft radially outwardly urging material accumulation form in the hollow shaft. Due to these accumulations are generated in the cam tensile peaks, leading to a lead to increased wear of the cam track. In addition In motor operation, load changes cause a dynamic moment of force in the axial and radial direction to the impoundments, which leads to a loosening of the cam on the shaft. A total of is the known method or apparatus for the production a built-up camshaft due to the aforementioned problems - if at all - only limited in vehicles suitable for use.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Herstellung einer gebauten Nockenwelle aufzuzeigen, mittels dessen bzw. der in einfacher Weise die Betriebssicherheit der Nockenwelle in jedem Motorbetrieb gewährleistet ist und die Nockenwelle an aufgrund der individuellen Motorbauweise unterschiedlich positionierte Gegenlager beliebig angepaßt werden kann.The invention is based on the object, a method and a Show apparatus for producing a built-up camshaft, by means of which or in a simple way the reliability ensures the camshaft in each engine operation is and the camshaft is due to the individual Engine design differently positioned thrust bearing arbitrary can be adapted.

Die Aufgabe ist erfindungsgemäß durch die Merkmale des Patentanspruches 1 bezüglich des Verfahrens und durch die Merkmale des Patentanspruches 5 bezüglich der Vorrichtung gelöst.The object is achieved by the features of claim 1 with respect to the method and by the features of claim 5 with respect to the device.

Dank der Erfindung kann der Hohlwellenaußendurchmesser der unverformten Ausgangswelle weitgehend unabhängig vom Lagerdurchmesser gewählt werden, wodurch bei geeigneter Wahl des Außendurchmessers der Hohlwelle dieser so groß bemessen ist, daß eine für jede Motorbetriebssituation ausreichende Biegesteifigkeit der Hohlwelle gewährleistet ist, und gleichzeitig so klein bemessen ist, daß der Nocken aufgrund einer genügenden Nockengurtdicke noch soviel Steifigkeit besitzt, daß dieser die Fügespannungen bei der fügenden Innenhochdruckbeaufschlagung der Hohlwelle einerseits und andererseits im Motorbetrieb gleichweicher Last auch immer ohne Schaden zu erleiden aufnehmen kann. Durch die Unabhängigkeit des Lagerdurchmessers von den Abmaßen der restlichen Ausgangshohlwelle, welcher aufgrund einer gezielten aufweitenden Umformung der Lagerstelle der Hohlwelle mittels über eine lanzenförmige in die Hohlwelle eingebrachte Sonde erzeugten Innenhochdruckes wie gewünscht einstellbar ist, können moderne Motoren nahezu beliebiger Bauweise mit einer einzigen Art von Nockenwellen ausgestattet werden. Dabei muß lediglich die Lagerstelle unterschiedlich ausgeformt werden, was durch die Variabilität der Fertigung durch Innenhochdruckumformen jedoch ohne weiteres erreicht werden kann. Die Nockenwelle ist somit in einfacher Weise an die baulichen Zwangsbedingungen hinsichtlich des Gegenlagers fast beliebig anpaßbar und kann in ihrer Dimensionierung betriebssicher ausgelegt werden ohne daß durch eine Abhängigkeit von der Ausbildung der Lagerstelle mehr oder minder brauchbare Kompromißlösungen in Kauf genommen werden müssen. Durch die nun erreichte Möglichkeit, bei unterschiedlichen Motoren im wesentlichen gleiche Nockenwellen einzusetzen, wird deren Fertigung - über die bisherige Vielfalt an Versionen von Wellenbemaßungen gesehen - weitgehend vereinfacht, was den apparativen Auswand und die Kosten in erheblichem Maße verringert. Im Hinblick auf die Verwendung von Lagerhülsen kann auf das separate Bauteil der Lagerhülse völlig verzichtet werden, da diese quasi aus der Hohlwelle heraus gebildet wird. Dies erspart weitere Kosten und den Aufwand, diese auf der Hohlwelle drehfest zu befestigen. Eine derartige Befestigung ist insbesondere dahingehend schwierig, daß die Herstellung separater Bauteile in der Regel Toleranzen aufweist, die beim Fügen später berücksichtigt werden müssen. Hierbei kann nach dem abschließenden Schleifprozeß der Nocken und der Lagerstellen die ohnehin geringe Wandstärke der Lagerhülse soweit reduziert sein, daß eine betriebssichere Fügung bzw. Befestigung der Lagerhülse auf der Hohlwelle nicht ermöglicht werden kann. Des weiteren besteht durch die erfindungsgemäße Ausbildung der Lagerstelle nicht die Gefahr einer Loslösung im Motorbetrieb. Aufgrund des Einsatzes der lanzenförmigen Sonde sowohl für die Fügung des Nockens als auch für die Ausbildung der Lagerstelle, mit der gezielt ohne Gesamtbelastung der Hohlwelle mit Innenhochdruck Ausformungen bzw. Aufweitungen der Hohlwelle erreicht werden, kann auf ein Gesenk mit dem zugehörigen immensen apparativen Aufwand verzichtet werden. Es wird lediglich eine Einspannung für die Hohlwelle und Abstützwerkzeuge für die Nocken und die Lagerstellen benötigt. Aufgrund des gezielten Einsatzes des Innenhochdruckes können im Gegensatz zur Verwendung eines Gesenkes in unmittelbarem Anschluß an die Nocken sich ausbildende Aufwürfe der Hohlwelle, die ein Lockern des jeweiligen Nockens im Motorbetrieb zur Folge haben, vermieden werden, was wesentlich zur Betriebssicherheit der Nockenwelle im Motorbetrieb beiträgt. Thanks to the invention, the hollow shaft outer diameter of the undeformed Output shaft largely independent of the bearing diameter be selected, whereby with a suitable choice of the outer diameter the hollow shaft of this is sized so large that a sufficient flexural rigidity for every engine operating situation the hollow shaft is guaranteed, and at the same time so small is dimensioned that the cam due to a sufficient cam belt thickness still has so much rigidity that this the joint stresses in the mating hydroforming the Hollow shaft on the one hand and on the other hand in engine operation gleichweicher Load even without suffering damage can. Due to the independence of the bearing diameter of the Dimensions of the remaining output hollow shaft, which due to a targeted widening deformation of the bearing of the hollow shaft by means of a lance-shaped introduced into the hollow shaft Probe generated hydroforming as desired adjustable is, modern motors can almost any design be equipped with a single type of camshaft. In this case, only the bearing point must be shaped differently which is due to the variability of production by hydroforming however, can be readily achieved. The camshaft is thus in a simple manner to the structural Constraints on the counter bearing almost arbitrary adaptable and can be designed reliable in their dimensions without being dependent on education the deposit more or less useful compromise solutions must be accepted. By now reached Possibility, with different engines essentially use the same camshafts, their production is - about seen the previous variety of versions of Wellenbemaßungen - largely simplified, what the apparatus and significantly reduces costs. In terms of Use of bearing sleeves can on the separate component of the Lagerhülse be completely dispensed with, since these are quasi from the Hollow shaft is formed out. This saves further costs and the effort to fix this on the hollow shaft rotation. Such attachment is particularly difficult in this regard that the production of separate components usually tolerances has, which are considered later in the joining have to. Here, after the final grinding process of Cam and the bearings the already small wall thickness of Bearing sleeve should be reduced so far that a reliable joint or attachment of the bearing sleeve on the hollow shaft not can be enabled. Furthermore, there is by the invention Training the depository not the risk of Release in motor operation. Due to the use of lance-shaped Probe both for the addition of the cam and for the training of the bearing, with the targeted without total burden the hollow shaft with internal high pressure formations or expansions The hollow shaft can be reached on a die dispensed with the associated immense equipment become. It will only be a restraint for the hollow shaft and supporting tools for the cams and bearings required. Due to the targeted use of hydroforming can in contrast to the use of a Gesenkes in immediate Connection to the cams forming puffs of the Hollow shaft, which is a loosening of the respective cam during engine operation have to be avoided, which is essential to operational safety the camshaft contributes during engine operation.

Zweckmäßige Ausgestaltungen der Erfindung können den Unteransprüchen entnommen werden; im übrigen ist die Erfindung anhand zweier in den Zeichnungen dargestellter Ausführungsbeispiele nachfolgend näher erläutert; dabei zeigt:

  • Fig. 1 eine erfindungsgemäße Vorrichtung zur Herstellung gebauter Nockenwellen in einer perspektivischen Ansicht,
  • Fig. 2 in einem seitlichen Längsschnitt eine Hohlwelle in ihrer Ausgangsform mit aufgeschobenem Nocken und eingeführter Sonde,
  • Fig. 3a in einem seitlichen Längsschnitt eine Lagerstelle der Hohlwelle aus Fig. 2 in Kalibrierform mit umgebenden Abstützwerkzeug,
  • Fig. 3b die Hohlwelle aus Fig. 3a in einem Schnitt entlang der Linie IIIb-IIIb,
  • Fig. 4a in einem seitlichen Längsschnitt eine Lagerstelle der Hohlwelle aus Fig. 2 in einer aufgeweiteten Form der Lagerstelle mit umgebenden Abstützwerkzeug,
  • Fig. 4b die Hohlwelle aus Fig. 4a in einem Schnitt entlang der Linie IVb-IVb,
  • Fig. 5 in einem seitlichen Längsschnitt eine Endform der erfindungsgemäß ausgebildeten Nockenwelle mit eingeführter Sonde.
  • Advantageous embodiments of the invention can be taken from the subclaims; Moreover, the invention with reference to two embodiments shown in the drawings is explained in more detail below; showing:
  • 1 shows a device according to the invention for the production of built camshafts in a perspective view,
  • 2 shows in a lateral longitudinal section a hollow shaft in its original form with a pushed-cam and inserted probe,
  • 3a in a lateral longitudinal section of a bearing point of the hollow shaft of FIG. 2 in calibration with surrounding support tool,
  • 3b shows the hollow shaft of Fig. 3a in a section along the line IIIb-IIIb,
  • 4a in a lateral longitudinal section of a bearing point of the hollow shaft of FIG. 2 in an expanded form of the bearing with surrounding support tool,
  • 4b, the hollow shaft of Fig. 4a in a section along the line IVb-IVb,
  • 5 shows in a lateral longitudinal section a final shape of the inventively designed camshaft with inserted probe.
  • In Fig. 1 ist eine Vorrichtung 1 zur Herstellung einer gebauten Nockenwelle 2 dargestellt, welche mehrere hintereinander angeordnete Werkzeuge 3 zur Positionierung und Halterung der Nocken 4 beinhaltet, welche in den Werkzeugen 3 pneumatisch ausgerichtet werden. Diese Werkzeuge 3 befinden sich zwischen einer Hohlwellenzuführung 5 und einem Einspannwerkzeug 6, das die Hohlwelle 7 einenends mit einem Greifer 8 in einer zentrischen Position fixiert. Die Hohlwelle 7 wird dabei vor der Fixierung durch die Zuführung 5 durch die Nockenbohrungen 9 der in den Werkzeugen 3 gehaltenen Nocken 4 hindurchgefädelt. Auf hohlwellenabgewandter Seite 10 des Einspannwerkzeuges 6 ist eine mit einem Einführungstrichter 11 versehene Sondeneinführung 12 angebracht, mittels derer eine lanzenförmige Sonde 13 (Fig. 2) exakt zentriert in die eingespannte Hohlwelle 7 einschiebbar ist.In Fig. 1 is a device 1 for the production of a built Camshaft 2 shown which a plurality of successively arranged Tools 3 for positioning and holding the cams 4, which is pneumatically aligned in the tools 3 become. These tools 3 are located between one Hohlwellenzuführung 5 and a clamping tool 6, the Hollow shaft 7 at one end with a gripper 8 in a centric Position fixed. The hollow shaft 7 is doing before the fixation through the feed 5 through the cam holes 9 in the Tools 3 held cam 4 threaded through. On hollow shaft averted Page 10 of the clamping tool 6 is a with attached to an insertion funnel 11 provided probe insertion 12, by means of which a lance-shaped probe 13 (FIG. 2) exactly centered in the clamped hollow shaft 7 can be inserted is.

    Die Sonde 13 besteht im wesentlichen aus einem Metallstab, der einen zentralen mit einer Fluidhochdruck-Erzeugungsanlage fluidisch verbundenen Druckfluidführungskanal 14 aufweist. Vom Druckfluidführungskanal 14 zweigen axial voneinander beabstandete Querkanäle 15 und 16 ab, die Austrittsöffnungen 17 und 18 im Sondenmantel 38 besitzen. Es ist denkbar, daß im Bereich der Austrittsöffnungen 17 und 18 in den Sondenmantel 38 eine umlaufende Aussparung eingearbeitet ist, welche einen ringförmigen zur Hohlwelle 7 hin offenen Druckraum bildet. Dadurch wird eine gleichzeitige und gleichförmige Hochdruckbeaufschlagung der jeweiligen Aufweitstelle der Hohlwelle 7 erreicht, wodurch eine Konturgleichheit der aufgeweiteten Stelle der Hohlwelle 7 erzielt wird. Dies ist günstig für den erforderlichen aufzubringenden Halt des Nockens 4 auf der Hohlwelle 7 aufgrund eines allseitig gleichen Preßverbundes und für den Rundlauf der Hohlwelle 7 in den am Motor angeordneten Lagerschalen im Motorbetrieb. Die Austrittsöffnungen 17 und 18 sind in Einschiebelage der Sonde 13 natürlich im durch Fluidhochdruck aufzuweitenden Bereich 19 der Lagerstelle 20 der Hohlwelle 7 und auf dem Abschnitt 21 der Hohlwelle 7 zwischen den beiden quer zu deren Längserstreckung verlaufenden Stirnseiten 22,23 des jeweiligen Nockens 4 plaziert.The probe 13 consists essentially of a metal rod, the a central with a fluid high pressure generating plant fluidly connected pressure fluid guide channel 14 has. from Pressure fluid guide channel 14 branches axially spaced apart Transverse channels 15 and 16 from, the outlet openings 17 and 18th have in the probe shell 38. It is conceivable that in the field of Outlet openings 17 and 18 in the probe sheath 38 has a circumferential Recess is incorporated, which is an annular forms the hollow shaft 7 open pressure chamber. This will be a simultaneous and uniform high-pressure admission of the respective Aufweitstelle the hollow shaft 7 reaches, creating a Contour equality of the expanded location of the hollow shaft 7 achieved becomes. This is favorable for the necessary applied Stop of the cam 4 on the hollow shaft 7 due to a On all sides same Preßverbundes and for the concentricity of the hollow shaft 7 in the arranged on the engine cups in engine operation. The outlet openings 17 and 18 are in Einschiebelage Of course, the probe 13 to be dilated by fluid high pressure Area 19 of the bearing 20 of the hollow shaft 7 and on the section 21 of the hollow shaft 7 between the two transverse to the latter Longitudinal extending end faces 22,23 of the respective Cam 4 placed.

    Der Aufweitbereich 19 und der Abschnitt 21 werden durch jeweils die Dichtanordnung für die Hohlwelle bildende Dichtkörperpaare in Form von zwei axial beabstandeten Ringdichtungen 24,25 axial beidseitig begrenzt, die von der Sonde 13 getragen werden und für deren Halterung in dem Sondenmantel 38 jeweils zwei umlaufende Aufnahmenuten 26 ausgebildet sind. Die Ringdichtungen 24,25 stützen sich radial an der Innenseite 27 der Hohlwelle 7 abdichtend ab. Zusätzlich zu den Dichtkörperpaaren umfaßt die Dichtanordnung für die Lagerstelle 20 ein Abstützwerkzeug 28 (Fig. 3a,b) bzw. 29 (Fig. 4a,b), das in Gebrauchslage außen an der Hohlwelle 7 umlaufend unter Freilassung des aufzuweitenden Bereiches 19 der Hohlwelle 7 starr anliegt und die Ringdichtungen 24,25 abdeckt. Das Abstützwerkzeug 28 bzw. 29 besteht aus drei klemmbackenartigen Segmenten 39,40,41, deren Teilungsfugen 42 in Anlage an der Hohlwelle 7 um etwa 120° zueinander versetzt angeordnet sind.The expansion area 19 and the section 21 are each by the sealing arrangement for the hollow shaft forming sealing body pairs in the form of two axially spaced annular seals 24,25 axially bounded on both sides, which are supported by the probe 13 and for the holder in the probe sheath 38 each two circumferential Receiving grooves 26 are formed. The ring seals 24,25 are supported radially on the inner side 27 of the hollow shaft. 7 sealing off. In addition to the seal body pairs includes the Sealing arrangement for the bearing 20, a support tool 28th (Fig. 3a, b) and 29 (Fig. 4a, b), in the position of use on the outside the hollow shaft 7 circumferentially, leaving the widening Area 19 of the hollow shaft 7 rests rigidly and the ring seals 24,25 covers. The support tool 28 or 29 consists of three jaw-like segments 39,40,41, their division joints 42 offset in contact with the hollow shaft 7 by about 120 ° to each other are arranged.

    Zur Herstellung der gebauten Nockenwellen 2 wird die Sonde 13 in die Hohlwelle 7 eingeschoben, wobei die Sonde 13 mit den Austrittsöffnungen 17,18 der Querkanäle 15,16 des Druckfluidführungskanals 14 exakt auf den jeweiligen Aufweitbereich 19 und den Abschnitt 21 axial ausgerichtet werden. Die Hohlwelle 7 kann vorher wie bereits geschildert durch die Nockenbohrungen 9 der Nocken 4 hindurchgefädelt werden. Alternativ können jedoch gleichermaßen die Nocken 4 auf eine fest eingespannte Hohlwelle 7 aufgeschoben und dort in der vorgesehenen Relativlage positioniert werden. Die Nocken 4 sind nun mit Spiel - stellvertretend gekennzeichnet durch den Spielspalt 30 in Fig. 2 - auf der Hohlwelle 7 positioniert. Alsdann werden die Abstützwerkzeuge 28 bzw. 29 radial zur Hohlwelle 7 verfahren, bis diese an ihr anliegen. Die an der Hohlwelle 7 anliegenden unmittelbar an den Aufweitbereich 19 der Hohlwelle 7 angrenzenden Abschnitte 31 des Abstützwerkzeuges 28 bzw. 29 sind durch einen die aufzuweitende Lagerstelle 20 überspannenden Abschnitt 32 des Werkzeuges 28 bzw. 29 miteinander verbunden sind. Der Abschnitt 32 springt gegenüber den Anlageflächen 33 des Werkzeuges 28 bzw. 29 so weit zurück, daß er mit der Lagerstelle 20 einen ringförmigen Aufweitraum 34 einschließt (Fig. 4a,b). Die der Lagerstelle 20 zugewandte Fläche 35 des überspannenden Abschnittes 32 des Werkzeuges 28 kann nach Art einer Gesenkgravur für die aufzuweitende Lagerstelle 20 formgebend ausgebildet sein und ist dann um einen möglichst guten Materialfluß beim Aufweiten zu gewährleisten hochpoliert (Fig. 3a,b). Schließlich wird über den Druckfluidführungskanal 14 und die Querkanäle 15 und 16 der Sonde 13 ein gespanntes Druckfluid auf die Hohlwelle 7 gebracht, welche sich aufgrund des Innenhochdruckes im Bereich 19 und dem Abschnitt 21 radial nach außen aufweitet, wonach sich einerseits der Preßverbund zwischen Nocken 4 und Hohlwelle und andererseits die den Abstand zwischen Hohlwelle 7 und Gegenlager des Motors überbrückende Ausbauchung 36 der Lagerstelle 20 ergibt. Das Abstützwerkzeug 28 bzw. 29 ist in der Gebrauchslage starr, also unverrückbar, angeordnet und überdeckt dabei derart die Ringdichtungen 24,25, daß ein Abheben des an diesen anliegenden Hohlwellenmaterials unter der Fluidhochdruckbeaufschlagung von den Ringdichtungen 24,25 vermieden wird, was sonst einen Verlust deren Dichtwirkung zur Folge hätte. Aufgrund der Einengung des Aufweitbereiches auf den Abschnitt 21 zwischen den Stirnseiten 22,23 des jeweiligen Nockens 4 mittels der gezielten Plazierung der Ringdichtungen 24,25 werden für einen sicheren Halt des Nockens 4 auf der Hohlwelle 7 schädliche Materialanstauungen der Hohlwelle 7 beidseitig des Nockens 4 verhindert. Durch die Dichtwirkung bleiben die Abschnitte der Hohlwelle 7 zwischen den Lagerstellen 20 und den Abschnitten 21 der Nocken 4 drucklos und somit unverformt.For the production of the built-up camshaft 2, the probe 13th inserted into the hollow shaft 7, wherein the probe 13 with the Outlet openings 17,18 of the transverse channels 15,16 of the pressure fluid guide channel 14 exactly on the respective expansion area 19 and the portion 21 are axially aligned. The hollow shaft 7 can previously as already described by the cam holes. 9 the cam 4 are threaded through. Alternatively, however, can equally the cams 4 on a tightly clamped hollow shaft 7 postponed and positioned there in the intended relative position become. The cams 4 are now with play - representative characterized by the clearance gap 30 in Fig. 2 - on the Hollow shaft 7 positioned. Then the support tools 28 and 29 moved radially to the hollow shaft 7, until this at her issue. The voltage applied to the hollow shaft 7 directly to the Aufweitbereich 19 of the hollow shaft 7 adjacent sections 31st the Abstützwerkzeuges 28 and 29 are by a to be expanded Bearing 20 spanning portion 32 of the tool 28 and 29 are connected to each other. The section 32 jumps relative to the contact surfaces 33 of the tool 28 and 29 so far back that he with the bearing 20 an annular Expansion space 34 includes (Figure 4a, b). The depository 20 facing surface 35 of the spanning portion 32 of the Tool 28 may be in the manner of a Gesenkgravur for the aufweitende Bearing 20 be designed shaping and is then to the best possible flow of material when expanding ensure highly polished (Fig. 3a, b). Finally, over the pressure fluid guide channel 14 and the transverse channels 15 and 16 of the Probe 13 brought a strained pressure fluid to the hollow shaft 7, which due to the internal high pressure in the area 19 and the portion 21 radially outwardly widening, after which on the one hand, the Preverbverbund between cam 4 and hollow shaft and on the other hand, the distance between the hollow shaft 7 and abutment the motor bridging bulge 36 of the bearing 20 results. The support tool 28 or 29 is in the position of use rigid, so immovable, arranged and covers it in such a way the ring seals 24,25, that a lifting of the voltage applied to these Hollow shaft material under the fluid high pressure is avoided by the ring seals 24,25, what else a Loss whose sealing effect would result. Due to the Narrowing the Aufweitbereiches on the section 21 between the end faces 22,23 of the respective cam 4 by means of the targeted Placement of the ring seals 24,25 are for a secure hold of the cam 4 on the hollow shaft 7 damaging material accumulation the hollow shaft 7 prevents both sides of the cam 4. Due to the sealing effect remain the sections of Hollow shaft 7 between the bearings 20 and the sections 21st the cam 4 depressurized and thus undeformed.

    Die Aufweitung des Abschnittes 21 und des Bereiches 19 der Lagerstelle 20 kann gleichzeitig erfolgen, wobei jedoch durch die schnellere Anlage des Nockens 4 an der Hohlwelle 7 im Gegensatz zu der Erreichung der gewünschten Endform der Lagerstelle 20 auf den Nocken 4 aufgrund der größeren Aufweitung axiale Zugspannungen wirken, was zu einer Reduzierung der übertragbaren Drehmomente auf den Nocken 4 im Motorbetrieb führen kann. Dies kann zwar dadurch wiederum gemindert werden, daß aufgrund der Abstützung durch das Werkzeug 28 bzw. 29 die Hohlwelle 7 derart eingeklemmt wird, daß das Hohlwellenmaterial zur Aufweitung der Lagerstelle 20 nicht frei aus der Länge der Hohlwelle 7 sondern allein nur aus dem Bereich 19 bezogen wird, so daß die Wandstärke der Lagerstelle 20 in ihrer Endform gegenüber ihrer Ausgangsform verringert ist. Die verringerte Wandstärke der Lagerstelle 20 ist jedoch deren Verschleißfestigkeit und Steifigkeit abträglich. Des weiteren wirkt sich ein freier Fluß des Hohlwellenmaterials aus der Länge der Hohlwelle 7 negativ auf die Positionierung der Nocken 4 auf der Hohlwelle 7 aus, da die Hohlwelle 7 nach der Umformung verkürzt ist, so daß eine Nachpositionierung der Nocken 4 notwendig ist oder ein aufwendiges Vorhalten von Material erforderlich ist, was zu einer größeren Ausgangshohlwellenlänge führt. Letzteres geht außerdem mit einer aufwendigen von der Endlage abweichenden Vorpositionierung der Nocken 4 einher.The widening of the section 21 and the area 19 of the bearing 20 can take place simultaneously, but by the faster installation of the cam 4 on the hollow shaft 7 in contrast to achieve the desired final shape of the bearing 20 on the cam 4 due to the larger expansion axial tensile stresses act, resulting in a reduction of transmissible Torques on the cam 4 can cause engine operation. This Although this can in turn be mitigated that due to the Supported by the tool 28 or 29, the hollow shaft 7 such is clamped that the hollow shaft material for widening the Bearing 20 not free from the length of the hollow shaft 7 but only based on the area 19, so that the wall thickness the bearing 20 in its final shape relative to its original shape is reduced. The reduced wall thickness of the bearing However, 20 is their wear resistance and rigidity detrimental. Furthermore, a free flow of the hollow shaft material affects from the length of the hollow shaft 7 negative on the Positioning of the cam 4 on the hollow shaft 7, since the Hollow shaft 7 is shortened after the conversion, so that a Nachpositionierung the cam 4 is necessary or an expensive Preserve material is required, resulting in a larger Output hollow wavelength leads. The latter also goes with a consuming deviating from the final position pre-positioning associated with the cam 4.

    Alternativ kann in günstiger Weise die Ausbildung der Lagerstelle 20 und der Fügevorgang des Nockens 4 auf der Hohlwelle 7 sequentiell erfolgen, wobei die Lagerstelle 20 zuerst ausgeformt wird. Hierzu ist im Querkanal 15 zum Nocken 4 ein Druckbegrenzungsventil 37 angeordnet, das den Querkanal 15 sperrt, wenn die Lagerstelle 20 mit Innenhochdruck beaufschlagt wird. Der jeweilige Nocken 4 wird auf die Hohlwelle 7 in eine provisorische Fügelage geschoben oder nimmt bei einer Einfädelung der Hohlwelle 7 in die Nocken 4 eine provisorische Fügelage ein. Nunmehr wird die Lagerstelle 20 wie gewünscht gemäß Fig. 4a,b in einfacher Weise in Form einer Ausbauchung 36 um etwa 1-2 mm aufgeweitet. Dementsprechend muß allerdings das Gegenlager am Motor kalottenförmig ausgebildet werden, was wiederum einigen Aufwand bedeutet.Alternatively, in a favorable manner, the formation of the bearing 20 and the joining operation of the cam 4 on the hollow shaft. 7 take place sequentially, wherein the bearing 20 first formed becomes. For this purpose, in the transverse channel 15 to the cam 4, a pressure relief valve 37 is arranged, which blocks the transverse channel 15, when the bearing 20 is subjected to internal high pressure. The respective cam 4 is on the hollow shaft 7 in a provisional Fuhrage pushed or takes in a threading the hollow shaft 7 in the cam 4 a provisional Fügelage on. Now, the bearing 20 as desired according to FIG. 4a, b in a simple manner in the form of a bulge 36 by about 1-2 mm expanded. Accordingly, however, the counter bearing must be formed dome-shaped on the engine, which in turn some Effort means.

    Bei der Ausbildung der der Lagerstelle 20 zugewandten Fläche 35 des Werkzeugabschnittes 32 nach Art einer Gesenkgravur kann die Lagerstelle 20 jedoch bei der Aufweitung nach Anlage des Hohlwellenmaterials an der Gravur eine zylindrische Form annehmen, wodurch die Ausbildung des Gegenlagers des Motors vereinfacht wird (Fig. 3a,b). Der einer Gesenkgravur nachgebildete Abschnitt 32 kann auch von einer hinsichtlich des Abstützwerkzeuges (28) separaten Werkzeugform gebildet werden. Um eine präzise Konturierung der Lagerstelle 20 zu erreichen, muß die Lagerstelle 20 mit einem zum Aufweitdruck vergleichsweise erheblich höheren Druck kalibriert werden. Nach der Ausbildung der Lagerstellen 20, die frei aus der Länge der Hohlwelle 7 geformt werden und somit in der Endform weitgehend die gleiche Wandstärke aufweisen wie in der Ausgangsform der Hohlwelle 7, wobei der bei der Umformung auftretenden Verkürzung der Hohlwelle 7 zur Einhaltung der Abstände der Lagerstellen 20 voneinander durch Vorhalten von Material durch Verwendung einer längeren Hohlwelle 7 oder durch sukzessives Aufweiten der einzelnen Lagerstellen 20 entgegnet werden kann, werden die Nocken 4 zwischen den Lagerstellen 20 in ihre endgültige Fügelage positioniert. Dann wird der Querkanal 15 freigegeben und der Abschnitt 21 der Hohlwelle 7 in einem zweiten Umformvorgang mit einem gegenüber dem oben beschriebenen Aufweitdruck für die Lagerstelle 20, insbesondere dem Kalibrierdruck wesentlich geringeren Innenhochdruck beaufschlagt, wobei durch die dortige Aufweitung der Hohlwelle 7 der Nocken 4 unter Bildung eines Preßverbundes an sie gefügt wird. Die Verkürzung der Hohlwelle 7 bei dieser Zweiten Umformung fällt nicht ins Gewicht, da die Hohlwelle 7 sich dort lediglich um etwa 0,2 mm aufweitet. Bei Verwendung des Abstützwerkzeuges 29 ist es nützlich, um eine weitere Aufweitung während des Fügevorganges zu vermeiden, im Querkanal 16 ebenfalls ein Druckbegrenzungsventil vorzusehen, das diesen beim erwähnten Fügen sperrt. Nach den vollzogenen Umformvorgängen der Hohlwelle 7 wird die gewünschte Nockenwelle 2, wie aus Fig. 5 ersichtlich erhalten. Das Druckfluid wird entspannt, die Abstützwerkzeuge 28 bzw. 29 entfernt und die Sonde 13 aus der Nockenwelle 2 herausgezogen. Danach wird die Einspannung gelöst und die fertige Nockenwelle 2 zum weiteren Verbau entnommen.In the formation of the bearing point 20 facing surface 35th the tool section 32 in the manner of a Gesenkgravur can Bearing point 20, however, at the expansion after investment of the hollow shaft material assume a cylindrical shape on the engraving, whereby the training of the thrust bearing of the engine simplified becomes (Fig. 3a, b). The engraved section of a Gesenkgravur 32 can also from a respect to the support tool (28) separate tool shape are formed. To be precise To achieve contouring of the bearing 20, the bearing point 20 with a for expansion pressure comparatively considerably be calibrated higher pressure. After the training of the bearings 20, which are freely formed from the length of the hollow shaft 7 and thus in the final form largely the same wall thickness have as in the initial form of the hollow shaft 7, wherein the occurring in the forming shortening of the hollow shaft 7 for Compliance with the distances of the bearings 20 from each other Holding material by using a longer hollow shaft 7 or by successive widening of the individual bearings 20 can be countered, the cams 4 between the Bearings 20 positioned in their final Fügelage. Then the transverse channel 15 is released and the section 21 of Hollow shaft 7 in a second forming process with an opposite the above-described expansion pressure for the bearing 20, in particular the calibration pressure much lower internal high pressure acted upon by the local expansion of the Hollow shaft 7 of the cam 4 to form a Preßverbundes she is joined. The shortening of the hollow shaft 7 at this Second transformation is not significant because the hollow shaft. 7 there only expands by about 0.2 mm. Using of the support tool 29, it is useful to further widening to avoid during the joining process, in the transverse channel 16 also provide a pressure relief valve, this locks in the mentioned joining. After the completed forming processes the hollow shaft 7 is the desired camshaft 2, as shown Fig. 5 can be seen. The pressurized fluid is released, the Support tools 28 and 29 removed and the probe 13 from the Camshaft 2 pulled out. Then the clamping is released and the finished camshaft 2 removed for further installation.

    Claims (8)

    1. A process for the manufacture of assembled cam shafts in which at least one cam (4) is pushed onto a hollow shaft (7) following which the hollow shaft (7) is expanded between the two front faces (22, 23) of the cam (4) which run at an angle to the longitudinal extension of the hollow shaft (7) and at the corresponding bearing point (20) by means of a high pressure pressurised fluid in such a manner that, on one hand, the cam (4) and the hollow shaft (7) are pressed together and, on the other, a convex section (36) which bridges the gap between the hollow shaft (7) and the thrust bearing is created at the bearing point (20) on the hollow shaft (7),
      characterised i n that
      the pressurised fluid is conveyed by means of a lance-shaped probe (13) inserted into the hollow shaft (7), that the hollow shaft (7) is sealed against the expanding internal high pressure by a sealing arrangement (28; 29 and 24, 25) on the probe (13) between the expanded points (20, 21), that in its operating position a supporting tool (28; 29) lies rigidly adjacent to the external circumference of the hollow shaft (7) with an expansion chamber (34) at the place of the bearing point (20) in which an area (19) ofthe hollow shaft (7) is expanded, and that the expanded bearing points (20) are finally exposed to a calibrating pressure considerably greater than the expanding pressure, each bearing point 20 being pressed against a tool form which encloses and thereby contours it.
    2. A process in accordance with claim 1,
      characterised in that
      the cam (4) is positioned in the desired position relative to the hollow shaft (7) corresponding to its final position and that an internal high pressure is then exerted upon the joining point (21) between the hollow shaft (7) and the cam (4) between the front faces (22, 23) of the cam and the bearing point (20) on the hollow shaft (7) via the probe (13) at the same time, the hollow shaft (7) being supported from outside against the internal high pressure at the place of the sealing arrangement (28; 29 and 24, 25) on the probe (13) in such a manner that the internal high pressure expands the bearing point (20) exclusively by reducing the wall thickness in the area of the section (19, 21) of the hollow shaft (7) to be expanded.
    3. A process in accordance with claim 1,
      characterised in that
      the cam (4) is pushed onto the hollow shaft (7) in a provisional joining position, the bearing point (20) of the hollow shaft (7) is then expanded and that the cam (4) is not positioned in its final joining position until the bearing points (20) have been formed when it is joined to the hollow shaft (7) in said position by means of the application of internal high pressure to the hollow shaft (7).
    4. A process in accordance with claims 1 to 3,
      characterised in that
      the sections (20, 21) of the hollow shaft (7) to be expanded are exposed to different levels of fluid pressure, the pressure being exerted upon the bearing point (20) being greater than that exerted upon the joining point (21) of the cam (4).
    5. A device for the manufacture of an assembled cam shaft (2) comprising a hollow shaft (7) and at least one cam (4) having a lance-shaped probe (13) which can be inserted into the hollow shaft (7) held in a chuck at one end and which has a pressurised fluid supply channel connected to a fluid high pressure generation device which has outlets (17, 18) in the area (19) of a bearing point (20) on the hollow shaft (7) to be expanded by fluid high pressure and on the section (21) of the hollow shaft (7) between the two front faces (22, 23) of the cam (4) which run at an angle to its longitudinal extension, each with a sealing arrangement (28; 29, 24, 25) for the hollow shaft (7) on the section (21) of the cam (4) to be joined and in the area (19) of the bearing point (20), the sealing arrangements (28; 29, 24, 25) containing two sealing bodies (24, 25) which are positioned around the probe (13) at an axial distance from one another and which border the areas (19, 21) of the hollow shaft (7) to be expanded axially on both sides supported on the inside (27) of the hollow shaft in such a manner as to form a seal, and the sealing arrangement (28; 29, 24, 25) for the bearing point (20) containing a supporting tool (28;29) which in its operating position lies adjacent to the external circumference of the hollow shaft (7) leaving free the area (19) of the hollow shaft (7) to be expanded and thus covering the corresponding sealing bodies (24, 25), the sections (31) of the supporting tool (28; 29) lying adjacent to the hollow shaft (7) thereby being connected together by means of section (32) which spans the bearing point (20) to be expanded, said section (32) forming a ring-shaped expansion chamber (34) with the bearing point (20) and having tools for orienting, positioning and holding the cam (4).
    6. A device in accordance with claim 5,
      characterised in that
      the surface (35) of the spanning section (32) of the supporting tool (28) facing the bearing point (20) is designed to shape the bearing point (20) to be expanded in the manner of a die sinking.
    7. A device in accordance with claim 6,
      characterised in that
      the shaping surface (35) is polished.
    8. A device in accordance with claim 5,
      characterised in that
      a transverse channel (15, 16) connecting the pressurised fluid supply channel (14) of the probe (13) to the corresponding outlet opening (17, 18) branches off said pressurised fluid supply channel (14), a pressure limitation valve (37) being positioned in the transverse channel (15) leading to the expansion section (21) of the hollow shaft (7) at the cam (4).
    EP98123711A 1998-01-23 1998-12-12 Method and apparatus for manufacturing composite camshafts Expired - Lifetime EP0931604B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19802484 1998-01-23
    DE19802484A DE19802484C2 (en) 1998-01-23 1998-01-23 Method and device for producing assembled camshafts

    Publications (2)

    Publication Number Publication Date
    EP0931604A1 EP0931604A1 (en) 1999-07-28
    EP0931604B1 true EP0931604B1 (en) 2003-06-04

    Family

    ID=7855439

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98123711A Expired - Lifetime EP0931604B1 (en) 1998-01-23 1998-12-12 Method and apparatus for manufacturing composite camshafts

    Country Status (4)

    Country Link
    US (2) US6347451B1 (en)
    EP (1) EP0931604B1 (en)
    DE (2) DE19802484C2 (en)
    ES (1) ES2198638T3 (en)

    Families Citing this family (32)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19957508C1 (en) * 1999-11-30 2001-01-04 Daimler Chrysler Ag Device for inserting insert members with through opening onto hollow profiled sections using fluid pressure has expanding lance as two separate aligned driven oblong components
    US6961998B2 (en) * 2000-09-29 2005-11-08 Salzgitter Antriebstechnik Gmbh & Co. Kg Method for producing a hollow shaft, in particular a camshaft and a camshaft produced according to said method
    DE10137114A1 (en) * 2001-07-30 2003-02-13 Wolfgang Hartmann Device for automated joining of cams and bearing rings to camshaft, using method of longitudinal pressure joining
    DE10205540C1 (en) * 2002-02-08 2003-06-18 Muhr & Bender Kg Method of joining cams to tubular camshaft has cam lobes placed on tube which is selectively expanded by fluid pressure
    CN100476165C (en) * 2003-06-02 2009-04-08 玛勒阀门有限公司 Camshaft, especially for an internal combustion engine, comprising shiftable cams
    DE10347100B4 (en) * 2003-10-10 2006-11-02 Daimlerchrysler Ag Non-rotating connection
    DE10347101B4 (en) * 2003-10-10 2005-12-22 Daimlerchrysler Ag Non-rotating connection
    DE102004060807B3 (en) * 2004-12-17 2006-06-01 Daimlerchrysler Ag Production device for assembled camshafts has support device forming cam receiver passing round cam, leaving 90-degree sector free
    DE102005039784A1 (en) 2005-08-22 2007-03-08 Claas Fertigungstechnik Gmbh Method and device for non-rotatably connecting a hollow shaft with a component
    DE102005045008A1 (en) * 2005-09-21 2007-03-22 Volkswagen Ag Composite pipe comprises inner pipe and one or more outer rings which are fixed to it by internal high pressure molding
    DE202005021716U1 (en) 2005-12-24 2009-07-02 Mahle International Gmbh camshaft
    DE102006044735A1 (en) * 2006-09-20 2008-04-30 Muhr Und Bender Kg Built-up camshaft with dents under the deferred components
    DE102007012756A1 (en) * 2007-03-16 2008-09-18 Muhr Und Bender Kg Method for producing built-up camshafts
    DE102007036629B3 (en) * 2007-08-01 2008-07-03 Fachhochschule Jena Method for joining components with combined form-fit and force-fit, involves sliding outer part with play by hollow pipe shape inner part, and is positioned there accurately
    DE102007062235B4 (en) 2007-12-21 2016-11-17 Thorsten Gößling Method and device for joining built hollow shafts
    DE102008008000A1 (en) * 2008-02-07 2009-08-13 Daimler Ag Shaft and method for producing a shaft, in particular for an engine of a motor vehicle
    US7966983B2 (en) * 2008-04-10 2011-06-28 GM Global Technology Operations LLC Concentric camshaft with varying wall geometry and method of assembly
    US8117748B2 (en) * 2008-10-09 2012-02-21 GM Global Technology Operations LLC Ballize in tension camshaft assembly process
    DE102008064194A1 (en) * 2008-12-22 2010-07-01 Usk Karl Utz Sondermaschinen Gmbh Method and device for positioning a plurality of functional elements in a predetermined angular position on a shaft
    US8443499B2 (en) * 2009-03-03 2013-05-21 GM Global Technology Operations LLC Concentric camshaft and method of assembly
    DE102009043162B3 (en) * 2009-09-25 2010-09-09 Fachhochschule Jena Tube for joining hollow shaft with cam or hub, has shaft end surface aligned with front surface of hub and front surface of head including seal to obtain pressure-resistant sealing connection under application of retention force
    DE102009043163B3 (en) * 2009-09-25 2010-10-07 Fachhochschule Jena Joining sensor for position accurate mounting of components or hubs, has hollow cylindrical joining part, sealing arrangement, and ring sealing
    DE102009060350B4 (en) * 2009-12-24 2017-05-18 Volkswagen Ag Mounting device and holding module
    DE102012203145A1 (en) * 2012-02-29 2013-08-29 Mahle International Gmbh Adjustable camshaft
    GB2504100A (en) * 2012-07-17 2014-01-22 Mechadyne Internat Ltd A concentric camshaft supported by roller bearings
    DE102012106856B4 (en) * 2012-07-27 2019-05-29 Thyssenkrupp Presta Teccenter Ag Adjustable camshaft
    US20160030990A1 (en) * 2013-07-15 2016-02-04 James E. Nestell Internal Mechanical Stress Improvement Method for Mitigating Stress Corrosion Cracking in Weld Areas of Nuclear Power Plant Piping
    DE102013215711A1 (en) * 2013-08-08 2015-02-12 Mahle International Gmbh Device for mounting cams on a camshaft tube
    US9970476B2 (en) 2016-02-19 2018-05-15 GM Global Technology Operations LLC Crankshaft assembly with core plug and method of manufacturing a crankshaft assembly
    CN110530188B (en) * 2019-06-24 2021-07-23 浙江久立特材科技股份有限公司 Pipe fitting of heat exchanger
    CN110314973B (en) * 2019-06-24 2021-04-23 浙江久立特材科技股份有限公司 Die for preparing heat exchanger pipe fitting
    CN111250958B (en) * 2020-03-11 2022-04-26 深圳市东方骏实业有限公司 Plastic inlet and outlet pipe positioning and pressing device for mounting of automobile air conditioner warm air core

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4557128A (en) * 1982-01-27 1985-12-10 Costabile John J Apparatus for producing a bulge in thin metal material
    JPS6167525A (en) * 1984-09-11 1986-04-07 Nippon Piston Ring Co Ltd Cam shaft
    DE3726083A1 (en) * 1986-08-12 1988-02-18 Balcke Duerr Ag Device for fixing parts on a hollow body
    DE3704092C1 (en) * 1987-02-10 1988-05-26 Schneider Gesenkschmiede Hollow shaft and process for its manufacture
    US5259268A (en) * 1987-02-10 1993-11-09 Gesenkschmiede Schneider Gmbh Hollowshaft and method for the production thereof
    CA1290596C (en) * 1987-03-09 1991-10-15 Philip D. Arnold Tubular camshaft assemblies, method and apparatus
    US5205187A (en) * 1987-05-12 1993-04-27 Gesenkschmiede Schneider Gmbh Hollow shaft
    DE3717517A1 (en) * 1987-05-25 1988-12-15 Emitec Emissionstechnologie EXPANDING PROBE WITH A SMALL DIAMETER AND LARGE LENGTH
    DE3724904A1 (en) * 1987-07-28 1989-02-09 Emitec Emissionstechnologie EXPANDING PROBE WITH SPREADABLE SEALS
    US5201247A (en) * 1988-01-14 1993-04-13 Mannesmann Aktiengesellschaft Assembled shaft and process for production thereof
    DE3803682A1 (en) * 1988-02-07 1989-08-17 Emitec Emissionstechnologie METHOD FOR PRODUCING A BUILT SHAFT
    DE3842589A1 (en) * 1988-12-17 1990-06-21 Emitec Emissionstechnologie DETERMINATION METHOD
    DE19810422C1 (en) * 1998-03-11 1999-08-12 Benteler Werke Ag Method of forming tubes with spaced bulges

    Also Published As

    Publication number Publication date
    DE19802484C2 (en) 2000-06-08
    US20020056195A1 (en) 2002-05-16
    US6347451B1 (en) 2002-02-19
    EP0931604A1 (en) 1999-07-28
    DE19802484A1 (en) 1999-08-05
    DE59808621D1 (en) 2003-07-10
    ES2198638T3 (en) 2004-02-01
    US6615468B2 (en) 2003-09-09

    Similar Documents

    Publication Publication Date Title
    EP0931604B1 (en) Method and apparatus for manufacturing composite camshafts
    EP0748942B1 (en) Connecting system and process for releasably connecting two elements
    EP2829353B1 (en) Method for producing an assembled camshaft and corresponding device
    DE102004009074B3 (en) Compound cam for camshaft for automobile engine assembled from 2 individual cam parts coupled together via intermediate ring
    DE102008046527B4 (en) Method for producing a device carrying exhaust gas and a tool therefor
    EP1351796B1 (en) Method of manufacturing an assembled shaft
    EP2467220A2 (en) Device for expanding hollow bodies
    EP2911826B1 (en) Method for assembling an engine module
    DE19622372B4 (en) Method and device for producing camshafts
    DE19831333A1 (en) Mounting components on hollow shaft, especially cams on camshaft, by introducing supports between components fitted onto shaft prior to shaft expansion step
    EP1970140A1 (en) Method for manufacturing built camshafts
    DE10333850B4 (en) Built camshaft with camshaft adjuster
    EP2205371B1 (en) Method for producing pipe-in-pipe systems
    DE102005036419B4 (en) Device for producing bulged hollow profiles, in particular gas generator housings for airbag devices
    EP1024913B1 (en) Method and device for producing a shaft from a tubular workpiece
    DE4032424C2 (en) Method and device for producing folded pipes
    EP0958086B1 (en) Method and device for separating by breakage
    EP1660257A1 (en) Method and device for producing at least partially profiled tubes
    DE69322945T2 (en) Method and device for fixing a metallic piece provided with at least one cylindrical bore around a metallic tube
    EP3387224B1 (en) Method for permanently fastening cams on a carrier tube
    EP2998530B1 (en) Method for the manufacture of an exhaust gas converter, tool for a ring press for the manufacture of an exhaust gas converter, ring press comprising said tool, and exhaust gas converter maunfactured with said ring press
    DE10358493B4 (en) Apparatus for hydroforming
    DE102004059638B3 (en) Profiling fasteners, e.g. the stems of nails and bolts, clamps a blank at both ends in a compression machine with further movement of a clamping die moving a pincer embossing tool at right angles to the movement axis
    DE102016111213B4 (en) Method for producing a built composite shaft, and a built composite shaft produced by this method
    EP1163961B2 (en) Method and apparatus for manufacturing a gearing element

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19990701

    AKX Designation fees paid

    Free format text: DE ES FR GB IT SE

    17Q First examination report despatched

    Effective date: 20020619

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): DE ES FR GB IT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59808621

    Country of ref document: DE

    Date of ref document: 20030710

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2198638

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040305

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20061213

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20061221

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20061228

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20061231

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20061212

    Year of fee payment: 9

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20071212

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071213

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20081020

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071212

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20071213

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071231

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071213

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20081219

    Year of fee payment: 11

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071212

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Ref country code: FR

    Ref legal event code: CA

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100701