EP0923781B1 - METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (RE)-Fe-B PERMANENT MAGNET - Google Patents

METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (RE)-Fe-B PERMANENT MAGNET Download PDF

Info

Publication number
EP0923781B1
EP0923781B1 EP97939966A EP97939966A EP0923781B1 EP 0923781 B1 EP0923781 B1 EP 0923781B1 EP 97939966 A EP97939966 A EP 97939966A EP 97939966 A EP97939966 A EP 97939966A EP 0923781 B1 EP0923781 B1 EP 0923781B1
Authority
EP
European Patent Office
Prior art keywords
weight
earth element
binder
permanent magnet
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97939966A
Other languages
German (de)
French (fr)
Other versions
EP0923781A1 (en
Inventor
Peter Schrey
Mircea Velicescu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP0923781A1 publication Critical patent/EP0923781A1/en
Application granted granted Critical
Publication of EP0923781B1 publication Critical patent/EP0923781B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Definitions

  • the invention relates to a permanent magnet of the SE-Fe-B type, which has the tetragonal phase SE 2 Fe 14 B as the main phase, SE being at least one rare earth element including Y.
  • SE-Fe-B magnets have the highest energy densities available today.
  • SE-Fe-B magnets manufactured by powder metallurgy contain about 90% of the hard magnetic main phase SE 2 Fe 14 B.
  • a two-phase magnet is known from DE 41 35 403 C2, wherein the second phase can be an SE-Fe-Co-Ga phase.
  • EP 0 583 041 A1 is also a two-phase magnet known, the second phase consists of an SE-Ga phase.
  • the procedure is generally such that these SE-FE-B magnets are composed of SE-Fe-B base alloys with a composition close to the SE 2 Fe 14 B phase and of a binder alloy with a lower melting temperature.
  • the aim is that the structure of the SE-Fe-B sintered magnets made of SE 2 Fe 14 B base alloys with intergranular binders is adjusted using as little binder alloy as possible.
  • EP 0 517 179 B1 describes the use of binder alloys with the composition Pr 20 Dy 10 Co 40 B 6 Ga 4 Fe rest (in% by weight these are Pr ⁇ 35, Dy ⁇ 20, Co ⁇ 28, B ⁇ 0, 77, Ga ⁇ 3.5).
  • this binder alloy in the mixture with the base alloy must be within 7-10% by weight.
  • sintered densities of approximately ⁇ > 7.55 g / cm 3 are only achieved at sintering temperatures above 1090 ° C. These sintered densities correspond to approximately 99% of the theoretical density. Outside this mixing range, the sinterability and thus the achievable remanence is significantly affected.
  • magnets with a proportion of this binder alloy of more than 10% by weight the grain growth is strongly activated, but the pores are not closed. The result is the formation of a structure with abnormally large grains (> 50 ⁇ m) and with high porosity and with low sintered densities. With low proportions of binder alloy, the amount of the liquid phase is therefore not sufficient for the compression.
  • the object of the present invention is therefore a powder metallurgy Process for manufacturing a permanent magnet of the type SE-Fe-B to indicate that compared to the known Process an increased sinterability with reduction of the binder alloy portion as well as a very good remanence achieved.
  • the mixtures were finely ground in a planetary ball mill for 90 minutes, the average particle size of the fine powder reached 2.9 to 3.0 ⁇ m.
  • Anisotropic, isostatically pressed magnets were produced from the fine powders. They were sintered to densities of ⁇ > 7.50 g / cm 3 and then annealed.
  • Figure 1 shows the demagnetization curve at room temperature magnet 1-8.
  • a magnet according to the prior art a binder alloy with the composition of approximately 28 % By weight Nd, 0.5% by weight Dy, 2.0% by weight Pr (sum SE ⁇ 30.5% by weight), 0.98% by weight B, 0.3% by weight Ga, 0.8% by weight Co and remainder Fe with the analog powder metallurgical processes.
  • Nd By weight
  • Pr sum SE ⁇ 30.5% by weight
  • B 0.3% by weight
  • Ga 0.8% by weight
  • Co and remainder Fe with the analog powder metallurgical processes.
  • FIG. 2 shows the demagnetization curve of this magnet, which according to the conventional powder metallurgical Process according to the prior art has been produced.
  • the highest coercivity was with the magnet 322/1 reached after annealing at a temperature of 630 ° C.
  • this magnet was a degree of alignment of the grains of 96% was measured and the relative Density is 98%. In terms of calculation, this is remanence expected from 1.415 T, i.e. a very good match with the measured value.

Description

Die Erfindung betrifft einen Dauermagneten des Typs SE-Fe-B, der als Hauptphase die tetragonale Phase SE2Fe14B aufweist, wobei SE mindestens ein Seltenerd-Element einschließlich Y ist.The invention relates to a permanent magnet of the SE-Fe-B type, which has the tetragonal phase SE 2 Fe 14 B as the main phase, SE being at least one rare earth element including Y.

Ein solcher Magnet ist beispielsweise aus der EP 0 124 655 A1 sowie der dazu korrespondierenden US 5,230,751 bekannt. Magnete des Typs SE-Fe-B weisen die höchsten heute zur Verfügung stehenden Energiedichten auf. Pulvermetallurgisch herstellte SE-Fe-B-Magnete enthalten etwa 90% der hartmagnetischen Hauptphase SE2Fe14B.Such a magnet is known for example from EP 0 124 655 A1 and the corresponding US Pat. No. 5,230,751. SE-Fe-B magnets have the highest energy densities available today. SE-Fe-B magnets manufactured by powder metallurgy contain about 90% of the hard magnetic main phase SE 2 Fe 14 B.

Aus der DE 41 35 403 C2 ist ein Zweiphasen-Magnet bekannt, wobei die zweite Phase eine SE-Fe-Co-Ga-Phase sein kann.A two-phase magnet is known from DE 41 35 403 C2, wherein the second phase can be an SE-Fe-Co-Ga phase.

Aus der EP 0 583 041 A1 ist ebenfalls ein Zweiphasen-Magnet bekannt, wobei die zweite Phase aus einer SE-Ga-Phase besteht.EP 0 583 041 A1 is also a two-phase magnet known, the second phase consists of an SE-Ga phase.

Aus der US 5,447,578 ist eine SE-Übergangsmetall-Ga-Phase bekannt.An SE transition metal Ga phase is known from US Pat. No. 5,447,578.

Ferner sind aus der US 5,405,455 sowie der EP 0 651 401 A1 weitere zweite Phasen bekannt.Furthermore, from US 5,405,455 and EP 0 651 401 A1 further second phases are known.

Bei der Herstellung verfährt man in der Regel so, daß diese SE-FE-B-Magnete aus SE-Fe-B-Grundlegierungen mit der Zusammensetzung nahe der SE2Fe14B-Phase und aus einer Binderlegierung mit einer niedrigeren Schmelztemperatur komponiert werden. Ziel ist es dabei, daß das Gefüge der SE-Fe-B-Sintermagnete aus SE2Fe14B-Grundlegierungen mit intergranularen Bindern eingestellt wird unter Verwendung von möglichst wenig Binderlegierung. In production, the procedure is generally such that these SE-FE-B magnets are composed of SE-Fe-B base alloys with a composition close to the SE 2 Fe 14 B phase and of a binder alloy with a lower melting temperature. The aim is that the structure of the SE-Fe-B sintered magnets made of SE 2 Fe 14 B base alloys with intergranular binders is adjusted using as little binder alloy as possible.

Aus der EP 0 517 179 B1 wird die Verwendung von Binderlegierungen mit der Zusammensetzung Pr20Dy10Co40B6Ga4Ferest (in Gew.% sind das Pr ≈ 35, Dy ≈ 20, Co ≈ 28, B ≈ 0,77, Ga ≈ 3,5) vorgeschlagen.EP 0 517 179 B1 describes the use of binder alloys with the composition Pr 20 Dy 10 Co 40 B 6 Ga 4 Fe rest (in% by weight these are Pr ≈ 35, Dy ≈ 20, Co ≈ 28, B ≈ 0, 77, Ga ≈ 3.5).

Es hat sich nun gezeigt, daß der Anteil dieser Binderlegierung in der Mischung mit der Grundlegierung innerhalb von 7-10 Gew.% liegen muß. In diesem Mischungsbereich werden Sinterdichten von ungefähr ρ > 7,55 g/cm3 erst bei Sintertemperaturen oberhalb 1090°C erreicht. Diese Sinterdichten entsprechen in etwa 99 % der theoretischen Dichte. Außerhalb dieses Mischungsbereichs wird die Sinterfähigkeit und damit die erzielbare Remanenz erheblich beeinflußt. Bei den Magne ten mit einem Anteil dieser Binderlegierung von mehr als 10 Gew.% wird das Kornwachstum stark aktiviert, die Poren werden aber nicht geschlossen. Die Folge ist die Bildung eines Gefüges mit anomal großen Körnern (> 50µm) und mit hoher Porösität sowie mit niedrigen Sinterdichten. Bei niedrigen Anteilen an Binderlegierung ist die Menge der flüssigen Phase für die Verdichtung demnach nicht ausreichend.It has now been shown that the proportion of this binder alloy in the mixture with the base alloy must be within 7-10% by weight. In this mixing range, sintered densities of approximately ρ> 7.55 g / cm 3 are only achieved at sintering temperatures above 1090 ° C. These sintered densities correspond to approximately 99% of the theoretical density. Outside this mixing range, the sinterability and thus the achievable remanence is significantly affected. In the case of magnets with a proportion of this binder alloy of more than 10% by weight, the grain growth is strongly activated, but the pores are not closed. The result is the formation of a structure with abnormally large grains (> 50 µm) and with high porosity and with low sintered densities. With low proportions of binder alloy, the amount of the liquid phase is therefore not sufficient for the compression.

Aufgabe der vorliegenden Erfindung ist es daher, einen pulvermetallurgisches Verfahren zur Herstellung eines Dauermagneten des Typs SE-Fe-B anzugeben, das gegenüber den bekannten Verfahren eine erhöhte Sinterfähigkeit unter Reduktion des Binderlegierungsanteils sowie eine sehr gute Remanenz erzielt.The object of the present invention is therefore a powder metallurgy Process for manufacturing a permanent magnet of the type SE-Fe-B to indicate that compared to the known Process an increased sinterability with reduction of the binder alloy portion as well as a very good remanence achieved.

Erfindungsgemäß wird die Aufgabe durch ein Verfahren gelöst, das die folgenden Schritte umfaßt:

  • a1) es wird ein Pulver aus einer Grundlegierung der allgemeinen Formel SE2T14B, worin SE mindestens ein Seltenerd-Element einschließlich Y ist und T Fe oder eine Kombination aus Fe und Co ist, wobei der Co-Anteil 40 Gew.% der Kombination von Fe und Co nicht überschreitet,
  • a2) und aus Pulvern von zumindest zwei Binderlegierungen der allgemeinen Formeln SE6(Fe,Co)13Ga und SE2Co3, worin SE mindestens ein Seltenerd-Element einschließlich Y ist, in einem Gewichtsverhältnis von 99:1 bis 89:11 gemischt,
  • b) die Mischung wird verdichtet und anschließend
  • c) unter Vakuum und/oder unter einer Inertgasatmosphäre gesintert.
  • According to the invention, the object is achieved by a method which comprises the following steps:
  • a 1 ) it is a powder of a basic alloy of the general formula SE 2 T 14 B, wherein SE is at least one rare earth element including Y and T is Fe or a combination of Fe and Co, the Co content not exceeding 40% by weight of the combination of Fe and Co,
  • a 2 ) and from powders of at least two binder alloys of the general formulas SE 6 (Fe, Co) 13 Ga and SE 2 Co 3 , wherein SE is at least one rare earth element including Y, mixed in a weight ratio of 99: 1 to 89:11,
  • b) the mixture is compressed and then
  • c) sintered under vacuum and / or under an inert gas atmosphere.
  • Es hat sich gezeigt, daß solch hergestellte Dauermagnete sehr hohe Remanenzen aufweisen und daß der Anteil an Binderlegierung gegenüber dem Anteil der Grundlegierung auf unter 7 Gew.% reduziert werden kann.It has been shown that permanent magnets manufactured in this way are very have high remanence and that the proportion of binder alloy compared to the proportion of the basic alloy below 7 % Can be reduced.

    Im folgenden wird die Erfindung anhand der Ausführungsbeispiele und der Figur näher erläutert. Für die Untersuchungen wurden eine Nd2Fe14B-Grundlegierung und fünf Binderlegierungen mit den folgenden Zusammensetzungen verwendet: Element B-Leg.1 B-Leg.2 B-Leg.3 B-Leg.4 B-Leg.5 Grund-L SV 95/130 SV 95/131 SV 95/132 SV 95/133 SV 95 134 SV 96/138 SE 50,9 47,7 64,8 51,5 50,3 28 Nd 0 0 0 0 0 28 Pr 50,9 31,7 0 51,5 50,3 0 Dy 0 15,7 64,8 0 0 0 Co 23 24,65 35,2 0 45,44 0 Ga 4,2 4,5 0 4,25 4,15 0 B 0 0 0 0 0 1,03 Fe 21,9 0 0 44,25 0 70,97 Leg.- Typ Pr6(Fe, Co)13Ga Pr, Dy6 (Fe, Co)13Ga Dy2Co3 Pr6Fe13Ga Pr6Co13Ga Nd2Fe14B The invention is explained in more detail below on the basis of the exemplary embodiments and the figure. An Nd 2 Fe 14 B base alloy and five binder alloys with the following compositions were used for the investigations: element B-Leg. 1 B-Leg. 2 B-Leg. 3 B-Leg. 4 B-Leg. 5 Basic L SV 95/130 SV 95/131 SV 95/132 SV 95/133 SV 95 134 SV 96/138 SE 50.9 47.7 64.8 51.5 50.3 28 Nd 0 0 0 0 0 28 Pr 50.9 31.7 0 51.5 50.3 0 Dy 0 15.7 64.8 0 0 0 Co 23 24.65 35.2 0 45.44 0 Ga 4.2 4.5 0 4.25 4.15 0 B 0 0 0 0 0 1.03 Fe 21.9 0 0 44.25 0 70.97 Leg.-type Pr 6 (Fe, Co) 13 Ga Pr, Dy 6 (Fe, Co) 13 Ga Dy 2 Co 3 Pr 6 Fe 13 Ga Pr 6 Co 13 Ga Nd2Fe14B

    Aus Grobpulvern dieser Legierungen wurden die folgenden Mischungen vorbereitet. Anteil (Gew.%) B-Leg.1 (Gew.%) B-Leg.2 (Gew.%) B-Leg.3 B-Leg.4 (Gew.%) B-Leg.5 (Gew.%) G.Leg (Gew.%) Mischung 1 5 5 1 89 Mischung 2 0 5 0 5 0 90 Mischung 3 5 2,5 1 1,5 1 89 Mischung 4 6 0 1,5 2,5 0 90 Mischung 5 6,5 1 1,5 1 1 89 Mischung 6 5,5 0 1,5 3 0 90 Mischung 7 5 1 1,5 2,5 1 90 Mischung 8 3,5 2 1 3,5 0 90 The following mixtures were prepared from coarse powders of these alloys. Proportion (% by weight) B-Leg. 1 (% by weight) B-Leg. 2 (% by weight) B-Leg. 3 B-Leg. 4 (% by weight) B-Leg. 5 (% by weight) G.Leg (% by weight) Mix 1 5 5 1 89 Mix 2 0 5 0 5 0 90 Mix 3 5 2.5 1 1.5 1 89 Mix 4 6 0 1.5 2.5 0 90 Mix 5 6.5 1 1.5 1 1 89 Mix 6 5.5 0 1.5 3rd 0 90 Mix 7 5 1 1.5 2.5 1 90 Mix 8 3.5 2 1 3.5 0 90

    Die errechneten Zusammensetzung der hergestellten Magnete ergeben dann: Magnet Nr.1 Nr.2 Nr.3 Nr.4 Nr.5 Nr.6 Nr.7 Nr.8 Ref. SE 30,1 30,3 30,35 30,35 30,4 30,7 30,5 30,6 30-31 Nd 25,2 24,9 25,2 25,2 25,2 24,9 25,2 24,9 27-28 Pr 4,13 4,6 4,1 4,1 4,14 4,85 4,15 4,7 1,7-2,2 Dy 0,79 0,79 1,04 1,05 1,2 0,97 1,3 0,96 0,6-1,4 Co 2,4 1,7 2,1 2,1 2,25 2,25 1,9 2,1 0,8-2 Ga 0,435 0,48 0,38 0,38 0,36 0,4 0,36 0,43 0,1-0,4 B 0,93 0,92 0,93 0,92 0,93 0,92 0,92 0,92 0,95-0,98 Fe Rest Rest Rest Rest Rest Rest Rest Rest Rest The calculated composition of the magnets produced then result in: magnet Number 1 No. 2 No.3 No.4 No.5 No. 6 No.7 No.8 Ref. SE 30.1 30.3 30.35 30.35 30.4 30.7 30.5 30.6 30-31 Nd 25.2 24.9 25.2 25.2 25.2 24.9 25.2 24.9 27-28 Pr 4.13 4.6 4.1 4.1 4.14 4.85 4.15 4.7 1.7-2.2 Dy 0.79 0.79 1.04 1.05 1.2 0.97 1.3 0.96 0.6-1.4 Co 2.4 1.7 2.1 2.1 2.25 2.25 1.9 2.1 0.8-2 Ga 0.435 0.48 0.38 0.38 0.36 0.4 0.36 0.43 0.1-0.4 B 0.93 0.92 0.93 0.92 0.93 0.92 0.92 0.92 0.95-0.98 Fe rest rest rest rest rest rest rest rest rest

    Die Mischungen wurden in einer Planeten-Kugelmühle 90 Minuten lang feingemahlen, die mittlere Teilchengröße des Feinpulvers erreichte 2,9 bis 3,0 µm. Aus den Feinpulvern wurden anisotrope, isostatisch-gepreßte Magnete hergestellt. Sie wurden auf Dichten von ρ > 7,50 g/cm3 gesintert und anschließend getempert. The mixtures were finely ground in a planetary ball mill for 90 minutes, the average particle size of the fine powder reached 2.9 to 3.0 μm. Anisotropic, isostatically pressed magnets were produced from the fine powders. They were sintered to densities of ρ> 7.50 g / cm 3 and then annealed.

    Die Figur 1 zeigt die Entmagnetisierungskurve bei Raumtemperatur des Magneten 1-8.Figure 1 shows the demagnetization curve at room temperature magnet 1-8.

    Zum Vergleich wurde ein Magnet gemäß dem Stand der Technik einer Binderlegierung mit der Zusammensetzung von ungefähr 28 Gew.% Nd, 0,5 Gew.% Dy, 2,0 Gew.% Pr (Summe SE ≈ 30,5 Gew.%), 0,98 Gew.% B, 0,3 Gew.% Ga, 0,8 Gew.% Co und Rest Fe mit dem analogen pulvermetallurgischen Verfahren hergestellt. Dabei wurde als Grundlegierung die selbe Grundlegierung wie beim Magneten 8-1 verwendet.For comparison, a magnet according to the prior art a binder alloy with the composition of approximately 28 % By weight Nd, 0.5% by weight Dy, 2.0% by weight Pr (sum SE ≈ 30.5% by weight), 0.98% by weight B, 0.3% by weight Ga, 0.8% by weight Co and remainder Fe with the analog powder metallurgical processes. there the same basic alloy as for the Magnets 8-1 used.

    Die Figur 2 zeigt die Entmagnetisierungskurve dieses Magneten, welcher nach dem herkömmlichen pulvermetallurgischem Verfahren gemäß dem Stand der Technik hergestellt worden ist.FIG. 2 shows the demagnetization curve of this magnet, which according to the conventional powder metallurgical Process according to the prior art has been produced.

    Es ist deutlich zu erkennen, daß die erfindungsgemäßen Dauermagnete eine wesentlich günstigere Entmagnetisierungskurve bei Raumtemperatur aufweisen als Dauermagnete, die nach dem Stand der Technik hergestellt worden sind.It can be clearly seen that the permanent magnets according to the invention a much cheaper demagnetization curve have at room temperature as permanent magnets, which after State of the art have been produced.

    Die höchsten Koerzitivfeldstärke wurde bei dem Magneten 322/1 nach einer Temperung bei einer Temperatur von 630°C erreicht. Der Magnet 322/1, der bei einer Temperatur von 1080°C gesintert wurde, erreichte eine Koerzitivfeldstärke von 10,4 kOe, wobei seine Remanenz 1,41 T beträgt. In diesem Magneten wurde ein Ausrichtungsgrad der Körner von 96 % gemessen und die relative Dichte beträgt 98%. Rechnerisch ist dadurch eine Remanenz von 1,415 T zu erwarten, d.h. eine sehr gute Übereinstimmung mit dem gemessenen Wert.The highest coercivity was with the magnet 322/1 reached after annealing at a temperature of 630 ° C. The magnet 322/1, which sintered at a temperature of 1080 ° C reached a coercive force of 10.4 kOe, its remanence is 1.41 T. In this magnet was a degree of alignment of the grains of 96% was measured and the relative Density is 98%. In terms of calculation, this is remanence expected from 1.415 T, i.e. a very good match with the measured value.

    Die Verwendung dieser Binderlegierungsgemische für die pulvermetallurgischen Herstellung von Dauermagneten weist gegenüber den einzelnen Binderlegierungen erhebliche Vorteile auf.The use of these binder alloy mixtures for the powder metallurgical Manufacture of permanent magnets points the individual binder alloys have considerable advantages on.

    So kann der Anteil an Binderlegierung gegenüber dem Anteil Binderlegierungen nach dem Stand der Technik entschieden verringert werden, d.h. auf einen Anteil unter 7 Gew.%.So the proportion of binder alloy compared to the proportion Binder alloys according to the prior art decidedly reduced become, i.e. to a proportion below 7% by weight.

    Claims (2)

    1. Process for the production of a permanent magnet comprising the following steps:
      a1) a powder consisting of a magnetic base alloy of general formula SE2T14B, where SE is at least one rare-earth element including Y and T is Fe or a combination of Fe and Co, the Co content not exceeding 40 % by weight of the combination of Fe and Co,
      a2) and consisting of powders of at least two binder alloys of general formulae SE6(Fe, Co)13Ga and SE2Co3, where SE is at least one rare-earth element including Y, is mixed in a weight ratio of 99:1 to 89:11,
      b) the mixture is compacted and then
      c) sintered in vacuo and/or in an inert-gas atmosphere.
    2. Process according to claim 1, characterised in that the weight ratio of the base alloy to the binder alloy is between 99:1 and 93:7.
    EP97939966A 1996-09-06 1997-08-19 METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (RE)-Fe-B PERMANENT MAGNET Expired - Lifetime EP0923781B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19636283 1996-09-06
    DE19636283A DE19636283A1 (en) 1996-09-06 1996-09-06 Process for manufacturing a SE-FE-B permanent magnet
    PCT/DE1997/001787 WO1998010438A1 (en) 1996-09-06 1997-08-19 METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (SE)-Fe-B PERMANENT MAGNET

    Publications (2)

    Publication Number Publication Date
    EP0923781A1 EP0923781A1 (en) 1999-06-23
    EP0923781B1 true EP0923781B1 (en) 2001-12-05

    Family

    ID=7804873

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97939966A Expired - Lifetime EP0923781B1 (en) 1996-09-06 1997-08-19 METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (RE)-Fe-B PERMANENT MAGNET

    Country Status (5)

    Country Link
    EP (1) EP0923781B1 (en)
    JP (1) JP3145417B2 (en)
    KR (1) KR20000068481A (en)
    DE (2) DE19636283A1 (en)
    WO (1) WO1998010438A1 (en)

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2043114B1 (en) * 2006-11-30 2019-01-02 Hitachi Metals, Ltd. R-fe-b microcrystalline high-density magnet and process for production thereof
    JP6443757B2 (en) * 2015-03-26 2018-12-26 日立金属株式会社 Method for producing RTB-based sintered magnet

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0124655B1 (en) * 1983-05-06 1989-09-20 Sumitomo Special Metals Co., Ltd. Isotropic permanent magnets and process for producing same
    US5230751A (en) * 1986-07-23 1993-07-27 Hitachi Metals, Ltd. Permanent magnet with good thermal stability
    US5447578A (en) * 1989-10-12 1995-09-05 Kawasaki Steel Corporation Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same
    US5405455A (en) * 1991-06-04 1995-04-11 Shin-Etsu Chemical Co. Ltd. Rare earth-based permanent magnet
    DE69202515T2 (en) * 1991-06-04 1995-09-21 Shinetsu Chemical Co Process for the production of two-phase permanent magnets based on rare earths.
    DE4135403C2 (en) * 1991-10-26 1994-06-16 Vacuumschmelze Gmbh SE-Fe-B permanent magnet and process for its manufacture
    EP0583041B1 (en) * 1992-08-13 1997-02-05 Koninklijke Philips Electronics N.V. Method of manufacturing a permanent magnet on the basis of NdFeB
    EP0651401B1 (en) * 1993-11-02 2002-07-31 TDK Corporation Preparation of permanent magnet

    Also Published As

    Publication number Publication date
    EP0923781A1 (en) 1999-06-23
    KR20000068481A (en) 2000-11-25
    JP2000503811A (en) 2000-03-28
    JP3145417B2 (en) 2001-03-12
    WO1998010438A1 (en) 1998-03-12
    DE19636283A1 (en) 1998-03-12
    DE59705687D1 (en) 2002-01-17

    Similar Documents

    Publication Publication Date Title
    DE602004009979T2 (en) R-T-B rare earth permanent magnet
    DE69911138T2 (en) Sintered R-T-B permanent magnet
    DE60309120T2 (en) Sintered R-Fe-B magnet
    DE60118982T2 (en) Rare earth permanent magnet material
    DE60319339T2 (en) METHOD FOR THE PRODUCTION OF R-T-B BASED RARE-ELEMENT PERMANENT MAGNETS
    DE60221448T2 (en) Rare earth alloy sintered compact
    DE60311421T2 (en) RARE TERMINAL PERMANENT MAGNET ON R-T-B BASE
    DE4408114B4 (en) Magnetic material
    EP1214720B1 (en) METHOD FOR PRODUCING PERMANENT MAGNETS ON THE BASIS OF BORON-LOW Nd-Fe-B ALLOY
    CH638566A5 (en) MATERIAL FOR PERMANENT MAGNETS AND METHOD FOR THE PRODUCTION THEREOF.
    DE60317460T2 (en) RARE TERMINAL PERMANENT MAGNET ON R-T-B BASE
    DE102018107491A1 (en) R-T-B BASED PERMANENT MAGNET
    DE2321368A1 (en) NEW SINTER PRODUCT MADE FROM AN INTERMETALLIC COBALT-NEODYME-SAMARIUM COMPOUND AND PERMANENT MAGNETS MANUFACTURED FROM IT
    EP0923780B1 (en) RARE EARTH ELEMENT (SE)-Fe-B PERMANENT MAGNET AND METHOD FOR THE MANUFACTURE THEREOF
    EP0923781B1 (en) METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (RE)-Fe-B PERMANENT MAGNET
    DE19636285C2 (en) Process for producing an SE-Fe-B permanent magnet
    DE60220773T2 (en) PROCESS FOR PRODUCING A SINTER PRODUCT
    DE2121453A1 (en) Process for the production of sintered intermetallic compounds from cobalt and rare earth metal using a solid sintering additive
    DE60010385T2 (en) PERMANENT MAGNETIC MATERIALS OF TYPE R-FE-B AND MANUFACTURING METHOD THEREFOR
    DE2705384C3 (en) Permanent magnet alloy and process for heat treatment of sintered permanent magnets
    WO2001024202A1 (en) Boron-low nd-fe-b alloy and method for producing the same
    DE2142368B2 (en) Sintered inermetallic compound made of cobalt and samarium for permanent magnets
    DE4027598C2 (en) Permanent magnet of type SE-Fe-B and process for its production
    WO1989002156A1 (en) OPTIMIZATION OF THE MICROSTRUCTURE OF SINTERED Fe-Nd-B MAGNETS
    EP0505348B1 (en) Permanent magnet material or sintered magnet and fabrication process

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990219

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT

    RTI1 Title (correction)

    Free format text: METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (RE)-FE-B PERMANENT MAGNET

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 20010312

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20011205

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011205

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20011207

    REF Corresponds to:

    Ref document number: 59705687

    Country of ref document: DE

    Date of ref document: 20020117

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    EN Fr: translation not filed
    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20070828

    Year of fee payment: 11

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20080819

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080819

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20161031

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59705687

    Country of ref document: DE